1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2000,2001,2002,2003,2004 Broadcom Corporation
4 */
5#include <linux/kernel.h>
6#include <linux/init.h>
7#include <linux/linkage.h>
8#include <linux/interrupt.h>
9#include <linux/smp.h>
10#include <linux/spinlock.h>
11#include <linux/mm.h>
12#include <linux/kernel_stat.h>
13
14#include <asm/errno.h>
15#include <asm/irq_regs.h>
16#include <asm/signal.h>
17#include <asm/io.h>
18
19#include <asm/sibyte/bcm1480_regs.h>
20#include <asm/sibyte/bcm1480_int.h>
21#include <asm/sibyte/bcm1480_scd.h>
22
23#include <asm/sibyte/sb1250_uart.h>
24#include <asm/sibyte/sb1250.h>
25
26/*
27 * These are the routines that handle all the low level interrupt stuff.
28 * Actions handled here are: initialization of the interrupt map, requesting of
29 * interrupt lines by handlers, dispatching if interrupts to handlers, probing
30 * for interrupt lines
31 */
32
33#ifdef CONFIG_PCI
34extern unsigned long ht_eoi_space;
35#endif
36
37/* Store the CPU id (not the logical number) */
38int bcm1480_irq_owner[BCM1480_NR_IRQS];
39
40static DEFINE_RAW_SPINLOCK(bcm1480_imr_lock);
41
42void bcm1480_mask_irq(int cpu, int irq)
43{
44	unsigned long flags, hl_spacing;
45	u64 cur_ints;
46
47	raw_spin_lock_irqsave(&bcm1480_imr_lock, flags);
48	hl_spacing = 0;
49	if ((irq >= BCM1480_NR_IRQS_HALF) && (irq <= BCM1480_NR_IRQS)) {
50		hl_spacing = BCM1480_IMR_HL_SPACING;
51		irq -= BCM1480_NR_IRQS_HALF;
52	}
53	cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
54	cur_ints |= (((u64) 1) << irq);
55	____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
56	raw_spin_unlock_irqrestore(&bcm1480_imr_lock, flags);
57}
58
59void bcm1480_unmask_irq(int cpu, int irq)
60{
61	unsigned long flags, hl_spacing;
62	u64 cur_ints;
63
64	raw_spin_lock_irqsave(&bcm1480_imr_lock, flags);
65	hl_spacing = 0;
66	if ((irq >= BCM1480_NR_IRQS_HALF) && (irq <= BCM1480_NR_IRQS)) {
67		hl_spacing = BCM1480_IMR_HL_SPACING;
68		irq -= BCM1480_NR_IRQS_HALF;
69	}
70	cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
71	cur_ints &= ~(((u64) 1) << irq);
72	____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
73	raw_spin_unlock_irqrestore(&bcm1480_imr_lock, flags);
74}
75
76#ifdef CONFIG_SMP
77static int bcm1480_set_affinity(struct irq_data *d, const struct cpumask *mask,
78				bool force)
79{
80	unsigned int irq_dirty, irq = d->irq;
81	int i = 0, old_cpu, cpu, int_on, k;
82	u64 cur_ints;
83	unsigned long flags;
84
85	i = cpumask_first_and(mask, cpu_online_mask);
86
87	/* Convert logical CPU to physical CPU */
88	cpu = cpu_logical_map(i);
89
90	/* Protect against other affinity changers and IMR manipulation */
91	raw_spin_lock_irqsave(&bcm1480_imr_lock, flags);
92
93	/* Swizzle each CPU's IMR (but leave the IP selection alone) */
94	old_cpu = bcm1480_irq_owner[irq];
95	irq_dirty = irq;
96	if ((irq_dirty >= BCM1480_NR_IRQS_HALF) && (irq_dirty <= BCM1480_NR_IRQS)) {
97		irq_dirty -= BCM1480_NR_IRQS_HALF;
98	}
99
100	for (k=0; k<2; k++) { /* Loop through high and low interrupt mask register */
101		cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(old_cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
102		int_on = !(cur_ints & (((u64) 1) << irq_dirty));
103		if (int_on) {
104			/* If it was on, mask it */
105			cur_ints |= (((u64) 1) << irq_dirty);
106			____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(old_cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
107		}
108		bcm1480_irq_owner[irq] = cpu;
109		if (int_on) {
110			/* unmask for the new CPU */
