162306a36Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci *
462306a36Sopenharmony_ci * Optmized version of the standard do_csum() function
562306a36Sopenharmony_ci *
662306a36Sopenharmony_ci * Return: a 64bit quantity containing the 16bit Internet checksum
762306a36Sopenharmony_ci *
862306a36Sopenharmony_ci * Inputs:
962306a36Sopenharmony_ci *	in0: address of buffer to checksum (char *)
1062306a36Sopenharmony_ci *	in1: length of the buffer (int)
1162306a36Sopenharmony_ci *
1262306a36Sopenharmony_ci * Copyright (C) 1999, 2001-2002 Hewlett-Packard Co
1362306a36Sopenharmony_ci *	Stephane Eranian <eranian@hpl.hp.com>
1462306a36Sopenharmony_ci *
1562306a36Sopenharmony_ci * 02/04/22	Ken Chen <kenneth.w.chen@intel.com>
1662306a36Sopenharmony_ci *		Data locality study on the checksum buffer.
1762306a36Sopenharmony_ci *		More optimization cleanup - remove excessive stop bits.
1862306a36Sopenharmony_ci * 02/04/08	David Mosberger <davidm@hpl.hp.com>
1962306a36Sopenharmony_ci *		More cleanup and tuning.
2062306a36Sopenharmony_ci * 01/04/18	Jun Nakajima <jun.nakajima@intel.com>
2162306a36Sopenharmony_ci *		Clean up and optimize and the software pipeline, loading two
2262306a36Sopenharmony_ci *		back-to-back 8-byte words per loop. Clean up the initialization
2362306a36Sopenharmony_ci *		for the loop. Support the cases where load latency = 1 or 2.
2462306a36Sopenharmony_ci *		Set CONFIG_IA64_LOAD_LATENCY to 1 or 2 (default).
2562306a36Sopenharmony_ci */
2662306a36Sopenharmony_ci
2762306a36Sopenharmony_ci#include <asm/asmmacro.h>
2862306a36Sopenharmony_ci
2962306a36Sopenharmony_ci//
3062306a36Sopenharmony_ci// Theory of operations:
3162306a36Sopenharmony_ci//	The goal is to go as quickly as possible to the point where
3262306a36Sopenharmony_ci//	we can checksum 16 bytes/loop. Before reaching that point we must
3362306a36Sopenharmony_ci//	take care of incorrect alignment of first byte.
3462306a36Sopenharmony_ci//
3562306a36Sopenharmony_ci//	The code hereafter also takes care of the "tail" part of the buffer
3662306a36Sopenharmony_ci//	before entering the core loop, if any. The checksum is a sum so it
3762306a36Sopenharmony_ci//	allows us to commute operations. So we do the "head" and "tail"
3862306a36Sopenharmony_ci//	first to finish at full speed in the body. Once we get the head and
3962306a36Sopenharmony_ci//	tail values, we feed them into the pipeline, very handy initialization.
4062306a36Sopenharmony_ci//
4162306a36Sopenharmony_ci//	Of course we deal with the special case where the whole buffer fits
4262306a36Sopenharmony_ci//	into one 8 byte word. In this case we have only one entry in the pipeline.
4362306a36Sopenharmony_ci//
4462306a36Sopenharmony_ci//	We use a (LOAD_LATENCY+2)-stage pipeline in the loop to account for
4562306a36Sopenharmony_ci//	possible load latency and also to accommodate for head and tail.
4662306a36Sopenharmony_ci//
4762306a36Sopenharmony_ci//	The end of the function deals with folding the checksum from 64bits
4862306a36Sopenharmony_ci//	down to 16bits taking care of the carry.
4962306a36Sopenharmony_ci//
5062306a36Sopenharmony_ci//	This version avoids synchronization in the core loop by also using a
5162306a36Sopenharmony_ci//	pipeline for the accumulation of the checksum in resultx[] (x=1,2).
