162306a36Sopenharmony_ci| 262306a36Sopenharmony_ci| bindec.sa 3.4 1/3/91 362306a36Sopenharmony_ci| 462306a36Sopenharmony_ci| bindec 562306a36Sopenharmony_ci| 662306a36Sopenharmony_ci| Description: 762306a36Sopenharmony_ci| Converts an input in extended precision format 862306a36Sopenharmony_ci| to bcd format. 962306a36Sopenharmony_ci| 1062306a36Sopenharmony_ci| Input: 1162306a36Sopenharmony_ci| a0 points to the input extended precision value 1262306a36Sopenharmony_ci| value in memory; d0 contains the k-factor sign-extended 1362306a36Sopenharmony_ci| to 32-bits. The input may be either normalized, 1462306a36Sopenharmony_ci| unnormalized, or denormalized. 1562306a36Sopenharmony_ci| 1662306a36Sopenharmony_ci| Output: result in the FP_SCR1 space on the stack. 1762306a36Sopenharmony_ci| 1862306a36Sopenharmony_ci| Saves and Modifies: D2-D7,A2,FP2 1962306a36Sopenharmony_ci| 2062306a36Sopenharmony_ci| Algorithm: 2162306a36Sopenharmony_ci| 2262306a36Sopenharmony_ci| A1. Set RM and size ext; Set SIGMA = sign of input. 2362306a36Sopenharmony_ci| The k-factor is saved for use in d7. Clear the 2462306a36Sopenharmony_ci| BINDEC_FLG for separating normalized/denormalized 2562306a36Sopenharmony_ci| input. If input is unnormalized or denormalized, 2662306a36Sopenharmony_ci| normalize it. 2762306a36Sopenharmony_ci| 2862306a36Sopenharmony_ci| A2. Set X = abs(input). 2962306a36Sopenharmony_ci| 3062306a36Sopenharmony_ci| A3. Compute ILOG. 3162306a36Sopenharmony_ci| ILOG is the log base 10 of the input value. It is 3262306a36Sopenharmony_ci| approximated by adding e + 0.f when the original 3362306a36Sopenharmony_ci| value is viewed as 2^^e * 1.f in extended precision. 3462306a36Sopenharmony_ci| This value is stored in d6. 3562306a36Sopenharmony_ci| 3662306a36Sopenharmony_ci| A4. Clr INEX bit. 3762306a36Sopenharmony_ci| The operation in A3 above may have set INEX2. 3862306a36Sopenharmony_ci| 3962306a36Sopenharmony_ci| A5. Set ICTR = 0; 4062306a36Sopenharmony_ci| ICTR is a flag used in A13. It must be set before the 4162306a36Sopenharmony_ci| loop entry A6. 4262306a36Sopenharmony_ci| 4362306a36Sopenharmony_ci| A6. Calculate LEN. 4462306a36Sopenharmony_ci| LEN is the number of digits to be displayed. The 4562306a36Sopenharmony_ci| k-factor can dictate either the total number of digits, 4662306a36Sopenharmony_ci| if it is a positive number, or the number of digits 4762306a36Sopenharmony_ci| after the decimal point which are to be included as 4862306a36Sopenharmony_ci| significant. See the 68882 manual for examples. 4962306a36Sopenharmony_ci| If LEN is computed to be greater than 17, set OPERR in 5062306a36Sopenharmony_ci| USER_FPSR. LEN is stored in d4. 5162306a36Sopenharmony_ci| 5262306a36Sopenharmony_ci| A7. Calculate SCALE. 5362306a36Sopenharmony_ci| SCALE is equal to 10^ISCALE, where ISCALE is the number 5462306a36Sopenharmony_ci| of decimal places needed to insure LEN integer digits 5562306a36Sopenharmony_ci| in the output before conversion to bcd. LAMBDA is the 5662306a36Sopenharmony_ci| sign of ISCALE, used in A9. Fp1 contains 5762306a36Sopenharmony_ci| 10^^(abs(ISCALE)) using a rounding mode which is a 5862306a36Sopenharmony_ci| function of the original rounding mode and the signs 5962306a36Sopenharmony_ci| of ISCALE and X. A table is given in the code. 6062306a36Sopenharmony_ci| 6162306a36Sopenharmony_ci| A8. Clr INEX; Force RZ. 6262306a36Sopenharmony_ci| The operation in A3 above may have set INEX2. 6362306a36Sopenharmony_ci| RZ mode is forced for the scaling operation to insure 6462306a36Sopenharmony_ci| only one rounding error. The grs bits are collected in 6562306a36Sopenharmony_ci| the INEX flag for use in A10. 6662306a36Sopenharmony_ci| 6762306a36Sopenharmony_ci| A9. Scale X -> Y. 6862306a36Sopenharmony_ci| The mantissa is scaled to the desired number of 6962306a36Sopenharmony_ci| significant digits. The excess digits are collected 7062306a36Sopenharmony_ci| in INEX2. 7162306a36Sopenharmony_ci| 7262306a36Sopenharmony_ci| A10. Or in INEX. 7362306a36Sopenharmony_ci| If INEX is set, round error occurred. This is 7462306a36Sopenharmony_ci| compensated for by 'or-ing' in the INEX2 flag to 7562306a36Sopenharmony_ci| the lsb of Y. 7662306a36Sopenharmony_ci| 7762306a36Sopenharmony_ci| A11. Restore original FPCR; set size ext. 7862306a36Sopenharmony_ci| Perform FINT operation in the user's rounding mode. 7962306a36Sopenharmony_ci| Keep the size to extended. 8062306a36Sopenharmony_ci| 8162306a36Sopenharmony_ci| A12. Calculate YINT = FINT(Y) according to user's rounding 8262306a36Sopenharmony_ci| mode. The FPSP routine sintd0 is used. The output 8362306a36Sopenharmony_ci| is in fp0. 8462306a36Sopenharmony_ci| 8562306a36Sopenharmony_ci| A13. Check for LEN digits. 8662306a36Sopenharmony_ci| If the int operation results in more than LEN digits, 8762306a36Sopenharmony_ci| or less than LEN -1 digits, adjust ILOG and repeat from 8862306a36Sopenharmony_ci| A6. This test occurs only on the first pass. If the 8962306a36Sopenharmony_ci| result is exactly 10^LEN, decrement ILOG and divide 9062306a36Sopenharmony_ci| the mantissa by 10. 9162306a36Sopenharmony_ci| 9262306a36Sopenharmony_ci| A14. Convert the mantissa to bcd. 9362306a36Sopenharmony_ci| The binstr routine is used to convert the LEN digit 9462306a36Sopenharmony_ci| mantissa to bcd in memory. The input to binstr is 9562306a36Sopenharmony_ci| to be a fraction; i.e. (mantissa)/10^LEN and adjusted 9662306a36Sopenharmony_ci| such that the decimal point is to the left of bit 63. 9762306a36Sopenharmony_ci| The bcd digits are stored in the correct position in 9862306a36Sopenharmony_ci| the final string area in memory. 9962306a36Sopenharmony_ci| 10062306a36Sopenharmony_ci| A15. Convert the exponent to bcd. 10162306a36Sopenharmony_ci| As in A14 above, the exp is converted to bcd and the 10262306a36Sopenharmony_ci| digits are stored in the final string. 10362306a36Sopenharmony_ci| Test the length of the final exponent string. If the 10462306a36Sopenharmony_ci| length is 4, set operr. 10562306a36Sopenharmony_ci| 10662306a36Sopenharmony_ci| A16. Write sign bits to final string. 