111			cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
112			cur_ints &= ~(((u64) 1) << irq_dirty);
113			____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
114		}
115	}
116	raw_spin_unlock_irqrestore(&bcm1480_imr_lock, flags);
117
118	return 0;
119}
120#endif
121
122
123/*****************************************************************************/
124
125static void disable_bcm1480_irq(struct irq_data *d)
126{
127	unsigned int irq = d->irq;
128
129	bcm1480_mask_irq(bcm1480_irq_owner[irq], irq);
130}
131
132static void enable_bcm1480_irq(struct irq_data *d)
133{
134	unsigned int irq = d->irq;
135
136	bcm1480_unmask_irq(bcm1480_irq_owner[irq], irq);
137}
138
139
140static void ack_bcm1480_irq(struct irq_data *d)
141{
142	unsigned int irq_dirty, irq = d->irq;
143	u64 pending;
144	int k;
145
146	/*
147	 * If the interrupt was an HT interrupt, now is the time to
148	 * clear it.  NOTE: we assume the HT bridge was set up to
149	 * deliver the interrupts to all CPUs (which makes affinity
150	 * changing easier for us)
151	 */
152	irq_dirty = irq;
153	if ((irq_dirty >= BCM1480_NR_IRQS_HALF) && (irq_dirty <= BCM1480_NR_IRQS)) {
154		irq_dirty -= BCM1480_NR_IRQS_HALF;
155	}
156	for (k=0; k<2; k++) { /* Loop through high and low LDT interrupts */
157		pending = __raw_readq(IOADDR(A_BCM1480_IMR_REGISTER(bcm1480_irq_owner[irq],
158						R_BCM1480_IMR_LDT_INTERRUPT_H + (k*BCM1480_IMR_HL_SPACING))));
159		pending &= ((u64)1 << (irq_dirty));
160		if (pending) {
161#ifdef CONFIG_SMP
162			int i;
163			for (i=0; i<NR_CPUS; i++) {
164				/*
165				 * Clear for all CPUs so an affinity switch
166				 * doesn't find an old status
167				 */
168				__raw_writeq(pending, IOADDR(A_BCM1480_IMR_REGISTER(cpu_logical_map(i),
169								R_BCM1480_IMR_LDT_INTERRUPT_CLR_H + (k*BCM1480_IMR_HL_SPACING))));
170			}
171#else
172			__raw_writeq(pending, IOADDR(A_BCM1480_IMR_REGISTER(0, R_BCM1480_IMR_LDT_INTERRUPT_CLR_H + (k*BCM1480_IMR_HL_SPACING))));
173#endif
174
175			/*
176			 * Generate EOI.  For Pass 1 parts, EOI is a nop.  For
177			 * Pass 2, the LDT world may be edge-triggered, but
178			 * this EOI shouldn't hurt.  If they are
179			 * level-sensitive, the EOI is required.
180			 */
181#ifdef CONFIG_PCI
182			if (ht_eoi_space)
183				*(uint32_t *)(ht_eoi_space+(irq<<16)+(7<<2)) = 0;
184#endif
185		}
186	}
187	bcm1480_mask_irq(bcm1480_irq_owner[irq], irq);
188}
189
190static struct irq_chip bcm1480_irq_type = {
191	.name = "BCM1480-IMR",
192	.irq_mask_ack = ack_bcm1480_irq,
193	.irq_mask = disable_bcm1480_irq,
194	.irq_unmask = enable_bcm1480_irq,
195#ifdef CONFIG_SMP
196	.irq_set_affinity = bcm1480_set_affinity
197#endif
198};
199
200void __init init_bcm1480_irqs(void)
201{
202	int i;
203
204	for (i = 0; i < BCM1480_NR_IRQS; i++) {
205		irq_set_chip_and_handler(i, &bcm1480_irq_type,
206					 handle_level_irq);
207		bcm1480_irq_owner[i] = 0;
208	}
209}
210
211/*
212 *  init_IRQ is called early in the boot sequence from init/main.c.  It
213 *  is responsible for setting up the interrupt mapper and installing the
214 *  handler that will be responsible for dispatching interrupts to the
215 *  "right" place.
216 */
217/*
218 * For now, map all interrupts to IP[2].  We could save
219 * some cycles by parceling out system interrupts to different
220 * IP lines, but keep it simple for bringup.  We'll also direct
221 * all interrupts to a single CPU; we should probably route
222 * PCI and LDT to one cpu and everything else to the other
223 * to balance the load a bit.