5262306a36Sopenharmony_ci//
5362306a36Sopenharmony_ci//	 wordx[] (x=1,2)
5462306a36Sopenharmony_ci//	|---|
5562306a36Sopenharmony_ci//      |   | 0			: new value loaded in pipeline
5662306a36Sopenharmony_ci//	|---|
5762306a36Sopenharmony_ci//      |   | -			: in transit data
5862306a36Sopenharmony_ci//	|---|
5962306a36Sopenharmony_ci//      |   | LOAD_LATENCY	: current value to add to checksum
6062306a36Sopenharmony_ci//	|---|
6162306a36Sopenharmony_ci//      |   | LOAD_LATENCY+1	: previous value added to checksum
6262306a36Sopenharmony_ci//      |---|			(previous iteration)
6362306a36Sopenharmony_ci//
6462306a36Sopenharmony_ci//	resultx[] (x=1,2)
6562306a36Sopenharmony_ci//	|---|
6662306a36Sopenharmony_ci//      |   | 0			: initial value
6762306a36Sopenharmony_ci//	|---|
6862306a36Sopenharmony_ci//      |   | LOAD_LATENCY-1	: new checksum
6962306a36Sopenharmony_ci//	|---|
7062306a36Sopenharmony_ci//      |   | LOAD_LATENCY	: previous value of checksum
7162306a36Sopenharmony_ci//	|---|
7262306a36Sopenharmony_ci//      |   | LOAD_LATENCY+1	: final checksum when out of the loop
7362306a36Sopenharmony_ci//      |---|
7462306a36Sopenharmony_ci//
7562306a36Sopenharmony_ci//
7662306a36Sopenharmony_ci//	See RFC1071 "Computing the Internet Checksum" for various techniques for
7762306a36Sopenharmony_ci//	calculating the Internet checksum.
7862306a36Sopenharmony_ci//
7962306a36Sopenharmony_ci// NOT YET DONE:
8062306a36Sopenharmony_ci//	- Maybe another algorithm which would take care of the folding at the
8162306a36Sopenharmony_ci//	  end in a different manner
8262306a36Sopenharmony_ci//	- Work with people more knowledgeable than me on the network stack
8362306a36Sopenharmony_ci//	  to figure out if we could not split the function depending on the
8462306a36Sopenharmony_ci//	  type of packet or alignment we get. Like the ip_fast_csum() routine
8562306a36Sopenharmony_ci//	  where we know we have at least 20bytes worth of data to checksum.
8662306a36Sopenharmony_ci//	- Do a better job of handling small packets.
8762306a36Sopenharmony_ci//	- Note on prefetching: it was found that under various load, i.e. ftp read/write,
8862306a36Sopenharmony_ci//	  nfs read/write, the L1 cache hit rate is at 60% and L2 cache hit rate is at 99.8%
8962306a36Sopenharmony_ci//	  on the data that buffer points to (partly because the checksum is often preceded by
9062306a36Sopenharmony_ci//	  a copy_from_user()).  This finding indiate that lfetch will not be beneficial since
9162306a36Sopenharmony_ci//	  the data is already in the cache.
9262306a36Sopenharmony_ci//
9362306a36Sopenharmony_ci
9462306a36Sopenharmony_ci#define saved_pfs	r11
9562306a36Sopenharmony_ci#define hmask		r16
9662306a36Sopenharmony_ci#define tmask		r17
9762306a36Sopenharmony_ci#define first1		r18
9862306a36Sopenharmony_ci#define firstval	r19
9962306a36Sopenharmony_ci#define firstoff	r20
10062306a36Sopenharmony_ci#define last		r21
10162306a36Sopenharmony_ci#define lastval		r22
10262306a36Sopenharmony_ci#define lastoff		r23
10362306a36Sopenharmony_ci#define saved_lc	r24
10462306a36Sopenharmony_ci#define saved_pr	r25
10562306a36Sopenharmony_ci#define tmp1		r26
10662306a36Sopenharmony_ci#define tmp2		r27
10762306a36Sopenharmony_ci#define tmp3		r28
10862306a36Sopenharmony_ci#define carry1		r29
10962306a36Sopenharmony_ci#define carry2		r30
11062306a36Sopenharmony_ci#define first2		r31
11162306a36Sopenharmony_ci
11262306a36Sopenharmony_ci#define buf		in0
11362306a36Sopenharmony_ci#define len		in1
11462306a36Sopenharmony_ci
11562306a36Sopenharmony_ci#define LOAD_LATENCY	2	// XXX fix me
11662306a36Sopenharmony_ci
11762306a36Sopenharmony_ci#if (LOAD_LATENCY != 1) && (LOAD_LATENCY != 2)
11862306a36Sopenharmony_ci# error "Only 1 or 2 is supported/tested for LOAD_LATENCY."
