xref: /kernel/linux/linux-6.6/arch/mips/mm/tlbex.c (revision 62306a36)
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009	 Maciej W. Rozycki
10 * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011  MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completely out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24#include <linux/bug.h>
25#include <linux/export.h>
26#include <linux/kernel.h>
27#include <linux/types.h>
28#include <linux/smp.h>
29#include <linux/string.h>
30#include <linux/cache.h>
31#include <linux/pgtable.h>
32
33#include <asm/cacheflush.h>
34#include <asm/cpu-type.h>
35#include <asm/mmu_context.h>
36#include <asm/uasm.h>
37#include <asm/setup.h>
38#include <asm/tlbex.h>
39
40static int mips_xpa_disabled;
41
42static int __init xpa_disable(char *s)
43{
44	mips_xpa_disabled = 1;
45
46	return 1;
47}
48
49__setup("noxpa", xpa_disable);
50
51/*
52 * TLB load/store/modify handlers.
53 *
54 * Only the fastpath gets synthesized at runtime, the slowpath for
55 * do_page_fault remains normal asm.
56 */
57extern void tlb_do_page_fault_0(void);
58extern void tlb_do_page_fault_1(void);
59
60struct work_registers {
61	int r1;
62	int r2;
63	int r3;
64};
65
66struct tlb_reg_save {
67	unsigned long a;
68	unsigned long b;
69} ____cacheline_aligned_in_smp;
70
71static struct tlb_reg_save handler_reg_save[NR_CPUS];
72
73static inline int r45k_bvahwbug(void)
74{
75	/* XXX: We should probe for the presence of this bug, but we don't. */
76	return 0;
77}
78
79static inline int r4k_250MHZhwbug(void)
80{
81	/* XXX: We should probe for the presence of this bug, but we don't. */
82	return 0;
83}
84
85extern int sb1250_m3_workaround_needed(void);
86
87static inline int __maybe_unused bcm1250_m3_war(void)
88{
89	if (IS_ENABLED(CONFIG_SB1_PASS_2_WORKAROUNDS))
90		return sb1250_m3_workaround_needed();
91	return 0;
92}
93
94static inline int __maybe_unused r10000_llsc_war(void)
95{
96	return IS_ENABLED(CONFIG_WAR_R10000_LLSC);
97}
98
99static int use_bbit_insns(void)
100{
101	switch (current_cpu_type()) {
102	case CPU_CAVIUM_OCTEON:
103	case CPU_CAVIUM_OCTEON_PLUS:
104	case CPU_CAVIUM_OCTEON2:
105	case CPU_CAVIUM_OCTEON3:
106		return 1;
107	default:
108		return 0;
109	}
110}
111
112static int use_lwx_insns(void)
113{
114	switch (current_cpu_type()) {
115	case CPU_CAVIUM_OCTEON2:
116	case CPU_CAVIUM_OCTEON3:
117		return 1;
118	default:
119		return 0;
120	}
121}
122#if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
123    CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
124static bool scratchpad_available(void)
125{
126	return true;
127}
128static int scratchpad_offset(int i)
129{
130	/*
131	 * CVMSEG starts at address -32768 and extends for
132	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
133	 */
134	i += 1; /* Kernel use starts at the top and works down. */
135	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
136}
137#else
138static bool scratchpad_available(void)
139{
140	return false;
141}
142static int scratchpad_offset(int i)
143{
144	BUG();
145	/* Really unreachable, but evidently some GCC want this. */
146	return 0;
147}
148#endif
149/*
150 * Found by experiment: At least some revisions of the 4kc throw under
151 * some circumstances a machine check exception, triggered by invalid
152 * values in the index register.  Delaying the tlbp instruction until
153 * after the next branch,  plus adding an additional nop in front of
154 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
155 * why; it's not an issue caused by the core RTL.
156 *
157 */
158static int m4kc_tlbp_war(void)
159{
160	return current_cpu_type() == CPU_4KC;
161}
162
163/* Handle labels (which must be positive integers). */
164enum label_id {
165	label_second_part = 1,
166	label_leave,
167	label_vmalloc,
168	label_vmalloc_done,
169	label_tlbw_hazard_0,
170	label_split = label_tlbw_hazard_0 + 8,
171	label_tlbl_goaround1,
172	label_tlbl_goaround2,
173	label_nopage_tlbl,
174	label_nopage_tlbs,
175	label_nopage_tlbm,
176	label_smp_pgtable_change,
177	label_r3000_write_probe_fail,
178	label_large_segbits_fault,
179#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
180	label_tlb_huge_update,
181#endif
182};
183
184UASM_L_LA(_second_part)
185UASM_L_LA(_leave)
186UASM_L_LA(_vmalloc)
187UASM_L_LA(_vmalloc_done)
188/* _tlbw_hazard_x is handled differently.  */
189UASM_L_LA(_split)
190UASM_L_LA(_tlbl_goaround1)
191UASM_L_LA(_tlbl_goaround2)
192UASM_L_LA(_nopage_tlbl)
193UASM_L_LA(_nopage_tlbs)
194UASM_L_LA(_nopage_tlbm)
195UASM_L_LA(_smp_pgtable_change)
196UASM_L_LA(_r3000_write_probe_fail)
197UASM_L_LA(_large_segbits_fault)
198#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
199UASM_L_LA(_tlb_huge_update)
200#endif
201
202static int hazard_instance;
203
204static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
205{
206	switch (instance) {
207	case 0 ... 7:
208		uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
209		return;
210	default:
211		BUG();
212	}
213}
214
215static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
216{
217	switch (instance) {
218	case 0 ... 7:
219		uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
220		break;
221	default:
222		BUG();
223	}
224}
225
226/*
227 * pgtable bits are assigned dynamically depending on processor feature
228 * and statically based on kernel configuration.  This spits out the actual
229 * values the kernel is using.	Required to make sense from disassembled
230 * TLB exception handlers.
231 */
232static void output_pgtable_bits_defines(void)
233{
234#define pr_define(fmt, ...)					\
235	pr_debug("#define " fmt, ##__VA_ARGS__)
236
237	pr_debug("#include <asm/asm.h>\n");
238	pr_debug("#include <asm/regdef.h>\n");
239	pr_debug("\n");
240
241	pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
242	pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
243	pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
244	pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
245	pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
246#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
247	pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
248#endif
249#ifdef _PAGE_NO_EXEC_SHIFT
250	if (cpu_has_rixi)
251		pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
252#endif
253	pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
254	pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
255	pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
256	pr_define("PFN_PTE_SHIFT %d\n", PFN_PTE_SHIFT);
257	pr_debug("\n");
258}
259
260static inline void dump_handler(const char *symbol, const void *start, const void *end)
261{
262	unsigned int count = (end - start) / sizeof(u32);
263	const u32 *handler = start;
264	int i;
265
266	pr_debug("LEAF(%s)\n", symbol);
267
268	pr_debug("\t.set push\n");
269	pr_debug("\t.set noreorder\n");
270
271	for (i = 0; i < count; i++)
272		pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
273
274	pr_debug("\t.set\tpop\n");
275
276	pr_debug("\tEND(%s)\n", symbol);
277}
278
279/* The only general purpose registers allowed in TLB handlers. */
280#define K0		26
281#define K1		27
282
283/* Some CP0 registers */
284#define C0_INDEX	0, 0
285#define C0_ENTRYLO0	2, 0
286#define C0_TCBIND	2, 2
287#define C0_ENTRYLO1	3, 0
288#define C0_CONTEXT	4, 0
289#define C0_PAGEMASK	5, 0
290#define C0_PWBASE	5, 5
291#define C0_PWFIELD	5, 6
292#define C0_PWSIZE	5, 7
293#define C0_PWCTL	6, 6
294#define C0_BADVADDR	8, 0
295#define C0_PGD		9, 7
296#define C0_ENTRYHI	10, 0
297#define C0_EPC		14, 0
298#define C0_XCONTEXT	20, 0
299
300#ifdef CONFIG_64BIT
301# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
302#else
303# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
304#endif
305
306/* The worst case length of the handler is around 18 instructions for
307 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
308 * Maximum space available is 32 instructions for R3000 and 64
309 * instructions for R4000.
310 *
311 * We deliberately chose a buffer size of 128, so we won't scribble
312 * over anything important on overflow before we panic.
313 */
314static u32 tlb_handler[128];
315
316/* simply assume worst case size for labels and relocs */
317static struct uasm_label labels[128];
318static struct uasm_reloc relocs[128];
319
320static int check_for_high_segbits;
321static bool fill_includes_sw_bits;
322
323static unsigned int kscratch_used_mask;
324
325static inline int __maybe_unused c0_kscratch(void)
326{
327	return 31;
328}
329
330static int allocate_kscratch(void)
331{
332	int r;
333	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
334
335	r = ffs(a);
336
337	if (r == 0)
338		return -1;
339
340	r--; /* make it zero based */
341
342	kscratch_used_mask |= (1 << r);
343
344	return r;
345}
346
347static int scratch_reg;
348int pgd_reg;
349EXPORT_SYMBOL_GPL(pgd_reg);
350enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
351
352static struct work_registers build_get_work_registers(u32 **p)
353{
354	struct work_registers r;
355
356	if (scratch_reg >= 0) {
357		/* Save in CPU local C0_KScratch? */
358		UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
359		r.r1 = K0;
360		r.r2 = K1;
361		r.r3 = 1;
362		return r;
363	}
364
365	if (num_possible_cpus() > 1) {
366		/* Get smp_processor_id */
367		UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
368		UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
369
370		/* handler_reg_save index in K0 */
371		UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
372
373		UASM_i_LA(p, K1, (long)&handler_reg_save);
374		UASM_i_ADDU(p, K0, K0, K1);
375	} else {
376		UASM_i_LA(p, K0, (long)&handler_reg_save);
377	}
378	/* K0 now points to save area, save $1 and $2  */
379	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
380	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
381
382	r.r1 = K1;
383	r.r2 = 1;
384	r.r3 = 2;
385	return r;
386}
387
388static void build_restore_work_registers(u32 **p)
389{
390	if (scratch_reg >= 0) {
391		uasm_i_ehb(p);
392		UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
393		return;
394	}
395	/* K0 already points to save area, restore $1 and $2  */
396	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
397	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
398}
399
400#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
401
402/*
403 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
404 * we cannot do r3000 under these circumstances.
