162306a36Sopenharmony_ci| 262306a36Sopenharmony_ci| decbin.sa 3.3 12/19/90 362306a36Sopenharmony_ci| 462306a36Sopenharmony_ci| Description: Converts normalized packed bcd value pointed to by 562306a36Sopenharmony_ci| register A6 to extended-precision value in FP0. 662306a36Sopenharmony_ci| 762306a36Sopenharmony_ci| Input: Normalized packed bcd value in ETEMP(a6). 862306a36Sopenharmony_ci| 962306a36Sopenharmony_ci| Output: Exact floating-point representation of the packed bcd value. 1062306a36Sopenharmony_ci| 1162306a36Sopenharmony_ci| Saves and Modifies: D2-D5 1262306a36Sopenharmony_ci| 1362306a36Sopenharmony_ci| Speed: The program decbin takes ??? cycles to execute. 1462306a36Sopenharmony_ci| 1562306a36Sopenharmony_ci| Object Size: 1662306a36Sopenharmony_ci| 1762306a36Sopenharmony_ci| External Reference(s): None. 1862306a36Sopenharmony_ci| 1962306a36Sopenharmony_ci| Algorithm: 2062306a36Sopenharmony_ci| Expected is a normal bcd (i.e. non-exceptional; all inf, zero, 2162306a36Sopenharmony_ci| and NaN operands are dispatched without entering this routine) 2262306a36Sopenharmony_ci| value in 68881/882 format at location ETEMP(A6). 2362306a36Sopenharmony_ci| 2462306a36Sopenharmony_ci| A1. Convert the bcd exponent to binary by successive adds and muls. 2562306a36Sopenharmony_ci| Set the sign according to SE. Subtract 16 to compensate 2662306a36Sopenharmony_ci| for the mantissa which is to be interpreted as 17 integer 2762306a36Sopenharmony_ci| digits, rather than 1 integer and 16 fraction digits. 2862306a36Sopenharmony_ci| Note: this operation can never overflow. 2962306a36Sopenharmony_ci| 3062306a36Sopenharmony_ci| A2. Convert the bcd mantissa to binary by successive 3162306a36Sopenharmony_ci| adds and muls in FP0. Set the sign according to SM. 3262306a36Sopenharmony_ci| The mantissa digits will be converted with the decimal point 3362306a36Sopenharmony_ci| assumed following the least-significant digit. 3462306a36Sopenharmony_ci| Note: this operation can never overflow. 3562306a36Sopenharmony_ci| 3662306a36Sopenharmony_ci| A3. Count the number of leading/trailing zeros in the 3762306a36Sopenharmony_ci| bcd string. If SE is positive, count the leading zeros; 3862306a36Sopenharmony_ci| if negative, count the trailing zeros. Set the adjusted 3962306a36Sopenharmony_ci| exponent equal to the exponent from A1 and the zero count 4062306a36Sopenharmony_ci| added if SM = 1 and subtracted if SM = 0. Scale the 4162306a36Sopenharmony_ci| mantissa the equivalent of forcing in the bcd value: 4262306a36Sopenharmony_ci| 4362306a36Sopenharmony_ci| SM = 0 a non-zero digit in the integer position 4462306a36Sopenharmony_ci| SM = 1 a non-zero digit in Mant0, lsd of the fraction 4562306a36Sopenharmony_ci| 4662306a36Sopenharmony_ci| this will insure that any value, regardless of its 4762306a36Sopenharmony_ci| representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted 4862306a36Sopenharmony_ci| consistently. 4962306a36Sopenharmony_ci| 5062306a36Sopenharmony_ci| A4. Calculate the factor 10^exp in FP1 using a table of 5162306a36Sopenharmony_ci| 10^(2^n) values. To reduce the error in forming factors 5262306a36Sopenharmony_ci| greater than 10^27, a directed rounding scheme is used with 5362306a36Sopenharmony_ci| tables rounded to RN, RM, and RP, according to the table 5462306a36Sopenharmony_ci| in the comments of the pwrten section. 