11962306a36Sopenharmony_ci#endif
12062306a36Sopenharmony_ci
12162306a36Sopenharmony_ci#define PIPE_DEPTH			(LOAD_LATENCY+2)
12262306a36Sopenharmony_ci#define ELD	p[LOAD_LATENCY]		// end of load
12362306a36Sopenharmony_ci#define ELD_1	p[LOAD_LATENCY+1]	// and next stage
12462306a36Sopenharmony_ci
12562306a36Sopenharmony_ci// unsigned long do_csum(unsigned char *buf,long len)
12662306a36Sopenharmony_ci
12762306a36Sopenharmony_ciGLOBAL_ENTRY(do_csum)
12862306a36Sopenharmony_ci	.prologue
12962306a36Sopenharmony_ci	.save ar.pfs, saved_pfs
13062306a36Sopenharmony_ci	alloc saved_pfs=ar.pfs,2,16,0,16
13162306a36Sopenharmony_ci	.rotr word1[4], word2[4],result1[LOAD_LATENCY+2],result2[LOAD_LATENCY+2]
13262306a36Sopenharmony_ci	.rotp p[PIPE_DEPTH], pC1[2], pC2[2]
13362306a36Sopenharmony_ci	mov ret0=r0		// in case we have zero length
13462306a36Sopenharmony_ci	cmp.lt p0,p6=r0,len	// check for zero length or negative (32bit len)
13562306a36Sopenharmony_ci	;;
13662306a36Sopenharmony_ci	add tmp1=buf,len	// last byte's address
13762306a36Sopenharmony_ci	.save pr, saved_pr
13862306a36Sopenharmony_ci	mov saved_pr=pr		// preserve predicates (rotation)
13962306a36Sopenharmony_ci(p6)	br.ret.spnt.many rp	// return if zero or negative length
14062306a36Sopenharmony_ci
14162306a36Sopenharmony_ci	mov hmask=-1		// initialize head mask
14262306a36Sopenharmony_ci	tbit.nz p15,p0=buf,0	// is buf an odd address?
14362306a36Sopenharmony_ci	and first1=-8,buf	// 8-byte align down address of first1 element
14462306a36Sopenharmony_ci
14562306a36Sopenharmony_ci	and firstoff=7,buf	// how many bytes off for first1 element
14662306a36Sopenharmony_ci	mov tmask=-1		// initialize tail mask
14762306a36Sopenharmony_ci
14862306a36Sopenharmony_ci	;;
14962306a36Sopenharmony_ci	adds tmp2=-1,tmp1	// last-1
15062306a36Sopenharmony_ci	and lastoff=7,tmp1	// how many bytes off for last element
15162306a36Sopenharmony_ci	;;
15262306a36Sopenharmony_ci	sub tmp1=8,lastoff	// complement to lastoff
15362306a36Sopenharmony_ci	and last=-8,tmp2	// address of word containing last byte
15462306a36Sopenharmony_ci	;;
15562306a36Sopenharmony_ci	sub tmp3=last,first1	// tmp3=distance from first1 to last
15662306a36Sopenharmony_ci	.save ar.lc, saved_lc
15762306a36Sopenharmony_ci	mov saved_lc=ar.lc	// save lc
15862306a36Sopenharmony_ci	cmp.eq p8,p9=last,first1	// everything fits in one word ?