10762306a36Sopenharmony_ci| 10862306a36Sopenharmony_ci| Implementation Notes: 10962306a36Sopenharmony_ci| 11062306a36Sopenharmony_ci| The registers are used as follows: 11162306a36Sopenharmony_ci| 11262306a36Sopenharmony_ci| d0: scratch; LEN input to binstr 11362306a36Sopenharmony_ci| d1: scratch 11462306a36Sopenharmony_ci| d2: upper 32-bits of mantissa for binstr 11562306a36Sopenharmony_ci| d3: scratch;lower 32-bits of mantissa for binstr 11662306a36Sopenharmony_ci| d4: LEN 11762306a36Sopenharmony_ci| d5: LAMBDA/ICTR 11862306a36Sopenharmony_ci| d6: ILOG 11962306a36Sopenharmony_ci| d7: k-factor 12062306a36Sopenharmony_ci| a0: ptr for original operand/final result 12162306a36Sopenharmony_ci| a1: scratch pointer 12262306a36Sopenharmony_ci| a2: pointer to FP_X; abs(original value) in ext 12362306a36Sopenharmony_ci| fp0: scratch 12462306a36Sopenharmony_ci| fp1: scratch 12562306a36Sopenharmony_ci| fp2: scratch 12662306a36Sopenharmony_ci| F_SCR1: 12762306a36Sopenharmony_ci| F_SCR2: 12862306a36Sopenharmony_ci| L_SCR1: 12962306a36Sopenharmony_ci| L_SCR2: 13062306a36Sopenharmony_ci 13162306a36Sopenharmony_ci| Copyright (C) Motorola, Inc. 1990 13262306a36Sopenharmony_ci| All Rights Reserved 13362306a36Sopenharmony_ci| 13462306a36Sopenharmony_ci| For details on the license for this file, please see the 13562306a36Sopenharmony_ci| file, README, in this same directory. 13662306a36Sopenharmony_ci 13762306a36Sopenharmony_ci|BINDEC idnt 2,1 | Motorola 040 Floating Point Software Package 13862306a36Sopenharmony_ci 13962306a36Sopenharmony_ci#include "fpsp.h" 14062306a36Sopenharmony_ci 14162306a36Sopenharmony_ci |section 8 14262306a36Sopenharmony_ci 14362306a36Sopenharmony_ci| Constants in extended precision 14462306a36Sopenharmony_ciLOG2: .long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000 14562306a36Sopenharmony_ciLOG2UP1: .long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000 14662306a36Sopenharmony_ci 14762306a36Sopenharmony_ci| Constants in single precision 14862306a36Sopenharmony_ciFONE: .long 0x3F800000,0x00000000,0x00000000,0x00000000 14962306a36Sopenharmony_ciFTWO: .long 0x40000000,0x00000000,0x00000000,0x00000000 15062306a36Sopenharmony_ciFTEN: .long 0x41200000,0x00000000,0x00000000,0x00000000 15162306a36Sopenharmony_ciF4933: .long 0x459A2800,0x00000000,0x00000000,0x00000000 15262306a36Sopenharmony_ci 15362306a36Sopenharmony_ciRBDTBL: .byte 0,0,0,0 15462306a36Sopenharmony_ci .byte 3,3,2,2 15562306a36Sopenharmony_ci .byte 3,2,2,3 15662306a36Sopenharmony_ci .byte 2,3,3,2 15762306a36Sopenharmony_ci 15862306a36Sopenharmony_ci |xref binstr 15962306a36Sopenharmony_ci |xref sintdo 16062306a36Sopenharmony_ci |xref ptenrn,ptenrm,ptenrp 16162306a36Sopenharmony_ci 16262306a36Sopenharmony_ci .global bindec 16362306a36Sopenharmony_ci .global sc_mul 16462306a36Sopenharmony_cibindec: 16562306a36Sopenharmony_ci moveml %d2-%d7/%a2,-(%a7) 16662306a36Sopenharmony_ci fmovemx %fp0-%fp2,-(%a7) 16762306a36Sopenharmony_ci 16862306a36Sopenharmony_ci| A1. Set RM and size ext. Set SIGMA = sign input; 16962306a36Sopenharmony_ci| The k-factor is saved for use in d7. Clear BINDEC_FLG for 17062306a36Sopenharmony_ci| separating normalized/denormalized input. If the input 17162306a36Sopenharmony_ci| is a denormalized number, set the BINDEC_FLG memory word 17262306a36Sopenharmony_ci| to signal denorm. If the input is unnormalized, normalize 17362306a36Sopenharmony_ci| the input and test for denormalized result. 17462306a36Sopenharmony_ci| 17562306a36Sopenharmony_ci fmovel #rm_mode,%FPCR |set RM and ext 17662306a36Sopenharmony_ci movel (%a0),L_SCR2(%a6) |save exponent for sign check 17762306a36Sopenharmony_ci movel %d0,%d7 |move k-factor to d7 17862306a36Sopenharmony_ci clrb BINDEC_FLG(%a6) |clr norm/denorm flag 17962306a36Sopenharmony_ci movew STAG(%a6),%d0 |get stag 18062306a36Sopenharmony_ci andiw #0xe000,%d0 |isolate stag bits 18162306a36Sopenharmony_ci beq A2_str |if zero, input is norm 18262306a36Sopenharmony_ci| 18362306a36Sopenharmony_ci| Normalize the denorm 18462306a36Sopenharmony_ci| 18562306a36Sopenharmony_ciun_de_norm: 18662306a36Sopenharmony_ci movew (%a0),%d0 18762306a36Sopenharmony_ci andiw #0x7fff,%d0 |strip sign of normalized exp 18862306a36Sopenharmony_ci movel 4(%a0),%d1 18962306a36Sopenharmony_ci movel 8(%a0),%d2 19062306a36Sopenharmony_cinorm_loop: 19162306a36Sopenharmony_ci subw #1,%d0 19262306a36Sopenharmony_ci lsll #1,%d2 19362306a36Sopenharmony_ci roxll #1,%d1 19462306a36Sopenharmony_ci tstl %d1 19562306a36Sopenharmony_ci bges norm_loop 19662306a36Sopenharmony_ci| 19762306a36Sopenharmony_ci| Test if the normalized input is denormalized 19862306a36Sopenharmony_ci| 19962306a36Sopenharmony_ci tstw %d0 20062306a36Sopenharmony_ci bgts pos_exp |if greater than zero, it is a norm 20162306a36Sopenharmony_ci st BINDEC_FLG(%a6) |set flag for denorm 20262306a36Sopenharmony_cipos_exp: 20362306a36Sopenharmony_ci andiw #0x7fff,%d0 |strip sign of normalized exp 20462306a36Sopenharmony_ci movew %d0,(%a0) 20562306a36Sopenharmony_ci movel %d1,4(%a0) 20662306a36Sopenharmony_ci movel %d2,8(%a0) 20762306a36Sopenharmony_ci 20862306a36Sopenharmony_ci| A2. Set X = abs(input). 20962306a36Sopenharmony_ci| 21062306a36Sopenharmony_ciA2_str: 21162306a36Sopenharmony_ci movel (%a0),FP_SCR2(%a6) | move input to work space 21262306a36Sopenharmony_ci movel 4(%a0),FP_SCR2+4(%a6) | move input to work space 21362306a36Sopenharmony_ci movel 8(%a0),FP_SCR2+8(%a6) | move input to work space 21462306a36Sopenharmony_ci andil #0x7fffffff,FP_SCR2(%a6) |create abs(X) 21562306a36Sopenharmony_ci 21662306a36Sopenharmony_ci| A3. Compute ILOG. 21762306a36Sopenharmony_ci| ILOG is the log base 10 of the input value. It is approx- 21862306a36Sopenharmony_ci| imated by adding e + 0.f when the original value is viewed 21962306a36Sopenharmony_ci| as 2^^e * 1.f in extended precision. This value is stored 22062306a36Sopenharmony_ci| in d6. 