5562306a36Sopenharmony_ci| 5662306a36Sopenharmony_ci| A5. Form the final binary number by scaling the mantissa by 5762306a36Sopenharmony_ci| the exponent factor. This is done by multiplying the 5862306a36Sopenharmony_ci| mantissa in FP0 by the factor in FP1 if the adjusted 5962306a36Sopenharmony_ci| exponent sign is positive, and dividing FP0 by FP1 if 6062306a36Sopenharmony_ci| it is negative. 6162306a36Sopenharmony_ci| 6262306a36Sopenharmony_ci| Clean up and return. Check if the final mul or div resulted 6362306a36Sopenharmony_ci| in an inex2 exception. If so, set inex1 in the fpsr and 6462306a36Sopenharmony_ci| check if the inex1 exception is enabled. If so, set d7 upper 6562306a36Sopenharmony_ci| word to $0100. This will signal unimp.sa that an enabled inex1 6662306a36Sopenharmony_ci| exception occurred. Unimp will fix the stack. 6762306a36Sopenharmony_ci| 6862306a36Sopenharmony_ci 6962306a36Sopenharmony_ci| Copyright (C) Motorola, Inc. 1990 7062306a36Sopenharmony_ci| All Rights Reserved 7162306a36Sopenharmony_ci| 7262306a36Sopenharmony_ci| For details on the license for this file, please see the 7362306a36Sopenharmony_ci| file, README, in this same directory. 7462306a36Sopenharmony_ci 7562306a36Sopenharmony_ci|DECBIN idnt 2,1 | Motorola 040 Floating Point Software Package 7662306a36Sopenharmony_ci 7762306a36Sopenharmony_ci |section 8 7862306a36Sopenharmony_ci 7962306a36Sopenharmony_ci#include "fpsp.h" 8062306a36Sopenharmony_ci 8162306a36Sopenharmony_ci| 8262306a36Sopenharmony_ci| PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded 8362306a36Sopenharmony_ci| to nearest, minus, and plus, respectively. The tables include 8462306a36Sopenharmony_ci| 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding 8562306a36Sopenharmony_ci| is required until the power is greater than 27, however, all 8662306a36Sopenharmony_ci| tables include the first 5 for ease of indexing. 8762306a36Sopenharmony_ci| 8862306a36Sopenharmony_ci |xref PTENRN 8962306a36Sopenharmony_ci |xref PTENRM 9062306a36Sopenharmony_ci |xref PTENRP 9162306a36Sopenharmony_ci 9262306a36Sopenharmony_ciRTABLE: .byte 0,0,0,0 9362306a36Sopenharmony_ci .byte 2,3,2,3 9462306a36Sopenharmony_ci .byte 2,3,3,2 9562306a36Sopenharmony_ci .byte 3,2,2,3 9662306a36Sopenharmony_ci 9762306a36Sopenharmony_ci .global decbin 9862306a36Sopenharmony_ci .global calc_e 9962306a36Sopenharmony_ci .global pwrten 10062306a36Sopenharmony_ci .global calc_m 10162306a36Sopenharmony_ci .global norm 10262306a36Sopenharmony_ci .global ap_st_z 10362306a36Sopenharmony_ci .global ap_st_n 10462306a36Sopenharmony_ci| 10562306a36Sopenharmony_ci .set FNIBS,7 10662306a36Sopenharmony_ci .set FSTRT,0 10762306a36Sopenharmony_ci| 10862306a36Sopenharmony_ci .set ESTRT,4 10962306a36Sopenharmony_ci .set EDIGITS,2 | 11062306a36Sopenharmony_ci| 11162306a36Sopenharmony_ci| Constants in single precision 11262306a36Sopenharmony_ciFZERO: .long 0x00000000 11362306a36Sopenharmony_ciFONE: .long 0x3F800000 11462306a36Sopenharmony_ciFTEN: .long 0x41200000 11562306a36Sopenharmony_ci 11662306a36Sopenharmony_ci .set TEN,10 11762306a36Sopenharmony_ci 11862306a36Sopenharmony_ci| 11962306a36Sopenharmony_cidecbin: 12062306a36Sopenharmony_ci | fmovel #0,FPCR ;clr real fpcr 12162306a36Sopenharmony_ci moveml %d2-%d5,-(%a7) 12262306a36Sopenharmony_ci| 12362306a36Sopenharmony_ci| Calculate exponent: 12462306a36Sopenharmony_ci| 1. Copy bcd value in memory for use as a working copy. 12562306a36Sopenharmony_ci| 2. Calculate absolute value of exponent in d1 by mul and add. 12662306a36Sopenharmony_ci| 3. Correct for exponent sign. 12762306a36Sopenharmony_ci| 4. Subtract 16 to compensate for interpreting the mant as all integer digits. 12862306a36Sopenharmony_ci| (i.e., all digits assumed left of the decimal point.) 