162306a36Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0-only */ 262306a36Sopenharmony_ci/* 362306a36Sopenharmony_ci * IEEE754 floating point 462306a36Sopenharmony_ci * double precision internal header file 562306a36Sopenharmony_ci */ 662306a36Sopenharmony_ci/* 762306a36Sopenharmony_ci * MIPS floating point support 862306a36Sopenharmony_ci * Copyright (C) 1994-2000 Algorithmics Ltd. 962306a36Sopenharmony_ci */ 1062306a36Sopenharmony_ci 1162306a36Sopenharmony_ci#include <linux/compiler.h> 1262306a36Sopenharmony_ci 1362306a36Sopenharmony_ci#include "ieee754int.h" 1462306a36Sopenharmony_ci 1562306a36Sopenharmony_ci#define assert(expr) ((void)0) 1662306a36Sopenharmony_ci 1762306a36Sopenharmony_ci#define SP_EBIAS 127 1862306a36Sopenharmony_ci#define SP_EMIN (-126) 1962306a36Sopenharmony_ci#define SP_EMAX 127 2062306a36Sopenharmony_ci#define SP_FBITS 23 2162306a36Sopenharmony_ci#define SP_MBITS 23 2262306a36Sopenharmony_ci 2362306a36Sopenharmony_ci#define SP_MBIT(x) ((u32)1 << (x)) 2462306a36Sopenharmony_ci#define SP_HIDDEN_BIT SP_MBIT(SP_FBITS) 2562306a36Sopenharmony_ci#define SP_SIGN_BIT SP_MBIT(31) 2662306a36Sopenharmony_ci 2762306a36Sopenharmony_ci#define SPSIGN(sp) (sp.sign) 2862306a36Sopenharmony_ci#define SPBEXP(sp) (sp.bexp) 2962306a36Sopenharmony_ci#define SPMANT(sp) (sp.mant) 3062306a36Sopenharmony_ci 3162306a36Sopenharmony_cistatic inline int ieee754sp_finite(union ieee754sp x) 3262306a36Sopenharmony_ci{ 3362306a36Sopenharmony_ci return SPBEXP(x) != SP_EMAX + 1 + SP_EBIAS; 3462306a36Sopenharmony_ci} 3562306a36Sopenharmony_ci 3662306a36Sopenharmony_ci/* 64 bit right shift with rounding */ 3762306a36Sopenharmony_ci#define XSPSRS64(v, rs) \ 3862306a36Sopenharmony_ci (((rs) >= 64) ? ((v) != 0) : ((v) >> (rs)) | ((v) << (64-(rs)) != 0)) 3962306a36Sopenharmony_ci 4062306a36Sopenharmony_ci/* 3bit extended single precision sticky right shift */ 4162306a36Sopenharmony_ci#define XSPSRS(v, rs) \ 4262306a36Sopenharmony_ci ((rs > (SP_FBITS+3))?1:((v) >> (rs)) | ((v) << (32-(rs)) != 0)) 4362306a36Sopenharmony_ci 4462306a36Sopenharmony_ci#define XSPSRS1(m) \ 4562306a36Sopenharmony_ci ((m >> 1) | (m & 1)) 4662306a36Sopenharmony_ci 4762306a36Sopenharmony_ci#define SPXSRSX1() \ 4862306a36Sopenharmony_ci (xe++, (xm = XSPSRS1(xm))) 4962306a36Sopenharmony_ci 5062306a36Sopenharmony_ci#define SPXSRSY1() \ 5162306a36Sopenharmony_ci (ye++, (ym = XSPSRS1(ym))) 5262306a36Sopenharmony_ci 5362306a36Sopenharmony_ci/* convert denormal to normalized with extended exponent */ 5462306a36Sopenharmony_ci#define SPDNORMx(m,e) \ 5562306a36Sopenharmony_ci while ((m >> SP_FBITS) == 0) { m <<= 1; e--; } 5662306a36Sopenharmony_ci#define SPDNORMX SPDNORMx(xm, xe) 5762306a36Sopenharmony_ci#define SPDNORMY SPDNORMx(ym, ye) 5862306a36Sopenharmony_ci#define SPDNORMZ SPDNORMx(zm, ze) 5962306a36Sopenharmony_ci 6062306a36Sopenharmony_cistatic inline union ieee754sp buildsp(int s, int bx, unsigned int m) 6162306a36Sopenharmony_ci{ 6262306a36Sopenharmony_ci union ieee754sp r; 6362306a36Sopenharmony_ci 6462306a36Sopenharmony_ci assert((s) == 0 || (s) == 1); 6562306a36Sopenharmony_ci assert((bx) >= SP_EMIN - 1 + SP_EBIAS 6662306a36Sopenharmony_ci && (bx) <= SP_EMAX + 1 + SP_EBIAS); 6762306a36Sopenharmony_ci assert(((m) >> SP_FBITS) == 0); 6862306a36Sopenharmony_ci 6962306a36Sopenharmony_ci r.sign = s; 7062306a36Sopenharmony_ci r.bexp = bx; 7162306a36Sopenharmony_ci r.mant = m; 7262306a36Sopenharmony_ci 7362306a36Sopenharmony_ci return r; 7462306a36Sopenharmony_ci} 7562306a36Sopenharmony_ci 7662306a36Sopenharmony_ciextern union ieee754sp __cold ieee754sp_nanxcpt(union ieee754sp); 7762306a36Sopenharmony_ciextern union ieee754sp ieee754sp_format(int, int, unsigned); 78