22162306a36Sopenharmony_ci| 22262306a36Sopenharmony_ci| Register usage: 22362306a36Sopenharmony_ci| Input/Output 22462306a36Sopenharmony_ci| d0: k-factor/exponent 22562306a36Sopenharmony_ci| d2: x/x 22662306a36Sopenharmony_ci| d3: x/x 22762306a36Sopenharmony_ci| d4: x/x 22862306a36Sopenharmony_ci| d5: x/x 22962306a36Sopenharmony_ci| d6: x/ILOG 23062306a36Sopenharmony_ci| d7: k-factor/Unchanged 23162306a36Sopenharmony_ci| a0: ptr for original operand/final result 23262306a36Sopenharmony_ci| a1: x/x 23362306a36Sopenharmony_ci| a2: x/x 23462306a36Sopenharmony_ci| fp0: x/float(ILOG) 23562306a36Sopenharmony_ci| fp1: x/x 23662306a36Sopenharmony_ci| fp2: x/x 23762306a36Sopenharmony_ci| F_SCR1:x/x 23862306a36Sopenharmony_ci| F_SCR2:Abs(X)/Abs(X) with $3fff exponent 23962306a36Sopenharmony_ci| L_SCR1:x/x 24062306a36Sopenharmony_ci| L_SCR2:first word of X packed/Unchanged 24162306a36Sopenharmony_ci 24262306a36Sopenharmony_ci tstb BINDEC_FLG(%a6) |check for denorm 24362306a36Sopenharmony_ci beqs A3_cont |if clr, continue with norm 24462306a36Sopenharmony_ci movel #-4933,%d6 |force ILOG = -4933 24562306a36Sopenharmony_ci bras A4_str 24662306a36Sopenharmony_ciA3_cont: 24762306a36Sopenharmony_ci movew FP_SCR2(%a6),%d0 |move exp to d0 24862306a36Sopenharmony_ci movew #0x3fff,FP_SCR2(%a6) |replace exponent with 0x3fff 24962306a36Sopenharmony_ci fmovex FP_SCR2(%a6),%fp0 |now fp0 has 1.f 25062306a36Sopenharmony_ci subw #0x3fff,%d0 |strip off bias 25162306a36Sopenharmony_ci faddw %d0,%fp0 |add in exp 25262306a36Sopenharmony_ci fsubs FONE,%fp0 |subtract off 1.0 25362306a36Sopenharmony_ci fbge pos_res |if pos, branch 25462306a36Sopenharmony_ci fmulx LOG2UP1,%fp0 |if neg, mul by LOG2UP1 25562306a36Sopenharmony_ci fmovel %fp0,%d6 |put ILOG in d6 as a lword 25662306a36Sopenharmony_ci bras A4_str |go move out ILOG 25762306a36Sopenharmony_cipos_res: 25862306a36Sopenharmony_ci fmulx LOG2,%fp0 |if pos, mul by LOG2 25962306a36Sopenharmony_ci fmovel %fp0,%d6 |put ILOG in d6 as a lword 26062306a36Sopenharmony_ci 26162306a36Sopenharmony_ci 26262306a36Sopenharmony_ci| A4. Clr INEX bit. 26362306a36Sopenharmony_ci| The operation in A3 above may have set INEX2. 26462306a36Sopenharmony_ci 26562306a36Sopenharmony_ciA4_str: 26662306a36Sopenharmony_ci fmovel #0,%FPSR |zero all of fpsr - nothing needed 26762306a36Sopenharmony_ci 26862306a36Sopenharmony_ci 26962306a36Sopenharmony_ci| A5. Set ICTR = 0; 27062306a36Sopenharmony_ci| ICTR is a flag used in A13. It must be set before the 27162306a36Sopenharmony_ci| loop entry A6. The lower word of d5 is used for ICTR. 27262306a36Sopenharmony_ci 27362306a36Sopenharmony_ci clrw %d5 |clear ICTR 27462306a36Sopenharmony_ci 27562306a36Sopenharmony_ci 27662306a36Sopenharmony_ci| A6. Calculate LEN. 27762306a36Sopenharmony_ci| LEN is the number of digits to be displayed. The k-factor 27862306a36Sopenharmony_ci| can dictate either the total number of digits, if it is 27962306a36Sopenharmony_ci| a positive number, or the number of digits after the 28062306a36Sopenharmony_ci| original decimal point which are to be included as 28162306a36Sopenharmony_ci| significant. See the 68882 manual for examples. 28262306a36Sopenharmony_ci| If LEN is computed to be greater than 17, set OPERR in 28362306a36Sopenharmony_ci| USER_FPSR. LEN is stored in d4. 28462306a36Sopenharmony_ci| 28562306a36Sopenharmony_ci| Register usage: 28662306a36Sopenharmony_ci| Input/Output 28762306a36Sopenharmony_ci| d0: exponent/Unchanged 28862306a36Sopenharmony_ci| d2: x/x/scratch 28962306a36Sopenharmony_ci| d3: x/x 29062306a36Sopenharmony_ci| d4: exc picture/LEN 29162306a36Sopenharmony_ci| d5: ICTR/Unchanged 29262306a36Sopenharmony_ci| d6: ILOG/Unchanged 29362306a36Sopenharmony_ci| d7: k-factor/Unchanged 29462306a36Sopenharmony_ci| a0: ptr for original operand/final result 29562306a36Sopenharmony_ci| a1: x/x 29662306a36Sopenharmony_ci| a2: x/x 29762306a36Sopenharmony_ci| fp0: float(ILOG)/Unchanged 29862306a36Sopenharmony_ci| fp1: x/x 29962306a36Sopenharmony_ci| fp2: x/x 30062306a36Sopenharmony_ci| F_SCR1:x/x 30162306a36Sopenharmony_ci| F_SCR2:Abs(X) with $3fff exponent/Unchanged 30262306a36Sopenharmony_ci| L_SCR1:x/x 30362306a36Sopenharmony_ci| L_SCR2:first word of X packed/Unchanged 30462306a36Sopenharmony_ci 30562306a36Sopenharmony_ciA6_str: 30662306a36Sopenharmony_ci tstl %d7 |branch on sign of k 30762306a36Sopenharmony_ci bles k_neg |if k <= 0, LEN = ILOG + 1 - k 30862306a36Sopenharmony_ci movel %d7,%d4 |if k > 0, LEN = k 30962306a36Sopenharmony_ci bras len_ck |skip to LEN check 31062306a36Sopenharmony_cik_neg: 31162306a36Sopenharmony_ci movel %d6,%d4 |first load ILOG to d4 31262306a36Sopenharmony_ci subl %d7,%d4 |subtract off k 31362306a36Sopenharmony_ci addql #1,%d4 |add in the 1 31462306a36Sopenharmony_cilen_ck: 31562306a36Sopenharmony_ci tstl %d4 |LEN check: branch on sign of LEN 31662306a36Sopenharmony_ci bles LEN_ng |if neg, set LEN = 1 31762306a36Sopenharmony_ci cmpl #17,%d4 |test if LEN > 17 31862306a36Sopenharmony_ci bles A7_str |if not, forget it 31962306a36Sopenharmony_ci movel #17,%d4 |set max LEN = 17 32062306a36Sopenharmony_ci tstl %d7 |if negative, never set OPERR 32162306a36Sopenharmony_ci bles A7_str |if positive, continue 32262306a36Sopenharmony_ci orl #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR 32362306a36Sopenharmony_ci bras A7_str |finished here 32462306a36Sopenharmony_ciLEN_ng: 32562306a36Sopenharmony_ci moveql #1,%d4 |min LEN is 1 32662306a36Sopenharmony_ci 32762306a36Sopenharmony_ci 32862306a36Sopenharmony_ci| A7. Calculate SCALE. 32962306a36Sopenharmony_ci| SCALE is equal to 10^ISCALE, where ISCALE is the number 33062306a36Sopenharmony_ci| of decimal places needed to insure LEN integer digits 33162306a36Sopenharmony_ci| in the output before conversion to bcd. LAMBDA is the sign 33262306a36Sopenharmony_ci| of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using 33362306a36Sopenharmony_ci| the rounding mode as given in the following table (see 33462306a36Sopenharmony_ci| Coonen, p. 7.23 as ref.; however, the SCALE variable is 33562306a36Sopenharmony_ci| of opposite sign in bindec.sa from Coonen). 33662306a36Sopenharmony_ci| 33762306a36Sopenharmony_ci| Initial USE 33862306a36Sopenharmony_ci| FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5] 33962306a36Sopenharmony_ci| ---------------------------------------------- 34062306a36Sopenharmony_ci| RN 00 0 0 00/0 RN 34162306a36Sopenharmony_ci| RN 00 0 1 00/0 RN 34262306a36Sopenharmony_ci| RN 00 1 0 00/0 RN 34362306a36Sopenharmony_ci| RN 00 1 1 00/0 RN 34462306a36Sopenharmony_ci| RZ 01 0 0 11/3 RP 34562306a36Sopenharmony_ci| RZ 01 0 1 11/3 RP 34662306a36Sopenharmony_ci| RZ 01 1 0 10/2 RM 34762306a36Sopenharmony_ci| RZ 01 1 1 10/2 RM 34862306a36Sopenharmony_ci| RM 10 0 0 11/3 RP 34962306a36Sopenharmony_ci| RM 10 0 1 10/2 RM 35062306a36Sopenharmony_ci| RM 10 1 0 10/2 RM 35162306a36Sopenharmony_ci| RM 10 1 1 11/3 RP 35262306a36Sopenharmony_ci| RP 11 0 0 10/2 RM 35362306a36Sopenharmony_ci| RP 11 0 1 11/3 RP 35462306a36Sopenharmony_ci| RP 11 1 0 11/3 RP 35562306a36Sopenharmony_ci| RP 11 1 1 10/2 RM 35662306a36Sopenharmony_ci| 35762306a36Sopenharmony_ci| Register usage: 35862306a36Sopenharmony_ci| Input/Output 