xref: /kernel/linux/linux-6.6/arch/mips/mm/init.c (revision 62306a36)
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 2000 Ralf Baechle
7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
8 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
9 * Copyright (C) 2000 MIPS Technologies, Inc.  All rights reserved.
10 */
11#include <linux/bug.h>
12#include <linux/init.h>
13#include <linux/export.h>
14#include <linux/signal.h>
15#include <linux/sched.h>
16#include <linux/smp.h>
17#include <linux/kernel.h>
18#include <linux/errno.h>
19#include <linux/string.h>
20#include <linux/types.h>
21#include <linux/pagemap.h>
22#include <linux/ptrace.h>
23#include <linux/mman.h>
24#include <linux/mm.h>
25#include <linux/memblock.h>
26#include <linux/highmem.h>
27#include <linux/swap.h>
28#include <linux/proc_fs.h>
29#include <linux/pfn.h>
30#include <linux/hardirq.h>
31#include <linux/gfp.h>
32#include <linux/kcore.h>
33#include <linux/initrd.h>
34
35#include <asm/bootinfo.h>
36#include <asm/cachectl.h>
37#include <asm/cpu.h>
38#include <asm/dma.h>
39#include <asm/maar.h>
40#include <asm/mmu_context.h>
41#include <asm/sections.h>
42#include <asm/pgalloc.h>
43#include <asm/tlb.h>
44#include <asm/fixmap.h>
45
46/*
47 * We have up to 8 empty zeroed pages so we can map one of the right colour
48 * when needed.	 This is necessary only on R4000 / R4400 SC and MC versions
49 * where we have to avoid VCED / VECI exceptions for good performance at
50 * any price.  Since page is never written to after the initialization we
51 * don't have to care about aliases on other CPUs.
52 */
53unsigned long empty_zero_page, zero_page_mask;
54EXPORT_SYMBOL_GPL(empty_zero_page);
55EXPORT_SYMBOL(zero_page_mask);
56
57/*
58 * Not static inline because used by IP27 special magic initialization code
59 */
60void setup_zero_pages(void)
61{
62	unsigned int order, i;
63	struct page *page;
64
65	if (cpu_has_vce)
66		order = 3;
67	else
68		order = 0;
69
70	empty_zero_page = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
71	if (!empty_zero_page)
72		panic("Oh boy, that early out of memory?");
73
74	page = virt_to_page((void *)empty_zero_page);
75	split_page(page, order);
76	for (i = 0; i < (1 << order); i++, page++)
77		mark_page_reserved(page);
78
79	zero_page_mask = ((PAGE_SIZE << order) - 1) & PAGE_MASK;
80}
81
82static void *__kmap_pgprot(struct page *page, unsigned long addr, pgprot_t prot)
83{
84	enum fixed_addresses idx;
85	unsigned int old_mmid;
86	unsigned long vaddr, flags, entrylo;
87	unsigned long old_ctx;
88	pte_t pte;
89	int tlbidx;
90
91	BUG_ON(folio_test_dcache_dirty(page_folio(page)));
92
93	preempt_disable();
94	pagefault_disable();
95	idx = (addr >> PAGE_SHIFT) & (FIX_N_COLOURS - 1);
96	idx += in_interrupt() ? FIX_N_COLOURS : 0;
97	vaddr = __fix_to_virt(FIX_CMAP_END - idx);
98	pte = mk_pte(page, prot);
99#if defined(CONFIG_XPA)
100	entrylo = pte_to_entrylo(pte.pte_high);
101#elif defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32)
102	entrylo = pte.pte_high;
103#else
104	entrylo = pte_to_entrylo(pte_val(pte));
105#endif
106
107	local_irq_save(flags);
108	old_ctx = read_c0_entryhi();
109	write_c0_entryhi(vaddr & (PAGE_MASK << 1));