12962306a36Sopenharmony_ci| 13062306a36Sopenharmony_ci| Register usage: 13162306a36Sopenharmony_ci| 13262306a36Sopenharmony_ci| calc_e: 13362306a36Sopenharmony_ci| (*) d0: temp digit storage 13462306a36Sopenharmony_ci| (*) d1: accumulator for binary exponent 13562306a36Sopenharmony_ci| (*) d2: digit count 13662306a36Sopenharmony_ci| (*) d3: offset pointer 13762306a36Sopenharmony_ci| ( ) d4: first word of bcd 13862306a36Sopenharmony_ci| ( ) a0: pointer to working bcd value 13962306a36Sopenharmony_ci| ( ) a6: pointer to original bcd value 14062306a36Sopenharmony_ci| (*) FP_SCR1: working copy of original bcd value 14162306a36Sopenharmony_ci| (*) L_SCR1: copy of original exponent word 14262306a36Sopenharmony_ci| 14362306a36Sopenharmony_cicalc_e: 14462306a36Sopenharmony_ci movel #EDIGITS,%d2 |# of nibbles (digits) in fraction part 14562306a36Sopenharmony_ci moveql #ESTRT,%d3 |counter to pick up digits 14662306a36Sopenharmony_ci leal FP_SCR1(%a6),%a0 |load tmp bcd storage address 14762306a36Sopenharmony_ci movel ETEMP(%a6),(%a0) |save input bcd value 14862306a36Sopenharmony_ci movel ETEMP_HI(%a6),4(%a0) |save words 2 and 3 14962306a36Sopenharmony_ci movel ETEMP_LO(%a6),8(%a0) |and work with these 15062306a36Sopenharmony_ci movel (%a0),%d4 |get first word of bcd 15162306a36Sopenharmony_ci clrl %d1 |zero d1 for accumulator 15262306a36Sopenharmony_cie_gd: 15362306a36Sopenharmony_ci mulul #TEN,%d1 |mul partial product by one digit place 15462306a36Sopenharmony_ci bfextu %d4{%d3:#4},%d0 |get the digit and zero extend into d0 15562306a36Sopenharmony_ci addl %d0,%d1 |d1 = d1 + d0 15662306a36Sopenharmony_ci addqb #4,%d3 |advance d3 to the next digit 15762306a36Sopenharmony_ci dbf %d2,e_gd |if we have used all 3 digits, exit loop 15862306a36Sopenharmony_ci btst #30,%d4 |get SE 15962306a36Sopenharmony_ci beqs e_pos |don't negate if pos 16062306a36Sopenharmony_ci negl %d1 |negate before subtracting 16162306a36Sopenharmony_cie_pos: 16262306a36Sopenharmony_ci subl #16,%d1 |sub to compensate for shift of mant 16362306a36Sopenharmony_ci bges e_save |if still pos, do not neg 16462306a36Sopenharmony_ci negl %d1 |now negative, make pos and set SE 16562306a36Sopenharmony_ci orl #0x40000000,%d4 |set SE in d4, 16662306a36Sopenharmony_ci orl #0x40000000,(%a0) |and in working bcd 16762306a36Sopenharmony_cie_save: 16862306a36Sopenharmony_ci movel %d1,L_SCR1(%a6) |save exp in memory 16962306a36Sopenharmony_ci| 17062306a36Sopenharmony_ci| 17162306a36Sopenharmony_ci| Calculate mantissa: 17262306a36Sopenharmony_ci| 1. Calculate absolute value of mantissa in fp0 by mul and add. 17362306a36Sopenharmony_ci| 2. Correct for mantissa sign. 17462306a36Sopenharmony_ci| (i.e., all digits assumed left of the decimal point.) 17562306a36Sopenharmony_ci| 17662306a36Sopenharmony_ci| Register usage: 17762306a36Sopenharmony_ci| 17862306a36Sopenharmony_ci| calc_m: 17962306a36Sopenharmony_ci| (*) d0: temp digit storage 18062306a36Sopenharmony_ci| (*) d1: lword counter 18162306a36Sopenharmony_ci| (*) d2: digit count 18262306a36Sopenharmony_ci| (*) d3: offset pointer 18362306a36Sopenharmony_ci| ( ) d4: words 2 and 3 of bcd 18462306a36Sopenharmony_ci| ( ) a0: pointer to working bcd value 18562306a36Sopenharmony_ci| ( ) a6: pointer to original bcd value 18662306a36Sopenharmony_ci| (*) fp0: mantissa accumulator 18762306a36Sopenharmony_ci| ( ) FP_SCR1: working copy of original bcd value 18862306a36Sopenharmony_ci| ( ) L_SCR1: copy of original exponent word 18962306a36Sopenharmony_ci| 19062306a36Sopenharmony_cicalc_m: 19162306a36Sopenharmony_ci