xref: /kernel/linux/linux-6.6/arch/ia64/mm/init.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Initialize MMU support.
4 *
5 * Copyright (C) 1998-2003 Hewlett-Packard Co
6 *	David Mosberger-Tang <davidm@hpl.hp.com>
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10
11#include <linux/dma-map-ops.h>
12#include <linux/dmar.h>
13#include <linux/efi.h>
14#include <linux/elf.h>
15#include <linux/memblock.h>
16#include <linux/mm.h>
17#include <linux/sched/signal.h>
18#include <linux/mmzone.h>
19#include <linux/module.h>
20#include <linux/personality.h>
21#include <linux/reboot.h>
22#include <linux/slab.h>
23#include <linux/swap.h>
24#include <linux/proc_fs.h>
25#include <linux/bitops.h>
26#include <linux/kexec.h>
27#include <linux/swiotlb.h>
28
29#include <asm/dma.h>
30#include <asm/efi.h>
31#include <asm/io.h>
32#include <asm/numa.h>
33#include <asm/patch.h>
34#include <asm/pgalloc.h>
35#include <asm/sal.h>
36#include <asm/sections.h>
37#include <asm/tlb.h>
38#include <linux/uaccess.h>
39#include <asm/unistd.h>
40#include <asm/mca.h>
41
42extern void ia64_tlb_init (void);
43
44unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
45
46struct page *zero_page_memmap_ptr;	/* map entry for zero page */
47EXPORT_SYMBOL(zero_page_memmap_ptr);
48
49void
50__ia64_sync_icache_dcache (pte_t pte)
51{
52	unsigned long addr;
53	struct folio *folio;
54
55	folio = page_folio(pte_page(pte));
56	addr = (unsigned long)folio_address(folio);
57
58	if (test_bit(PG_arch_1, &folio->flags))
59		return;				/* i-cache is already coherent with d-cache */
60
61	flush_icache_range(addr, addr + folio_size(folio));
62	set_bit(PG_arch_1, &folio->flags);	/* mark page as clean */
63}
64
65/*
66 * Since DMA is i-cache coherent, any (complete) folios that were written via
67 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
68 * flush them when they get mapped into an executable vm-area.
69 */
70void arch_dma_mark_clean(phys_addr_t paddr, size_t size)
71{
72	unsigned long pfn = PHYS_PFN(paddr);
73	struct folio *folio = page_folio(pfn_to_page(pfn));
74	ssize_t left = size;
75	size_t offset = offset_in_folio(folio, paddr);
76
77	if (offset) {
78		left -= folio_size(folio) - offset;
79		if (left <= 0)
80			return;
81		folio = folio_next(folio);
82	}
83
84	while (left >= (ssize_t)folio_size(folio)) {
85		left -= folio_size(folio);
86		set_bit(PG_arch_1, &pfn_to_page(pfn)->flags);
87		if (!left)
88			break;
89		folio = folio_next(folio);
90	}
91}
92
93inline void
94ia64_set_rbs_bot (void)
95{
96	unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
97
98	if (stack_size > MAX_USER_STACK_SIZE)
99		stack_size = MAX_USER_STACK_SIZE;
100	current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
101}
102
103/*
104 * This performs some platform-dependent address space initialization.
105 * On IA-64, we want to setup the VM area for the register backing
106 * store (which grows upwards) and install the gateway page which is
107 * used for signal trampolines, etc.
108 */
109void
110ia64_init_addr_space (void)
111{
112	struct vm_area_struct *vma;
113
114	ia64_set_rbs_bot();
115
116	/*
117	 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
118	 * the problem.  When the process attempts to write to the register backing store
119	 * for the first time, it will get a SEGFAULT in this case.
