162306a36Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */ 262306a36Sopenharmony_ci/* 362306a36Sopenharmony_ci * linux/include/asm/dma.h: Defines for using and allocating dma channels. 462306a36Sopenharmony_ci * Written by Hennus Bergman, 1992. 562306a36Sopenharmony_ci * High DMA channel support & info by Hannu Savolainen 662306a36Sopenharmony_ci * and John Boyd, Nov. 1992. 762306a36Sopenharmony_ci * 862306a36Sopenharmony_ci * NOTE: all this is true *only* for ISA/EISA expansions on Mips boards 962306a36Sopenharmony_ci * and can only be used for expansion cards. Onboard DMA controllers, such 1062306a36Sopenharmony_ci * as the R4030 on Jazz boards behave totally different! 1162306a36Sopenharmony_ci */ 1262306a36Sopenharmony_ci 1362306a36Sopenharmony_ci#ifndef _ASM_DMA_H 1462306a36Sopenharmony_ci#define _ASM_DMA_H 1562306a36Sopenharmony_ci 1662306a36Sopenharmony_ci#include <asm/io.h> /* need byte IO */ 1762306a36Sopenharmony_ci#include <linux/spinlock.h> /* And spinlocks */ 1862306a36Sopenharmony_ci#include <linux/delay.h> 1962306a36Sopenharmony_ci 2062306a36Sopenharmony_ci 2162306a36Sopenharmony_ci#ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER 2262306a36Sopenharmony_ci#define dma_outb outb_p 2362306a36Sopenharmony_ci#else 2462306a36Sopenharmony_ci#define dma_outb outb 2562306a36Sopenharmony_ci#endif 2662306a36Sopenharmony_ci 2762306a36Sopenharmony_ci#define dma_inb inb 2862306a36Sopenharmony_ci 2962306a36Sopenharmony_ci/* 3062306a36Sopenharmony_ci * NOTES about DMA transfers: 3162306a36Sopenharmony_ci * 3262306a36Sopenharmony_ci * controller 1: channels 0-3, byte operations, ports 00-1F 3362306a36Sopenharmony_ci * controller 2: channels 4-7, word operations, ports C0-DF 3462306a36Sopenharmony_ci * 3562306a36Sopenharmony_ci * - ALL registers are 8 bits only, regardless of transfer size 3662306a36Sopenharmony_ci * - channel 4 is not used - cascades 1 into 2. 3762306a36Sopenharmony_ci * - channels 0-3 are byte - addresses/counts are for physical bytes 3862306a36Sopenharmony_ci * - channels 5-7 are word - addresses/counts are for physical words 3962306a36Sopenharmony_ci * - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries 4062306a36Sopenharmony_ci * - transfer count loaded to registers is 1 less than actual count 4162306a36Sopenharmony_ci * - controller 2 offsets are all even (2x offsets for controller 1) 4262306a36Sopenharmony_ci * - page registers for 5-7 don't use data bit 0, represent 128K pages 4362306a36Sopenharmony_ci * - page registers for 0-3 use bit 0, represent 64K pages 4462306a36Sopenharmony_ci * 4562306a36Sopenharmony_ci * DMA transfers are limited to the lower 16MB of _physical_ memory. 4662306a36Sopenharmony_ci * Note that addresses loaded into registers must be _physical_ addresses, 4762306a36Sopenharmony_ci * not logical addresses (which may differ if paging is active). 4862306a36Sopenharmony_ci * 4962306a36Sopenharmony_ci * Address mapping for channels 0-3: 5062306a36Sopenharmony_ci * 5162306a36Sopenharmony_ci * A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses) 5262306a36Sopenharmony_ci * | ... | | ... | | ... | 5362306a36Sopenharmony_ci * | ... | | ... | | ... | 5462306a36Sopenharmony_ci * | ... | | ... | | ... | 5562306a36Sopenharmony_ci * P7 ... P0 A7 ... A0 A7 ... A0 5662306a36Sopenharmony_ci * | Page | Addr MSB | Addr LSB | (DMA registers) 5762306a36Sopenharmony_ci * 5862306a36Sopenharmony_ci * Address mapping for channels 5-7: 5962306a36Sopenharmony_ci * 6062306a36Sopenharmony_ci * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses) 