15962306a36Sopenharmony_ci
16062306a36Sopenharmony_ci	ld8 firstval=[first1],8	// load, ahead of time, "first1" word
16162306a36Sopenharmony_ci	and tmp1=7, tmp1	// make sure that if tmp1==8 -> tmp1=0
16262306a36Sopenharmony_ci	shl tmp2=firstoff,3	// number of bits
16362306a36Sopenharmony_ci	;;
16462306a36Sopenharmony_ci(p9)	ld8 lastval=[last]	// load, ahead of time, "last" word, if needed
16562306a36Sopenharmony_ci	shl tmp1=tmp1,3		// number of bits
16662306a36Sopenharmony_ci(p9)	adds tmp3=-8,tmp3	// effectively loaded
16762306a36Sopenharmony_ci	;;
16862306a36Sopenharmony_ci(p8)	mov lastval=r0		// we don't need lastval if first1==last
16962306a36Sopenharmony_ci	shl hmask=hmask,tmp2	// build head mask, mask off [0,first1off[
17062306a36Sopenharmony_ci	shr.u tmask=tmask,tmp1	// build tail mask, mask off ]8,lastoff]
17162306a36Sopenharmony_ci	;;
17262306a36Sopenharmony_ci	.body
17362306a36Sopenharmony_ci#define count tmp3
17462306a36Sopenharmony_ci
17562306a36Sopenharmony_ci(p8)	and hmask=hmask,tmask	// apply tail mask to head mask if 1 word only
17662306a36Sopenharmony_ci(p9)	and word2[0]=lastval,tmask	// mask last it as appropriate
17762306a36Sopenharmony_ci	shr.u count=count,3	// how many 8-byte?
17862306a36Sopenharmony_ci	;;
17962306a36Sopenharmony_ci	// If count is odd, finish this 8-byte word so that we can
18062306a36Sopenharmony_ci	// load two back-to-back 8-byte words per loop thereafter.
18162306a36Sopenharmony_ci	and word1[0]=firstval,hmask	// and mask it as appropriate
18262306a36Sopenharmony_ci	tbit.nz p10,p11=count,0		// if (count is odd)
18362306a36Sopenharmony_ci	;;
18462306a36Sopenharmony_ci(p8)	mov result1[0]=word1[0]
18562306a36Sopenharmony_ci(p9)	add result1[0]=word1[0],word2[0]
18662306a36Sopenharmony_ci	;;
18762306a36Sopenharmony_ci	cmp.ltu p6,p0=result1[0],word1[0]	// check the carry
18862306a36Sopenharmony_ci	cmp.eq.or.andcm p8,p0=0,count		// exit if zero 8-byte
18962306a36Sopenharmony_ci	;;
19062306a36Sopenharmony_ci(p6)	adds result1[0]=1,result1[0]
19162306a36Sopenharmony_ci(p8)	br.cond.dptk .do_csum_exit	// if (within an 8-byte word)
19262306a36Sopenharmony_ci(p11)	br.cond.dptk .do_csum16		// if (count is even)
19362306a36Sopenharmony_ci
19462306a36Sopenharmony_ci	// Here count is odd.
19562306a36Sopenharmony_ci	ld8 word1[1]=[first1],8		// load an 8-byte word
19662306a36Sopenharmony_ci	cmp.eq p9,p10=1,count		// if (count == 1)
19762306a36Sopenharmony_ci	adds count=-1,count		// loaded an 8-byte word
19862306a36Sopenharmony_ci	;;
19962306a36Sopenharmony_ci	add result1[0]=result1[0],word1[1]
20062306a36Sopenharmony_ci	;;
20162306a36Sopenharmony_ci	cmp.ltu p6,p0=result1[0],word1[1]
20262306a36Sopenharmony_ci	;;
20362306a36Sopenharmony_ci(p6)	adds result1[0]=1,result1[0]
20462306a36Sopenharmony_ci(p9)	br.cond.sptk .do_csum_exit	// if (count == 1) exit
20562306a36Sopenharmony_ci	// Fall through to calculate the checksum, feeding result1[0] as
20662306a36Sopenharmony_ci	// the initial value in result1[0].
20762306a36Sopenharmony_ci	//
20862306a36Sopenharmony_ci	// Calculate the checksum loading two 8-byte words per loop.
20962306a36Sopenharmony_ci	//
21062306a36Sopenharmony_ci.do_csum16:
21162306a36Sopenharmony_ci	add first2=8,first1
21262306a36Sopenharmony_ci	shr.u count=count,1	// we do 16 bytes per loop
21362306a36Sopenharmony_ci	;;
21462306a36Sopenharmony_ci	adds count=-1,count
21562306a36Sopenharmony_ci	mov carry1=r0
21662306a36Sopenharmony_ci	mov carry2=r0
21762306a36Sopenharmony_ci	brp.loop.imp 1f,2f
21862306a36Sopenharmony_ci	;;
21962306a36Sopenharmony_ci	mov ar.ec=PIPE_DEPTH
22062306a36Sopenharmony_ci	mov ar.lc=count	// set lc
22162306a36Sopenharmony_ci	mov pr.rot=1<<16
22262306a36Sopenharmony_ci	// result1[0] must be initialized in advance.