405 *
406 * The R3000 TLB handler is simple.
407 */
408static void build_r3000_tlb_refill_handler(void)
409{
410	long pgdc = (long)pgd_current;
411	u32 *p;
412
413	memset(tlb_handler, 0, sizeof(tlb_handler));
414	p = tlb_handler;
415
416	uasm_i_mfc0(&p, K0, C0_BADVADDR);
417	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
418	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
419	uasm_i_srl(&p, K0, K0, 22); /* load delay */
420	uasm_i_sll(&p, K0, K0, 2);
421	uasm_i_addu(&p, K1, K1, K0);
422	uasm_i_mfc0(&p, K0, C0_CONTEXT);
423	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
424	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
425	uasm_i_addu(&p, K1, K1, K0);
426	uasm_i_lw(&p, K0, 0, K1);
427	uasm_i_nop(&p); /* load delay */
428	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
429	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
430	uasm_i_tlbwr(&p); /* cp0 delay */
431	uasm_i_jr(&p, K1);
432	uasm_i_rfe(&p); /* branch delay */
433
434	if (p > tlb_handler + 32)
435		panic("TLB refill handler space exceeded");
436
437	pr_debug("Wrote TLB refill handler (%u instructions).\n",
438		 (unsigned int)(p - tlb_handler));
439
440	memcpy((void *)ebase, tlb_handler, 0x80);
441	local_flush_icache_range(ebase, ebase + 0x80);
442	dump_handler("r3000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x80));
443}
444#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
445
446/*
447 * The R4000 TLB handler is much more complicated. We have two
448 * consecutive handler areas with 32 instructions space each.
449 * Since they aren't used at the same time, we can overflow in the
450 * other one.To keep things simple, we first assume linear space,
451 * then we relocate it to the final handler layout as needed.
452 */
453static u32 final_handler[64];
454
455/*
456 * Hazards
457 *
458 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
459 * 2. A timing hazard exists for the TLBP instruction.
460 *
461 *	stalling_instruction
462 *	TLBP
463 *
464 * The JTLB is being read for the TLBP throughout the stall generated by the
465 * previous instruction. This is not really correct as the stalling instruction
466 * can modify the address used to access the JTLB.  The failure symptom is that
467 * the TLBP instruction will use an address created for the stalling instruction
468 * and not the address held in C0_ENHI and thus report the wrong results.
469 *
470 * The software work-around is to not allow the instruction preceding the TLBP
471 * to stall - make it an NOP or some other instruction guaranteed not to stall.
472 *
473 * Errata 2 will not be fixed.	This errata is also on the R5000.
474 *
475 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
476 */
477static void __maybe_unused build_tlb_probe_entry(u32 **p)
478{
479	switch (current_cpu_type()) {
480	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
481	case CPU_R4600:
482	case CPU_R4700:
483	case CPU_R5000:
484	case CPU_NEVADA:
485		uasm_i_nop(p);
486		uasm_i_tlbp(p);
487		break;
488
489	default:
490		uasm_i_tlbp(p);
491		break;
492	}
493}
494
495void build_tlb_write_entry(u32 **p, struct uasm_label **l,
496			   struct uasm_reloc **r,
497			   enum tlb_write_entry wmode)
498{
499	void(*tlbw)(u32 **) = NULL;
500
501	switch (wmode) {
502	case tlb_random: tlbw = uasm_i_tlbwr; break;
503	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
504	}
505
506	if (cpu_has_mips_r2_r6) {
507		if (cpu_has_mips_r2_exec_hazard)
508			uasm_i_ehb(p);
509		tlbw(p);
510		return;
511	}
512
513	switch (current_cpu_type()) {
514	case CPU_R4000PC:
515	case CPU_R4000SC:
516	case CPU_R4000MC:
517	case CPU_R4400PC:
518	case CPU_R4400SC:
519	case CPU_R4400MC:
520		/*
521		 * This branch uses up a mtc0 hazard nop slot and saves
522		 * two nops after the tlbw instruction.
523		 */
524		uasm_bgezl_hazard(p, r, hazard_instance);
525		tlbw(p);
526		uasm_bgezl_label(l, p, hazard_instance);
527		hazard_instance++;
528		uasm_i_nop(p);
529		break;
530
531	case CPU_R4600:
532	case CPU_R4700:
533		uasm_i_nop(p);
534		tlbw(p);
535		uasm_i_nop(p);
536		break;
537
538	case CPU_R5000:
539	case CPU_NEVADA:
540		uasm_i_nop(p); /* QED specifies 2 nops hazard */
541		uasm_i_nop(p); /* QED specifies 2 nops hazard */
542		tlbw(p);
543		break;
544
545	case CPU_R4300:
546	case CPU_5KC:
547	case CPU_TX49XX:
548	case CPU_PR4450:
549		uasm_i_nop(p);
550		tlbw(p);
551		break;
552
553	case CPU_R10000:
554	case CPU_R12000:
555	case CPU_R14000:
556	case CPU_R16000:
557	case CPU_4KC:
558	case CPU_4KEC:
559	case CPU_M14KC:
560	case CPU_M14KEC:
561	case CPU_SB1:
562	case CPU_SB1A:
563	case CPU_4KSC:
564	case CPU_20KC:
565	case CPU_25KF:
566	case CPU_BMIPS32:
567	case CPU_BMIPS3300:
568	case CPU_BMIPS4350:
569	case CPU_BMIPS4380:
570	case CPU_BMIPS5000:
571	case CPU_LOONGSON2EF:
572	case CPU_LOONGSON64:
573	case CPU_R5500:
574		if (m4kc_tlbp_war())
575			uasm_i_nop(p);
576		fallthrough;
577	case CPU_ALCHEMY:
578		tlbw(p);
579		break;
580
581	case CPU_RM7000:
582		uasm_i_nop(p);
583		uasm_i_nop(p);
584		uasm_i_nop(p);
585		uasm_i_nop(p);
586		tlbw(p);
587		break;
588
589	case CPU_XBURST:
590		tlbw(p);
591		uasm_i_nop(p);
592		break;
593
594	default:
595		panic("No TLB refill handler yet (CPU type: %d)",
596		      current_cpu_type());
597		break;
598	}
599}
600EXPORT_SYMBOL_GPL(build_tlb_write_entry);
601
602static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
603							unsigned int reg)
604{
605	if (_PAGE_GLOBAL_SHIFT == 0) {
606		/* pte_t is already in EntryLo format */
607		return;
608	}
609
610	if (cpu_has_rixi && _PAGE_NO_EXEC != 0) {
611		if (fill_includes_sw_bits) {
612			UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
613		} else {
614			UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
615			UASM_i_ROTR(p, reg, reg,
616				    ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
617		}
618	} else {
619#ifdef CONFIG_PHYS_ADDR_T_64BIT
620		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
621#else
622		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
623#endif
624	}
625}
626
627#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
628
629static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
630				   unsigned int tmp, enum label_id lid,
631				   int restore_scratch)
632{
633	if (restore_scratch) {
634		/*
635		 * Ensure the MFC0 below observes the value written to the
636		 * KScratch register by the prior MTC0.
637		 */
638		if (scratch_reg >= 0)
639			uasm_i_ehb(p);
640
641		/* Reset default page size */
642		if (PM_DEFAULT_MASK >> 16) {
643			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
644			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
645			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
646			uasm_il_b(p, r, lid);
647		} else if (PM_DEFAULT_MASK) {
648			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
649			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
650			uasm_il_b(p, r, lid);
651		} else {
652			uasm_i_mtc0(p, 0, C0_PAGEMASK);
653			uasm_il_b(p, r, lid);
654		}
655		if (scratch_reg >= 0)
656			UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
657		else
658			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
659	} else {
660		/* Reset default page size */
661		if (PM_DEFAULT_MASK >> 16) {
662			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
663			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
664			uasm_il_b(p, r, lid);
665			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
666		} else if (PM_DEFAULT_MASK) {
667			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
668			uasm_il_b(p, r, lid);
669			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
670		} else {
671			uasm_il_b(p, r, lid);
672			uasm_i_mtc0(p, 0, C0_PAGEMASK);
673		}
674	}
675}
676
677static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
678				       struct uasm_reloc **r,
679				       unsigned int tmp,
680				       enum tlb_write_entry wmode,
681				       int restore_scratch)
682{
683	/* Set huge page tlb entry size */
684	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
685	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
686	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
687
688	build_tlb_write_entry(p, l, r, wmode);
689
690	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
691}
692
693/*
694 * Check if Huge PTE is present, if so then jump to LABEL.
695 */
696static void
697build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
698		  unsigned int pmd, int lid)
699{
700	UASM_i_LW(p, tmp, 0, pmd);
701	if (use_bbit_insns()) {
702		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
703	} else {
704		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
705		uasm_il_bnez(p, r, tmp, lid);
706	}
707}
708
709static void build_huge_update_entries(u32 **p, unsigned int pte,
710				      unsigned int tmp)
711{
712	int small_sequence;
713
714	/*
715	 * A huge PTE describes an area the size of the
716	 * configured huge page size. This is twice the
717	 * of the large TLB entry size we intend to use.
718	 * A TLB entry half the size of the configured
719	 * huge page size is configured into entrylo0
720	 * and entrylo1 to cover the contiguous huge PTE
721	 * address space.