110	write_c0_entrylo0(entrylo);
111	write_c0_entrylo1(entrylo);
112	if (cpu_has_mmid) {
113		old_mmid = read_c0_memorymapid();
114		write_c0_memorymapid(MMID_KERNEL_WIRED);
115	}
116#ifdef CONFIG_XPA
117	if (cpu_has_xpa) {
118		entrylo = (pte.pte_low & _PFNX_MASK);
119		writex_c0_entrylo0(entrylo);
120		writex_c0_entrylo1(entrylo);
121	}
122#endif
123	tlbidx = num_wired_entries();
124	write_c0_wired(tlbidx + 1);
125	write_c0_index(tlbidx);
126	mtc0_tlbw_hazard();
127	tlb_write_indexed();
128	tlbw_use_hazard();
129	write_c0_entryhi(old_ctx);
130	if (cpu_has_mmid)
131		write_c0_memorymapid(old_mmid);
132	local_irq_restore(flags);
133
134	return (void*) vaddr;
135}
136
137void *kmap_coherent(struct page *page, unsigned long addr)
138{
139	return __kmap_pgprot(page, addr, PAGE_KERNEL);
140}
141
142void *kmap_noncoherent(struct page *page, unsigned long addr)
143{
144	return __kmap_pgprot(page, addr, PAGE_KERNEL_NC);
145}
146
147void kunmap_coherent(void)
148{
149	unsigned int wired;
150	unsigned long flags, old_ctx;
151
152	local_irq_save(flags);
153	old_ctx = read_c0_entryhi();
154	wired = num_wired_entries() - 1;
155	write_c0_wired(wired);
156	write_c0_index(wired);
157	write_c0_entryhi(UNIQUE_ENTRYHI(wired));
158	write_c0_entrylo0(0);
159	write_c0_entrylo1(0);
160	mtc0_tlbw_hazard();
161	tlb_write_indexed();
162	tlbw_use_hazard();
163	write_c0_entryhi(old_ctx);
164	local_irq_restore(flags);
165	pagefault_enable();
166	preempt_enable();
167}
168
169void copy_user_highpage(struct page *to, struct page *from,
170	unsigned long vaddr, struct vm_area_struct *vma)
171{
172	struct folio *src = page_folio(from);
173	void *vfrom, *vto;
174
175	vto = kmap_atomic(to);
176	if (cpu_has_dc_aliases &&
177	    folio_mapped(src) && !folio_test_dcache_dirty(src)) {
178		vfrom = kmap_coherent(from, vaddr);
179		copy_page(vto, vfrom);
180		kunmap_coherent();
181	} else {
182		vfrom = kmap_atomic(from);
183		copy_page(vto, vfrom);
184		kunmap_atomic(vfrom);
185	}
186	if ((!cpu_has_ic_fills_f_dc) ||
187	    pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK))
188		flush_data_cache_page((unsigned long)vto);
189	kunmap_atomic(vto);
190	/* Make sure this page is cleared on other CPU's too before using it */
191	smp_wmb();
192}
193
194void copy_to_user_page(struct vm_area_struct *vma,
195	struct page *page, unsigned long vaddr, void *dst, const void *src,
196	unsigned long len)
197{
198	struct folio *folio = page_folio(page);
199
200	if (cpu_has_dc_aliases &&
201	    folio_mapped(folio) && !folio_test_dcache_dirty(folio)) {
202		void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
203		memcpy(vto, src, len);
204		kunmap_coherent();
205	} else {
206		memcpy(dst, src, len);
207		if (cpu_has_dc_aliases)
208			folio_set_dcache_dirty(folio);
209	}
210	if (vma->vm_flags & VM_EXEC)
211		flush_cache_page(vma, vaddr, page_to_pfn(page));
212}
213
214void copy_from_user_page(struct vm_area_struct *vma,
215	struct page *page, unsigned long vaddr, void *dst, const void *src,
216	unsigned long len)
217{
218	struct folio *folio = page_folio(page);
219
220	if (cpu_has_dc_aliases &&
221	    folio_mapped(folio) && !folio_test_dcache_dirty(folio)) {