120	 */
121	vma = vm_area_alloc(current->mm);
122	if (vma) {
123		vma_set_anonymous(vma);
124		vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
125		vma->vm_end = vma->vm_start + PAGE_SIZE;
126		vm_flags_init(vma, VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT);
127		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
128		mmap_write_lock(current->mm);
129		if (insert_vm_struct(current->mm, vma)) {
130			mmap_write_unlock(current->mm);
131			vm_area_free(vma);
132			return;
133		}
134		mmap_write_unlock(current->mm);
135	}
136
137	/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
138	if (!(current->personality & MMAP_PAGE_ZERO)) {
139		vma = vm_area_alloc(current->mm);
140		if (vma) {
141			vma_set_anonymous(vma);
142			vma->vm_end = PAGE_SIZE;
143			vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
144			vm_flags_init(vma, VM_READ | VM_MAYREAD | VM_IO |
145				      VM_DONTEXPAND | VM_DONTDUMP);
146			mmap_write_lock(current->mm);
147			if (insert_vm_struct(current->mm, vma)) {
148				mmap_write_unlock(current->mm);
149				vm_area_free(vma);
150				return;
151			}
152			mmap_write_unlock(current->mm);
153		}
154	}
155}
156
157void
158free_initmem (void)
159{
160	free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
161			   -1, "unused kernel");
162}
163
164void __init
165free_initrd_mem (unsigned long start, unsigned long end)
166{
167	/*
168	 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
169	 * Thus EFI and the kernel may have different page sizes. It is
170	 * therefore possible to have the initrd share the same page as
171	 * the end of the kernel (given current setup).
172	 *
173	 * To avoid freeing/using the wrong page (kernel sized) we:
174	 *	- align up the beginning of initrd
175	 *	- align down the end of initrd
176	 *
177	 *  |             |
178	 *  |=============| a000
179	 *  |             |
180	 *  |             |
181	 *  |             | 9000
182	 *  |/////////////|
183	 *  |/////////////|
184	 *  |=============| 8000
185	 *  |///INITRD////|
186	 *  |/////////////|
187	 *  |/////////////| 7000
188	 *  |             |
189	 *  |KKKKKKKKKKKKK|
190	 *  |=============| 6000
191	 *  |KKKKKKKKKKKKK|
192	 *  |KKKKKKKKKKKKK|
193	 *  K=kernel using 8KB pages
194	 *
195	 * In this example, we must free page 8000 ONLY. So we must align up
196	 * initrd_start and keep initrd_end as is.
197	 */
198	start = PAGE_ALIGN(start);
199	end = end & PAGE_MASK;
200
201	if (start < end)
202		printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
203
204	for (; start < end; start += PAGE_SIZE) {
205		if (!virt_addr_valid(start))
206			continue;
207		free_reserved_page(virt_to_page(start));
208	}
209}
210
211/*
212 * This installs a clean page in the kernel's page table.
213 */
214static struct page * __init
215put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
216{
217	pgd_t *pgd;
218	p4d_t *p4d;
219	pud_t *pud;
220	pmd_t *pmd;
221	pte_t *pte;
222
223	pgd = pgd_offset_k(address);		/* note: this is NOT pgd_offset()! */
224
225	{
226		p4d = p4d_alloc(&init_mm, pgd, address);
227		if (!p4d)
228			goto out;
229		pud = pud_alloc(&init_mm, p4d, address);
230		if (!pud)
231			goto out;
232		pmd = pmd_alloc(&init_mm, pud, address);
233		if (!pmd)
234			goto out;
235		pte = pte_alloc_kernel(pmd, address);
236		if (!pte)
237			goto out;
238		if (!pte_none(*pte))
239			goto out;
240		set_pte(pte, mk_pte(page, pgprot));
241	}
242  out:
243	/* no need for flush_tlb */
244	return page;
245}
246
247static void __init
248setup_gate (void)
249{
250	struct page *page;
251
252	/*
253	 * Map the gate page twice: once read-only to export the ELF
254	 * headers etc. and once execute-only page to enable
255	 * privilege-promotion via "epc":
256	 */
257	page = virt_to_page(ia64_imva(__start_gate_section));
258	put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
259#ifdef HAVE_BUGGY_SEGREL
260	page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
261	put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
262#else
263	put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
264	/* Fill in the holes (if any) with read-only zero pages: */
265	{
266		unsigned long addr;
267
268		for (addr = GATE_ADDR + PAGE_SIZE;
269		     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
270		     addr += PAGE_SIZE)
271		{
272			put_kernel_page(ZERO_PAGE(0), addr,
273					PAGE_READONLY);
274			put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
275					PAGE_READONLY);
276		}
277	}
278#endif
279	ia64_patch_gate();
280}
281
282static struct vm_area_struct gate_vma;
283
284static int __init gate_vma_init(void)
285{
286	vma_init(&gate_vma, NULL);