722	 */
723	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
724
725	/* We can clobber tmp.	It isn't used after this.*/
726	if (!small_sequence)
727		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
728
729	build_convert_pte_to_entrylo(p, pte);
730	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
731	/* convert to entrylo1 */
732	if (small_sequence)
733		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
734	else
735		UASM_i_ADDU(p, pte, pte, tmp);
736
737	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
738}
739
740static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
741				    struct uasm_label **l,
742				    unsigned int pte,
743				    unsigned int ptr,
744				    unsigned int flush)
745{
746#ifdef CONFIG_SMP
747	UASM_i_SC(p, pte, 0, ptr);
748	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
749	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
750#else
751	UASM_i_SW(p, pte, 0, ptr);
752#endif
753	if (cpu_has_ftlb && flush) {
754		BUG_ON(!cpu_has_tlbinv);
755
756		UASM_i_MFC0(p, ptr, C0_ENTRYHI);
757		uasm_i_ori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
758		UASM_i_MTC0(p, ptr, C0_ENTRYHI);
759		build_tlb_write_entry(p, l, r, tlb_indexed);
760
761		uasm_i_xori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
762		UASM_i_MTC0(p, ptr, C0_ENTRYHI);
763		build_huge_update_entries(p, pte, ptr);
764		build_huge_tlb_write_entry(p, l, r, pte, tlb_random, 0);
765
766		return;
767	}
768
769	build_huge_update_entries(p, pte, ptr);
770	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
771}
772#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
773
774#ifdef CONFIG_64BIT
775/*
776 * TMP and PTR are scratch.
777 * TMP will be clobbered, PTR will hold the pmd entry.
778 */
779void build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
780		      unsigned int tmp, unsigned int ptr)
781{
782#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
783	long pgdc = (long)pgd_current;
784#endif
785	/*
786	 * The vmalloc handling is not in the hotpath.
787	 */
788	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
789
790	if (check_for_high_segbits) {
791		/*
792		 * The kernel currently implicitely assumes that the
793		 * MIPS SEGBITS parameter for the processor is
794		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
795		 * allocate virtual addresses outside the maximum
796		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
797		 * that doesn't prevent user code from accessing the
798		 * higher xuseg addresses.  Here, we make sure that
799		 * everything but the lower xuseg addresses goes down
800		 * the module_alloc/vmalloc path.
801		 */
802		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
803		uasm_il_bnez(p, r, ptr, label_vmalloc);
804	} else {
805		uasm_il_bltz(p, r, tmp, label_vmalloc);
806	}
807	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
808
809	if (pgd_reg != -1) {
810		/* pgd is in pgd_reg */
811		if (cpu_has_ldpte)
812			UASM_i_MFC0(p, ptr, C0_PWBASE);
813		else
814			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
815	} else {
816#if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
817		/*
818		 * &pgd << 11 stored in CONTEXT [23..63].
819		 */
820		UASM_i_MFC0(p, ptr, C0_CONTEXT);
821
822		/* Clear lower 23 bits of context. */
823		uasm_i_dins(p, ptr, 0, 0, 23);
824
825		/* insert bit[63:59] of CAC_BASE into bit[11:6] of ptr */
826		uasm_i_ori(p, ptr, ptr, ((u64)(CAC_BASE) >> 53));
827		uasm_i_drotr(p, ptr, ptr, 11);
828#elif defined(CONFIG_SMP)
829		UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
830		uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
831		UASM_i_LA_mostly(p, tmp, pgdc);
832		uasm_i_daddu(p, ptr, ptr, tmp);
833		uasm_i_dmfc0(p, tmp, C0_BADVADDR);
834		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
835#else
836		UASM_i_LA_mostly(p, ptr, pgdc);
837		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
838#endif
839	}
840
841	uasm_l_vmalloc_done(l, *p);
842
843	/* get pgd offset in bytes */
844	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
845
846	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
847	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
848#ifndef __PAGETABLE_PUD_FOLDED
849	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
850	uasm_i_ld(p, ptr, 0, ptr); /* get pud pointer */
851	uasm_i_dsrl_safe(p, tmp, tmp, PUD_SHIFT - 3); /* get pud offset in bytes */
852	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PUD - 1) << 3);
853	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pud offset */
854#endif
855#ifndef __PAGETABLE_PMD_FOLDED
856	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
857	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
858	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
859	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
860	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
861#endif
862}
863EXPORT_SYMBOL_GPL(build_get_pmde64);
864
865/*
866 * BVADDR is the faulting address, PTR is scratch.
867 * PTR will hold the pgd for vmalloc.
868 */
869static void
870build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
871			unsigned int bvaddr, unsigned int ptr,
872			enum vmalloc64_mode mode)
873{
874	long swpd = (long)swapper_pg_dir;
875	int single_insn_swpd;
876	int did_vmalloc_branch = 0;
877
878	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
879
880	uasm_l_vmalloc(l, *p);
881
882	if (mode != not_refill && check_for_high_segbits) {
883		if (single_insn_swpd) {
884			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
885			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
886			did_vmalloc_branch = 1;
887			/* fall through */
888		} else {
889			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
890		}
891	}
892	if (!did_vmalloc_branch) {
893		if (single_insn_swpd) {
894			uasm_il_b(p, r, label_vmalloc_done);
895			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
896		} else {
897			UASM_i_LA_mostly(p, ptr, swpd);
898			uasm_il_b(p, r, label_vmalloc_done);
899			if (uasm_in_compat_space_p(swpd))
900				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
901			else
902				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
903		}
904	}
905	if (mode != not_refill && check_for_high_segbits) {
906		uasm_l_large_segbits_fault(l, *p);
907
908		if (mode == refill_scratch && scratch_reg >= 0)
909			uasm_i_ehb(p);
910
911		/*
912		 * We get here if we are an xsseg address, or if we are
913		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
914		 *
915		 * Ignoring xsseg (assume disabled so would generate
916		 * (address errors?), the only remaining possibility
917		 * is the upper xuseg addresses.  On processors with
918		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
919		 * addresses would have taken an address error. We try
920		 * to mimic that here by taking a load/istream page
921		 * fault.
922		 */
923		if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
924			uasm_i_sync(p, 0);
925		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
926		uasm_i_jr(p, ptr);
927
928		if (mode == refill_scratch) {
929			if (scratch_reg >= 0)
930				UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
931			else
932				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
933		} else {
934			uasm_i_nop(p);
935		}
936	}
937}
938
939#else /* !CONFIG_64BIT */
940
941/*
942 * TMP and PTR are scratch.
943 * TMP will be clobbered, PTR will hold the pgd entry.
944 */
945void build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
946{
947	if (pgd_reg != -1) {
948		/* pgd is in pgd_reg */
949		uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
950		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
951	} else {
952		long pgdc = (long)pgd_current;
953
954		/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
955#ifdef CONFIG_SMP
956		uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
957		UASM_i_LA_mostly(p, tmp, pgdc);
958		uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
959		uasm_i_addu(p, ptr, tmp, ptr);
960#else
961		UASM_i_LA_mostly(p, ptr, pgdc);
962#endif
963		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
964		uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
965	}
966	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
967	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
968	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
969}
970EXPORT_SYMBOL_GPL(build_get_pgde32);
971
972#endif /* !CONFIG_64BIT */
973
974static void build_adjust_context(u32 **p, unsigned int ctx)
975{
976	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
977	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
978
979	if (shift)
980		UASM_i_SRL(p, ctx, ctx, shift);
981	uasm_i_andi(p, ctx, ctx, mask);
982}
983
984void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
985{
986	/*
987	 * Bug workaround for the Nevada. It seems as if under certain
988	 * circumstances the move from cp0_context might produce a
989	 * bogus result when the mfc0 instruction and its consumer are
990	 * in a different cacheline or a load instruction, probably any
991	 * memory reference, is between them.
992	 */
993	switch (current_cpu_type()) {
994	case CPU_NEVADA:
995		UASM_i_LW(p, ptr, 0, ptr);
996		GET_CONTEXT(p, tmp); /* get context reg */
997		break;
998
999	default:
1000		GET_CONTEXT(p, tmp); /* get context reg */
1001		UASM_i_LW(p, ptr, 0, ptr);
1002		break;
1003	}
1004
1005	build_adjust_context(p, tmp);
1006	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1007}
1008EXPORT_SYMBOL_GPL(build_get_ptep);
1009
1010void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1011{
1012	int pte_off_even = 0;
1013	int pte_off_odd = sizeof(pte_t);
1014
1015#if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_PHYS_ADDR_T_64BIT)
1016	/* The low 32 bits of EntryLo is stored in pte_high */
1017	pte_off_even += offsetof(pte_t, pte_high);
1018	pte_off_odd += offsetof(pte_t, pte_high);
1019#endif
1020
1021	if (IS_ENABLED(CONFIG_XPA)) {
1022		uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1023		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1024		UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1025
1026		if (cpu_has_xpa && !mips_xpa_disabled) {
1027			uasm_i_lw(p, tmp, 0, ptep);
1028			uasm_i_ext(p, tmp, tmp, 0, 24);
1029			uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1030		}
1031
1032		uasm_i_lw(p, tmp, pte_off_odd, ptep); /* odd pte */
1033		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1034		UASM_i_MTC0(p, tmp, C0_ENTRYLO1);
1035
1036		if (cpu_has_xpa && !mips_xpa_disabled) {
1037			uasm_i_lw(p, tmp, sizeof(pte_t), ptep);
1038			uasm_i_ext(p, tmp, tmp, 0, 24);
1039			uasm_i_mthc0(p, tmp, C0_ENTRYLO1);
1040		}
1041		return;
1042	}
1043
1044	UASM_i_LW(p, tmp, pte_off_even, ptep); /* get even pte */
1045	UASM_i_LW(p, ptep, pte_off_odd, ptep); /* get odd pte */
1046	if (r45k_bvahwbug())
1047		build_tlb_probe_entry(p);
1048	build_convert_pte_to_entrylo(p, tmp);
1049	if (r4k_250MHZhwbug())
1050		UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1051	UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1052	build_convert_pte_to_entrylo(p, ptep);
1053	if (r45k_bvahwbug())
1054		uasm_i_mfc0(p, tmp, C0_INDEX);
1055	if (r4k_250MHZhwbug())
1056		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1057	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1058}
1059EXPORT_SYMBOL_GPL(build_update_entries);
