xref: /kernel/linux/linux-6.6/arch/ia64/kernel/efi.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Extensible Firmware Interface
4 *
5 * Based on Extensible Firmware Interface Specification version 0.9
6 * April 30, 1999
7 *
8 * Copyright (C) 1999 VA Linux Systems
9 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
10 * Copyright (C) 1999-2003 Hewlett-Packard Co.
11 *	David Mosberger-Tang <davidm@hpl.hp.com>
12 *	Stephane Eranian <eranian@hpl.hp.com>
13 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
14 *	Bjorn Helgaas <bjorn.helgaas@hp.com>
15 *
16 * All EFI Runtime Services are not implemented yet as EFI only
17 * supports physical mode addressing on SoftSDV. This is to be fixed
18 * in a future version.  --drummond 1999-07-20
19 *
20 * Implemented EFI runtime services and virtual mode calls.  --davidm
21 *
22 * Goutham Rao: <goutham.rao@intel.com>
23 *	Skip non-WB memory and ignore empty memory ranges.
24 */
25#include <linux/module.h>
26#include <linux/memblock.h>
27#include <linux/crash_dump.h>
28#include <linux/kernel.h>
29#include <linux/init.h>
30#include <linux/types.h>
31#include <linux/slab.h>
32#include <linux/time.h>
33#include <linux/efi.h>
34#include <linux/kexec.h>
35#include <linux/mm.h>
36
37#include <asm/efi.h>
38#include <asm/io.h>
39#include <asm/kregs.h>
40#include <asm/meminit.h>
41#include <asm/processor.h>
42#include <asm/mca.h>
43#include <asm/sal.h>
44#include <asm/setup.h>
45#include <asm/tlbflush.h>
46
47#define EFI_DEBUG	0
48
49#define ESI_TABLE_GUID					\
50    EFI_GUID(0x43EA58DC, 0xCF28, 0x4b06, 0xB3,		\
51	     0x91, 0xB7, 0x50, 0x59, 0x34, 0x2B, 0xD4)
52
53static unsigned long mps_phys = EFI_INVALID_TABLE_ADDR;
54static __initdata unsigned long palo_phys;
55
56unsigned long __initdata esi_phys = EFI_INVALID_TABLE_ADDR;
57unsigned long hcdp_phys = EFI_INVALID_TABLE_ADDR;
58unsigned long sal_systab_phys = EFI_INVALID_TABLE_ADDR;
59
60static const efi_config_table_type_t arch_tables[] __initconst = {
61	{ESI_TABLE_GUID,				&esi_phys,		"ESI"		},
62	{HCDP_TABLE_GUID,				&hcdp_phys,		"HCDP"		},
63	{MPS_TABLE_GUID,				&mps_phys,		"MPS"		},
64	{PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID,	&palo_phys,		"PALO"		},
65	{SAL_SYSTEM_TABLE_GUID,				&sal_systab_phys,	"SALsystab"	},
66	{},
67};
68
69extern efi_status_t efi_call_phys (void *, ...);
70
71static efi_runtime_services_t *runtime;
72static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
73
74#define efi_call_virt(f, args...)	(*(f))(args)
75
76#define STUB_GET_TIME(prefix, adjust_arg)				       \
77static efi_status_t							       \
78prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)			       \
79{									       \
80	struct ia64_fpreg fr[6];					       \
81	efi_time_cap_t *atc = NULL;					       \
82	efi_status_t ret;						       \
83									       \
84	if (tc)								       \
85		atc = adjust_arg(tc);					       \
86	ia64_save_scratch_fpregs(fr);					       \
87	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
88				adjust_arg(tm), atc);			       \
89	ia64_load_scratch_fpregs(fr);					       \
90	return ret;							       \
91}
92
93#define STUB_SET_TIME(prefix, adjust_arg)				       \
94static efi_status_t							       \
95prefix##_set_time (efi_time_t *tm)					       \
96{									       \
97	struct ia64_fpreg fr[6];					       \
98	efi_status_t ret;						       \
99									       \
100	ia64_save_scratch_fpregs(fr);					       \
101	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
102				adjust_arg(tm));			       \
103	ia64_load_scratch_fpregs(fr);					       \
104	return ret;							       \
105}
106
107#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)			       \
108static efi_status_t							       \
109prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,	       \
110			  efi_time_t *tm)				       \
111{									       \
112	struct ia64_fpreg fr[6];					       \
113	efi_status_t ret;						       \
114									       \
115	ia64_save_scratch_fpregs(fr);					       \
116	ret = efi_call_##prefix(					       \
117		(efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
118		adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
119	ia64_load_scratch_fpregs(fr);					       \
120	return ret;							       \
121}
122
123#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)			       \
124static efi_status_t							       \
125prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)		       \
126{									       \
127	struct ia64_fpreg fr[6];					       \