22362306a36Sopenharmony_ci	mov result2[0]=r0
22462306a36Sopenharmony_ci	;;
22562306a36Sopenharmony_ci	.align 32
22662306a36Sopenharmony_ci1:
22762306a36Sopenharmony_ci(ELD_1)	cmp.ltu pC1[0],p0=result1[LOAD_LATENCY],word1[LOAD_LATENCY+1]
22862306a36Sopenharmony_ci(pC1[1])adds carry1=1,carry1
22962306a36Sopenharmony_ci(ELD_1)	cmp.ltu pC2[0],p0=result2[LOAD_LATENCY],word2[LOAD_LATENCY+1]
23062306a36Sopenharmony_ci(pC2[1])adds carry2=1,carry2
23162306a36Sopenharmony_ci(ELD)	add result1[LOAD_LATENCY-1]=result1[LOAD_LATENCY],word1[LOAD_LATENCY]
23262306a36Sopenharmony_ci(ELD)	add result2[LOAD_LATENCY-1]=result2[LOAD_LATENCY],word2[LOAD_LATENCY]
23362306a36Sopenharmony_ci2:
23462306a36Sopenharmony_ci(p[0])	ld8 word1[0]=[first1],16
23562306a36Sopenharmony_ci(p[0])	ld8 word2[0]=[first2],16
23662306a36Sopenharmony_ci	br.ctop.sptk 1b
23762306a36Sopenharmony_ci	;;
23862306a36Sopenharmony_ci	// Since len is a 32-bit value, carry cannot be larger than a 64-bit value.
23962306a36Sopenharmony_ci(pC1[1])adds carry1=1,carry1	// since we miss the last one
24062306a36Sopenharmony_ci(pC2[1])adds carry2=1,carry2
24162306a36Sopenharmony_ci	;;
24262306a36Sopenharmony_ci	add result1[LOAD_LATENCY+1]=result1[LOAD_LATENCY+1],carry1
24362306a36Sopenharmony_ci	add result2[LOAD_LATENCY+1]=result2[LOAD_LATENCY+1],carry2
24462306a36Sopenharmony_ci	;;
24562306a36Sopenharmony_ci	cmp.ltu p6,p0=result1[LOAD_LATENCY+1],carry1
24662306a36Sopenharmony_ci	cmp.ltu p7,p0=result2[LOAD_LATENCY+1],carry2
24762306a36Sopenharmony_ci	;;
24862306a36Sopenharmony_ci(p6)	adds result1[LOAD_LATENCY+1]=1,result1[LOAD_LATENCY+1]
24962306a36Sopenharmony_ci(p7)	adds result2[LOAD_LATENCY+1]=1,result2[LOAD_LATENCY+1]
25062306a36Sopenharmony_ci	;;
25162306a36Sopenharmony_ci	add result1[0]=result1[LOAD_LATENCY+1],result2[LOAD_LATENCY+1]
25262306a36Sopenharmony_ci	;;
25362306a36Sopenharmony_ci	cmp.ltu p6,p0=result1[0],result2[LOAD_LATENCY+1]
25462306a36Sopenharmony_ci	;;
25562306a36Sopenharmony_ci(p6)	adds result1[0]=1,result1[0]
25662306a36Sopenharmony_ci	;;
25762306a36Sopenharmony_ci.do_csum_exit:
25862306a36Sopenharmony_ci	//
25962306a36Sopenharmony_ci	// now fold 64 into 16 bits taking care of carry
26062306a36Sopenharmony_ci	// that's not very good because it has lots of sequentiality
26162306a36Sopenharmony_ci	//
26262306a36Sopenharmony_ci	mov tmp3=0xffff
26362306a36Sopenharmony_ci	zxt4 tmp1=result1[0]
26462306a36Sopenharmony_ci	shr.u tmp2=result1[0],32
26562306a36Sopenharmony_ci	;;
26662306a36Sopenharmony_ci	add result1[0]=tmp1,tmp2
26762306a36Sopenharmony_ci	;;
26862306a36Sopenharmony_ci	and tmp1=result1[0],tmp3
26962306a36Sopenharmony_ci	shr.u tmp2=result1[0],16
27062306a36Sopenharmony_ci	;;
27162306a36Sopenharmony_ci	add result1[0]=tmp1,tmp2