35962306a36Sopenharmony_ci| d0: exponent/scratch - final is 0 36062306a36Sopenharmony_ci| d2: x/0 or 24 for A9 36162306a36Sopenharmony_ci| d3: x/scratch - offset ptr into PTENRM array 36262306a36Sopenharmony_ci| d4: LEN/Unchanged 36362306a36Sopenharmony_ci| d5: 0/ICTR:LAMBDA 36462306a36Sopenharmony_ci| d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k)) 36562306a36Sopenharmony_ci| d7: k-factor/Unchanged 36662306a36Sopenharmony_ci| a0: ptr for original operand/final result 36762306a36Sopenharmony_ci| a1: x/ptr to PTENRM array 36862306a36Sopenharmony_ci| a2: x/x 36962306a36Sopenharmony_ci| fp0: float(ILOG)/Unchanged 37062306a36Sopenharmony_ci| fp1: x/10^ISCALE 37162306a36Sopenharmony_ci| fp2: x/x 37262306a36Sopenharmony_ci| F_SCR1:x/x 37362306a36Sopenharmony_ci| F_SCR2:Abs(X) with $3fff exponent/Unchanged 37462306a36Sopenharmony_ci| L_SCR1:x/x 37562306a36Sopenharmony_ci| L_SCR2:first word of X packed/Unchanged 37662306a36Sopenharmony_ci 37762306a36Sopenharmony_ciA7_str: 37862306a36Sopenharmony_ci tstl %d7 |test sign of k 37962306a36Sopenharmony_ci bgts k_pos |if pos and > 0, skip this 38062306a36Sopenharmony_ci cmpl %d6,%d7 |test k - ILOG 38162306a36Sopenharmony_ci blts k_pos |if ILOG >= k, skip this 38262306a36Sopenharmony_ci movel %d7,%d6 |if ((k<0) & (ILOG < k)) ILOG = k 38362306a36Sopenharmony_cik_pos: 38462306a36Sopenharmony_ci movel %d6,%d0 |calc ILOG + 1 - LEN in d0 38562306a36Sopenharmony_ci addql #1,%d0 |add the 1 38662306a36Sopenharmony_ci subl %d4,%d0 |sub off LEN 38762306a36Sopenharmony_ci swap %d5 |use upper word of d5 for LAMBDA 38862306a36Sopenharmony_ci clrw %d5 |set it zero initially 38962306a36Sopenharmony_ci clrw %d2 |set up d2 for very small case 39062306a36Sopenharmony_ci tstl %d0 |test sign of ISCALE 39162306a36Sopenharmony_ci bges iscale |if pos, skip next inst 39262306a36Sopenharmony_ci addqw #1,%d5 |if neg, set LAMBDA true 39362306a36Sopenharmony_ci cmpl #0xffffecd4,%d0 |test iscale <= -4908 39462306a36Sopenharmony_ci bgts no_inf |if false, skip rest 39562306a36Sopenharmony_ci addil #24,%d0 |add in 24 to iscale 39662306a36Sopenharmony_ci movel #24,%d2 |put 24 in d2 for A9 39762306a36Sopenharmony_cino_inf: 39862306a36Sopenharmony_ci negl %d0 |and take abs of ISCALE 39962306a36Sopenharmony_ciiscale: 40062306a36Sopenharmony_ci fmoves FONE,%fp1 |init fp1 to 1 40162306a36Sopenharmony_ci bfextu USER_FPCR(%a6){#26:#2},%d1 |get initial rmode bits 40262306a36Sopenharmony_ci lslw #1,%d1 |put them in bits 2:1 40362306a36Sopenharmony_ci addw %d5,%d1 |add in LAMBDA 40462306a36Sopenharmony_ci lslw #1,%d1 |put them in bits 3:1 40562306a36Sopenharmony_ci tstl L_SCR2(%a6) |test sign of original x 40662306a36Sopenharmony_ci bges x_pos |if pos, don't set bit 0 40762306a36Sopenharmony_ci addql #1,%d1 |if neg, set bit 0 40862306a36Sopenharmony_cix_pos: 40962306a36Sopenharmony_ci leal RBDTBL,%a2 |load rbdtbl base 41062306a36Sopenharmony_ci moveb (%a2,%d1),%d3 |load d3 with new rmode 41162306a36Sopenharmony_ci lsll #4,%d3 |put bits in proper position 41262306a36Sopenharmony_ci fmovel %d3,%fpcr |load bits into fpu 41362306a36Sopenharmony_ci lsrl #4,%d3 |put bits in proper position 41462306a36Sopenharmony_ci tstb %d3 |decode new rmode for pten table 41562306a36Sopenharmony_ci bnes not_rn |if zero, it is RN 41662306a36Sopenharmony_ci leal PTENRN,%a1 |load a1 with RN table base 41762306a36Sopenharmony_ci bras rmode |exit decode 41862306a36Sopenharmony_cinot_rn: 41962306a36Sopenharmony_ci lsrb #1,%d3 |get lsb in carry 42062306a36Sopenharmony_ci bccs not_rp |if carry clear, it is RM 42162306a36Sopenharmony_ci leal PTENRP,%a1 |load a1 with RP table base 42262306a36Sopenharmony_ci bras rmode |exit decode 42362306a36Sopenharmony_cinot_rp: 42462306a36Sopenharmony_ci leal PTENRM,%a1 |load a1 with RM table base 42562306a36Sopenharmony_cirmode: 42662306a36Sopenharmony_ci clrl %d3 |clr table index 42762306a36Sopenharmony_cie_loop: 42862306a36Sopenharmony_ci lsrl #1,%d0 |shift next bit into carry 42962306a36Sopenharmony_ci bccs e_next |if zero, skip the mul 43062306a36Sopenharmony_ci fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no) 43162306a36Sopenharmony_cie_next: 43262306a36Sopenharmony_ci addl #12,%d3 |inc d3 to next pwrten table entry 43362306a36Sopenharmony_ci tstl %d0 |test if ISCALE is zero 43462306a36Sopenharmony_ci bnes e_loop |if not, loop 43562306a36Sopenharmony_ci 43662306a36Sopenharmony_ci 43762306a36Sopenharmony_ci| A8. Clr INEX; Force RZ. 43862306a36Sopenharmony_ci| The operation in A3 above may have set INEX2. 43962306a36Sopenharmony_ci| RZ mode is forced for the scaling operation to insure 44062306a36Sopenharmony_ci| only one rounding error. The grs bits are collected in 44162306a36Sopenharmony_ci| the INEX flag for use in A10. 44262306a36Sopenharmony_ci| 44362306a36Sopenharmony_ci| Register usage: 44462306a36Sopenharmony_ci| Input/Output 44562306a36Sopenharmony_ci 44662306a36Sopenharmony_ci fmovel #0,%FPSR |clr INEX 44762306a36Sopenharmony_ci fmovel #rz_mode,%FPCR |set RZ rounding mode 44862306a36Sopenharmony_ci 44962306a36Sopenharmony_ci 45062306a36Sopenharmony_ci| A9. Scale X -> Y. 45162306a36Sopenharmony_ci| The mantissa is scaled to the desired number of significant 45262306a36Sopenharmony_ci| digits. The excess digits are collected in INEX2. If mul, 45362306a36Sopenharmony_ci| Check d2 for excess 10 exponential value. If not zero, 45462306a36Sopenharmony_ci| the iscale value would have caused the pwrten calculation 45562306a36Sopenharmony_ci| to overflow. Only a negative iscale can cause this, so 45662306a36Sopenharmony_ci| multiply by 10^(d2), which is now only allowed to be 24, 45762306a36Sopenharmony_ci| with a multiply by 10^8 and 10^16, which is exact since 45862306a36Sopenharmony_ci| 10^24 is exact. If the input was denormalized, we must 45962306a36Sopenharmony_ci| create a busy stack frame with the mul command and the 46062306a36Sopenharmony_ci| two operands, and allow the fpu to complete the multiply. 