128	efi_time_t *atm = NULL;						       \
129	efi_status_t ret;						       \
130									       \
131	if (tm)								       \
132		atm = adjust_arg(tm);					       \
133	ia64_save_scratch_fpregs(fr);					       \
134	ret = efi_call_##prefix(					       \
135		(efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
136		enabled, atm);						       \
137	ia64_load_scratch_fpregs(fr);					       \
138	return ret;							       \
139}
140
141#define STUB_GET_VARIABLE(prefix, adjust_arg)				       \
142static efi_status_t							       \
143prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
144		       unsigned long *data_size, void *data)		       \
145{									       \
146	struct ia64_fpreg fr[6];					       \
147	u32 *aattr = NULL;						       \
148	efi_status_t ret;						       \
149									       \
150	if (attr)							       \
151		aattr = adjust_arg(attr);				       \
152	ia64_save_scratch_fpregs(fr);					       \
153	ret = efi_call_##prefix(					       \
154		(efi_get_variable_t *) __va(runtime->get_variable),	       \
155		adjust_arg(name), adjust_arg(vendor), aattr,		       \
156		adjust_arg(data_size), adjust_arg(data));		       \
157	ia64_load_scratch_fpregs(fr);					       \
158	return ret;							       \
159}
160
161#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)			       \
162static efi_status_t							       \
163prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
164			    efi_guid_t *vendor)				       \
165{									       \
166	struct ia64_fpreg fr[6];					       \
167	efi_status_t ret;						       \
168									       \
169	ia64_save_scratch_fpregs(fr);					       \
170	ret = efi_call_##prefix(					       \
171		(efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
172		adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
173	ia64_load_scratch_fpregs(fr);					       \
174	return ret;							       \
175}
176
177#define STUB_SET_VARIABLE(prefix, adjust_arg)				       \
178static efi_status_t							       \
179prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,		       \
180		       u32 attr, unsigned long data_size,		       \
181		       void *data)					       \
182{									       \
183	struct ia64_fpreg fr[6];					       \
184	efi_status_t ret;						       \
185									       \
186	ia64_save_scratch_fpregs(fr);					       \
187	ret = efi_call_##prefix(					       \
188		(efi_set_variable_t *) __va(runtime->set_variable),	       \
189		adjust_arg(name), adjust_arg(vendor), attr, data_size,	       \
190		adjust_arg(data));					       \
191	ia64_load_scratch_fpregs(fr);					       \
192	return ret;							       \
193}
194
195#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)		       \
196static efi_status_t							       \
197prefix##_get_next_high_mono_count (u32 *count)				       \
198{									       \
199	struct ia64_fpreg fr[6];					       \
200	efi_status_t ret;						       \
201									       \
202	ia64_save_scratch_fpregs(fr);					       \
203	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)	       \
204				__va(runtime->get_next_high_mono_count),       \
205				adjust_arg(count));			       \
206	ia64_load_scratch_fpregs(fr);					       \
207	return ret;							       \
208}
209
210#define STUB_RESET_SYSTEM(prefix, adjust_arg)				       \
211static void								       \
212prefix##_reset_system (int reset_type, efi_status_t status,		       \
213		       unsigned long data_size, efi_char16_t *data)	       \
214{									       \
215	struct ia64_fpreg fr[6];					       \
216	efi_char16_t *adata = NULL;					       \
217									       \
218	if (data)							       \
219		adata = adjust_arg(data);				       \
220									       \
221	ia64_save_scratch_fpregs(fr);					       \
222	efi_call_##prefix(						       \
223		(efi_reset_system_t *) __va(runtime->reset_system),	       \
224		reset_type, status, data_size, adata);			       \
225	/* should not return, but just in case... */			       \
226	ia64_load_scratch_fpregs(fr);					       \
227}
228
229#define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
230
231STUB_GET_TIME(phys, phys_ptr)
232STUB_SET_TIME(phys, phys_ptr)
233STUB_GET_WAKEUP_TIME(phys, phys_ptr)
234STUB_SET_WAKEUP_TIME(phys, phys_ptr)
235STUB_GET_VARIABLE(phys, phys_ptr)
236STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
237STUB_SET_VARIABLE(phys, phys_ptr)
238STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
239STUB_RESET_SYSTEM(phys, phys_ptr)
240
241#define id(arg)	arg
242
243STUB_GET_TIME(virt, id)