6162306a36Sopenharmony_ci * | ... | \ \ ... \ \ \ ... \ \ 6262306a36Sopenharmony_ci * | ... | \ \ ... \ \ \ ... \ (not used) 6362306a36Sopenharmony_ci * | ... | \ \ ... \ \ \ ... \ 6462306a36Sopenharmony_ci * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0 6562306a36Sopenharmony_ci * | Page | Addr MSB | Addr LSB | (DMA registers) 6662306a36Sopenharmony_ci * 6762306a36Sopenharmony_ci * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses 6862306a36Sopenharmony_ci * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at 6962306a36Sopenharmony_ci * the hardware level, so odd-byte transfers aren't possible). 7062306a36Sopenharmony_ci * 7162306a36Sopenharmony_ci * Transfer count (_not # bytes_) is limited to 64K, represented as actual 7262306a36Sopenharmony_ci * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more, 7362306a36Sopenharmony_ci * and up to 128K bytes may be transferred on channels 5-7 in one operation. 7462306a36Sopenharmony_ci * 7562306a36Sopenharmony_ci */ 7662306a36Sopenharmony_ci 7762306a36Sopenharmony_ci#ifndef CONFIG_GENERIC_ISA_DMA_SUPPORT_BROKEN 7862306a36Sopenharmony_ci#define MAX_DMA_CHANNELS 8 7962306a36Sopenharmony_ci#endif 8062306a36Sopenharmony_ci 8162306a36Sopenharmony_ci/* 8262306a36Sopenharmony_ci * The maximum address in KSEG0 that we can perform a DMA transfer to on this 8362306a36Sopenharmony_ci * platform. This describes only the PC style part of the DMA logic like on 8462306a36Sopenharmony_ci * Deskstations or Acer PICA but not the much more versatile DMA logic used 8562306a36Sopenharmony_ci * for the local devices on Acer PICA or Magnums. 8662306a36Sopenharmony_ci */ 8762306a36Sopenharmony_ci#if defined(CONFIG_SGI_IP22) || defined(CONFIG_SGI_IP28) 8862306a36Sopenharmony_ci/* don't care; ISA bus master won't work, ISA slave DMA supports 32bit addr */ 8962306a36Sopenharmony_ci#define MAX_DMA_ADDRESS PAGE_OFFSET 9062306a36Sopenharmony_ci#else 9162306a36Sopenharmony_ci#define MAX_DMA_ADDRESS (PAGE_OFFSET + 0x01000000) 9262306a36Sopenharmony_ci#endif 9362306a36Sopenharmony_ci#define MAX_DMA_PFN PFN_DOWN(virt_to_phys((void *)MAX_DMA_ADDRESS)) 9462306a36Sopenharmony_ci 9562306a36Sopenharmony_ci#ifndef MAX_DMA32_PFN 9662306a36Sopenharmony_ci#define MAX_DMA32_PFN (1UL << (32 - PAGE_SHIFT)) 9762306a36Sopenharmony_ci#endif 9862306a36Sopenharmony_ci 9962306a36Sopenharmony_ci/* 8237 DMA controllers */ 10062306a36Sopenharmony_ci#define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */ 10162306a36Sopenharmony_ci#define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */ 10262306a36Sopenharmony_ci 10362306a36Sopenharmony_ci/* DMA controller registers */ 10462306a36Sopenharmony_ci#define DMA1_CMD_REG 0x08 /* command register (w) */ 10562306a36Sopenharmony_ci#define DMA1_STAT_REG 0x08 /* status register (r) */ 10662306a36Sopenharmony_ci#define DMA1_REQ_REG 0x09 /* request register (w) */ 10762306a36Sopenharmony_ci#define DMA1_MASK_REG 0x0A /* single-channel mask (w) */ 10862306a36Sopenharmony_ci#define DMA1_MODE_REG 0x0B /* mode register (w) */ 10962306a36Sopenharmony_ci#define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */ 11062306a36Sopenharmony_ci#define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */ 11162306a36Sopenharmony_ci#define DMA1_RESET_REG 0x0D /* Master Clear (w) */ 11262306a36Sopenharmony_ci#define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */ 11362306a36Sopenharmony_ci#define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */ 11462306a36Sopenharmony_ci 11562306a36Sopenharmony_ci#define