moveql #1,%d1 |word counter, init to 1 19262306a36Sopenharmony_ci fmoves FZERO,%fp0 |accumulator 19362306a36Sopenharmony_ci| 19462306a36Sopenharmony_ci| 19562306a36Sopenharmony_ci| Since the packed number has a long word between the first & second parts, 19662306a36Sopenharmony_ci| get the integer digit then skip down & get the rest of the 19762306a36Sopenharmony_ci| mantissa. We will unroll the loop once. 19862306a36Sopenharmony_ci| 19962306a36Sopenharmony_ci bfextu (%a0){#28:#4},%d0 |integer part is ls digit in long word 20062306a36Sopenharmony_ci faddb %d0,%fp0 |add digit to sum in fp0 20162306a36Sopenharmony_ci| 20262306a36Sopenharmony_ci| 20362306a36Sopenharmony_ci| Get the rest of the mantissa. 20462306a36Sopenharmony_ci| 20562306a36Sopenharmony_ciloadlw: 20662306a36Sopenharmony_ci movel (%a0,%d1.L*4),%d4 |load mantissa longword into d4 20762306a36Sopenharmony_ci moveql #FSTRT,%d3 |counter to pick up digits 20862306a36Sopenharmony_ci moveql #FNIBS,%d2 |reset number of digits per a0 ptr 20962306a36Sopenharmony_cimd2b: 21062306a36Sopenharmony_ci fmuls FTEN,%fp0 |fp0 = fp0 * 10 21162306a36Sopenharmony_ci bfextu %d4{%d3:#4},%d0 |get the digit and zero extend 21262306a36Sopenharmony_ci faddb %d0,%fp0 |fp0 = fp0 + digit 21362306a36Sopenharmony_ci| 21462306a36Sopenharmony_ci| 21562306a36Sopenharmony_ci| If all the digits (8) in that long word have been converted (d2=0), 21662306a36Sopenharmony_ci| then inc d1 (=2) to point to the next long word and reset d3 to 0 21762306a36Sopenharmony_ci| to initialize the digit offset, and set d2 to 7 for the digit count; 21862306a36Sopenharmony_ci| else continue with this long word. 21962306a36Sopenharmony_ci| 22062306a36Sopenharmony_ci addqb #4,%d3 |advance d3 to the next digit 22162306a36Sopenharmony_ci dbf %d2,md2b |check for last digit in this lw 22262306a36Sopenharmony_cinextlw: 22362306a36Sopenharmony_ci addql #1,%d1 |inc lw pointer in mantissa 22462306a36Sopenharmony_ci cmpl #2,%d1 |test for last lw 22562306a36Sopenharmony_ci ble loadlw |if not, get last one 22662306a36Sopenharmony_ci 22762306a36Sopenharmony_ci| 22862306a36Sopenharmony_ci| Check the sign of the mant and make the value in fp0 the same sign. 22962306a36Sopenharmony_ci| 23062306a36Sopenharmony_cim_sign: 23162306a36Sopenharmony_ci btst #31,(%a0) |test sign of the mantissa 23262306a36Sopenharmony_ci beq ap_st_z |if clear, go to append/strip zeros 23362306a36Sopenharmony_ci fnegx %fp0 |if set, negate fp0 23462306a36Sopenharmony_ci 23562306a36Sopenharmony_ci| 23662306a36Sopenharmony_ci| Append/strip zeros: 23762306a36Sopenharmony_ci| 23862306a36Sopenharmony_ci| For adjusted exponents which have an absolute value greater than 27*, 23962306a36Sopenharmony_ci| this routine calculates the amount needed to normalize the mantissa 24062306a36Sopenharmony_ci| for the adjusted exponent. That number is subtracted from the exp 24162306a36Sopenharmony_ci| if the exp was positive, and added if it was negative. The purpose 24262306a36Sopenharmony_ci| of this is to reduce the value of the exponent and the possibility 24362306a36Sopenharmony_ci| of error in calculation of pwrten. 24462306a36Sopenharmony_ci| 24562306a36Sopenharmony_ci| 1. Branch on the sign of the adjusted exponent. 24662306a36Sopenharmony_ci| 2p.(positive exp) 24762306a36Sopenharmony_ci| 2. Check M16 and the digits in lwords 2 and 3 in descending order. 24862306a36Sopenharmony_ci| 3. Add one for each zero encountered until a non-zero digit. 