224 *
225 * On the second cpu, everything is set to IP5, which is
226 * ignored, EXCEPT the mailbox interrupt.  That one is
227 * set to IP[2] so it is handled.  This is needed so we
228 * can do cross-cpu function calls, as required by SMP
229 */
230
231#define IMR_IP2_VAL	K_BCM1480_INT_MAP_I0
232#define IMR_IP3_VAL	K_BCM1480_INT_MAP_I1
233#define IMR_IP4_VAL	K_BCM1480_INT_MAP_I2
234#define IMR_IP5_VAL	K_BCM1480_INT_MAP_I3
235#define IMR_IP6_VAL	K_BCM1480_INT_MAP_I4
236
237void __init arch_init_irq(void)
238{
239	unsigned int i, cpu;
240	u64 tmp;
241	unsigned int imask = STATUSF_IP4 | STATUSF_IP3 | STATUSF_IP2 |
242		STATUSF_IP1 | STATUSF_IP0;
243
244	/* Default everything to IP2 */
245	/* Start with _high registers which has no bit 0 interrupt source */
246	for (i = 1; i < BCM1480_NR_IRQS_HALF; i++) {	/* was I0 */
247		for (cpu = 0; cpu < 4; cpu++) {
248			__raw_writeq(IMR_IP2_VAL,
249				     IOADDR(A_BCM1480_IMR_REGISTER(cpu,
250								   R_BCM1480_IMR_INTERRUPT_MAP_BASE_H) + (i << 3)));
251		}
252	}
253
254	/* Now do _low registers */
255	for (i = 0; i < BCM1480_NR_IRQS_HALF; i++) {
256		for (cpu = 0; cpu < 4; cpu++) {
257			__raw_writeq(IMR_IP2_VAL,
258				     IOADDR(A_BCM1480_IMR_REGISTER(cpu,
259								   R_BCM1480_IMR_INTERRUPT_MAP_BASE_L) + (i << 3)));
260		}
261	}
262
263	init_bcm1480_irqs();
264
265	/*
266	 * Map the high 16 bits of mailbox_0 registers to IP[3], for
267	 * inter-cpu messages
268	 */
269	/* Was I1 */
270	for (cpu = 0; cpu < 4; cpu++) {
271		__raw_writeq(IMR_IP3_VAL, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MAP_BASE_H) +
272						 (K_BCM1480_INT_MBOX_0_0 << 3)));
273	}
274
275
276	/* Clear the mailboxes.	 The firmware may leave them dirty */
277	for (cpu = 0; cpu < 4; cpu++) {
278		__raw_writeq(0xffffffffffffffffULL,
279			     IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_MAILBOX_0_CLR_CPU)));
280		__raw_writeq(0xffffffffffffffffULL,
281			     IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_MAILBOX_1_CLR_CPU)));
282	}
283
284
285	/* Mask everything except the high 16 bit of mailbox_0 registers for all cpus */
286	tmp = ~((u64) 0) ^ ( (((u64) 1) << K_BCM1480_INT_MBOX_0_0));
287	for (cpu = 0; cpu < 4; cpu++) {
288		__raw_writeq(tmp, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MASK_H)));
289	}
290	tmp = ~((u64) 0);
291	for (cpu = 0; cpu < 4; cpu++) {
292		__raw_writeq(tmp, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MASK_L)));
293	}
294
295	/*
296	 * Note that the timer interrupts are also mapped, but this is
297	 * done in bcm1480_time_init().	 Also, the profiling driver
298	 * does its own management of IP7.
299	 */
300
301	/* Enable necessary IPs, disable the rest */
302	change_c0_status(ST0_IM, imask);
303}
304
305extern void bcm1480_mailbox_interrupt(void);
306
307static inline void dispatch_ip2(void)
308{
309	unsigned long long mask_h, mask_l;
310	unsigned int cpu = smp_processor_id();
311	unsigned long base;
312
313	/*
314	 * Default...we've hit an IP[2] interrupt, which means we've got to
315	 * check the 1480 interrupt registers to figure out what to do.	 Need
316	 * to detect which CPU we're on, now that smp_affinity is supported.
317	 */
318	base = A_BCM1480_IMR_MAPPER(cpu);
319	mask_h = __raw_readq(
320		IOADDR(base + R_BCM1480_IMR_INTERRUPT_STATUS_BASE_H));
321	mask_l = __raw_readq(
322		IOADDR(base + R_BCM1480_IMR_INTERRUPT_STATUS_BASE_L));
323
324	if (mask_h) {
325		if (mask_h ^ 1)
326			do_IRQ(fls64(mask_h) - 1);
327		else if (mask_l)
328			do_IRQ(63 + fls64(mask_l));
329	}
330}
331
332asmlinkage void plat_irq_dispatch(void)
333{
334	unsigned int cpu = smp_processor_id();
335	unsigned int pending;
336
337	pending = read_c0_cause() & read_c0_status();
338
339	if (pending & CAUSEF_IP4)
340		do_IRQ(K_BCM1480_INT_TIMER_0 + cpu);
341#ifdef CONFIG_SMP
342	else if (pending & CAUSEF_IP3)
343		bcm1480_mailbox_interrupt();
344#endif
345
346	else if (pending & CAUSEF_IP2)
347		dispatch_ip2();
348}
349