1060
1061struct mips_huge_tlb_info {
1062	int huge_pte;
1063	int restore_scratch;
1064	bool need_reload_pte;
1065};
1066
1067static struct mips_huge_tlb_info
1068build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1069			       struct uasm_reloc **r, unsigned int tmp,
1070			       unsigned int ptr, int c0_scratch_reg)
1071{
1072	struct mips_huge_tlb_info rv;
1073	unsigned int even, odd;
1074	int vmalloc_branch_delay_filled = 0;
1075	const int scratch = 1; /* Our extra working register */
1076
1077	rv.huge_pte = scratch;
1078	rv.restore_scratch = 0;
1079	rv.need_reload_pte = false;
1080
1081	if (check_for_high_segbits) {
1082		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1083
1084		if (pgd_reg != -1)
1085			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1086		else
1087			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1088
1089		if (c0_scratch_reg >= 0)
1090			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1091		else
1092			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1093
1094		uasm_i_dsrl_safe(p, scratch, tmp,
1095				 PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
1096		uasm_il_bnez(p, r, scratch, label_vmalloc);
1097
1098		if (pgd_reg == -1) {
1099			vmalloc_branch_delay_filled = 1;
1100			/* Clear lower 23 bits of context. */
1101			uasm_i_dins(p, ptr, 0, 0, 23);
1102		}
1103	} else {
1104		if (pgd_reg != -1)
1105			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1106		else
1107			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1108
1109		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1110
1111		if (c0_scratch_reg >= 0)
1112			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1113		else
1114			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1115
1116		if (pgd_reg == -1)
1117			/* Clear lower 23 bits of context. */
1118			uasm_i_dins(p, ptr, 0, 0, 23);
1119
1120		uasm_il_bltz(p, r, tmp, label_vmalloc);
1121	}
1122
1123	if (pgd_reg == -1) {
1124		vmalloc_branch_delay_filled = 1;
1125		/* insert bit[63:59] of CAC_BASE into bit[11:6] of ptr */
1126		uasm_i_ori(p, ptr, ptr, ((u64)(CAC_BASE) >> 53));
1127
1128		uasm_i_drotr(p, ptr, ptr, 11);
1129	}
1130
1131#ifdef __PAGETABLE_PMD_FOLDED
1132#define LOC_PTEP scratch
1133#else
1134#define LOC_PTEP ptr
1135#endif
1136
1137	if (!vmalloc_branch_delay_filled)
1138		/* get pgd offset in bytes */
1139		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1140
1141	uasm_l_vmalloc_done(l, *p);
1142
1143	/*
1144	 *			   tmp		ptr
1145	 * fall-through case =	 badvaddr  *pgd_current
1146	 * vmalloc case	     =	 badvaddr  swapper_pg_dir
1147	 */
1148
1149	if (vmalloc_branch_delay_filled)
1150		/* get pgd offset in bytes */
1151		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1152
1153#ifdef __PAGETABLE_PMD_FOLDED
1154	GET_CONTEXT(p, tmp); /* get context reg */
1155#endif
1156	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1157
1158	if (use_lwx_insns()) {
1159		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1160	} else {
1161		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1162		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1163	}
1164
1165#ifndef __PAGETABLE_PUD_FOLDED
1166	/* get pud offset in bytes */
1167	uasm_i_dsrl_safe(p, scratch, tmp, PUD_SHIFT - 3);
1168	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PUD - 1) << 3);
1169
1170	if (use_lwx_insns()) {
1171		UASM_i_LWX(p, ptr, scratch, ptr);
1172	} else {
1173		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1174		UASM_i_LW(p, ptr, 0, ptr);
1175	}
1176	/* ptr contains a pointer to PMD entry */
1177	/* tmp contains the address */
1178#endif
1179
1180#ifndef __PAGETABLE_PMD_FOLDED
1181	/* get pmd offset in bytes */
1182	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1183	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1184	GET_CONTEXT(p, tmp); /* get context reg */
1185
1186	if (use_lwx_insns()) {
1187		UASM_i_LWX(p, scratch, scratch, ptr);
1188	} else {
1189		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1190		UASM_i_LW(p, scratch, 0, ptr);
1191	}
1192#endif
1193	/* Adjust the context during the load latency. */
1194	build_adjust_context(p, tmp);
1195
1196#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1197	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1198	/*
1199	 * The in the LWX case we don't want to do the load in the
1200	 * delay slot.	It cannot issue in the same cycle and may be
1201	 * speculative and unneeded.
1202	 */
1203	if (use_lwx_insns())
1204		uasm_i_nop(p);
1205#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1206
1207
1208	/* build_update_entries */
1209	if (use_lwx_insns()) {
1210		even = ptr;
1211		odd = tmp;
1212		UASM_i_LWX(p, even, scratch, tmp);
1213		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1214		UASM_i_LWX(p, odd, scratch, tmp);
1215	} else {
1216		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1217		even = tmp;
1218		odd = ptr;
1219		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1220		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1221	}
1222	if (cpu_has_rixi) {
1223		uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1224		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1225		uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1226	} else {
1227		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1228		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1229		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1230	}
1231	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1232
1233	if (c0_scratch_reg >= 0) {
1234		uasm_i_ehb(p);
1235		UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1236		build_tlb_write_entry(p, l, r, tlb_random);
1237		uasm_l_leave(l, *p);
1238		rv.restore_scratch = 1;
1239	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1240		build_tlb_write_entry(p, l, r, tlb_random);
1241		uasm_l_leave(l, *p);
1242		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1243	} else {
1244		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1245		build_tlb_write_entry(p, l, r, tlb_random);
1246		uasm_l_leave(l, *p);
1247		rv.restore_scratch = 1;
1248	}
1249
1250	uasm_i_eret(p); /* return from trap */
1251
1252	return rv;
1253}
1254
1255/*
1256 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1257 * because EXL == 0.  If we wrap, we can also use the 32 instruction
1258 * slots before the XTLB refill exception handler which belong to the
1259 * unused TLB refill exception.
1260 */
1261#define MIPS64_REFILL_INSNS 32
1262
1263static void build_r4000_tlb_refill_handler(void)
1264{
1265	u32 *p = tlb_handler;
1266	struct uasm_label *l = labels;
1267	struct uasm_reloc *r = relocs;
1268	u32 *f;
1269	unsigned int final_len;
1270	struct mips_huge_tlb_info htlb_info __maybe_unused;
1271	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1272
1273	memset(tlb_handler, 0, sizeof(tlb_handler));
1274	memset(labels, 0, sizeof(labels));
1275	memset(relocs, 0, sizeof(relocs));
1276	memset(final_handler, 0, sizeof(final_handler));
1277
1278	if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1279		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1280							  scratch_reg);
1281		vmalloc_mode = refill_scratch;
1282	} else {
1283		htlb_info.huge_pte = K0;
1284		htlb_info.restore_scratch = 0;
1285		htlb_info.need_reload_pte = true;
1286		vmalloc_mode = refill_noscratch;
1287		/*
1288		 * create the plain linear handler
1289		 */
1290		if (bcm1250_m3_war()) {
1291			unsigned int segbits = 44;
1292
1293			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1294			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1295			uasm_i_xor(&p, K0, K0, K1);
1296			uasm_i_dsrl_safe(&p, K1, K0, 62);
1297			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1298			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1299			uasm_i_or(&p, K0, K0, K1);
1300			uasm_il_bnez(&p, &r, K0, label_leave);
1301			/* No need for uasm_i_nop */
1302		}
1303
1304#ifdef CONFIG_64BIT
1305		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1306#else
1307		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1308#endif
1309
1310#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1311		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1312#endif
1313
1314		build_get_ptep(&p, K0, K1);
1315		build_update_entries(&p, K0, K1);
1316		build_tlb_write_entry(&p, &l, &r, tlb_random);
1317		uasm_l_leave(&l, p);
1318		uasm_i_eret(&p); /* return from trap */
1319	}
1320#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1321	uasm_l_tlb_huge_update(&l, p);
1322	if (htlb_info.need_reload_pte)
1323		UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
1324	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1325	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1326				   htlb_info.restore_scratch);
1327#endif
1328
1329#ifdef CONFIG_64BIT
1330	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1331#endif
1332
1333	/*
1334	 * Overflow check: For the 64bit handler, we need at least one
1335	 * free instruction slot for the wrap-around branch. In worst
1336	 * case, if the intended insertion point is a delay slot, we
1337	 * need three, with the second nop'ed and the third being
1338	 * unused.
1339	 */
1340	switch (boot_cpu_type()) {
1341	default:
1342		if (sizeof(long) == 4) {
1343		fallthrough;
1344	case CPU_LOONGSON2EF:
1345		/* Loongson2 ebase is different than r4k, we have more space */
1346			if ((p - tlb_handler) > 64)
1347				panic("TLB refill handler space exceeded");
1348			/*
1349			 * Now fold the handler in the TLB refill handler space.
1350			 */
1351			f = final_handler;
1352			/* Simplest case, just copy the handler. */
1353			uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1354			final_len = p - tlb_handler;
1355			break;
1356		} else {
1357			if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1358			    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1359				&& uasm_insn_has_bdelay(relocs,
1360							tlb_handler + MIPS64_REFILL_INSNS - 3)))
1361				panic("TLB refill handler space exceeded");
1362			/*
1363			 * Now fold the handler in the TLB refill handler space.
1364			 */
1365			f = final_handler + MIPS64_REFILL_INSNS;
1366			if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1367				/* Just copy the handler. */
1368				uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1369				final_len = p - tlb_handler;
1370			} else {
1371#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1372				const enum label_id ls = label_tlb_huge_update;
1373#else
1374				const enum label_id ls = label_vmalloc;
1375#endif
1376				u32 *split;
1377				int ov = 0;
1378				int i;
1379
1380				for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1381					;
1382				BUG_ON(i == ARRAY_SIZE(labels));
1383				split = labels[i].addr;
1384
1385				/*
1386				 * See if we have overflown one way or the other.
1387				 */
1388				if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1389				    split < p - MIPS64_REFILL_INSNS)
1390					ov = 1;
1391
1392				if (ov) {
1393					/*
1394					 * Split two instructions before the end.  One
1395					 * for the branch and one for the instruction
1396					 * in the delay slot.
1397					 */
1398					split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1399
1400					/*
1401					 * If the branch would fall in a delay slot,
1402					 * we must back up an additional instruction
1403					 * so that it is no longer in a delay slot.