DMA2_CMD_REG 0xD0 /* command register (w) */ 11662306a36Sopenharmony_ci#define DMA2_STAT_REG 0xD0 /* status register (r) */ 11762306a36Sopenharmony_ci#define DMA2_REQ_REG 0xD2 /* request register (w) */ 11862306a36Sopenharmony_ci#define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */ 11962306a36Sopenharmony_ci#define DMA2_MODE_REG 0xD6 /* mode register (w) */ 12062306a36Sopenharmony_ci#define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */ 12162306a36Sopenharmony_ci#define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */ 12262306a36Sopenharmony_ci#define DMA2_RESET_REG 0xDA /* Master Clear (w) */ 12362306a36Sopenharmony_ci#define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */ 12462306a36Sopenharmony_ci#define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */ 12562306a36Sopenharmony_ci 12662306a36Sopenharmony_ci#define DMA_ADDR_0 0x00 /* DMA address registers */ 12762306a36Sopenharmony_ci#define DMA_ADDR_1 0x02 12862306a36Sopenharmony_ci#define DMA_ADDR_2 0x04 12962306a36Sopenharmony_ci#define DMA_ADDR_3 0x06 13062306a36Sopenharmony_ci#define DMA_ADDR_4 0xC0 13162306a36Sopenharmony_ci#define DMA_ADDR_5 0xC4 13262306a36Sopenharmony_ci#define DMA_ADDR_6 0xC8 13362306a36Sopenharmony_ci#define DMA_ADDR_7 0xCC 13462306a36Sopenharmony_ci 13562306a36Sopenharmony_ci#define DMA_CNT_0 0x01 /* DMA count registers */ 13662306a36Sopenharmony_ci#define DMA_CNT_1 0x03 13762306a36Sopenharmony_ci#define DMA_CNT_2 0x05 13862306a36Sopenharmony_ci#define DMA_CNT_3 0x07 13962306a36Sopenharmony_ci#define DMA_CNT_4 0xC2 14062306a36Sopenharmony_ci#define DMA_CNT_5 0xC6 14162306a36Sopenharmony_ci#define DMA_CNT_6 0xCA 14262306a36Sopenharmony_ci#define DMA_CNT_7 0xCE 14362306a36Sopenharmony_ci 14462306a36Sopenharmony_ci#define DMA_PAGE_0 0x87 /* DMA page registers */ 14562306a36Sopenharmony_ci#define DMA_PAGE_1 0x83 14662306a36Sopenharmony_ci#define DMA_PAGE_2 0x81 14762306a36Sopenharmony_ci#define DMA_PAGE_3 0x82 14862306a36Sopenharmony_ci#define DMA_PAGE_5 0x8B 14962306a36Sopenharmony_ci#define DMA_PAGE_6 0x89 15062306a36Sopenharmony_ci#define DMA_PAGE_7 0x8A 15162306a36Sopenharmony_ci 15262306a36Sopenharmony_ci#define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */ 15362306a36Sopenharmony_ci#define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */ 15462306a36Sopenharmony_ci#define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */ 15562306a36Sopenharmony_ci 15662306a36Sopenharmony_ci#define DMA_AUTOINIT 0x10 15762306a36Sopenharmony_ci 15862306a36Sopenharmony_ciextern spinlock_t dma_spin_lock; 15962306a36Sopenharmony_ci 16062306a36Sopenharmony_cistatic __inline__ unsigned long claim_dma_lock(void) 16162306a36Sopenharmony_ci{ 16262306a36Sopenharmony_ci unsigned long flags; 16362306a36Sopenharmony_ci spin_lock_irqsave(&dma_spin_lock, flags); 16462306a36Sopenharmony_ci return flags; 16562306a36Sopenharmony_ci} 16662306a36Sopenharmony_ci 16762306a36Sopenharmony_cistatic __inline__ void release_dma_lock(unsigned long flags) 16862306a36Sopenharmony_ci{ 16962306a36Sopenharmony_ci spin_unlock_irqrestore(&dma_spin_lock, flags); 17062306a36Sopenharmony_ci} 17162306a36Sopenharmony_ci 17262306a36Sopenharmony_ci/* enable/disable a specific DMA channel */ 17362306a36Sopenharmony_cistatic __inline__ void enable_dma(unsigned int dmanr) 17462306a36Sopenharmony_ci{ 17562306a36Sopenharmony_ci if (dmanr<=3) 17662306a36Sopenharmony_ci dma_outb(dmanr, DMA1_MASK_REG); 17762306a36Sopenharmony_ci else 17862306a36Sopenharmony_ci dma_outb(dmanr & 3, DMA2_MASK_REG); 17962306a36Sopenharmony_ci} 18062306a36Sopenharmony_ci 18162306a36Sopenharmony_cistatic __inline__ void disable_dma(unsigned int dmanr) 18262306a36Sopenharmony_ci{ 18362306a36Sopenharmony_ci if (dmanr<=3) 18462306a36Sopenharmony_ci dma_outb(dmanr | 4, DMA1_MASK_REG); 18562306a36Sopenharmony_ci else 18662306a36Sopenharmony_ci dma_outb((dmanr & 3) | 4, DMA2_MASK_REG); 18762306a36Sopenharmony_ci} 18862306a36Sopenharmony_ci 18962306a36Sopenharmony_ci/* Clear the 'DMA Pointer Flip Flop'. 