27262306a36Sopenharmony_ci	;;
27362306a36Sopenharmony_ci	and tmp1=result1[0],tmp3
27462306a36Sopenharmony_ci	shr.u tmp2=result1[0],16
27562306a36Sopenharmony_ci	;;
27662306a36Sopenharmony_ci	add result1[0]=tmp1,tmp2
27762306a36Sopenharmony_ci	;;
27862306a36Sopenharmony_ci	and tmp1=result1[0],tmp3
27962306a36Sopenharmony_ci	shr.u tmp2=result1[0],16
28062306a36Sopenharmony_ci	;;
28162306a36Sopenharmony_ci	add ret0=tmp1,tmp2
28262306a36Sopenharmony_ci	mov pr=saved_pr,0xffffffffffff0000
28362306a36Sopenharmony_ci	;;
28462306a36Sopenharmony_ci	// if buf was odd then swap bytes
28562306a36Sopenharmony_ci	mov ar.pfs=saved_pfs		// restore ar.ec
28662306a36Sopenharmony_ci(p15)	mux1 ret0=ret0,@rev		// reverse word
28762306a36Sopenharmony_ci	;;
28862306a36Sopenharmony_ci	mov ar.lc=saved_lc
28962306a36Sopenharmony_ci(p15)	shr.u ret0=ret0,64-16	// + shift back to position = swap bytes
29062306a36Sopenharmony_ci	br.ret.sptk.many rp
29162306a36Sopenharmony_ci
29262306a36Sopenharmony_ci//	I (Jun Nakajima) wrote an equivalent code (see below), but it was
29362306a36Sopenharmony_ci//	not much better than the original. So keep the original there so that
29462306a36Sopenharmony_ci//	someone else can challenge.
29562306a36Sopenharmony_ci//
29662306a36Sopenharmony_ci//	shr.u word1[0]=result1[0],32
29762306a36Sopenharmony_ci//	zxt4 result1[0]=result1[0]
29862306a36Sopenharmony_ci//	;;
29962306a36Sopenharmony_ci//	add result1[0]=result1[0],word1[0]
30062306a36Sopenharmony_ci//	;;
30162306a36Sopenharmony_ci//	zxt2 result2[0]=result1[0]
30262306a36Sopenharmony_ci//	extr.u word1[0]=result1[0],16,16
30362306a36Sopenharmony_ci//	shr.u carry1=result1[0],32
30462306a36Sopenharmony_ci//	;;
30562306a36Sopenharmony_ci//	add result2[0]=result2[0],word1[0]
30662306a36Sopenharmony_ci//	;;
30762306a36Sopenharmony_ci//	add result2[0]=result2[0],carry1
30862306a36Sopenharmony_ci//	;;
30962306a36Sopenharmony_ci//	extr.u ret0=result2[0],16,16
31062306a36Sopenharmony_ci//	;;
31162306a36Sopenharmony_ci//	add ret0=ret0,result2[0]
31262306a36Sopenharmony_ci//	;;
31362306a36Sopenharmony_ci//	zxt2 ret0=ret0
31462306a36Sopenharmony_ci//	mov ar.pfs=saved_pfs		 // restore ar.ec
31562306a36Sopenharmony_ci//	mov pr=saved_pr,0xffffffffffff0000
31662306a36Sopenharmony_ci//	;;
31762306a36Sopenharmony_ci//	// if buf was odd then swap bytes
31862306a36Sopenharmony_ci//	mov ar.lc=saved_lc
31962306a36Sopenharmony_ci//(p15)	mux1 ret0=ret0,@rev		// reverse word
32062306a36Sopenharmony_ci//	;;
32162306a36Sopenharmony_ci//(p15)	shr.u ret0=ret0,64-16	// + shift back to position = swap bytes
32262306a36Sopenharmony_ci//	br.ret.sptk.many rp
32362306a36Sopenharmony_ci
32462306a36Sopenharmony_ciEND(do_csum)
325