244STUB_SET_TIME(virt, id)
245STUB_GET_WAKEUP_TIME(virt, id)
246STUB_SET_WAKEUP_TIME(virt, id)
247STUB_GET_VARIABLE(virt, id)
248STUB_GET_NEXT_VARIABLE(virt, id)
249STUB_SET_VARIABLE(virt, id)
250STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
251STUB_RESET_SYSTEM(virt, id)
252
253void
254efi_gettimeofday (struct timespec64 *ts)
255{
256	efi_time_t tm;
257
258	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
259		memset(ts, 0, sizeof(*ts));
260		return;
261	}
262
263	ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
264			    tm.hour, tm.minute, tm.second);
265	ts->tv_nsec = tm.nanosecond;
266}
267
268static int
269is_memory_available (efi_memory_desc_t *md)
270{
271	if (!(md->attribute & EFI_MEMORY_WB))
272		return 0;
273
274	switch (md->type) {
275	      case EFI_LOADER_CODE:
276	      case EFI_LOADER_DATA:
277	      case EFI_BOOT_SERVICES_CODE:
278	      case EFI_BOOT_SERVICES_DATA:
279	      case EFI_CONVENTIONAL_MEMORY:
280		return 1;
281	}
282	return 0;
283}
284
285typedef struct kern_memdesc {
286	u64 attribute;
287	u64 start;
288	u64 num_pages;
289} kern_memdesc_t;
290
291static kern_memdesc_t *kern_memmap;
292
293#define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
294
295static inline u64
296kmd_end(kern_memdesc_t *kmd)
297{
298	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
299}
300
301static inline u64
302efi_md_end(efi_memory_desc_t *md)
303{
304	return (md->phys_addr + efi_md_size(md));
305}
306
307static inline int
308efi_wb(efi_memory_desc_t *md)
309{
310	return (md->attribute & EFI_MEMORY_WB);
311}
312
313static inline int
314efi_uc(efi_memory_desc_t *md)
315{
316	return (md->attribute & EFI_MEMORY_UC);
317}
318
319static void
320walk (efi_freemem_callback_t callback, void *arg, u64 attr)
321{
322	kern_memdesc_t *k;
323	u64 start, end, voff;
324
325	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
326	for (k = kern_memmap; k->start != ~0UL; k++) {
327		if (k->attribute != attr)
328			continue;
329		start = PAGE_ALIGN(k->start);
330		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
331		if (start < end)
332			if ((*callback)(start + voff, end + voff, arg) < 0)
333				return;
334	}
335}
336
337/*
338 * Walk the EFI memory map and call CALLBACK once for each EFI memory
339 * descriptor that has memory that is available for OS use.
340 */
341void
342efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
343{
344	walk(callback, arg, EFI_MEMORY_WB);
345}
346
347/*
348 * Walk the EFI memory map and call CALLBACK once for each EFI memory
349 * descriptor that has memory that is available for uncached allocator.
350 */
351void
352efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
353{
354	walk(callback, arg, EFI_MEMORY_UC);
355}
356
357/*
358 * Look for the PAL_CODE region reported by EFI and map it using an
359 * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
360 * Abstraction Layer chapter 11 in ADAG
361 */
362void *
363efi_get_pal_addr (void)
364{
365	void *efi_map_start, *efi_map_end, *p;
366	efi_memory_desc_t *md;
367	u64 efi_desc_size;
368	int pal_code_count = 0;
369	u64 vaddr, mask;
370
371	efi_map_start = __va(ia64_boot_param->efi_memmap);
372	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
373	efi_desc_size = ia64_boot_param->efi_memdesc_size;
374
375	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
376		md = p;
377		if (md->type != EFI_PAL_CODE)
378			continue;
379
380		if (++pal_code_count > 1) {
381			printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
382			       "dropped @ %llx\n", md->phys_addr);
383			continue;
384		}
385		/*
386		 * The only ITLB entry in region 7 that is used is the one
387		 * installed by __start().  That entry covers a 64MB range.
388		 */
389		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
390		vaddr = PAGE_OFFSET + md->phys_addr;
391
392		/*
393		 * We must check that the PAL mapping won't overlap with the
394		 * kernel mapping.
395		 *
396		 * PAL code is guaranteed to be aligned on a power of 2 between
397		 * 4k and 256KB and that only one ITR is needed to map it. This
398		 * implies that the PAL code is always aligned on its size,
399		 * i.e., the closest matching page size supported by the TLB.
400		 * Therefore PAL code is guaranteed never to cross a 64MB unless
401		 * it is bigger than 64MB (very unlikely!).  So for now the
402		 * following test is enough to determine whether or not we need
403		 * a dedicated ITR for the PAL code.