287	gate_vma.vm_start = FIXADDR_USER_START;
288	gate_vma.vm_end = FIXADDR_USER_END;
289	vm_flags_init(&gate_vma, VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC);
290	gate_vma.vm_page_prot = __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX);
291
292	return 0;
293}
294__initcall(gate_vma_init);
295
296struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
297{
298	return &gate_vma;
299}
300
301int in_gate_area_no_mm(unsigned long addr)
302{
303	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
304		return 1;
305	return 0;
306}
307
308int in_gate_area(struct mm_struct *mm, unsigned long addr)
309{
310	return in_gate_area_no_mm(addr);
311}
312
313void ia64_mmu_init(void *my_cpu_data)
314{
315	unsigned long pta, impl_va_bits;
316	extern void tlb_init(void);
317
318#ifdef CONFIG_DISABLE_VHPT
319#	define VHPT_ENABLE_BIT	0
320#else
321#	define VHPT_ENABLE_BIT	1
322#endif
323
324	/*
325	 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
326	 * address space.  The IA-64 architecture guarantees that at least 50 bits of
327	 * virtual address space are implemented but if we pick a large enough page size
328	 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
329	 * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
330	 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
331	 * problem in practice.  Alternatively, we could truncate the top of the mapped
332	 * address space to not permit mappings that would overlap with the VMLPT.
333	 * --davidm 00/12/06
334	 */
335#	define pte_bits			3
336#	define mapped_space_bits	(3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
337	/*
338	 * The virtual page table has to cover the entire implemented address space within
339	 * a region even though not all of this space may be mappable.  The reason for
340	 * this is that the Access bit and Dirty bit fault handlers perform
341	 * non-speculative accesses to the virtual page table, so the address range of the
342	 * virtual page table itself needs to be covered by virtual page table.
343	 */
344#	define vmlpt_bits		(impl_va_bits - PAGE_SHIFT + pte_bits)
345#	define POW2(n)			(1ULL << (n))
346
347	impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
348
349	if (impl_va_bits < 51 || impl_va_bits > 61)
350		panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
351	/*
352	 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
353	 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
354	 * the test makes sure that our mapped space doesn't overlap the
355	 * unimplemented hole in the middle of the region.
356	 */
357	if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
358	    (mapped_space_bits > impl_va_bits - 1))
359		panic("Cannot build a big enough virtual-linear page table"
360		      " to cover mapped address space.\n"
361		      " Try using a smaller page size.\n");
362
363
364	/* place the VMLPT at the end of each page-table mapped region: */
365	pta = POW2(61) - POW2(vmlpt_bits);
366
367	/*
368	 * Set the (virtually mapped linear) page table address.  Bit
369	 * 8 selects between the short and long format, bits 2-7 the
370	 * size of the table, and bit 0 whether the VHPT walker is
371	 * enabled.
372	 */
373	ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
374
375	ia64_tlb_init();
376
377#ifdef	CONFIG_HUGETLB_PAGE
378	ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
379	ia64_srlz_d();
380#endif
381}
382
383int __init register_active_ranges(u64 start, u64 len, int nid)
384{
385	u64 end = start + len;
386
387#ifdef CONFIG_KEXEC
388	if (start > crashk_res.start && start < crashk_res.end)
389		start = crashk_res.end;
390	if (end > crashk_res.start && end < crashk_res.end)
391		end = crashk_res.start;
392#endif
393
394	if (start < end)
395		memblock_add_node(__pa(start), end - start, nid, MEMBLOCK_NONE);
396	return 0;
397}
398
399int
400find_max_min_low_pfn (u64 start, u64 end, void *arg)
401{
402	unsigned long pfn_start, pfn_end;
403#ifdef CONFIG_FLATMEM
404	pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
405	pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
406#else
407	pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
408	pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
409#endif
410	min_low_pfn = min(min_low_pfn, pfn_start);
411	max_low_pfn = max(max_low_pfn, pfn_end);
412	return 0;
413}
414
415/*
416 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
417 * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
418 * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
419 * useful for performance testing, but conceivably could also come in handy for debugging
420 * purposes.