46162306a36Sopenharmony_ci| 46262306a36Sopenharmony_ci| Register usage: 46362306a36Sopenharmony_ci| Input/Output 46462306a36Sopenharmony_ci| d0: FPCR with RZ mode/Unchanged 46562306a36Sopenharmony_ci| d2: 0 or 24/unchanged 46662306a36Sopenharmony_ci| d3: x/x 46762306a36Sopenharmony_ci| d4: LEN/Unchanged 46862306a36Sopenharmony_ci| d5: ICTR:LAMBDA 46962306a36Sopenharmony_ci| d6: ILOG/Unchanged 47062306a36Sopenharmony_ci| d7: k-factor/Unchanged 47162306a36Sopenharmony_ci| a0: ptr for original operand/final result 47262306a36Sopenharmony_ci| a1: ptr to PTENRM array/Unchanged 47362306a36Sopenharmony_ci| a2: x/x 47462306a36Sopenharmony_ci| fp0: float(ILOG)/X adjusted for SCALE (Y) 47562306a36Sopenharmony_ci| fp1: 10^ISCALE/Unchanged 47662306a36Sopenharmony_ci| fp2: x/x 47762306a36Sopenharmony_ci| F_SCR1:x/x 47862306a36Sopenharmony_ci| F_SCR2:Abs(X) with $3fff exponent/Unchanged 47962306a36Sopenharmony_ci| L_SCR1:x/x 48062306a36Sopenharmony_ci| L_SCR2:first word of X packed/Unchanged 48162306a36Sopenharmony_ci 48262306a36Sopenharmony_ciA9_str: 48362306a36Sopenharmony_ci fmovex (%a0),%fp0 |load X from memory 48462306a36Sopenharmony_ci fabsx %fp0 |use abs(X) 48562306a36Sopenharmony_ci tstw %d5 |LAMBDA is in lower word of d5 48662306a36Sopenharmony_ci bne sc_mul |if neg (LAMBDA = 1), scale by mul 48762306a36Sopenharmony_ci fdivx %fp1,%fp0 |calculate X / SCALE -> Y to fp0 48862306a36Sopenharmony_ci bras A10_st |branch to A10 48962306a36Sopenharmony_ci 49062306a36Sopenharmony_cisc_mul: 49162306a36Sopenharmony_ci tstb BINDEC_FLG(%a6) |check for denorm 49262306a36Sopenharmony_ci beqs A9_norm |if norm, continue with mul 49362306a36Sopenharmony_ci fmovemx %fp1-%fp1,-(%a7) |load ETEMP with 10^ISCALE 49462306a36Sopenharmony_ci movel 8(%a0),-(%a7) |load FPTEMP with input arg 49562306a36Sopenharmony_ci movel 4(%a0),-(%a7) 49662306a36Sopenharmony_ci movel (%a0),-(%a7) 49762306a36Sopenharmony_ci movel #18,%d3 |load count for busy stack 49862306a36Sopenharmony_ciA9_loop: 49962306a36Sopenharmony_ci clrl -(%a7) |clear lword on stack 50062306a36Sopenharmony_ci dbf %d3,A9_loop 50162306a36Sopenharmony_ci moveb VER_TMP(%a6),(%a7) |write current version number 50262306a36Sopenharmony_ci moveb #BUSY_SIZE-4,1(%a7) |write current busy size 50362306a36Sopenharmony_ci moveb #0x10,0x44(%a7) |set fcefpte[15] bit 50462306a36Sopenharmony_ci movew #0x0023,0x40(%a7) |load cmdreg1b with mul command 50562306a36Sopenharmony_ci moveb #0xfe,0x8(%a7) |load all 1s to cu savepc 50662306a36Sopenharmony_ci frestore (%a7)+ |restore frame to fpu for completion 50762306a36Sopenharmony_ci fmulx 36(%a1),%fp0 |multiply fp0 by 10^8 50862306a36Sopenharmony_ci fmulx 48(%a1),%fp0 |multiply fp0 by 10^16 50962306a36Sopenharmony_ci bras A10_st 51062306a36Sopenharmony_ciA9_norm: 51162306a36Sopenharmony_ci tstw %d2 |test for small exp case 51262306a36Sopenharmony_ci beqs A9_con |if zero, continue as normal 51362306a36Sopenharmony_ci fmulx 36(%a1),%fp0 |multiply fp0 by 10^8 51462306a36Sopenharmony_ci fmulx 48(%a1),%fp0 |multiply fp0 by 10^16 51562306a36Sopenharmony_ciA9_con: 51662306a36Sopenharmony_ci fmulx %fp1,%fp0 |calculate X * SCALE -> Y to fp0 51762306a36Sopenharmony_ci 51862306a36Sopenharmony_ci 51962306a36Sopenharmony_ci| A10. Or in INEX. 52062306a36Sopenharmony_ci| If INEX is set, round error occurred. This is compensated 52162306a36Sopenharmony_ci| for by 'or-ing' in the INEX2 flag to the lsb of Y. 52262306a36Sopenharmony_ci| 52362306a36Sopenharmony_ci| Register usage: 52462306a36Sopenharmony_ci| Input/Output 52562306a36Sopenharmony_ci| d0: FPCR with RZ mode/FPSR with INEX2 isolated 52662306a36Sopenharmony_ci| d2: x/x 52762306a36Sopenharmony_ci| d3: x/x 52862306a36Sopenharmony_ci| d4: LEN/Unchanged 52962306a36Sopenharmony_ci| d5: ICTR:LAMBDA 53062306a36Sopenharmony_ci| d6: ILOG/Unchanged 53162306a36Sopenharmony_ci| d7: k-factor/Unchanged 53262306a36Sopenharmony_ci| a0: ptr for original operand/final result 53362306a36Sopenharmony_ci| a1: ptr to PTENxx array/Unchanged 53462306a36Sopenharmony_ci| a2: x/ptr to FP_SCR2(a6) 53562306a36Sopenharmony_ci| fp0: Y/Y with lsb adjusted 53662306a36Sopenharmony_ci| fp1: 10^ISCALE/Unchanged 53762306a36Sopenharmony_ci| fp2: x/x 53862306a36Sopenharmony_ci 53962306a36Sopenharmony_ciA10_st: 54062306a36Sopenharmony_ci fmovel %FPSR,%d0 |get FPSR 54162306a36Sopenharmony_ci fmovex %fp0,FP_SCR2(%a6) |move Y to memory 54262306a36Sopenharmony_ci leal FP_SCR2(%a6),%a2 |load a2 with ptr to FP_SCR2 54362306a36Sopenharmony_ci btstl #9,%d0 |check if INEX2 set 54462306a36Sopenharmony_ci beqs A11_st |if clear, skip rest 54562306a36Sopenharmony_ci oril #1,8(%a2) |or in 1 to lsb of mantissa 54662306a36Sopenharmony_ci fmovex FP_SCR2(%a6),%fp0 |write adjusted Y back to fpu 54762306a36Sopenharmony_ci 54862306a36Sopenharmony_ci 54962306a36Sopenharmony_ci| A11. Restore original FPCR; set size ext. 55062306a36Sopenharmony_ci| Perform FINT operation in the user's rounding mode. Keep 55162306a36Sopenharmony_ci| the size to extended. The sintdo entry point in the sint 55262306a36Sopenharmony_ci| routine expects the FPCR value to be in USER_FPCR for 55362306a36Sopenharmony_ci| mode and precision. The original FPCR is saved in L_SCR1. 55462306a36Sopenharmony_ci 55562306a36Sopenharmony_ciA11_st: 55662306a36Sopenharmony_ci movel USER_FPCR(%a6),L_SCR1(%a6) |save it for later 55762306a36Sopenharmony_ci andil #0x00000030,USER_FPCR(%a6) |set size to ext, 55862306a36Sopenharmony_ci| ;block exceptions 55962306a36Sopenharmony_ci 56062306a36Sopenharmony_ci 56162306a36Sopenharmony_ci| A12. Calculate YINT = FINT(Y) according to user's rounding mode. 56262306a36Sopenharmony_ci| The FPSP routine sintd0 is used. The output is in fp0. 56362306a36Sopenharmony_ci| 56462306a36Sopenharmony_ci| Register usage: 56562306a36Sopenharmony_ci| Input/Output 56662306a36Sopenharmony_ci| d0: FPSR with AINEX cleared/FPCR with size set to ext 56762306a36Sopenharmony_ci| d2: x/x/scratch 56862306a36Sopenharmony_ci| d3: x/x 56962306a36Sopenharmony_ci| d4: LEN/Unchanged 57062306a36Sopenharmony_ci| d5: ICTR:LAMBDA/Unchanged 57162306a36Sopenharmony_ci| d6: ILOG/Unchanged 57262306a36Sopenharmony_ci| d7: k-factor/Unchanged 57362306a36Sopenharmony_ci| a0: ptr for original operand/src ptr for sintdo 57462306a36Sopenharmony_ci| a1: ptr to PTENxx array/Unchanged 57562306a36Sopenharmony_ci| a2: ptr to FP_SCR2(a6)/Unchanged 57662306a36Sopenharmony_ci| a6: temp pointer to FP_SCR2(a6) - orig value saved and restored 57762306a36Sopenharmony_ci| fp0: Y/YINT 57862306a36Sopenharmony_ci| fp1: 10^ISCALE/Unchanged 57962306a36Sopenharmony_ci| fp2: x/x 58062306a36Sopenharmony_ci| F_SCR1:x/x 58162306a36Sopenharmony_ci| F_SCR2:Y adjusted for inex/Y with original exponent 58262306a36Sopenharmony_ci| L_SCR1:x/original USER_FPCR 58362306a36Sopenharmony_ci| L_SCR2:first word of X packed/Unchanged 58462306a36Sopenharmony_ci 58562306a36Sopenharmony_ciA12_st: 