162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
262306a36Sopenharmony_ci#include <linux/types.h>
362306a36Sopenharmony_ci#include <linux/i8253.h>
462306a36Sopenharmony_ci#include <linux/interrupt.h>
562306a36Sopenharmony_ci#include <linux/irq.h>
662306a36Sopenharmony_ci#include <linux/smp.h>
762306a36Sopenharmony_ci#include <linux/time.h>
862306a36Sopenharmony_ci#include <linux/clockchips.h>
962306a36Sopenharmony_ci
1062306a36Sopenharmony_ci#include <asm/sni.h>
1162306a36Sopenharmony_ci#include <asm/time.h>
1262306a36Sopenharmony_ci
1362306a36Sopenharmony_ci#define SNI_CLOCK_TICK_RATE	3686400
1462306a36Sopenharmony_ci#define SNI_COUNTER2_DIV	64
1562306a36Sopenharmony_ci#define SNI_COUNTER0_DIV	((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
1662306a36Sopenharmony_ci
1762306a36Sopenharmony_cistatic int a20r_set_periodic(struct clock_event_device *evt)
1862306a36Sopenharmony_ci{
1962306a36Sopenharmony_ci	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
2062306a36Sopenharmony_ci	wmb();
2162306a36Sopenharmony_ci	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV & 0xff;
2262306a36Sopenharmony_ci	wmb();
2362306a36Sopenharmony_ci	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8;
2462306a36Sopenharmony_ci	wmb();
2562306a36Sopenharmony_ci
2662306a36Sopenharmony_ci	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
2762306a36Sopenharmony_ci	wmb();
2862306a36Sopenharmony_ci	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV & 0xff;
2962306a36Sopenharmony_ci	wmb();
3062306a36Sopenharmony_ci	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8;
3162306a36Sopenharmony_ci	wmb();
3262306a36Sopenharmony_ci	return 0;
3362306a36Sopenharmony_ci}
3462306a36Sopenharmony_ci
3562306a36Sopenharmony_cistatic struct clock_event_device a20r_clockevent_device = {
3662306a36Sopenharmony_ci	.name			= "a20r-timer",
3762306a36Sopenharmony_ci	.features		= CLOCK_EVT_FEAT_PERIODIC,
3862306a36Sopenharmony_ci
3962306a36Sopenharmony_ci	/* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
4062306a36Sopenharmony_ci
4162306a36Sopenharmony_ci	.rating			= 300,
4262306a36Sopenharmony_ci	.irq			= SNI_A20R_IRQ_TIMER,
4362306a36Sopenharmony_ci	.set_state_periodic	= a20r_set_periodic,
4462306a36Sopenharmony_ci};
4562306a36Sopenharmony_ci
4662306a36Sopenharmony_cistatic irqreturn_t a20r_interrupt(int irq, void *dev_id)
4762306a36Sopenharmony_ci{
4862306a36Sopenharmony_ci	struct clock_event_device *cd = dev_id;
4962306a36Sopenharmony_ci
5062306a36Sopenharmony_ci	*(volatile u8 *)A20R_PT_TIM0_ACK = 0;
5162306a36Sopenharmony_ci	wmb();
5262306a36Sopenharmony_ci
5362306a36Sopenharmony_ci	cd->event_handler(cd);
5462306a36Sopenharmony_ci
5562306a36Sopenharmony_ci	return IRQ_HANDLED;
5662306a36Sopenharmony_ci}
5762306a36Sopenharmony_ci
5862306a36Sopenharmony_ci/*
5962306a36Sopenharmony_ci * a20r platform uses 2 counters to divide the input frequency.
6062306a36Sopenharmony_ci * Counter 2 output is connected to Counter 0 & 1 input.
6162306a36Sopenharmony_ci */
6262306a36Sopenharmony_cistatic void __init sni_a20r_timer_setup(void)
6362306a36Sopenharmony_ci{
6462306a36Sopenharmony_ci	struct clock_event_device *cd = &a20r_clockevent_device;
6562306a36Sopenharmony_ci	unsigned int cpu = smp_processor_id();
6662306a36Sopenharmony_ci
6762306a36Sopenharmony_ci	cd->cpumask		= cpumask_of(cpu);
6862306a36Sopenharmony_ci	clockevents_register_device(cd);
6962306a36Sopenharmony_ci	if (request_irq(SNI_A20R_IRQ_TIMER, a20r_interrupt,
7062306a36Sopenharmony_ci			IRQF_PERCPU | IRQF_TIMER, "a20r-timer", cd))
7162306a36Sopenharmony_ci		pr_err("Failed to register a20r-timer interrupt\n");
7262306a36Sopenharmony_ci}
7362306a36Sopenharmony_ci
7462306a36Sopenharmony_ci#define SNI_8254_TICK_RATE	  1193182UL
7562306a36Sopenharmony_ci
7662306a36Sopenharmony_ci#define SNI_8254_TCSAMP_COUNTER	  ((SNI_8254_TICK_RATE / HZ) + 255)
7762306a36Sopenharmony_ci
7862306a36Sopenharmony_cistatic __init unsigned long dosample(void)
7962306a36Sopenharmony_ci{
8062306a36Sopenharmony_ci	u32 ct0, ct1;
8162306a36Sopenharmony_ci	volatile u8 msb;
8262306a36Sopenharmony_ci
8362306a36Sopenharmony_ci	/* Start the counter. */
8462306a36Sopenharmony_ci	outb_p(0x34, 0x43);
8562306a36Sopenharmony_ci	outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
8662306a36Sopenharmony_ci	outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
8762306a36Sopenharmony_ci
8862306a36Sopenharmony_ci	/* Get initial counter invariant */
8962306a36Sopenharmony_ci	ct0 = read_c0_count();
9062306a36Sopenharmony_ci
9162306a36Sopenharmony_ci	/* Latch and spin until top byte of counter0 is zero */
9262306a36Sopenharmony_ci	do {
9362306a36Sopenharmony_ci		outb(0x00, 0x43);
9462306a36Sopenharmony_ci		(void) inb(0x40);
9562306a36Sopenharmony_ci		msb = inb(0x40);
9662306a36Sopenharmony_ci		ct1 = read_c0_count();
9762306a36Sopenharmony_ci	} while (msb);
9862306a36Sopenharmony_ci
9962306a36Sopenharmony_ci	/* Stop the counter. */
10062306a36Sopenharmony_ci	outb(0x38, 0x43);
10162306a36Sopenharmony_ci	/*
10262306a36Sopenharmony_ci	 * Return the difference, this is how far the r4k counter increments
10362306a36Sopenharmony_ci	 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
10462306a36Sopenharmony_ci	 * clock (= 1000000 / HZ / 2).