421 */
422
423static int nolwsys __initdata;
424
425static int __init
426nolwsys_setup (char *s)
427{
428	nolwsys = 1;
429	return 1;
430}
431
432__setup("nolwsys", nolwsys_setup);
433
434void __init
435mem_init (void)
436{
437	int i;
438
439	BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
440	BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
441	BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
442
443	/*
444	 * This needs to be called _after_ the command line has been parsed but
445	 * _before_ any drivers that may need the PCI DMA interface are
446	 * initialized or bootmem has been freed.
447	 */
448	do {
449#ifdef CONFIG_INTEL_IOMMU
450		detect_intel_iommu();
451		if (iommu_detected)
452			break;
453#endif
454		swiotlb_init(true, SWIOTLB_VERBOSE);
455	} while (0);
456
457#ifdef CONFIG_FLATMEM
458	BUG_ON(!mem_map);
459#endif
460
461	set_max_mapnr(max_low_pfn);
462	high_memory = __va(max_low_pfn * PAGE_SIZE);
463	memblock_free_all();
464
465	/*
466	 * For fsyscall entrypoints with no light-weight handler, use the ordinary
467	 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
468	 * code can tell them apart.
469	 */
470	for (i = 0; i < NR_syscalls; ++i) {
471		extern unsigned long fsyscall_table[NR_syscalls];
472		extern unsigned long sys_call_table[NR_syscalls];
473
474		if (!fsyscall_table[i] || nolwsys)
475			fsyscall_table[i] = sys_call_table[i] | 1;
476	}
477	setup_gate();
478}
479
480#ifdef CONFIG_MEMORY_HOTPLUG
481int arch_add_memory(int nid, u64 start, u64 size,
482		    struct mhp_params *params)
483{
484	unsigned long start_pfn = start >> PAGE_SHIFT;
485	unsigned long nr_pages = size >> PAGE_SHIFT;
486	int ret;
487
488	if (WARN_ON_ONCE(params->pgprot.pgprot != PAGE_KERNEL.pgprot))
489		return -EINVAL;
490
491	ret = __add_pages(nid, start_pfn, nr_pages, params);
492	if (ret)
493		printk("%s: Problem encountered in __add_pages() as ret=%d\n",
494		       __func__,  ret);
495
496	return ret;
497}
498
499void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
500{
501	unsigned long start_pfn = start >> PAGE_SHIFT;
502	unsigned long nr_pages = size >> PAGE_SHIFT;
503
504	__remove_pages(start_pfn, nr_pages, altmap);
505}
506#endif
507
508static const pgprot_t protection_map[16] = {
509	[VM_NONE]					= PAGE_NONE,
510	[VM_READ]					= PAGE_READONLY,
511	[VM_WRITE]					= PAGE_READONLY,
512	[VM_WRITE | VM_READ]				= PAGE_READONLY,
513	[VM_EXEC]					= __pgprot(__ACCESS_BITS | _PAGE_PL_3 |
514								   _PAGE_AR_X_RX),
515	[VM_EXEC | VM_READ]				= __pgprot(__ACCESS_BITS | _PAGE_PL_3 |
516								   _PAGE_AR_RX),
517	[VM_EXEC | VM_WRITE]				= PAGE_COPY_EXEC,
518	[VM_EXEC | VM_WRITE | VM_READ]			= PAGE_COPY_EXEC,
519	[VM_SHARED]					= PAGE_NONE,
520	[VM_SHARED | VM_READ]				= PAGE_READONLY,
521	[VM_SHARED | VM_WRITE]				= PAGE_SHARED,
522	[VM_SHARED | VM_WRITE | VM_READ]		= PAGE_SHARED,
523	[VM_SHARED | VM_EXEC]				= __pgprot(__ACCESS_BITS | _PAGE_PL_3 |
524								   _PAGE_AR_X_RX),
525	[VM_SHARED | VM_EXEC | VM_READ]			= __pgprot(__ACCESS_BITS | _PAGE_PL_3 |
526								   _PAGE_AR_RX),
527	[VM_SHARED | VM_EXEC | VM_WRITE]		= __pgprot(__ACCESS_BITS | _PAGE_PL_3 |
528								   _PAGE_AR_RWX),
529	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= __pgprot(__ACCESS_BITS | _PAGE_PL_3 |
530								   _PAGE_AR_RWX)
531};
532DECLARE_VM_GET_PAGE_PROT
533