162306a36Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0-only */
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci * IEEE754 floating point
462306a36Sopenharmony_ci * double precision internal header file
562306a36Sopenharmony_ci */
662306a36Sopenharmony_ci/*
762306a36Sopenharmony_ci * MIPS floating point support
862306a36Sopenharmony_ci * Copyright (C) 1994-2000 Algorithmics Ltd.
962306a36Sopenharmony_ci */
1062306a36Sopenharmony_ci
1162306a36Sopenharmony_ci#include <linux/compiler.h>
1262306a36Sopenharmony_ci
1362306a36Sopenharmony_ci#include "ieee754int.h"
1462306a36Sopenharmony_ci
1562306a36Sopenharmony_ci#define assert(expr) ((void)0)
1662306a36Sopenharmony_ci
1762306a36Sopenharmony_ci#define SP_EBIAS	127
1862306a36Sopenharmony_ci#define SP_EMIN		(-126)
1962306a36Sopenharmony_ci#define SP_EMAX		127
2062306a36Sopenharmony_ci#define SP_FBITS	23
2162306a36Sopenharmony_ci#define SP_MBITS	23
2262306a36Sopenharmony_ci
2362306a36Sopenharmony_ci#define SP_MBIT(x)	((u32)1 << (x))
2462306a36Sopenharmony_ci#define SP_HIDDEN_BIT	SP_MBIT(SP_FBITS)
2562306a36Sopenharmony_ci#define SP_SIGN_BIT	SP_MBIT(31)
2662306a36Sopenharmony_ci
2762306a36Sopenharmony_ci#define SPSIGN(sp)	(sp.sign)
2862306a36Sopenharmony_ci#define SPBEXP(sp)	(sp.bexp)
2962306a36Sopenharmony_ci#define SPMANT(sp)	(sp.mant)
3062306a36Sopenharmony_ci
3162306a36Sopenharmony_cistatic inline int ieee754sp_finite(union ieee754sp x)
3262306a36Sopenharmony_ci{
3362306a36Sopenharmony_ci	return SPBEXP(x) != SP_EMAX + 1 + SP_EBIAS;
3462306a36Sopenharmony_ci}
3562306a36Sopenharmony_ci
3662306a36Sopenharmony_ci/* 64 bit right shift with rounding */
3762306a36Sopenharmony_ci#define XSPSRS64(v, rs)						\
3862306a36Sopenharmony_ci	(((rs) >= 64) ? ((v) != 0) : ((v) >> (rs)) | ((v) << (64-(rs)) != 0))
3962306a36Sopenharmony_ci
4062306a36Sopenharmony_ci/* 3bit extended single precision sticky right shift */
4162306a36Sopenharmony_ci#define XSPSRS(v, rs)						\
4262306a36Sopenharmony_ci	((rs > (SP_FBITS+3))?1:((v) >> (rs)) | ((v) << (32-(rs)) != 0))
4362306a36Sopenharmony_ci
4462306a36Sopenharmony_ci#define XSPSRS1(m) \
4562306a36Sopenharmony_ci	((m >> 1) | (m & 1))
4662306a36Sopenharmony_ci
4762306a36Sopenharmony_ci#define SPXSRSX1() \
4862306a36Sopenharmony_ci	(xe++, (xm = XSPSRS1(xm)))
4962306a36Sopenharmony_ci
5062306a36Sopenharmony_ci#define SPXSRSY1() \
5162306a36Sopenharmony_ci	(ye++, (ym = XSPSRS1(ym)))
5262306a36Sopenharmony_ci
5362306a36Sopenharmony_ci/* convert denormal to normalized with extended exponent */
5462306a36Sopenharmony_ci#define SPDNORMx(m,e) \
5562306a36Sopenharmony_ci	while ((m >> SP_FBITS) == 0) { m <<= 1; e--; }
5662306a36Sopenharmony_ci#define SPDNORMX	SPDNORMx(xm, xe)
5762306a36Sopenharmony_ci#define SPDNORMY	SPDNORMx(ym, ye)
5862306a36Sopenharmony_ci#define SPDNORMZ	SPDNORMx(zm, ze)
5962306a36Sopenharmony_ci
6062306a36Sopenharmony_cistatic inline union ieee754sp buildsp(int s, int bx, unsigned int m)
6162306a36Sopenharmony_ci{
6262306a36Sopenharmony_ci	union ieee754sp r;
6362306a36Sopenharmony_ci
6462306a36Sopenharmony_ci	assert((s) == 0 || (s) == 1);
6562306a36Sopenharmony_ci	assert((bx) >= SP_EMIN - 1 + SP_EBIAS
6662306a36Sopenharmony_ci	       && (bx) <= SP_EMAX + 1 + SP_EBIAS);
6762306a36Sopenharmony_ci	assert(((m) >> SP_FBITS) == 0);
6862306a36Sopenharmony_ci
6962306a36Sopenharmony_ci	r.sign = s;
7062306a36Sopenharmony_ci	r.bexp = bx;
7162306a36Sopenharmony_ci	r.mant = m;
7262306a36Sopenharmony_ci
7362306a36Sopenharmony_ci	return r;
7462306a36Sopenharmony_ci}
7562306a36Sopenharmony_ci
7662306a36Sopenharmony_ciextern union ieee754sp __cold ieee754sp_nanxcpt(union ieee754sp);
7762306a36Sopenharmony_ciextern union ieee754sp ieee754sp_format(int, int, unsigned);
78