19062306a36Sopenharmony_ci * Write 0 for LSB/MSB, 1 for MSB/LSB access. 19162306a36Sopenharmony_ci * Use this once to initialize the FF to a known state. 19262306a36Sopenharmony_ci * After that, keep track of it. :-) 19362306a36Sopenharmony_ci * --- In order to do that, the DMA routines below should --- 19462306a36Sopenharmony_ci * --- only be used while holding the DMA lock ! --- 19562306a36Sopenharmony_ci */ 19662306a36Sopenharmony_cistatic __inline__ void clear_dma_ff(unsigned int dmanr) 19762306a36Sopenharmony_ci{ 19862306a36Sopenharmony_ci if (dmanr<=3) 19962306a36Sopenharmony_ci dma_outb(0, DMA1_CLEAR_FF_REG); 20062306a36Sopenharmony_ci else 20162306a36Sopenharmony_ci dma_outb(0, DMA2_CLEAR_FF_REG); 20262306a36Sopenharmony_ci} 20362306a36Sopenharmony_ci 20462306a36Sopenharmony_ci/* set mode (above) for a specific DMA channel */ 20562306a36Sopenharmony_cistatic __inline__ void set_dma_mode(unsigned int dmanr, char mode) 20662306a36Sopenharmony_ci{ 20762306a36Sopenharmony_ci if (dmanr<=3) 20862306a36Sopenharmony_ci dma_outb(mode | dmanr, DMA1_MODE_REG); 20962306a36Sopenharmony_ci else 21062306a36Sopenharmony_ci dma_outb(mode | (dmanr&3), DMA2_MODE_REG); 21162306a36Sopenharmony_ci} 21262306a36Sopenharmony_ci 21362306a36Sopenharmony_ci/* Set only the page register bits of the transfer address. 21462306a36Sopenharmony_ci * This is used for successive transfers when we know the contents of 21562306a36Sopenharmony_ci * the lower 16 bits of the DMA current address register, but a 64k boundary 21662306a36Sopenharmony_ci * may have been crossed. 21762306a36Sopenharmony_ci */ 21862306a36Sopenharmony_cistatic __inline__ void set_dma_page(unsigned int dmanr, char pagenr) 21962306a36Sopenharmony_ci{ 22062306a36Sopenharmony_ci switch(dmanr) { 22162306a36Sopenharmony_ci case 0: 22262306a36Sopenharmony_ci dma_outb(pagenr, DMA_PAGE_0); 22362306a36Sopenharmony_ci break; 22462306a36Sopenharmony_ci case 1: 22562306a36Sopenharmony_ci dma_outb(pagenr, DMA_PAGE_1); 22662306a36Sopenharmony_ci break; 22762306a36Sopenharmony_ci case 2: 22862306a36Sopenharmony_ci dma_outb(pagenr, DMA_PAGE_2); 22962306a36Sopenharmony_ci break; 23062306a36Sopenharmony_ci case 3: 23162306a36Sopenharmony_ci dma_outb(pagenr, DMA_PAGE_3); 23262306a36Sopenharmony_ci break; 23362306a36Sopenharmony_ci case 5: 23462306a36Sopenharmony_ci dma_outb(pagenr & 0xfe, DMA_PAGE_5); 23562306a36Sopenharmony_ci break; 23662306a36Sopenharmony_ci case 6: 23762306a36Sopenharmony_ci dma_outb(pagenr & 0xfe, DMA_PAGE_6); 23862306a36Sopenharmony_ci break; 23962306a36Sopenharmony_ci case 7: 24062306a36Sopenharmony_ci dma_outb(pagenr & 0xfe, DMA_PAGE_7); 24162306a36Sopenharmony_ci break; 24262306a36Sopenharmony_ci } 24362306a36Sopenharmony_ci} 24462306a36Sopenharmony_ci 24562306a36Sopenharmony_ci 24662306a36Sopenharmony_ci/* Set transfer address & page bits for specific DMA channel. 24762306a36Sopenharmony_ci * Assumes dma flipflop is clear. 