1404					 */
1405					if (uasm_insn_has_bdelay(relocs, split - 1))
1406						split--;
1407				}
1408				/* Copy first part of the handler. */
1409				uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1410				f += split - tlb_handler;
1411
1412				if (ov) {
1413					/* Insert branch. */
1414					uasm_l_split(&l, final_handler);
1415					uasm_il_b(&f, &r, label_split);
1416					if (uasm_insn_has_bdelay(relocs, split))
1417						uasm_i_nop(&f);
1418					else {
1419						uasm_copy_handler(relocs, labels,
1420								  split, split + 1, f);
1421						uasm_move_labels(labels, f, f + 1, -1);
1422						f++;
1423						split++;
1424					}
1425				}
1426
1427				/* Copy the rest of the handler. */
1428				uasm_copy_handler(relocs, labels, split, p, final_handler);
1429				final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1430					    (p - split);
1431			}
1432		}
1433		break;
1434	}
1435
1436	uasm_resolve_relocs(relocs, labels);
1437	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1438		 final_len);
1439
1440	memcpy((void *)ebase, final_handler, 0x100);
1441	local_flush_icache_range(ebase, ebase + 0x100);
1442	dump_handler("r4000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x100));
1443}
1444
1445static void setup_pw(void)
1446{
1447	unsigned int pwctl;
1448	unsigned long pgd_i, pgd_w;
1449#ifndef __PAGETABLE_PMD_FOLDED
1450	unsigned long pmd_i, pmd_w;
1451#endif
1452	unsigned long pt_i, pt_w;
1453	unsigned long pte_i, pte_w;
1454#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1455	unsigned long psn;
1456
1457	psn = ilog2(_PAGE_HUGE);     /* bit used to indicate huge page */
1458#endif
1459	pgd_i = PGDIR_SHIFT;  /* 1st level PGD */
1460#ifndef __PAGETABLE_PMD_FOLDED
1461	pgd_w = PGDIR_SHIFT - PMD_SHIFT + PGD_TABLE_ORDER;
1462
1463	pmd_i = PMD_SHIFT;    /* 2nd level PMD */
1464	pmd_w = PMD_SHIFT - PAGE_SHIFT;
1465#else
1466	pgd_w = PGDIR_SHIFT - PAGE_SHIFT + PGD_TABLE_ORDER;
1467#endif
1468
1469	pt_i  = PAGE_SHIFT;    /* 3rd level PTE */
1470	pt_w  = PAGE_SHIFT - 3;
1471
1472	pte_i = ilog2(_PAGE_GLOBAL);
1473	pte_w = 0;
1474	pwctl = 1 << 30; /* Set PWDirExt */
1475
1476#ifndef __PAGETABLE_PMD_FOLDED
1477	write_c0_pwfield(pgd_i << 24 | pmd_i << 12 | pt_i << 6 | pte_i);
1478	write_c0_pwsize(1 << 30 | pgd_w << 24 | pmd_w << 12 | pt_w << 6 | pte_w);
1479#else
1480	write_c0_pwfield(pgd_i << 24 | pt_i << 6 | pte_i);
1481	write_c0_pwsize(1 << 30 | pgd_w << 24 | pt_w << 6 | pte_w);
1482#endif
1483
1484#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1485	pwctl |= (1 << 6 | psn);
1486#endif
1487	write_c0_pwctl(pwctl);
1488	write_c0_kpgd((long)swapper_pg_dir);
1489	kscratch_used_mask |= (1 << 7); /* KScratch6 is used for KPGD */
1490}
1491
1492static void build_loongson3_tlb_refill_handler(void)
1493{
1494	u32 *p = tlb_handler;
1495	struct uasm_label *l = labels;
1496	struct uasm_reloc *r = relocs;
1497
1498	memset(labels, 0, sizeof(labels));
1499	memset(relocs, 0, sizeof(relocs));
1500	memset(tlb_handler, 0, sizeof(tlb_handler));
1501
1502	if (check_for_high_segbits) {
1503		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1504		uasm_i_dsrl_safe(&p, K1, K0, PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
1505		uasm_il_beqz(&p, &r, K1, label_vmalloc);
1506		uasm_i_nop(&p);
1507
1508		uasm_il_bgez(&p, &r, K0, label_large_segbits_fault);
1509		uasm_i_nop(&p);
1510		uasm_l_vmalloc(&l, p);
1511	}
1512
1513	uasm_i_dmfc0(&p, K1, C0_PGD);
1514
1515	uasm_i_lddir(&p, K0, K1, 3);  /* global page dir */
1516#ifndef __PAGETABLE_PMD_FOLDED
1517	uasm_i_lddir(&p, K1, K0, 1);  /* middle page dir */
1518#endif
1519	uasm_i_ldpte(&p, K1, 0);      /* even */
1520	uasm_i_ldpte(&p, K1, 1);      /* odd */
1521	uasm_i_tlbwr(&p);
1522
1523	/* restore page mask */
1524	if (PM_DEFAULT_MASK >> 16) {
1525		uasm_i_lui(&p, K0, PM_DEFAULT_MASK >> 16);
1526		uasm_i_ori(&p, K0, K0, PM_DEFAULT_MASK & 0xffff);
1527		uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1528	} else if (PM_DEFAULT_MASK) {
1529		uasm_i_ori(&p, K0, 0, PM_DEFAULT_MASK);
1530		uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1531	} else {
1532		uasm_i_mtc0(&p, 0, C0_PAGEMASK);
1533	}
1534
1535	uasm_i_eret(&p);
1536
1537	if (check_for_high_segbits) {
1538		uasm_l_large_segbits_fault(&l, p);
1539		UASM_i_LA(&p, K1, (unsigned long)tlb_do_page_fault_0);
1540		uasm_i_jr(&p, K1);
1541		uasm_i_nop(&p);
1542	}
1543
1544	uasm_resolve_relocs(relocs, labels);
1545	memcpy((void *)(ebase + 0x80), tlb_handler, 0x80);
1546	local_flush_icache_range(ebase + 0x80, ebase + 0x100);
1547	dump_handler("loongson3_tlb_refill",
1548		     (u32 *)(ebase + 0x80), (u32 *)(ebase + 0x100));
1549}
1550
1551static void build_setup_pgd(void)
1552{
1553	const int a0 = 4;
1554	const int __maybe_unused a1 = 5;
1555	const int __maybe_unused a2 = 6;
1556	u32 *p = (u32 *)msk_isa16_mode((ulong)tlbmiss_handler_setup_pgd);
1557#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1558	long pgdc = (long)pgd_current;
1559#endif
1560
1561	memset(p, 0, tlbmiss_handler_setup_pgd_end - (char *)p);
1562	memset(labels, 0, sizeof(labels));
1563	memset(relocs, 0, sizeof(relocs));
1564	pgd_reg = allocate_kscratch();
1565#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1566	if (pgd_reg == -1) {
1567		struct uasm_label *l = labels;
1568		struct uasm_reloc *r = relocs;
1569
1570		/* PGD << 11 in c0_Context */
1571		/*
1572		 * If it is a ckseg0 address, convert to a physical
1573		 * address.  Shifting right by 29 and adding 4 will
1574		 * result in zero for these addresses.
1575		 *
1576		 */
1577		UASM_i_SRA(&p, a1, a0, 29);
1578		UASM_i_ADDIU(&p, a1, a1, 4);
1579		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1580		uasm_i_nop(&p);
1581		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1582		uasm_l_tlbl_goaround1(&l, p);
1583		UASM_i_SLL(&p, a0, a0, 11);
1584		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1585		uasm_i_jr(&p, 31);
1586		uasm_i_ehb(&p);
1587	} else {
1588		/* PGD in c0_KScratch */
1589		if (cpu_has_ldpte)
1590			UASM_i_MTC0(&p, a0, C0_PWBASE);
1591		else
1592			UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1593		uasm_i_jr(&p, 31);
1594		uasm_i_ehb(&p);
1595	}
1596#else
1597#ifdef CONFIG_SMP
1598	/* Save PGD to pgd_current[smp_processor_id()] */
1599	UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1600	UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1601	UASM_i_LA_mostly(&p, a2, pgdc);
1602	UASM_i_ADDU(&p, a2, a2, a1);
1603	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1604#else
1605	UASM_i_LA_mostly(&p, a2, pgdc);
1606	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1607#endif /* SMP */
1608
1609	/* if pgd_reg is allocated, save PGD also to scratch register */
1610	if (pgd_reg != -1) {
1611		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1612		uasm_i_jr(&p, 31);
1613		uasm_i_ehb(&p);
1614	} else {
1615		uasm_i_jr(&p, 31);
1616		uasm_i_nop(&p);
1617	}
1618#endif
1619	if (p >= (u32 *)tlbmiss_handler_setup_pgd_end)
1620		panic("tlbmiss_handler_setup_pgd space exceeded");
1621
1622	uasm_resolve_relocs(relocs, labels);
1623	pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1624		 (unsigned int)(p - (u32 *)tlbmiss_handler_setup_pgd));
1625
1626	dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1627					tlbmiss_handler_setup_pgd_end);
1628}
1629
1630static void
1631iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1632{
1633#ifdef CONFIG_SMP
1634	if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
1635		uasm_i_sync(p, 0);
1636# ifdef CONFIG_PHYS_ADDR_T_64BIT
1637	if (cpu_has_64bits)
1638		uasm_i_lld(p, pte, 0, ptr);
1639	else
1640# endif
1641		UASM_i_LL(p, pte, 0, ptr);
1642#else
1643# ifdef CONFIG_PHYS_ADDR_T_64BIT
1644	if (cpu_has_64bits)
1645		uasm_i_ld(p, pte, 0, ptr);
1646	else
1647# endif
1648		UASM_i_LW(p, pte, 0, ptr);
1649#endif
1650}
1651
1652static void
1653iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1654	unsigned int mode, unsigned int scratch)
1655{
1656	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1657	unsigned int swmode = mode & ~hwmode;
1658
1659	if (IS_ENABLED(CONFIG_XPA) && !cpu_has_64bits) {
1660		uasm_i_lui(p, scratch, swmode >> 16);
1661		uasm_i_or(p, pte, pte, scratch);
1662		BUG_ON(swmode & 0xffff);
1663	} else {
1664		uasm_i_ori(p, pte, pte, mode);
1665	}
1666
1667#ifdef CONFIG_SMP
1668# ifdef CONFIG_PHYS_ADDR_T_64BIT
1669	if (cpu_has_64bits)
1670		uasm_i_scd(p, pte, 0, ptr);
1671	else
1672# endif
1673		UASM_i_SC(p, pte, 0, ptr);
1674
1675	if (r10000_llsc_war())
1676		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1677	else
1678		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1679
1680# ifdef CONFIG_PHYS_ADDR_T_64BIT
1681	if (!cpu_has_64bits) {
1682		/* no uasm_i_nop needed */
1683		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1684		uasm_i_ori(p, pte, pte, hwmode);
1685		BUG_ON(hwmode & ~0xffff);
1686		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1687		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1688		/* no uasm_i_nop needed */
1689		uasm_i_lw(p, pte, 0, ptr);
1690	} else
1691		uasm_i_nop(p);
1692# else
1693	uasm_i_nop(p);
1694# endif
1695#else
1696# ifdef CONFIG_PHYS_ADDR_T_64BIT
1697	if (cpu_has_64bits)
1698		uasm_i_sd(p, pte, 0, ptr);
1699	else
1700# endif
1701		UASM_i_SW(p, pte, 0, ptr);
1702
1703# ifdef CONFIG_PHYS_ADDR_T_64BIT
1704	if (!cpu_has_64bits) {
1705		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1706		uasm_i_ori(p, pte, pte, hwmode);
1707		BUG_ON(hwmode & ~0xffff);
1708		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1709		uasm_i_lw(p, pte, 0, ptr);
1710	}
1711# endif
1712#endif
1713}
1714
1715/*
1716 * Check if PTE is present, if not then jump to LABEL. PTR points to
1717 * the page table where this PTE is located, PTE will be re-loaded
1718 * with it's original value.