24962306a36Sopenharmony_ci| 4. Subtract the count from the exp. 25062306a36Sopenharmony_ci| 5. Check if the exp has crossed zero in #3 above; make the exp abs 25162306a36Sopenharmony_ci| and set SE. 25262306a36Sopenharmony_ci| 6. Multiply the mantissa by 10**count. 25362306a36Sopenharmony_ci| 2n.(negative exp) 25462306a36Sopenharmony_ci| 2. Check the digits in lwords 3 and 2 in descending order. 25562306a36Sopenharmony_ci| 3. Add one for each zero encountered until a non-zero digit. 25662306a36Sopenharmony_ci| 4. Add the count to the exp. 25762306a36Sopenharmony_ci| 5. Check if the exp has crossed zero in #3 above; clear SE. 25862306a36Sopenharmony_ci| 6. Divide the mantissa by 10**count. 25962306a36Sopenharmony_ci| 26062306a36Sopenharmony_ci| *Why 27? If the adjusted exponent is within -28 < expA < 28, than 26162306a36Sopenharmony_ci| any adjustment due to append/strip zeros will drive the resultant 26262306a36Sopenharmony_ci| exponent towards zero. Since all pwrten constants with a power 26362306a36Sopenharmony_ci| of 27 or less are exact, there is no need to use this routine to 26462306a36Sopenharmony_ci| attempt to lessen the resultant exponent. 26562306a36Sopenharmony_ci| 26662306a36Sopenharmony_ci| Register usage: 26762306a36Sopenharmony_ci| 26862306a36Sopenharmony_ci| ap_st_z: 26962306a36Sopenharmony_ci| (*) d0: temp digit storage 27062306a36Sopenharmony_ci| (*) d1: zero count 27162306a36Sopenharmony_ci| (*) d2: digit count 27262306a36Sopenharmony_ci| (*) d3: offset pointer 27362306a36Sopenharmony_ci| ( ) d4: first word of bcd 27462306a36Sopenharmony_ci| (*) d5: lword counter 27562306a36Sopenharmony_ci| ( ) a0: pointer to working bcd value 27662306a36Sopenharmony_ci| ( ) FP_SCR1: working copy of original bcd value 27762306a36Sopenharmony_ci| ( ) L_SCR1: copy of original exponent word 27862306a36Sopenharmony_ci| 27962306a36Sopenharmony_ci| 28062306a36Sopenharmony_ci| First check the absolute value of the exponent to see if this 28162306a36Sopenharmony_ci| routine is necessary. If so, then check the sign of the exponent 28262306a36Sopenharmony_ci| and do append (+) or strip (-) zeros accordingly. 28362306a36Sopenharmony_ci| This section handles a positive adjusted exponent. 28462306a36Sopenharmony_ci| 28562306a36Sopenharmony_ciap_st_z: 28662306a36Sopenharmony_ci movel L_SCR1(%a6),%d1 |load expA for range test 28762306a36Sopenharmony_ci cmpl #27,%d1 |test is with 27 28862306a36Sopenharmony_ci ble pwrten |if abs(expA) <28, skip ap/st zeros 28962306a36Sopenharmony_ci btst #30,(%a0) |check sign of exp 29062306a36Sopenharmony_ci bne ap_st_n |if neg, go to neg side 29162306a36Sopenharmony_ci clrl %d1 |zero count reg 29262306a36Sopenharmony_ci movel (%a0),%d4 |load lword 1 to d4 29362306a36Sopenharmony_ci bfextu %d4{#28:#4},%d0 |get M16 in d0 29462306a36Sopenharmony_ci bnes ap_p_fx |if M16 is non-zero, go fix exp 29562306a36Sopenharmony_ci addql #1,%d1 |inc zero count 29662306a36Sopenharmony_ci moveql #1,%d5 |init lword counter 29762306a36Sopenharmony_ci movel (%a0,%d5.L*4),%d4 |get lword 2 to d4 29862306a36Sopenharmony_ci bnes ap_p_cl |if lw 2 is zero, skip it 29962306a36Sopenharmony_ci addql #8,%d1 |and inc count by 8 30062306a36Sopenharmony_ci addql #1,%d5 |inc lword counter 30162306a36Sopenharmony_ci movel (%a0,%d5.L*4),%d4 |get lword 3 to d4 30262306a36Sopenharmony_ciap_p_cl: 30362306a36Sopenharmony_ci clrl %d3 |init offset reg 30462306a36Sopenharmony_ci moveql #7,%d2 |init digit counter 30562306a36Sopenharmony_ciap_p_gd: 30662306a36Sopenharmony_ci bfextu %d4{%d3:#4},%d0 |get digit 30762306a36Sopenharmony_ci bnes ap_p_fx |if non-zero, go to fix exp 30862306a36Sopenharmony_ci addql #4,%d3 |point to next digit 30962306a36Sopenharmony_ci addql #1,%d1 |inc digit counter 31062306a36Sopenharmony_ci dbf %d2,ap_p_gd |get next digit 31162306a36Sopenharmony_ciap_p_fx: 31262306a36Sopenharmony_ci movel %d1,%d0 |copy counter to d2 31362306a36Sopenharmony_ci movel L_SCR1(%a6),%d1 |get adjusted exp from memory 31462306a36Sopenharmony_ci subl %d0,%d1 |subtract count from exp 31562306a36Sopenharmony_ci bges ap_p_fm |if still pos, go to pwrten 31662306a36Sopenharmony_ci negl %d1 |now its neg; get abs 31762306a36Sopenharmony_ci movel (%a0),%d4 |load lword 1 to d4 31862306a36Sopenharmony_ci orl #0x40000000,%d4 | and set SE in d4 31962306a36Sopenharmony_ci orl #0x40000000,(%a0) | and in memory 32062306a36Sopenharmony_ci| 32162306a36Sopenharmony_ci| Calculate the mantissa multiplier to compensate for the striping of 32262306a36Sopenharmony_ci| zeros from the mantissa. 32362306a36Sopenharmony_ci| 32462306a36Sopenharmony_ciap_p_fm: 32562306a36Sopenharmony_ci movel #PTENRN,%a1 |get address of power-of-ten table 32662306a36Sopenharmony_ci clrl %d3 |init table index 32762306a36Sopenharmony_ci fmoves FONE,%fp1 |init fp1 to 1 32862306a36Sopenharmony_ci moveql #3,%d2 |init d2 to count bits in counter 32962306a36Sopenharmony_ciap_p_el: 33062306a36Sopenharmony_ci asrl #1,%d0 |shift lsb into carry 33162306a36Sopenharmony_ci bccs ap_p_en |if 1, mul fp1 by pwrten factor 33262306a36Sopenharmony_ci fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no) 33362306a36Sopenharmony_ciap_p_en: 33462306a36Sopenharmony_ci addl #12,%d3 |inc d3 to next rtable entry 33562306a36Sopenharmony_ci tstl %d0 |check if d0 is zero 33662306a36Sopenharmony_ci bnes ap_p_el |if not, get next bit 33762306a36Sopenharmony_ci fmulx %fp1,%fp0 |mul mantissa by 10**(no_bits_shifted) 33862306a36Sopenharmony_ci bra pwrten |go calc pwrten 33962306a36Sopenharmony_ci| 34062306a36Sopenharmony_ci| This section handles a negative adjusted exponent. 34162306a36Sopenharmony_ci| 34262306a36Sopenharmony_ciap_st_n: 34362306a36Sopenharmony_ci clrl %d1 |clr counter 34462306a36Sopenharmony_ci moveql #2,%d5 |set up d5 to point to lword 3 34562306a36Sopenharmony_ci movel (%a0,%d5.L*4),%d4 |get lword 3 34662306a36Sopenharmony_ci bnes ap_n_cl |if not zero, check digits 34762306a36Sopenharmony_ci subl #1,%d5 |dec d5 to point to lword 2 34862306a36Sopenharmony_ci addql #8,%d1 |inc counter by 8 34962306a36Sopenharmony_ci movel (%a0,%d5.L*4),%d4 |get lword 2 35062306a36Sopenharmony_ciap_n_cl: 35162306a36Sopenharmony_ci movel #28,%d3 |point to last digit 35262306a36Sopenharmony_ci moveql #7,%d2 |init digit counter 35362306a36Sopenharmony_ciap_n_gd: 35462306a36Sopenharmony_ci bfextu %d4{%d3:#4},%d0 |get digit 35562306a36Sopenharmony_ci bnes ap_n_fx |if non-zero, go to exp fix 35662306a36Sopenharmony_ci subql #4,%d3 |point to previous digit 35762306a36Sopenharmony_ci addql #1,%d1 |inc digit counter 35862306a36Sopenharmony_ci dbf %d2,ap_n_gd |get next digit 35962306a36Sopenharmony_ciap_n_fx: 36062306a36Sopenharmony_ci movel %d1,%d0 |copy counter to d0 36162306a36Sopenharmony_ci movel L_SCR1(%a6),%d1 |get adjusted exp from memory 36262306a36Sopenharmony_ci subl %d0,%d1 |subtract count from exp 36362306a36Sopenharmony_ci bgts ap_n_fm |if still pos, go fix mantissa 36462306a36Sopenharmony_ci negl %d1 |take abs of exp and clr SE 36562306a36Sopenharmony_ci movel (%a0),%d4 |load lword 1 to d4 36662306a36Sopenharmony_ci andl #0xbfffffff,%d4 | and clr SE in d4 36762306a36Sopenharmony_ci andl #0xbfffffff,(%a0) | and in memory 36862306a36Sopenharmony_ci| 36962306a36Sopenharmony_ci| Calculate the mantissa multiplier to compensate for the appending of 37062306a36Sopenharmony_ci| zeros to the mantissa. 