58662306a36Sopenharmony_ci moveml %d0-%d1/%a0-%a1,-(%a7) |save regs used by sintd0 58762306a36Sopenharmony_ci movel L_SCR1(%a6),-(%a7) 58862306a36Sopenharmony_ci movel L_SCR2(%a6),-(%a7) 58962306a36Sopenharmony_ci leal FP_SCR2(%a6),%a0 |a0 is ptr to F_SCR2(a6) 59062306a36Sopenharmony_ci fmovex %fp0,(%a0) |move Y to memory at FP_SCR2(a6) 59162306a36Sopenharmony_ci tstl L_SCR2(%a6) |test sign of original operand 59262306a36Sopenharmony_ci bges do_fint |if pos, use Y 59362306a36Sopenharmony_ci orl #0x80000000,(%a0) |if neg, use -Y 59462306a36Sopenharmony_cido_fint: 59562306a36Sopenharmony_ci movel USER_FPSR(%a6),-(%a7) 59662306a36Sopenharmony_ci bsr sintdo |sint routine returns int in fp0 59762306a36Sopenharmony_ci moveb (%a7),USER_FPSR(%a6) 59862306a36Sopenharmony_ci addl #4,%a7 59962306a36Sopenharmony_ci movel (%a7)+,L_SCR2(%a6) 60062306a36Sopenharmony_ci movel (%a7)+,L_SCR1(%a6) 60162306a36Sopenharmony_ci moveml (%a7)+,%d0-%d1/%a0-%a1 |restore regs used by sint 60262306a36Sopenharmony_ci movel L_SCR2(%a6),FP_SCR2(%a6) |restore original exponent 60362306a36Sopenharmony_ci movel L_SCR1(%a6),USER_FPCR(%a6) |restore user's FPCR 60462306a36Sopenharmony_ci 60562306a36Sopenharmony_ci 60662306a36Sopenharmony_ci| A13. Check for LEN digits. 60762306a36Sopenharmony_ci| If the int operation results in more than LEN digits, 60862306a36Sopenharmony_ci| or less than LEN -1 digits, adjust ILOG and repeat from 60962306a36Sopenharmony_ci| A6. This test occurs only on the first pass. If the 61062306a36Sopenharmony_ci| result is exactly 10^LEN, decrement ILOG and divide 61162306a36Sopenharmony_ci| the mantissa by 10. The calculation of 10^LEN cannot 61262306a36Sopenharmony_ci| be inexact, since all powers of ten up to 10^27 are exact 61362306a36Sopenharmony_ci| in extended precision, so the use of a previous power-of-ten 61462306a36Sopenharmony_ci| table will introduce no error. 61562306a36Sopenharmony_ci| 61662306a36Sopenharmony_ci| 61762306a36Sopenharmony_ci| Register usage: 61862306a36Sopenharmony_ci| Input/Output 61962306a36Sopenharmony_ci| d0: FPCR with size set to ext/scratch final = 0 62062306a36Sopenharmony_ci| d2: x/x 62162306a36Sopenharmony_ci| d3: x/scratch final = x 62262306a36Sopenharmony_ci| d4: LEN/LEN adjusted 62362306a36Sopenharmony_ci| d5: ICTR:LAMBDA/LAMBDA:ICTR 62462306a36Sopenharmony_ci| d6: ILOG/ILOG adjusted 62562306a36Sopenharmony_ci| d7: k-factor/Unchanged 62662306a36Sopenharmony_ci| a0: pointer into memory for packed bcd string formation 62762306a36Sopenharmony_ci| a1: ptr to PTENxx array/Unchanged 62862306a36Sopenharmony_ci| a2: ptr to FP_SCR2(a6)/Unchanged 62962306a36Sopenharmony_ci| fp0: int portion of Y/abs(YINT) adjusted 63062306a36Sopenharmony_ci| fp1: 10^ISCALE/Unchanged 63162306a36Sopenharmony_ci| fp2: x/10^LEN 63262306a36Sopenharmony_ci| F_SCR1:x/x 63362306a36Sopenharmony_ci| F_SCR2:Y with original exponent/Unchanged 63462306a36Sopenharmony_ci| L_SCR1:original USER_FPCR/Unchanged 63562306a36Sopenharmony_ci| L_SCR2:first word of X packed/Unchanged 63662306a36Sopenharmony_ci 63762306a36Sopenharmony_ciA13_st: 63862306a36Sopenharmony_ci swap %d5 |put ICTR in lower word of d5 63962306a36Sopenharmony_ci tstw %d5 |check if ICTR = 0 64062306a36Sopenharmony_ci bne not_zr |if non-zero, go to second test 64162306a36Sopenharmony_ci| 64262306a36Sopenharmony_ci| Compute 10^(LEN-1) 64362306a36Sopenharmony_ci| 64462306a36Sopenharmony_ci fmoves FONE,%fp2 |init fp2 to 1.0 64562306a36Sopenharmony_ci movel %d4,%d0 |put LEN in d0 64662306a36Sopenharmony_ci subql #1,%d0 |d0 = LEN -1 64762306a36Sopenharmony_ci clrl %d3 |clr table index 64862306a36Sopenharmony_cil_loop: 64962306a36Sopenharmony_ci lsrl #1,%d0 |shift next bit into carry 65062306a36Sopenharmony_ci bccs l_next |if zero, skip the mul 65162306a36Sopenharmony_ci fmulx (%a1,%d3),%fp2 |mul by 10**(d3_bit_no) 65262306a36Sopenharmony_cil_next: 65362306a36Sopenharmony_ci addl #12,%d3 |inc d3 to next pwrten table entry 65462306a36Sopenharmony_ci tstl %d0 |test if LEN is zero 65562306a36Sopenharmony_ci bnes l_loop |if not, loop 65662306a36Sopenharmony_ci| 65762306a36Sopenharmony_ci| 10^LEN-1 is computed for this test and A14. If the input was 65862306a36Sopenharmony_ci| denormalized, check only the case in which YINT > 10^LEN. 65962306a36Sopenharmony_ci| 66062306a36Sopenharmony_ci tstb BINDEC_FLG(%a6) |check if input was norm 66162306a36Sopenharmony_ci beqs A13_con |if norm, continue with checking 66262306a36Sopenharmony_ci fabsx %fp0 |take abs of YINT 66362306a36Sopenharmony_ci bra test_2 66462306a36Sopenharmony_ci| 66562306a36Sopenharmony_ci| Compare abs(YINT) to 10^(LEN-1) and 10^LEN 66662306a36Sopenharmony_ci| 66762306a36Sopenharmony_ciA13_con: 66862306a36Sopenharmony_ci fabsx %fp0 |take abs of YINT 66962306a36Sopenharmony_ci fcmpx %fp2,%fp0 |compare abs(YINT) with 10^(LEN-1) 67062306a36Sopenharmony_ci fbge test_2 |if greater, do next test 67162306a36Sopenharmony_ci subql #1,%d6 |subtract 1 from ILOG 67262306a36Sopenharmony_ci movew #1,%d5 |set ICTR 67362306a36Sopenharmony_ci fmovel #rm_mode,%FPCR |set rmode to RM 67462306a36Sopenharmony_ci fmuls FTEN,%fp2 |compute 10^LEN 67562306a36Sopenharmony_ci bra A6_str |return to A6 and recompute YINT 67662306a36Sopenharmony_citest_2: 67762306a36Sopenharmony_ci fmuls FTEN,%fp2 |compute 10^LEN 67862306a36Sopenharmony_ci fcmpx %fp2,%fp0 |compare abs(YINT) with 10^LEN 67962306a36Sopenharmony_ci fblt A14_st |if less, all is ok, go to A14 68062306a36Sopenharmony_ci fbgt fix_ex |if greater, fix and redo 68162306a36Sopenharmony_ci fdivs FTEN,%fp0 |if equal, divide by 10 68262306a36Sopenharmony_ci addql #1,%d6 | and inc ILOG 68362306a36Sopenharmony_ci bras A14_st | and continue elsewhere 68462306a36Sopenharmony_cifix_ex: 68562306a36Sopenharmony_ci addql #1,%d6 |increment ILOG by 1 68662306a36Sopenharmony_ci movew #1,%d5 |set ICTR 68762306a36Sopenharmony_ci fmovel #rm_mode,%FPCR |set rmode to RM 68862306a36Sopenharmony_ci bra A6_str |return to A6 and recompute YINT 68962306a36Sopenharmony_ci| 69062306a36Sopenharmony_ci| Since ICTR <> 0, we have already been through one adjustment, 69162306a36Sopenharmony_ci| and shouldn't have another; this is to check if abs(YINT) = 10^LEN 69262306a36Sopenharmony_ci| 10^LEN is again computed using whatever table is in a1 since the 69362306a36Sopenharmony_ci| value calculated cannot be inexact. 