222		void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
223		memcpy(dst, vfrom, len);
224		kunmap_coherent();
225	} else {
226		memcpy(dst, src, len);
227		if (cpu_has_dc_aliases)
228			folio_set_dcache_dirty(folio);
229	}
230}
231EXPORT_SYMBOL_GPL(copy_from_user_page);
232
233void __init fixrange_init(unsigned long start, unsigned long end,
234	pgd_t *pgd_base)
235{
236#ifdef CONFIG_HIGHMEM
237	pgd_t *pgd;
238	pud_t *pud;
239	pmd_t *pmd;
240	pte_t *pte;
241	int i, j, k;
242	unsigned long vaddr;
243
244	vaddr = start;
245	i = pgd_index(vaddr);
246	j = pud_index(vaddr);
247	k = pmd_index(vaddr);
248	pgd = pgd_base + i;
249
250	for ( ; (i < PTRS_PER_PGD) && (vaddr < end); pgd++, i++) {
251		pud = (pud_t *)pgd;
252		for ( ; (j < PTRS_PER_PUD) && (vaddr < end); pud++, j++) {
253			pmd = (pmd_t *)pud;
254			for (; (k < PTRS_PER_PMD) && (vaddr < end); pmd++, k++) {
255				if (pmd_none(*pmd)) {
256					pte = (pte_t *) memblock_alloc_low(PAGE_SIZE,
257									   PAGE_SIZE);
258					if (!pte)
259						panic("%s: Failed to allocate %lu bytes align=%lx\n",
260						      __func__, PAGE_SIZE,
261						      PAGE_SIZE);
262
263					set_pmd(pmd, __pmd((unsigned long)pte));
264					BUG_ON(pte != pte_offset_kernel(pmd, 0));
265				}
266				vaddr += PMD_SIZE;
267			}
268			k = 0;
269		}
270		j = 0;
271	}
272#endif
273}
274
275struct maar_walk_info {
276	struct maar_config cfg[16];
277	unsigned int num_cfg;
278};
279
280static int maar_res_walk(unsigned long start_pfn, unsigned long nr_pages,
281			 void *data)
282{
283	struct maar_walk_info *wi = data;
284	struct maar_config *cfg = &wi->cfg[wi->num_cfg];
285	unsigned int maar_align;
286
287	/* MAAR registers hold physical addresses right shifted by 4 bits */
288	maar_align = BIT(MIPS_MAAR_ADDR_SHIFT + 4);
289
290	/* Fill in the MAAR config entry */
291	cfg->lower = ALIGN(PFN_PHYS(start_pfn), maar_align);
292	cfg->upper = ALIGN_DOWN(PFN_PHYS(start_pfn + nr_pages), maar_align) - 1;
293	cfg->attrs = MIPS_MAAR_S;
294
295	/* Ensure we don't overflow the cfg array */
296	if (!WARN_ON(wi->num_cfg >= ARRAY_SIZE(wi->cfg)))
297		wi->num_cfg++;
298
299	return 0;
300}
301
302
303unsigned __weak platform_maar_init(unsigned num_pairs)
304{
305	unsigned int num_configured;
306	struct maar_walk_info wi;
307
308	wi.num_cfg = 0;
309	walk_system_ram_range(0, max_pfn, &wi, maar_res_walk);
310
311	num_configured = maar_config(wi.cfg, wi.num_cfg, num_pairs);
312	if (num_configured < wi.num_cfg)
313		pr_warn("Not enough MAAR pairs (%u) for all memory regions (%u)\n",
314			num_pairs, wi.num_cfg);
315
316	return num_configured;
317}
318
319void maar_init(void)
320{
321	unsigned num_maars, used, i;
322	phys_addr_t lower, upper, attr;
323	static struct {
324		struct maar_config cfgs[3];
325		unsigned used;
326	} recorded = { { { 0 } }, 0 };
327
328	if (!cpu_has_maar)
329		return;
330
331	/* Detect the number of MAARs */
332	write_c0_maari(~0);
333	back_to_back_c0_hazard();
334	num_maars = read_c0_maari() + 1;
335
336	/* MAARs should be in pairs */
337	WARN_ON(num_maars % 2);
338
339	/* Set MAARs using values we recorded already */
340	if (recorded.used) {
341		used = maar_config(recorded.cfgs, recorded.used, num_maars / 2);