37162306a36Sopenharmony_ci| 37262306a36Sopenharmony_ciap_n_fm: 37362306a36Sopenharmony_ci movel #PTENRN,%a1 |get address of power-of-ten table 37462306a36Sopenharmony_ci clrl %d3 |init table index 37562306a36Sopenharmony_ci fmoves FONE,%fp1 |init fp1 to 1 37662306a36Sopenharmony_ci moveql #3,%d2 |init d2 to count bits in counter 37762306a36Sopenharmony_ciap_n_el: 37862306a36Sopenharmony_ci asrl #1,%d0 |shift lsb into carry 37962306a36Sopenharmony_ci bccs ap_n_en |if 1, mul fp1 by pwrten factor 38062306a36Sopenharmony_ci fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no) 38162306a36Sopenharmony_ciap_n_en: 38262306a36Sopenharmony_ci addl #12,%d3 |inc d3 to next rtable entry 38362306a36Sopenharmony_ci tstl %d0 |check if d0 is zero 38462306a36Sopenharmony_ci bnes ap_n_el |if not, get next bit 38562306a36Sopenharmony_ci fdivx %fp1,%fp0 |div mantissa by 10**(no_bits_shifted) 38662306a36Sopenharmony_ci| 38762306a36Sopenharmony_ci| 38862306a36Sopenharmony_ci| Calculate power-of-ten factor from adjusted and shifted exponent. 38962306a36Sopenharmony_ci| 39062306a36Sopenharmony_ci| Register usage: 39162306a36Sopenharmony_ci| 39262306a36Sopenharmony_ci| pwrten: 39362306a36Sopenharmony_ci| (*) d0: temp 39462306a36Sopenharmony_ci| ( ) d1: exponent 39562306a36Sopenharmony_ci| (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp 39662306a36Sopenharmony_ci| (*) d3: FPCR work copy 39762306a36Sopenharmony_ci| ( ) d4: first word of bcd 39862306a36Sopenharmony_ci| (*) a1: RTABLE pointer 39962306a36Sopenharmony_ci| calc_p: 40062306a36Sopenharmony_ci| (*) d0: temp 40162306a36Sopenharmony_ci| ( ) d1: exponent 40262306a36Sopenharmony_ci| (*) d3: PWRTxx table index 40362306a36Sopenharmony_ci| ( ) a0: pointer to working copy of bcd 40462306a36Sopenharmony_ci| (*) a1: PWRTxx pointer 40562306a36Sopenharmony_ci| (*) fp1: power-of-ten accumulator 40662306a36Sopenharmony_ci| 40762306a36Sopenharmony_ci| Pwrten calculates the exponent factor in the selected rounding mode 40862306a36Sopenharmony_ci| according to the following table: 40962306a36Sopenharmony_ci| 41062306a36Sopenharmony_ci| Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode 41162306a36Sopenharmony_ci| 41262306a36Sopenharmony_ci| ANY ANY RN RN 41362306a36Sopenharmony_ci| 41462306a36Sopenharmony_ci| + + RP RP 41562306a36Sopenharmony_ci| - + RP RM 41662306a36Sopenharmony_ci| + - RP RM 41762306a36Sopenharmony_ci| - - RP RP 41862306a36Sopenharmony_ci| 41962306a36Sopenharmony_ci| + + RM RM 42062306a36Sopenharmony_ci| - + RM RP 42162306a36Sopenharmony_ci| + - RM RP 42262306a36Sopenharmony_ci| - - RM RM 42362306a36Sopenharmony_ci| 42462306a36Sopenharmony_ci| + + RZ RM 42562306a36Sopenharmony_ci| - + RZ RM 42662306a36Sopenharmony_ci| + - RZ RP 42762306a36Sopenharmony_ci| - - RZ RP 42862306a36Sopenharmony_ci| 42962306a36Sopenharmony_ci| 43062306a36Sopenharmony_cipwrten: 43162306a36Sopenharmony_ci movel USER_FPCR(%a6),%d3 |get user's FPCR 43262306a36Sopenharmony_ci bfextu %d3{#26:#2},%d2 |isolate rounding mode bits 43362306a36Sopenharmony_ci movel (%a0),%d4 |reload 1st bcd word to d4 43462306a36Sopenharmony_ci asll #2,%d2 |format d2 to be 43562306a36Sopenharmony_ci bfextu %d4{#0:#2},%d0 | {FPCR[6],FPCR[5],SM,SE} 43662306a36Sopenharmony_ci addl %d0,%d2 |in d2 as index into RTABLE 43762306a36Sopenharmony_ci leal RTABLE,%a1 |load rtable base 43862306a36Sopenharmony_ci moveb (%a1,%d2),%d0 |load new rounding bits from table 43962306a36Sopenharmony_ci