69462306a36Sopenharmony_ci| 69562306a36Sopenharmony_cinot_zr: 69662306a36Sopenharmony_ci fmoves FONE,%fp2 |init fp2 to 1.0 69762306a36Sopenharmony_ci movel %d4,%d0 |put LEN in d0 69862306a36Sopenharmony_ci clrl %d3 |clr table index 69962306a36Sopenharmony_ciz_loop: 70062306a36Sopenharmony_ci lsrl #1,%d0 |shift next bit into carry 70162306a36Sopenharmony_ci bccs z_next |if zero, skip the mul 70262306a36Sopenharmony_ci fmulx (%a1,%d3),%fp2 |mul by 10**(d3_bit_no) 70362306a36Sopenharmony_ciz_next: 70462306a36Sopenharmony_ci addl #12,%d3 |inc d3 to next pwrten table entry 70562306a36Sopenharmony_ci tstl %d0 |test if LEN is zero 70662306a36Sopenharmony_ci bnes z_loop |if not, loop 70762306a36Sopenharmony_ci fabsx %fp0 |get abs(YINT) 70862306a36Sopenharmony_ci fcmpx %fp2,%fp0 |check if abs(YINT) = 10^LEN 70962306a36Sopenharmony_ci fbne A14_st |if not, skip this 71062306a36Sopenharmony_ci fdivs FTEN,%fp0 |divide abs(YINT) by 10 71162306a36Sopenharmony_ci addql #1,%d6 |and inc ILOG by 1 71262306a36Sopenharmony_ci addql #1,%d4 | and inc LEN 71362306a36Sopenharmony_ci fmuls FTEN,%fp2 | if LEN++, the get 10^^LEN 71462306a36Sopenharmony_ci 71562306a36Sopenharmony_ci 71662306a36Sopenharmony_ci| A14. Convert the mantissa to bcd. 71762306a36Sopenharmony_ci| The binstr routine is used to convert the LEN digit 71862306a36Sopenharmony_ci| mantissa to bcd in memory. The input to binstr is 71962306a36Sopenharmony_ci| to be a fraction; i.e. (mantissa)/10^LEN and adjusted 72062306a36Sopenharmony_ci| such that the decimal point is to the left of bit 63. 72162306a36Sopenharmony_ci| The bcd digits are stored in the correct position in 72262306a36Sopenharmony_ci| the final string area in memory. 72362306a36Sopenharmony_ci| 72462306a36Sopenharmony_ci| 72562306a36Sopenharmony_ci| Register usage: 72662306a36Sopenharmony_ci| Input/Output 72762306a36Sopenharmony_ci| d0: x/LEN call to binstr - final is 0 72862306a36Sopenharmony_ci| d1: x/0 72962306a36Sopenharmony_ci| d2: x/ms 32-bits of mant of abs(YINT) 73062306a36Sopenharmony_ci| d3: x/ls 32-bits of mant of abs(YINT) 73162306a36Sopenharmony_ci| d4: LEN/Unchanged 73262306a36Sopenharmony_ci| d5: ICTR:LAMBDA/LAMBDA:ICTR 73362306a36Sopenharmony_ci| d6: ILOG 73462306a36Sopenharmony_ci| d7: k-factor/Unchanged 73562306a36Sopenharmony_ci| a0: pointer into memory for packed bcd string formation 73662306a36Sopenharmony_ci| /ptr to first mantissa byte in result string 73762306a36Sopenharmony_ci| a1: ptr to PTENxx array/Unchanged 73862306a36Sopenharmony_ci| a2: ptr to FP_SCR2(a6)/Unchanged 73962306a36Sopenharmony_ci| fp0: int portion of Y/abs(YINT) adjusted 74062306a36Sopenharmony_ci| fp1: 10^ISCALE/Unchanged 74162306a36Sopenharmony_ci| fp2: 10^LEN/Unchanged 74262306a36Sopenharmony_ci| F_SCR1:x/Work area for final result 74362306a36Sopenharmony_ci| F_SCR2:Y with original exponent/Unchanged 74462306a36Sopenharmony_ci| L_SCR1:original USER_FPCR/Unchanged 74562306a36Sopenharmony_ci| L_SCR2:first word of X packed/Unchanged 74662306a36Sopenharmony_ci 74762306a36Sopenharmony_ciA14_st: 74862306a36Sopenharmony_ci fmovel #rz_mode,%FPCR |force rz for conversion 74962306a36Sopenharmony_ci fdivx %fp2,%fp0 |divide abs(YINT) by 10^LEN 75062306a36Sopenharmony_ci leal FP_SCR1(%a6),%a0 75162306a36Sopenharmony_ci fmovex %fp0,(%a0) |move abs(YINT)/10^LEN to memory 75262306a36Sopenharmony_ci movel 4(%a0),%d2 |move 2nd word of FP_RES to d2 75362306a36Sopenharmony_ci movel 8(%a0),%d3 |move 3rd word of FP_RES to d3 75462306a36Sopenharmony_ci clrl 4(%a0) |zero word 2 of FP_RES 75562306a36Sopenharmony_ci clrl 8(%a0) |zero word 3 of FP_RES 75662306a36Sopenharmony_ci movel (%a0),%d0 |move exponent to d0 75762306a36Sopenharmony_ci swap %d0 |put exponent in lower word 75862306a36Sopenharmony_ci beqs no_sft |if zero, don't shift 75962306a36Sopenharmony_ci subil #0x3ffd,%d0 |sub bias less 2 to make fract 76062306a36Sopenharmony_ci tstl %d0 |check if > 1 76162306a36Sopenharmony_ci bgts no_sft |if so, don't shift 76262306a36Sopenharmony_ci negl %d0 |make exp positive 76362306a36Sopenharmony_cim_loop: 76462306a36Sopenharmony_ci lsrl #1,%d2 |shift d2:d3 right, add 0s 76562306a36Sopenharmony_ci roxrl #1,%d3 |the number of places 76662306a36Sopenharmony_ci dbf %d0,m_loop |given in d0 76762306a36Sopenharmony_cino_sft: 76862306a36Sopenharmony_ci tstl %d2 |check for mantissa of zero 76962306a36Sopenharmony_ci bnes no_zr |if not, go on 77062306a36Sopenharmony_ci tstl %d3 |continue zero check 77162306a36Sopenharmony_ci beqs zer_m |if zero, go directly to binstr 77262306a36Sopenharmony_cino_zr: 77362306a36Sopenharmony_ci clrl %d1 |put zero in d1 for addx 77462306a36Sopenharmony_ci addil #0x00000080,%d3 |inc at bit 7 77562306a36Sopenharmony_ci addxl %d1,%d2 |continue inc 77662306a36Sopenharmony_ci andil #0xffffff80,%d3 |strip off lsb not used by 882 77762306a36Sopenharmony_cizer_m: 77862306a36Sopenharmony_ci movel %d4,%d0 |put LEN in d0 for binstr call 77962306a36Sopenharmony_ci addql #3,%a0 |a0 points to M16 byte in result 78062306a36Sopenharmony_ci bsr binstr |call binstr to convert mant 78162306a36Sopenharmony_ci 78262306a36Sopenharmony_ci 78362306a36Sopenharmony_ci| A15. Convert the exponent to bcd. 78462306a36Sopenharmony_ci| As in A14 above, the exp is converted to bcd and the 78562306a36Sopenharmony_ci| digits are stored in the final string. 78662306a36Sopenharmony_ci| 78762306a36Sopenharmony_ci| Digits are stored in L_SCR1(a6) on return from BINDEC as: 78862306a36Sopenharmony_ci| 78962306a36Sopenharmony_ci| 32 16 15 0 79062306a36Sopenharmony_ci| ----------------------------------------- 79162306a36Sopenharmony_ci| | 0 | e3 | e2 | e1 | e4 | X | X | X | 79262306a36Sopenharmony_ci| ----------------------------------------- 79362306a36Sopenharmony_ci| 79462306a36Sopenharmony_ci| And are moved into their proper places in FP_SCR1. If digit e4 79562306a36Sopenharmony_ci| is non-zero, OPERR is signaled. In all cases, all 4 digits are 79662306a36Sopenharmony_ci| written as specified in the 881/882 manual for packed decimal. 