1719 */
1720static void
1721build_pte_present(u32 **p, struct uasm_reloc **r,
1722		  int pte, int ptr, int scratch, enum label_id lid)
1723{
1724	int t = scratch >= 0 ? scratch : pte;
1725	int cur = pte;
1726
1727	if (cpu_has_rixi) {
1728		if (use_bbit_insns()) {
1729			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1730			uasm_i_nop(p);
1731		} else {
1732			if (_PAGE_PRESENT_SHIFT) {
1733				uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1734				cur = t;
1735			}
1736			uasm_i_andi(p, t, cur, 1);
1737			uasm_il_beqz(p, r, t, lid);
1738			if (pte == t)
1739				/* You lose the SMP race :-(*/
1740				iPTE_LW(p, pte, ptr);
1741		}
1742	} else {
1743		if (_PAGE_PRESENT_SHIFT) {
1744			uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1745			cur = t;
1746		}
1747		uasm_i_andi(p, t, cur,
1748			(_PAGE_PRESENT | _PAGE_NO_READ) >> _PAGE_PRESENT_SHIFT);
1749		uasm_i_xori(p, t, t, _PAGE_PRESENT >> _PAGE_PRESENT_SHIFT);
1750		uasm_il_bnez(p, r, t, lid);
1751		if (pte == t)
1752			/* You lose the SMP race :-(*/
1753			iPTE_LW(p, pte, ptr);
1754	}
1755}
1756
1757/* Make PTE valid, store result in PTR. */
1758static void
1759build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1760		 unsigned int ptr, unsigned int scratch)
1761{
1762	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1763
1764	iPTE_SW(p, r, pte, ptr, mode, scratch);
1765}
1766
1767/*
1768 * Check if PTE can be written to, if not branch to LABEL. Regardless
1769 * restore PTE with value from PTR when done.
1770 */
1771static void
1772build_pte_writable(u32 **p, struct uasm_reloc **r,
1773		   unsigned int pte, unsigned int ptr, int scratch,
1774		   enum label_id lid)
1775{
1776	int t = scratch >= 0 ? scratch : pte;
1777	int cur = pte;
1778
1779	if (_PAGE_PRESENT_SHIFT) {
1780		uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1781		cur = t;
1782	}
1783	uasm_i_andi(p, t, cur,
1784		    (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1785	uasm_i_xori(p, t, t,
1786		    (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1787	uasm_il_bnez(p, r, t, lid);
1788	if (pte == t)
1789		/* You lose the SMP race :-(*/
1790		iPTE_LW(p, pte, ptr);
1791	else
1792		uasm_i_nop(p);
1793}
1794
1795/* Make PTE writable, update software status bits as well, then store
1796 * at PTR.
1797 */
1798static void
1799build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1800		 unsigned int ptr, unsigned int scratch)
1801{
1802	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1803			     | _PAGE_DIRTY);
1804
1805	iPTE_SW(p, r, pte, ptr, mode, scratch);
1806}
1807
1808/*
1809 * Check if PTE can be modified, if not branch to LABEL. Regardless
1810 * restore PTE with value from PTR when done.
1811 */
1812static void
1813build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1814		     unsigned int pte, unsigned int ptr, int scratch,
1815		     enum label_id lid)
1816{
1817	if (use_bbit_insns()) {
1818		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1819		uasm_i_nop(p);
1820	} else {
1821		int t = scratch >= 0 ? scratch : pte;
1822		uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1823		uasm_i_andi(p, t, t, 1);
1824		uasm_il_beqz(p, r, t, lid);
1825		if (pte == t)
1826			/* You lose the SMP race :-(*/
1827			iPTE_LW(p, pte, ptr);
1828	}
1829}
1830
1831#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1832
1833
1834/*
1835 * R3000 style TLB load/store/modify handlers.
1836 */
1837
1838/*
1839 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1840 * Then it returns.
1841 */
1842static void
1843build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1844{
1845	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1846	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1847	uasm_i_tlbwi(p);
1848	uasm_i_jr(p, tmp);
1849	uasm_i_rfe(p); /* branch delay */
1850}
1851
1852/*
1853 * This places the pte into ENTRYLO0 and writes it with tlbwi
1854 * or tlbwr as appropriate.  This is because the index register
1855 * may have the probe fail bit set as a result of a trap on a
1856 * kseg2 access, i.e. without refill.  Then it returns.
1857 */
1858static void
1859build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1860			     struct uasm_reloc **r, unsigned int pte,
1861			     unsigned int tmp)
1862{
1863	uasm_i_mfc0(p, tmp, C0_INDEX);
1864	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1865	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1866	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1867	uasm_i_tlbwi(p); /* cp0 delay */
1868	uasm_i_jr(p, tmp);
1869	uasm_i_rfe(p); /* branch delay */
1870	uasm_l_r3000_write_probe_fail(l, *p);
1871	uasm_i_tlbwr(p); /* cp0 delay */
1872	uasm_i_jr(p, tmp);
1873	uasm_i_rfe(p); /* branch delay */
1874}
1875
1876static void
1877build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1878				   unsigned int ptr)
1879{
1880	long pgdc = (long)pgd_current;
1881
1882	uasm_i_mfc0(p, pte, C0_BADVADDR);
1883	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1884	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1885	uasm_i_srl(p, pte, pte, 22); /* load delay */
1886	uasm_i_sll(p, pte, pte, 2);
1887	uasm_i_addu(p, ptr, ptr, pte);
1888	uasm_i_mfc0(p, pte, C0_CONTEXT);
1889	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1890	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1891	uasm_i_addu(p, ptr, ptr, pte);
1892	uasm_i_lw(p, pte, 0, ptr);
1893	uasm_i_tlbp(p); /* load delay */
1894}
1895
1896static void build_r3000_tlb_load_handler(void)
1897{
1898	u32 *p = (u32 *)handle_tlbl;
1899	struct uasm_label *l = labels;
1900	struct uasm_reloc *r = relocs;
1901
1902	memset(p, 0, handle_tlbl_end - (char *)p);
1903	memset(labels, 0, sizeof(labels));
1904	memset(relocs, 0, sizeof(relocs));
1905
1906	build_r3000_tlbchange_handler_head(&p, K0, K1);
1907	build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1908	uasm_i_nop(&p); /* load delay */
1909	build_make_valid(&p, &r, K0, K1, -1);
1910	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1911
1912	uasm_l_nopage_tlbl(&l, p);
1913	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1914	uasm_i_nop(&p);
1915
1916	if (p >= (u32 *)handle_tlbl_end)
1917		panic("TLB load handler fastpath space exceeded");
1918
1919	uasm_resolve_relocs(relocs, labels);
1920	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1921		 (unsigned int)(p - (u32 *)handle_tlbl));
1922
1923	dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_end);
1924}
1925
1926static void build_r3000_tlb_store_handler(void)
1927{
1928	u32 *p = (u32 *)handle_tlbs;
1929	struct uasm_label *l = labels;
1930	struct uasm_reloc *r = relocs;
1931
1932	memset(p, 0, handle_tlbs_end - (char *)p);
1933	memset(labels, 0, sizeof(labels));
1934	memset(relocs, 0, sizeof(relocs));
1935
1936	build_r3000_tlbchange_handler_head(&p, K0, K1);
1937	build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1938	uasm_i_nop(&p); /* load delay */
1939	build_make_write(&p, &r, K0, K1, -1);
1940	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1941
1942	uasm_l_nopage_tlbs(&l, p);
1943	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1944	uasm_i_nop(&p);
1945
1946	if (p >= (u32 *)handle_tlbs_end)
1947		panic("TLB store handler fastpath space exceeded");
1948
1949	uasm_resolve_relocs(relocs, labels);
1950	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1951		 (unsigned int)(p - (u32 *)handle_tlbs));
1952
1953	dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_end);
1954}
1955
1956static void build_r3000_tlb_modify_handler(void)
1957{
1958	u32 *p = (u32 *)handle_tlbm;
1959	struct uasm_label *l = labels;
1960	struct uasm_reloc *r = relocs;
1961
1962	memset(p, 0, handle_tlbm_end - (char *)p);
1963	memset(labels, 0, sizeof(labels));
1964	memset(relocs, 0, sizeof(relocs));
1965
1966	build_r3000_tlbchange_handler_head(&p, K0, K1);
1967	build_pte_modifiable(&p, &r, K0, K1,  -1, label_nopage_tlbm);
1968	uasm_i_nop(&p); /* load delay */
1969	build_make_write(&p, &r, K0, K1, -1);
1970	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1971
1972	uasm_l_nopage_tlbm(&l, p);
1973	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1974	uasm_i_nop(&p);
1975
1976	if (p >= (u32 *)handle_tlbm_end)
1977		panic("TLB modify handler fastpath space exceeded");
1978
1979	uasm_resolve_relocs(relocs, labels);
1980	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1981		 (unsigned int)(p - (u32 *)handle_tlbm));
1982
1983	dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_end);
1984}
1985#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1986
1987static bool cpu_has_tlbex_tlbp_race(void)
1988{
1989	/*
1990	 * When a Hardware Table Walker is running it can replace TLB entries
1991	 * at any time, leading to a race between it & the CPU.