342		BUG_ON(used != recorded.used);
343	} else {
344		/* Configure the required MAARs */
345		used = platform_maar_init(num_maars / 2);
346	}
347
348	/* Disable any further MAARs */
349	for (i = (used * 2); i < num_maars; i++) {
350		write_c0_maari(i);
351		back_to_back_c0_hazard();
352		write_c0_maar(0);
353		back_to_back_c0_hazard();
354	}
355
356	if (recorded.used)
357		return;
358
359	pr_info("MAAR configuration:\n");
360	for (i = 0; i < num_maars; i += 2) {
361		write_c0_maari(i);
362		back_to_back_c0_hazard();
363		upper = read_c0_maar();
364#ifdef CONFIG_XPA
365		upper |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT;
366#endif
367
368		write_c0_maari(i + 1);
369		back_to_back_c0_hazard();
370		lower = read_c0_maar();
371#ifdef CONFIG_XPA
372		lower |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT;
373#endif
374
375		attr = lower & upper;
376		lower = (lower & MIPS_MAAR_ADDR) << 4;
377		upper = ((upper & MIPS_MAAR_ADDR) << 4) | 0xffff;
378
379		pr_info("  [%d]: ", i / 2);
380		if ((attr & MIPS_MAAR_V) != MIPS_MAAR_V) {
381			pr_cont("disabled\n");
382			continue;
383		}
384
385		pr_cont("%pa-%pa", &lower, &upper);
386
387		if (attr & MIPS_MAAR_S)
388			pr_cont(" speculate");
389
390		pr_cont("\n");
391
392		/* Record the setup for use on secondary CPUs */
393		if (used <= ARRAY_SIZE(recorded.cfgs)) {
394			recorded.cfgs[recorded.used].lower = lower;
395			recorded.cfgs[recorded.used].upper = upper;
396			recorded.cfgs[recorded.used].attrs = attr;
397			recorded.used++;
398		}
399	}
400}
401
402#ifndef CONFIG_NUMA
403void __init paging_init(void)
404{
405	unsigned long max_zone_pfns[MAX_NR_ZONES];
406
407	pagetable_init();
408
409#ifdef CONFIG_ZONE_DMA
410	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
411#endif
412#ifdef CONFIG_ZONE_DMA32
413	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
414#endif
415	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
416#ifdef CONFIG_HIGHMEM
417	max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
418
419	if (cpu_has_dc_aliases && max_low_pfn != highend_pfn) {
420		printk(KERN_WARNING "This processor doesn't support highmem."
421		       " %ldk highmem ignored\n",
422		       (highend_pfn - max_low_pfn) << (PAGE_SHIFT - 10));
423		max_zone_pfns[ZONE_HIGHMEM] = max_low_pfn;
424	}
425
426	max_mapnr = highend_pfn ? highend_pfn : max_low_pfn;
427#else
428	max_mapnr = max_low_pfn;
429#endif
430	high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT);
431
432	free_area_init(max_zone_pfns);
433}
434
435#ifdef CONFIG_64BIT
436static struct kcore_list kcore_kseg0;
437#endif
438
439static inline void __init mem_init_free_highmem(void)
440{
441#ifdef CONFIG_HIGHMEM
442	unsigned long tmp;
443
444	if (cpu_has_dc_aliases)
445		return;
446
447	for (tmp = highstart_pfn; tmp < highend_pfn; tmp++) {
448		struct page *page = pfn_to_page(tmp);
449
450		if (!memblock_is_memory(PFN_PHYS(tmp)))
451			SetPageReserved(page);
452		else
453			free_highmem_page(page);
454	}
455#endif
456}
457
458void __init mem_init(void)
459{
460	/*
461	 * When PFN_PTE_SHIFT is greater than PAGE_SHIFT we won't have enough PTE
462	 * bits to hold a full 32b physical address on MIPS32 systems.