79762306a36Sopenharmony_ci| 79862306a36Sopenharmony_ci| Register usage: 79962306a36Sopenharmony_ci| Input/Output 80062306a36Sopenharmony_ci| d0: x/LEN call to binstr - final is 0 80162306a36Sopenharmony_ci| d1: x/scratch (0);shift count for final exponent packing 80262306a36Sopenharmony_ci| d2: x/ms 32-bits of exp fraction/scratch 80362306a36Sopenharmony_ci| d3: x/ls 32-bits of exp fraction 80462306a36Sopenharmony_ci| d4: LEN/Unchanged 80562306a36Sopenharmony_ci| d5: ICTR:LAMBDA/LAMBDA:ICTR 80662306a36Sopenharmony_ci| d6: ILOG 80762306a36Sopenharmony_ci| d7: k-factor/Unchanged 80862306a36Sopenharmony_ci| a0: ptr to result string/ptr to L_SCR1(a6) 80962306a36Sopenharmony_ci| a1: ptr to PTENxx array/Unchanged 81062306a36Sopenharmony_ci| a2: ptr to FP_SCR2(a6)/Unchanged 81162306a36Sopenharmony_ci| fp0: abs(YINT) adjusted/float(ILOG) 81262306a36Sopenharmony_ci| fp1: 10^ISCALE/Unchanged 81362306a36Sopenharmony_ci| fp2: 10^LEN/Unchanged 81462306a36Sopenharmony_ci| F_SCR1:Work area for final result/BCD result 81562306a36Sopenharmony_ci| F_SCR2:Y with original exponent/ILOG/10^4 81662306a36Sopenharmony_ci| L_SCR1:original USER_FPCR/Exponent digits on return from binstr 81762306a36Sopenharmony_ci| L_SCR2:first word of X packed/Unchanged 81862306a36Sopenharmony_ci 81962306a36Sopenharmony_ciA15_st: 82062306a36Sopenharmony_ci tstb BINDEC_FLG(%a6) |check for denorm 82162306a36Sopenharmony_ci beqs not_denorm 82262306a36Sopenharmony_ci ftstx %fp0 |test for zero 82362306a36Sopenharmony_ci fbeq den_zero |if zero, use k-factor or 4933 82462306a36Sopenharmony_ci fmovel %d6,%fp0 |float ILOG 82562306a36Sopenharmony_ci fabsx %fp0 |get abs of ILOG 82662306a36Sopenharmony_ci bras convrt 82762306a36Sopenharmony_ciden_zero: 82862306a36Sopenharmony_ci tstl %d7 |check sign of the k-factor 82962306a36Sopenharmony_ci blts use_ilog |if negative, use ILOG 83062306a36Sopenharmony_ci fmoves F4933,%fp0 |force exponent to 4933 83162306a36Sopenharmony_ci bras convrt |do it 83262306a36Sopenharmony_ciuse_ilog: 83362306a36Sopenharmony_ci fmovel %d6,%fp0 |float ILOG 83462306a36Sopenharmony_ci fabsx %fp0 |get abs of ILOG 83562306a36Sopenharmony_ci bras convrt 83662306a36Sopenharmony_cinot_denorm: 83762306a36Sopenharmony_ci ftstx %fp0 |test for zero 83862306a36Sopenharmony_ci fbne not_zero |if zero, force exponent 83962306a36Sopenharmony_ci fmoves FONE,%fp0 |force exponent to 1 84062306a36Sopenharmony_ci bras convrt |do it 84162306a36Sopenharmony_cinot_zero: 84262306a36Sopenharmony_ci fmovel %d6,%fp0 |float ILOG 84362306a36Sopenharmony_ci fabsx %fp0 |get abs of ILOG 84462306a36Sopenharmony_ciconvrt: 84562306a36Sopenharmony_ci fdivx 24(%a1),%fp0 |compute ILOG/10^4 84662306a36Sopenharmony_ci fmovex %fp0,FP_SCR2(%a6) |store fp0 in memory 84762306a36Sopenharmony_ci movel 4(%a2),%d2 |move word 2 to d2 84862306a36Sopenharmony_ci movel 8(%a2),%d3 |move word 3 to d3 84962306a36Sopenharmony_ci movew (%a2),%d0 |move exp to d0 85062306a36Sopenharmony_ci beqs x_loop_fin |if zero, skip the shift 85162306a36Sopenharmony_ci subiw #0x3ffd,%d0 |subtract off bias 85262306a36Sopenharmony_ci negw %d0 |make exp positive 85362306a36Sopenharmony_cix_loop: 85462306a36Sopenharmony_ci lsrl #1,%d2 |shift d2:d3 right 85562306a36Sopenharmony_ci roxrl #1,%d3 |the number of places 85662306a36Sopenharmony_ci dbf %d0,x_loop |given in d0 85762306a36Sopenharmony_cix_loop_fin: 85862306a36Sopenharmony_ci clrl %d1 |put zero in d1 for addx 85962306a36Sopenharmony_ci addil #0x00000080,%d3 |inc at bit 6 86062306a36Sopenharmony_ci addxl %d1,%d2 |continue inc 86162306a36Sopenharmony_ci andil #0xffffff80,%d3 |strip off lsb not used by 882 86262306a36Sopenharmony_ci movel #4,%d0 |put 4 in d0 for binstr call 86362306a36Sopenharmony_ci leal L_SCR1(%a6),%a0 |a0 is ptr to L_SCR1 for exp digits 86462306a36Sopenharmony_ci bsr binstr |call binstr to convert exp 86562306a36Sopenharmony_ci movel L_SCR1(%a6),%d0 |load L_SCR1 lword to d0 86662306a36Sopenharmony_ci movel #12,%d1 |use d1 for shift count 86762306a36Sopenharmony_ci lsrl %d1,%d0 |shift d0 right by 12 86862306a36Sopenharmony_ci bfins %d0,FP_SCR1(%a6){#4:#12} |put e3:e2:e1 in FP_SCR1 86962306a36Sopenharmony_ci lsrl %d1,%d0 |shift d0 right by 12 87062306a36Sopenharmony_ci bfins %d0,FP_SCR1(%a6){#16:#4} |put e4 in FP_SCR1 87162306a36Sopenharmony_ci tstb %d0 |check if e4 is zero 87262306a36Sopenharmony_ci beqs A16_st |if zero, skip rest 87362306a36Sopenharmony_ci orl #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR 87462306a36Sopenharmony_ci 87562306a36Sopenharmony_ci 87662306a36Sopenharmony_ci| A16. Write sign bits to final string. 87762306a36Sopenharmony_ci| Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG). 87862306a36Sopenharmony_ci| 87962306a36Sopenharmony_ci| Register usage: 88062306a36Sopenharmony_ci| Input/Output 88162306a36Sopenharmony_ci| d0: x/scratch - final is x 88262306a36Sopenharmony_ci| d2: x/x 88362306a36Sopenharmony_ci| d3: x/x 88462306a36Sopenharmony_ci| d4: LEN/Unchanged 88562306a36Sopenharmony_ci| d5: ICTR:LAMBDA/LAMBDA:ICTR 88662306a36Sopenharmony_ci| d6: ILOG/ILOG adjusted 88762306a36Sopenharmony_ci| d7: k-factor/Unchanged 88862306a36Sopenharmony_ci| a0: ptr to L_SCR1(a6)/Unchanged 88962306a36Sopenharmony_ci| a1: ptr to PTENxx array/Unchanged 89062306a36Sopenharmony_ci| a2: ptr to FP_SCR2(a6)/Unchanged 89162306a36Sopenharmony_ci| fp0: float(ILOG)/Unchanged 89262306a36Sopenharmony_ci| fp1: 10^ISCALE/Unchanged 89362306a36Sopenharmony_ci| fp2: 10^LEN/Unchanged 89462306a36Sopenharmony_ci| F_SCR1:BCD result with correct signs 89562306a36Sopenharmony_ci| F_SCR2:ILOG/10^4 89662306a36Sopenharmony_ci| L_SCR1:Exponent digits on return from binstr 89762306a36Sopenharmony_ci| L_SCR2:first word of X packed/Unchanged 89862306a36Sopenharmony_ci 89962306a36Sopenharmony_ciA16_st: 90062306a36Sopenharmony_ci clrl %d0 |clr d0 for collection of signs 90162306a36Sopenharmony_ci andib #0x0f,FP_SCR1(%a6) |clear first nibble of FP_SCR1 90262306a36Sopenharmony_ci tstl L_SCR2(%a6) |check sign of original mantissa 90362306a36Sopenharmony_ci bges mant_p |if pos, don't set SM 90462306a36Sopenharmony_ci moveql #2,%d0 |move 2 in to d0 for SM 90562306a36Sopenharmony_cimant_p: 90662306a36Sopenharmony_ci tstl %d6 |check sign of ILOG 90762306a36Sopenharmony_ci bges wr_sgn |if pos, don't set SE 90862306a36Sopenharmony_ci addql #1,%d0 |set bit 0 in d0 for SE 90962306a36Sopenharmony_ciwr_sgn: 91062306a36Sopenharmony_ci bfins %d0,FP_SCR1(%a6){#0:#2} |insert SM and SE into FP_SCR1 91162306a36Sopenharmony_ci 91262306a36Sopenharmony_ci| Clean up and restore all registers used. 91362306a36Sopenharmony_ci 91462306a36Sopenharmony_ci fmovel #0,%FPSR |clear possible inex2/ainex bits 91562306a36Sopenharmony_ci fmovemx (%a7)+,%fp0-%fp2 91662306a36Sopenharmony_ci moveml (%a7)+,%d2-%d7/%a2 91762306a36Sopenharmony_ci rts 91862306a36Sopenharmony_ci 91962306a36Sopenharmony_ci |end 920