1992	 */
1993	if (cpu_has_htw)
1994		return true;
1995
1996	/*
1997	 * If the CPU shares FTLB RAM with its siblings then our entry may be
1998	 * replaced at any time by a sibling performing a write to the FTLB.
1999	 */
2000	if (cpu_has_shared_ftlb_ram)
2001		return true;
2002
2003	/* In all other cases there ought to be no race condition to handle */
2004	return false;
2005}
2006
2007/*
2008 * R4000 style TLB load/store/modify handlers.
2009 */
2010static struct work_registers
2011build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
2012				   struct uasm_reloc **r)
2013{
2014	struct work_registers wr = build_get_work_registers(p);
2015
2016#ifdef CONFIG_64BIT
2017	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
2018#else
2019	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
2020#endif
2021
2022#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2023	/*
2024	 * For huge tlb entries, pmd doesn't contain an address but
2025	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
2026	 * see if we need to jump to huge tlb processing.
2027	 */
2028	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
2029#endif
2030
2031	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
2032	UASM_i_LW(p, wr.r2, 0, wr.r2);
2033	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT - PTE_T_LOG2);
2034	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
2035	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
2036
2037#ifdef CONFIG_SMP
2038	uasm_l_smp_pgtable_change(l, *p);
2039#endif
2040	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
2041	if (!m4kc_tlbp_war()) {
2042		build_tlb_probe_entry(p);
2043		if (cpu_has_tlbex_tlbp_race()) {
2044			/* race condition happens, leaving */
2045			uasm_i_ehb(p);
2046			uasm_i_mfc0(p, wr.r3, C0_INDEX);
2047			uasm_il_bltz(p, r, wr.r3, label_leave);
2048			uasm_i_nop(p);
2049		}
2050	}
2051	return wr;
2052}
2053
2054static void
2055build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
2056				   struct uasm_reloc **r, unsigned int tmp,
2057				   unsigned int ptr)
2058{
2059	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
2060	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
2061	build_update_entries(p, tmp, ptr);
2062	build_tlb_write_entry(p, l, r, tlb_indexed);
2063	uasm_l_leave(l, *p);
2064	build_restore_work_registers(p);
2065	uasm_i_eret(p); /* return from trap */
2066
2067#ifdef CONFIG_64BIT
2068	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
2069#endif
2070}
2071
2072static void build_r4000_tlb_load_handler(void)
2073{
2074	u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbl);
2075	struct uasm_label *l = labels;
2076	struct uasm_reloc *r = relocs;
2077	struct work_registers wr;
2078
2079	memset(p, 0, handle_tlbl_end - (char *)p);
2080	memset(labels, 0, sizeof(labels));
2081	memset(relocs, 0, sizeof(relocs));
2082
2083	if (bcm1250_m3_war()) {
2084		unsigned int segbits = 44;
2085
2086		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
2087		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
2088		uasm_i_xor(&p, K0, K0, K1);
2089		uasm_i_dsrl_safe(&p, K1, K0, 62);
2090		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
2091		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
2092		uasm_i_or(&p, K0, K0, K1);
2093		uasm_il_bnez(&p, &r, K0, label_leave);
2094		/* No need for uasm_i_nop */
2095	}
2096
2097	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2098	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2099	if (m4kc_tlbp_war())
2100		build_tlb_probe_entry(&p);
2101
2102	if (cpu_has_rixi && !cpu_has_rixiex) {
2103		/*
2104		 * If the page is not _PAGE_VALID, RI or XI could not
2105		 * have triggered it.  Skip the expensive test..
2106		 */
2107		if (use_bbit_insns()) {
2108			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2109				      label_tlbl_goaround1);
2110		} else {
2111			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2112			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
2113		}
2114		uasm_i_nop(&p);
2115
2116		/*
2117		 * Warn if something may race with us & replace the TLB entry
2118		 * before we read it here. Everything with such races should
2119		 * also have dedicated RiXi exception handlers, so this
2120		 * shouldn't be hit.
2121		 */
2122		WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2123
2124		uasm_i_tlbr(&p);
2125
2126		if (cpu_has_mips_r2_exec_hazard)
2127			uasm_i_ehb(&p);
2128
2129		/* Examine  entrylo 0 or 1 based on ptr. */
2130		if (use_bbit_insns()) {
2131			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2132		} else {
2133			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2134			uasm_i_beqz(&p, wr.r3, 8);
2135		}
2136		/* load it in the delay slot*/
2137		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2138		/* load it if ptr is odd */
2139		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2140		/*
2141		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2142		 * XI must have triggered it.
2143		 */
2144		if (use_bbit_insns()) {
2145			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2146			uasm_i_nop(&p);
2147			uasm_l_tlbl_goaround1(&l, p);
2148		} else {
2149			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2150			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2151			uasm_i_nop(&p);
2152		}
2153		uasm_l_tlbl_goaround1(&l, p);
2154	}
2155	build_make_valid(&p, &r, wr.r1, wr.r2, wr.r3);
2156	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2157
2158#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2159	/*
2160	 * This is the entry point when build_r4000_tlbchange_handler_head
2161	 * spots a huge page.
2162	 */
2163	uasm_l_tlb_huge_update(&l, p);
2164	iPTE_LW(&p, wr.r1, wr.r2);
2165	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2166	build_tlb_probe_entry(&p);
2167
2168	if (cpu_has_rixi && !cpu_has_rixiex) {
2169		/*
2170		 * If the page is not _PAGE_VALID, RI or XI could not
2171		 * have triggered it.  Skip the expensive test..
2172		 */
2173		if (use_bbit_insns()) {
2174			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2175				      label_tlbl_goaround2);
2176		} else {
2177			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2178			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2179		}
2180		uasm_i_nop(&p);
2181
2182		/*
2183		 * Warn if something may race with us & replace the TLB entry
2184		 * before we read it here. Everything with such races should
2185		 * also have dedicated RiXi exception handlers, so this
2186		 * shouldn't be hit.
2187		 */
2188		WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2189
2190		uasm_i_tlbr(&p);
2191
2192		if (cpu_has_mips_r2_exec_hazard)
2193			uasm_i_ehb(&p);
2194
2195		/* Examine  entrylo 0 or 1 based on ptr. */
2196		if (use_bbit_insns()) {
2197			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2198		} else {
2199			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2200			uasm_i_beqz(&p, wr.r3, 8);
2201		}
2202		/* load it in the delay slot*/
2203		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2204		/* load it if ptr is odd */
2205		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2206		/*
2207		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2208		 * XI must have triggered it.
2209		 */
2210		if (use_bbit_insns()) {
2211			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2212		} else {
2213			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2214			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2215		}
2216		if (PM_DEFAULT_MASK == 0)
2217			uasm_i_nop(&p);
2218		/*
2219		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
2220		 * it is restored in build_huge_tlb_write_entry.
2221		 */
2222		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2223
2224		uasm_l_tlbl_goaround2(&l, p);
2225	}
2226	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2227	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2228#endif
2229
2230	uasm_l_nopage_tlbl(&l, p);
2231	if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2232		uasm_i_sync(&p, 0);
2233	build_restore_work_registers(&p);
2234#ifdef CONFIG_CPU_MICROMIPS
2235	if ((unsigned long)tlb_do_page_fault_0 & 1) {
2236		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2237		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2238		uasm_i_jr(&p, K0);
2239	} else
2240#endif
2241	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2242	uasm_i_nop(&p);
2243
2244	if (p >= (u32 *)handle_tlbl_end)
2245		panic("TLB load handler fastpath space exceeded");
2246
2247	uasm_resolve_relocs(relocs, labels);
2248	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2249		 (unsigned int)(p - (u32 *)handle_tlbl));
2250
2251	dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_end);
2252}
2253
2254static void build_r4000_tlb_store_handler(void)
2255{
2256	u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbs);
2257	struct uasm_label *l = labels;
2258	struct uasm_reloc *r = relocs;
2259	struct work_registers wr;
2260
2261	memset(p, 0, handle_tlbs_end - (char *)p);
2262	memset(labels, 0, sizeof(labels));
2263	memset(relocs, 0, sizeof(relocs));
2264
2265	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2266	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2267	if (m4kc_tlbp_war())
2268		build_tlb_probe_entry(&p);
2269	build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2270	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2271
2272#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2273	/*
2274	 * This is the entry point when
2275	 * build_r4000_tlbchange_handler_head spots a huge page.
2276	 */
2277	uasm_l_tlb_huge_update(&l, p);
2278	iPTE_LW(&p, wr.r1, wr.r2);
2279	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2280	build_tlb_probe_entry(&p);
2281	uasm_i_ori(&p, wr.r1, wr.r1,
2282		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2283	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2284#endif
2285
2286	uasm_l_nopage_tlbs(&l, p);
2287	if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2288		uasm_i_sync(&p, 0);
2289	build_restore_work_registers(&p);
2290#ifdef CONFIG_CPU_MICROMIPS
2291	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2292		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2293		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2294		uasm_i_jr(&p, K0);
2295	} else
2296#endif
2297	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2298	uasm_i_nop(&p);
2299
2300	if (p >= (u32 *)handle_tlbs_end)
2301		panic("TLB store handler fastpath space exceeded");
2302
2303	uasm_resolve_relocs(relocs, labels);
2304	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2305		 (unsigned int)(p - (u32 *)handle_tlbs));
2306
2307	dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_end);
2308}
2309
2310static void build_r4000_tlb_modify_handler(void)
2311{
2312	u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbm);
2313	struct uasm_label *l = labels;
2314	struct uasm_reloc *r = relocs;
2315	struct work_registers wr;
2316
2317	memset(p, 0, handle_tlbm_end - (char *)p);
2318	memset(labels, 0, sizeof(labels));
2319	memset(relocs, 0, sizeof(relocs));
2320
2321	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2322	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2323	if (m4kc_tlbp_war())
2324		build_tlb_probe_entry(&p);
2325	/* Present and writable bits set, set accessed and dirty bits. */
2326	build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2327	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2328
2329#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2330	/*
2331	 * This is the entry point when
2332	 * build_r4000_tlbchange_handler_head spots a huge page.