24862306a36Sopenharmony_ci */ 24962306a36Sopenharmony_cistatic __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a) 25062306a36Sopenharmony_ci{ 25162306a36Sopenharmony_ci set_dma_page(dmanr, a>>16); 25262306a36Sopenharmony_ci if (dmanr <= 3) { 25362306a36Sopenharmony_ci dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE ); 25462306a36Sopenharmony_ci dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE ); 25562306a36Sopenharmony_ci } else { 25662306a36Sopenharmony_ci dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE ); 25762306a36Sopenharmony_ci dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE ); 25862306a36Sopenharmony_ci } 25962306a36Sopenharmony_ci} 26062306a36Sopenharmony_ci 26162306a36Sopenharmony_ci 26262306a36Sopenharmony_ci/* Set transfer size (max 64k for DMA0..3, 128k for DMA5..7) for 26362306a36Sopenharmony_ci * a specific DMA channel. 26462306a36Sopenharmony_ci * You must ensure the parameters are valid. 26562306a36Sopenharmony_ci * NOTE: from a manual: "the number of transfers is one more 26662306a36Sopenharmony_ci * than the initial word count"! This is taken into account. 26762306a36Sopenharmony_ci * Assumes dma flip-flop is clear. 26862306a36Sopenharmony_ci * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7. 26962306a36Sopenharmony_ci */ 27062306a36Sopenharmony_cistatic __inline__ void set_dma_count(unsigned int dmanr, unsigned int count) 27162306a36Sopenharmony_ci{ 27262306a36Sopenharmony_ci count--; 27362306a36Sopenharmony_ci if (dmanr <= 3) { 27462306a36Sopenharmony_ci dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE ); 27562306a36Sopenharmony_ci dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE ); 27662306a36Sopenharmony_ci } else { 27762306a36Sopenharmony_ci dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE ); 27862306a36Sopenharmony_ci dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE ); 27962306a36Sopenharmony_ci } 28062306a36Sopenharmony_ci} 28162306a36Sopenharmony_ci 28262306a36Sopenharmony_ci 28362306a36Sopenharmony_ci/* Get DMA residue count. After a DMA transfer, this 28462306a36Sopenharmony_ci * should return zero. Reading this while a DMA transfer is 28562306a36Sopenharmony_ci * still in progress will return unpredictable results. 28662306a36Sopenharmony_ci * If called before the channel has been used, it may return 1. 28762306a36Sopenharmony_ci * Otherwise, it returns the number of _bytes_ left to transfer. 28862306a36Sopenharmony_ci * 28962306a36Sopenharmony_ci * Assumes DMA flip-flop is clear. 29062306a36Sopenharmony_ci */ 29162306a36Sopenharmony_cistatic __inline__ int get_dma_residue(unsigned int dmanr) 29262306a36Sopenharmony_ci{ 29362306a36Sopenharmony_ci unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE 29462306a36Sopenharmony_ci : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE; 29562306a36Sopenharmony_ci 29662306a36Sopenharmony_ci /* using short to get 16-bit wrap around */ 29762306a36Sopenharmony_ci unsigned short count; 29862306a36Sopenharmony_ci 29962306a36Sopenharmony_ci count = 1 + dma_inb(io_port); 30062306a36Sopenharmony_ci count += dma_inb(io_port) << 8; 30162306a36Sopenharmony_ci 30262306a36Sopenharmony_ci return (dmanr<=3)? count : (count<<1); 30362306a36Sopenharmony_ci} 30462306a36Sopenharmony_ci 30562306a36Sopenharmony_ci 30662306a36Sopenharmony_ci/* These are in kernel/dma.c: */ 30762306a36Sopenharmony_ciextern int request_dma(unsigned int dmanr, const char * device_id); /* reserve a DMA channel */ 30862306a36Sopenharmony_ciextern void free_dma(unsigned int dmanr); /* release it again */ 30962306a36Sopenharmony_ci 31062306a36Sopenharmony_ci#endif /* _ASM_DMA_H */ 311