10562306a36Sopenharmony_ci	 */
10662306a36Sopenharmony_ci	/*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
10762306a36Sopenharmony_ci	return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
10862306a36Sopenharmony_ci}
10962306a36Sopenharmony_ci
11062306a36Sopenharmony_ci/*
11162306a36Sopenharmony_ci * Here we need to calibrate the cycle counter to at least be close.
11262306a36Sopenharmony_ci */
11362306a36Sopenharmony_civoid __init plat_time_init(void)
11462306a36Sopenharmony_ci{
11562306a36Sopenharmony_ci	unsigned long r4k_ticks[3];
11662306a36Sopenharmony_ci	unsigned long r4k_tick;
11762306a36Sopenharmony_ci
11862306a36Sopenharmony_ci	/*
11962306a36Sopenharmony_ci	 * Figure out the r4k offset, the algorithm is very simple and works in
12062306a36Sopenharmony_ci	 * _all_ cases as long as the 8254 counter register itself works ok (as
12162306a36Sopenharmony_ci	 * an interrupt driving timer it does not because of bug, this is why
12262306a36Sopenharmony_ci	 * we are using the onchip r4k counter/compare register to serve this
12362306a36Sopenharmony_ci	 * purpose, but for r4k_offset calculation it will work ok for us).
12462306a36Sopenharmony_ci	 * There are other very complicated ways of performing this calculation
12562306a36Sopenharmony_ci	 * but this one works just fine so I am not going to futz around. ;-)
12662306a36Sopenharmony_ci	 */
12762306a36Sopenharmony_ci	printk(KERN_INFO "Calibrating system timer... ");
12862306a36Sopenharmony_ci	dosample();	/* Prime cache. */
12962306a36Sopenharmony_ci	dosample();	/* Prime cache. */
13062306a36Sopenharmony_ci	/* Zero is NOT an option. */
13162306a36Sopenharmony_ci	do {
13262306a36Sopenharmony_ci		r4k_ticks[0] = dosample();
13362306a36Sopenharmony_ci	} while (!r4k_ticks[0]);
13462306a36Sopenharmony_ci	do {
13562306a36Sopenharmony_ci		r4k_ticks[1] = dosample();
13662306a36Sopenharmony_ci	} while (!r4k_ticks[1]);
13762306a36Sopenharmony_ci
13862306a36Sopenharmony_ci	if (r4k_ticks[0] != r4k_ticks[1]) {
13962306a36Sopenharmony_ci		printk("warning: timer counts differ, retrying... ");
14062306a36Sopenharmony_ci		r4k_ticks[2] = dosample();
14162306a36Sopenharmony_ci		if (r4k_ticks[2] == r4k_ticks[0]
14262306a36Sopenharmony_ci		    || r4k_ticks[2] == r4k_ticks[1])
14362306a36Sopenharmony_ci			r4k_tick = r4k_ticks[2];
14462306a36Sopenharmony_ci		else {
14562306a36Sopenharmony_ci			printk("disagreement, using average... ");
14662306a36Sopenharmony_ci			r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
14762306a36Sopenharmony_ci				   + r4k_ticks[2]) / 3;
14862306a36Sopenharmony_ci		}
14962306a36Sopenharmony_ci	} else
15062306a36Sopenharmony_ci		r4k_tick = r4k_ticks[0];
15162306a36Sopenharmony_ci
15262306a36Sopenharmony_ci	printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
15362306a36Sopenharmony_ci		(int) (r4k_tick / (500000 / HZ)),
15462306a36Sopenharmony_ci		(int) (r4k_tick % (500000 / HZ)));
15562306a36Sopenharmony_ci
15662306a36Sopenharmony_ci	mips_hpt_frequency = r4k_tick * HZ;
15762306a36Sopenharmony_ci
15862306a36Sopenharmony_ci	switch (sni_brd_type) {
15962306a36Sopenharmony_ci	case SNI_BRD_10:
16062306a36Sopenharmony_ci	case SNI_BRD_10NEW:
16162306a36Sopenharmony_ci	case SNI_BRD_TOWER_OASIC:
16262306a36Sopenharmony_ci	case SNI_BRD_MINITOWER:
16362306a36Sopenharmony_ci		sni_a20r_timer_setup();
16462306a36Sopenharmony_ci		break;
16562306a36Sopenharmony_ci	}
16662306a36Sopenharmony_ci	setup_pit_timer();
16762306a36Sopenharmony_ci}
168