2333	 */
2334	uasm_l_tlb_huge_update(&l, p);
2335	iPTE_LW(&p, wr.r1, wr.r2);
2336	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2337	build_tlb_probe_entry(&p);
2338	uasm_i_ori(&p, wr.r1, wr.r1,
2339		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2340	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 0);
2341#endif
2342
2343	uasm_l_nopage_tlbm(&l, p);
2344	if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2345		uasm_i_sync(&p, 0);
2346	build_restore_work_registers(&p);
2347#ifdef CONFIG_CPU_MICROMIPS
2348	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2349		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2350		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2351		uasm_i_jr(&p, K0);
2352	} else
2353#endif
2354	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2355	uasm_i_nop(&p);
2356
2357	if (p >= (u32 *)handle_tlbm_end)
2358		panic("TLB modify handler fastpath space exceeded");
2359
2360	uasm_resolve_relocs(relocs, labels);
2361	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2362		 (unsigned int)(p - (u32 *)handle_tlbm));
2363
2364	dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_end);
2365}
2366
2367static void flush_tlb_handlers(void)
2368{
2369	local_flush_icache_range((unsigned long)handle_tlbl,
2370			   (unsigned long)handle_tlbl_end);
2371	local_flush_icache_range((unsigned long)handle_tlbs,
2372			   (unsigned long)handle_tlbs_end);
2373	local_flush_icache_range((unsigned long)handle_tlbm,
2374			   (unsigned long)handle_tlbm_end);
2375	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2376			   (unsigned long)tlbmiss_handler_setup_pgd_end);
2377}
2378
2379static void print_htw_config(void)
2380{
2381	unsigned long config;
2382	unsigned int pwctl;
2383	const int field = 2 * sizeof(unsigned long);
2384
2385	config = read_c0_pwfield();
2386	pr_debug("PWField (0x%0*lx): GDI: 0x%02lx  UDI: 0x%02lx  MDI: 0x%02lx  PTI: 0x%02lx  PTEI: 0x%02lx\n",
2387		field, config,
2388		(config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2389		(config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2390		(config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2391		(config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2392		(config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2393
2394	config = read_c0_pwsize();
2395	pr_debug("PWSize  (0x%0*lx): PS: 0x%lx  GDW: 0x%02lx  UDW: 0x%02lx  MDW: 0x%02lx  PTW: 0x%02lx  PTEW: 0x%02lx\n",
2396		field, config,
2397		(config & MIPS_PWSIZE_PS_MASK) >> MIPS_PWSIZE_PS_SHIFT,
2398		(config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2399		(config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2400		(config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2401		(config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2402		(config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2403
2404	pwctl = read_c0_pwctl();
2405	pr_debug("PWCtl   (0x%x): PWEn: 0x%x  XK: 0x%x  XS: 0x%x  XU: 0x%x  DPH: 0x%x  HugePg: 0x%x  Psn: 0x%x\n",
2406		pwctl,
2407		(pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2408		(pwctl & MIPS_PWCTL_XK_MASK) >> MIPS_PWCTL_XK_SHIFT,
2409		(pwctl & MIPS_PWCTL_XS_MASK) >> MIPS_PWCTL_XS_SHIFT,
2410		(pwctl & MIPS_PWCTL_XU_MASK) >> MIPS_PWCTL_XU_SHIFT,
2411		(pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2412		(pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2413		(pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2414}
2415
2416static void config_htw_params(void)
2417{
2418	unsigned long pwfield, pwsize, ptei;
2419	unsigned int config;
2420
2421	/*
2422	 * We are using 2-level page tables, so we only need to
2423	 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2424	 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2425	 * write values less than 0xc in these fields because the entire
2426	 * write will be dropped. As a result of which, we must preserve
2427	 * the original reset values and overwrite only what we really want.
2428	 */
2429
2430	pwfield = read_c0_pwfield();
2431	/* re-initialize the GDI field */
2432	pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2433	pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2434	/* re-initialize the PTI field including the even/odd bit */
2435	pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2436	pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2437	if (CONFIG_PGTABLE_LEVELS >= 3) {
2438		pwfield &= ~MIPS_PWFIELD_MDI_MASK;
2439		pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT;
2440	}
2441	/* Set the PTEI right shift */
2442	ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2443	pwfield |= ptei;
2444	write_c0_pwfield(pwfield);
2445	/* Check whether the PTEI value is supported */
2446	back_to_back_c0_hazard();
2447	pwfield = read_c0_pwfield();
2448	if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2449		!= ptei) {
2450		pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2451			ptei);
2452		/*
2453		 * Drop option to avoid HTW being enabled via another path
2454		 * (eg htw_reset())
2455		 */
2456		current_cpu_data.options &= ~MIPS_CPU_HTW;
2457		return;
2458	}
2459
2460	pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2461	pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2462	if (CONFIG_PGTABLE_LEVELS >= 3)
2463		pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT;
2464
2465	/* Set pointer size to size of directory pointers */
2466	if (IS_ENABLED(CONFIG_64BIT))
2467		pwsize |= MIPS_PWSIZE_PS_MASK;
2468	/* PTEs may be multiple pointers long (e.g. with XPA) */
2469	pwsize |= ((PTE_T_LOG2 - PGD_T_LOG2) << MIPS_PWSIZE_PTEW_SHIFT)
2470			& MIPS_PWSIZE_PTEW_MASK;
2471
2472	write_c0_pwsize(pwsize);
2473
2474	/* Make sure everything is set before we enable the HTW */
2475	back_to_back_c0_hazard();
2476
2477	/*
2478	 * Enable HTW (and only for XUSeg on 64-bit), and disable the rest of
2479	 * the pwctl fields.
2480	 */
2481	config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2482	if (IS_ENABLED(CONFIG_64BIT))
2483		config |= MIPS_PWCTL_XU_MASK;
2484	write_c0_pwctl(config);
2485	pr_info("Hardware Page Table Walker enabled\n");
2486
2487	print_htw_config();
2488}
2489
2490static void config_xpa_params(void)
2491{
2492#ifdef CONFIG_XPA
2493	unsigned int pagegrain;
2494
2495	if (mips_xpa_disabled) {
2496		pr_info("Extended Physical Addressing (XPA) disabled\n");
2497		return;
2498	}
2499
2500	pagegrain = read_c0_pagegrain();
2501	write_c0_pagegrain(pagegrain | PG_ELPA);
2502	back_to_back_c0_hazard();
2503	pagegrain = read_c0_pagegrain();
2504
2505	if (pagegrain & PG_ELPA)
2506		pr_info("Extended Physical Addressing (XPA) enabled\n");
2507	else
2508		panic("Extended Physical Addressing (XPA) disabled");
2509#endif
2510}
2511
2512static void check_pabits(void)
2513{
2514	unsigned long entry;
2515	unsigned pabits, fillbits;
2516
2517	if (!cpu_has_rixi || _PAGE_NO_EXEC == 0) {
2518		/*
2519		 * We'll only be making use of the fact that we can rotate bits
2520		 * into the fill if the CPU supports RIXI, so don't bother
2521		 * probing this for CPUs which don't.
2522		 */
2523		return;
2524	}
2525
2526	write_c0_entrylo0(~0ul);
2527	back_to_back_c0_hazard();
2528	entry = read_c0_entrylo0();
2529
2530	/* clear all non-PFN bits */
2531	entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1);
2532	entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI);
2533
2534	/* find a lower bound on PABITS, and upper bound on fill bits */
2535	pabits = fls_long(entry) + 6;
2536	fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0);
2537
2538	/* minus the RI & XI bits */
2539	fillbits -= min_t(unsigned, fillbits, 2);
2540
2541	if (fillbits >= ilog2(_PAGE_NO_EXEC))
2542		fill_includes_sw_bits = true;
2543
2544	pr_debug("Entry* registers contain %u fill bits\n", fillbits);
2545}
2546
2547void build_tlb_refill_handler(void)
2548{
2549	/*
2550	 * The refill handler is generated per-CPU, multi-node systems
2551	 * may have local storage for it. The other handlers are only
2552	 * needed once.
2553	 */
2554	static int run_once = 0;
2555
2556	if (IS_ENABLED(CONFIG_XPA) && !cpu_has_rixi)
2557		panic("Kernels supporting XPA currently require CPUs with RIXI");
2558
2559	output_pgtable_bits_defines();
2560	check_pabits();
2561
2562#ifdef CONFIG_64BIT
2563	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
2564#endif
2565
2566	if (cpu_has_3kex) {
2567#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2568		if (!run_once) {
2569			build_setup_pgd();
2570			build_r3000_tlb_refill_handler();
2571			build_r3000_tlb_load_handler();
2572			build_r3000_tlb_store_handler();
2573			build_r3000_tlb_modify_handler();
2574			flush_tlb_handlers();
2575			run_once++;
2576		}
2577#else
2578		panic("No R3000 TLB refill handler");
2579#endif
2580		return;
2581	}
2582
2583	if (cpu_has_ldpte)
2584		setup_pw();
2585
2586	if (!run_once) {
2587		scratch_reg = allocate_kscratch();
2588		build_setup_pgd();
2589		build_r4000_tlb_load_handler();
2590		build_r4000_tlb_store_handler();
2591		build_r4000_tlb_modify_handler();
2592		if (cpu_has_ldpte)
2593			build_loongson3_tlb_refill_handler();
2594		else
2595			build_r4000_tlb_refill_handler();
2596		flush_tlb_handlers();
2597		run_once++;
2598	}
2599	if (cpu_has_xpa)
2600		config_xpa_params();
2601	if (cpu_has_htw)
2602		config_htw_params();
2603}
2604