463	 */
464	BUILD_BUG_ON(IS_ENABLED(CONFIG_32BIT) && (PFN_PTE_SHIFT > PAGE_SHIFT));
465
466	maar_init();
467	memblock_free_all();
468	setup_zero_pages();	/* Setup zeroed pages.  */
469	mem_init_free_highmem();
470
471#ifdef CONFIG_64BIT
472	if ((unsigned long) &_text > (unsigned long) CKSEG0)
473		/* The -4 is a hack so that user tools don't have to handle
474		   the overflow.  */
475		kclist_add(&kcore_kseg0, (void *) CKSEG0,
476				0x80000000 - 4, KCORE_TEXT);
477#endif
478}
479#endif /* !CONFIG_NUMA */
480
481void free_init_pages(const char *what, unsigned long begin, unsigned long end)
482{
483	unsigned long pfn;
484
485	for (pfn = PFN_UP(begin); pfn < PFN_DOWN(end); pfn++) {
486		struct page *page = pfn_to_page(pfn);
487		void *addr = phys_to_virt(PFN_PHYS(pfn));
488
489		memset(addr, POISON_FREE_INITMEM, PAGE_SIZE);
490		free_reserved_page(page);
491	}
492	printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
493}
494
495void (*free_init_pages_eva)(void *begin, void *end) = NULL;
496
497void __weak __init prom_free_prom_memory(void)
498{
499	/* nothing to do */
500}
501
502void __ref free_initmem(void)
503{
504	prom_free_prom_memory();
505	/*
506	 * Let the platform define a specific function to free the
507	 * init section since EVA may have used any possible mapping
508	 * between virtual and physical addresses.
509	 */
510	if (free_init_pages_eva)
511		free_init_pages_eva((void *)&__init_begin, (void *)&__init_end);
512	else
513		free_initmem_default(POISON_FREE_INITMEM);
514}
515
516#ifdef CONFIG_HAVE_SETUP_PER_CPU_AREA
517unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
518EXPORT_SYMBOL(__per_cpu_offset);
519
520static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
521{
522	return node_distance(cpu_to_node(from), cpu_to_node(to));
523}
524
525static int __init pcpu_cpu_to_node(int cpu)
526{
527	return cpu_to_node(cpu);
528}
529
530void __init setup_per_cpu_areas(void)
531{
532	unsigned long delta;
533	unsigned int cpu;
534	int rc;
535
536	/*
537	 * Always reserve area for module percpu variables.  That's
538	 * what the legacy allocator did.
539	 */
540	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
541				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE,
542				    pcpu_cpu_distance,
543				    pcpu_cpu_to_node);
544	if (rc < 0)
545		panic("Failed to initialize percpu areas.");
546
547	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
548	for_each_possible_cpu(cpu)
549		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
550}
551#endif
552
553#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
554unsigned long pgd_current[NR_CPUS];
555#endif
556
557/*
558 * Align swapper_pg_dir in to 64K, allows its address to be loaded
559 * with a single LUI instruction in the TLB handlers.  If we used
560 * __aligned(64K), its size would get rounded up to the alignment
561 * size, and waste space.  So we place it in its own section and align
562 * it in the linker script.
563 */
564pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".bss..swapper_pg_dir");
565#ifndef __PAGETABLE_PUD_FOLDED
566pud_t invalid_pud_table[PTRS_PER_PUD] __page_aligned_bss;
567#endif
568#ifndef __PAGETABLE_PMD_FOLDED
569pmd_t invalid_pmd_table[PTRS_PER_PMD] __page_aligned_bss;
570EXPORT_SYMBOL_GPL(invalid_pmd_table);
571#endif
572pte_t invalid_pte_table[PTRS_PER_PTE] __page_aligned_bss;
573EXPORT_SYMBOL(invalid_pte_table);
574