clrl %d3 |clear d3 to force no exc and extended 44062306a36Sopenharmony_ci bfins %d0,%d3{#26:#2} |stuff new rounding bits in FPCR 44162306a36Sopenharmony_ci fmovel %d3,%FPCR |write new FPCR 44262306a36Sopenharmony_ci asrl #1,%d0 |write correct PTENxx table 44362306a36Sopenharmony_ci bccs not_rp |to a1 44462306a36Sopenharmony_ci leal PTENRP,%a1 |it is RP 44562306a36Sopenharmony_ci bras calc_p |go to init section 44662306a36Sopenharmony_cinot_rp: 44762306a36Sopenharmony_ci asrl #1,%d0 |keep checking 44862306a36Sopenharmony_ci bccs not_rm 44962306a36Sopenharmony_ci leal PTENRM,%a1 |it is RM 45062306a36Sopenharmony_ci bras calc_p |go to init section 45162306a36Sopenharmony_cinot_rm: 45262306a36Sopenharmony_ci leal PTENRN,%a1 |it is RN 45362306a36Sopenharmony_cicalc_p: 45462306a36Sopenharmony_ci movel %d1,%d0 |copy exp to d0;use d0 45562306a36Sopenharmony_ci bpls no_neg |if exp is negative, 45662306a36Sopenharmony_ci negl %d0 |invert it 45762306a36Sopenharmony_ci orl #0x40000000,(%a0) |and set SE bit 45862306a36Sopenharmony_cino_neg: 45962306a36Sopenharmony_ci clrl %d3 |table index 46062306a36Sopenharmony_ci fmoves FONE,%fp1 |init fp1 to 1 46162306a36Sopenharmony_cie_loop: 46262306a36Sopenharmony_ci asrl #1,%d0 |shift next bit into carry 46362306a36Sopenharmony_ci bccs e_next |if zero, skip the mul 46462306a36Sopenharmony_ci fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no) 46562306a36Sopenharmony_cie_next: 46662306a36Sopenharmony_ci addl #12,%d3 |inc d3 to next rtable entry 46762306a36Sopenharmony_ci tstl %d0 |check if d0 is zero 46862306a36Sopenharmony_ci bnes e_loop |not zero, continue shifting 46962306a36Sopenharmony_ci| 47062306a36Sopenharmony_ci| 47162306a36Sopenharmony_ci| Check the sign of the adjusted exp and make the value in fp0 the 47262306a36Sopenharmony_ci| same sign. If the exp was pos then multiply fp1*fp0; 47362306a36Sopenharmony_ci| else divide fp0/fp1. 47462306a36Sopenharmony_ci| 47562306a36Sopenharmony_ci| Register Usage: 47662306a36Sopenharmony_ci| norm: 47762306a36Sopenharmony_ci| ( ) a0: pointer to working bcd value 47862306a36Sopenharmony_ci| (*) fp0: mantissa accumulator 47962306a36Sopenharmony_ci| ( ) fp1: scaling factor - 10**(abs(exp)) 48062306a36Sopenharmony_ci| 48162306a36Sopenharmony_cinorm: 48262306a36Sopenharmony_ci btst #30,(%a0) |test the sign of the exponent 48362306a36Sopenharmony_ci beqs mul |if clear, go to multiply 48462306a36Sopenharmony_cidiv: 48562306a36Sopenharmony_ci fdivx %fp1,%fp0 |exp is negative, so divide mant by exp 48662306a36Sopenharmony_ci bras end_dec 48762306a36Sopenharmony_cimul: 48862306a36Sopenharmony_ci fmulx %fp1,%fp0 |exp is positive, so multiply by exp 48962306a36Sopenharmony_ci| 49062306a36Sopenharmony_ci| 49162306a36Sopenharmony_ci| Clean up and return with result in fp0. 49262306a36Sopenharmony_ci| 49362306a36Sopenharmony_ci| If the final mul/div in decbin incurred an inex exception, 49462306a36Sopenharmony_ci| it will be inex2, but will be reported as inex1 by get_op. 49562306a36Sopenharmony_ci| 49662306a36Sopenharmony_ciend_dec: 49762306a36Sopenharmony_ci fmovel %FPSR,%d0 |get status register 49862306a36Sopenharmony_ci bclrl #inex2_bit+8,%d0 |test for inex2 and clear it 49962306a36Sopenharmony_ci fmovel %d0,%FPSR |return status reg w/o inex2 50062306a36Sopenharmony_ci beqs no_exc |skip this if no exc 50162306a36Sopenharmony_ci orl #inx1a_mask,USER_FPSR(%a6) |set inex1/ainex 50262306a36Sopenharmony_cino_exc: 50362306a36Sopenharmony_ci moveml (%a7)+,%d2-%d5 50462306a36Sopenharmony_ci rts 50562306a36Sopenharmony_ci |end 506