404		 */
405		if ((vaddr & mask) == (KERNEL_START & mask)) {
406			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
407			       __func__);
408			continue;
409		}
410
411		if (efi_md_size(md) > IA64_GRANULE_SIZE)
412			panic("Whoa!  PAL code size bigger than a granule!");
413
414#if EFI_DEBUG
415		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
416
417		printk(KERN_INFO "CPU %d: mapping PAL code "
418			"[0x%llx-0x%llx) into [0x%llx-0x%llx)\n",
419			smp_processor_id(), md->phys_addr,
420			md->phys_addr + efi_md_size(md),
421			vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
422#endif
423		return __va(md->phys_addr);
424	}
425	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
426	       __func__);
427	return NULL;
428}
429
430
431static u8 __init palo_checksum(u8 *buffer, u32 length)
432{
433	u8 sum = 0;
434	u8 *end = buffer + length;
435
436	while (buffer < end)
437		sum = (u8) (sum + *(buffer++));
438
439	return sum;
440}
441
442/*
443 * Parse and handle PALO table which is published at:
444 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
445 */
446static void __init handle_palo(unsigned long phys_addr)
447{
448	struct palo_table *palo = __va(phys_addr);
449	u8  checksum;
450
451	if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
452		printk(KERN_INFO "PALO signature incorrect.\n");
453		return;
454	}
455
456	checksum = palo_checksum((u8 *)palo, palo->length);
457	if (checksum) {
458		printk(KERN_INFO "PALO checksum incorrect.\n");
459		return;
460	}
461
462	setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
463}
464
465void
466efi_map_pal_code (void)
467{
468	void *pal_vaddr = efi_get_pal_addr ();
469	u64 psr;
470
471	if (!pal_vaddr)
472		return;
473
474	/*
475	 * Cannot write to CRx with PSR.ic=1
476	 */
477	psr = ia64_clear_ic();
478	ia64_itr(0x1, IA64_TR_PALCODE,
479		 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
480		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
481		 IA64_GRANULE_SHIFT);
482	ia64_set_psr(psr);		/* restore psr */
483}
484
485void __init
486efi_init (void)
487{
488	const efi_system_table_t *efi_systab;
489	void *efi_map_start, *efi_map_end;
490	u64 efi_desc_size;
491	char *cp;
492
493	set_bit(EFI_BOOT, &efi.flags);
494	set_bit(EFI_64BIT, &efi.flags);
495
496	/*
497	 * It's too early to be able to use the standard kernel command line
498	 * support...
499	 */
500	for (cp = boot_command_line; *cp; ) {
501		if (memcmp(cp, "mem=", 4) == 0) {
502			mem_limit = memparse(cp + 4, &cp);
503		} else if (memcmp(cp, "max_addr=", 9) == 0) {
504			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
505		} else if (memcmp(cp, "min_addr=", 9) == 0) {
506			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
507		} else {
508			while (*cp != ' ' && *cp)
509				++cp;
510			while (*cp == ' ')
511				++cp;
512		}
513	}
514	if (min_addr != 0UL)
515		printk(KERN_INFO "Ignoring memory below %lluMB\n",
516		       min_addr >> 20);
517	if (max_addr != ~0UL)
518		printk(KERN_INFO "Ignoring memory above %lluMB\n",
519		       max_addr >> 20);
520
521	efi_systab = __va(ia64_boot_param->efi_systab);
522
523	/*
524	 * Verify the EFI Table
525	 */
526	if (efi_systab == NULL)
527		panic("Whoa! Can't find EFI system table.\n");
528	if (efi_systab_check_header(&efi_systab->hdr))
529		panic("Whoa! EFI system table signature incorrect\n");
530
531	efi_systab_report_header(&efi_systab->hdr, efi_systab->fw_vendor);
532
533	palo_phys      = EFI_INVALID_TABLE_ADDR;
534
535	if (efi_config_parse_tables(__va(efi_systab->tables),
536				    efi_systab->nr_tables,
537				    arch_tables) != 0)
538		return;
539
540	if (palo_phys != EFI_INVALID_TABLE_ADDR)
541		handle_palo(palo_phys);
542
543	runtime = __va(efi_systab->runtime);
544	efi.get_time = phys_get_time;
545	efi.set_time = phys_set_time;
546	efi.get_wakeup_time = phys_get_wakeup_time;
547	efi.set_wakeup_time = phys_set_wakeup_time;
548	efi.get_variable = phys_get_variable;
549	efi.get_next_variable = phys_get_next_variable;
550	efi.set_variable = phys_set_variable;
551	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
552	efi.reset_system = phys_reset_system;
553
554	efi_map_start = __va(ia64_boot_param->efi_memmap);
555	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
556	efi_desc_size = ia64_boot_param->efi_memdesc_size;
557
558#if EFI_DEBUG
559	/* print EFI memory map: */
560	{
561		efi_memory_desc_t *md;
562		void *p;
563		unsigned int i;
564
565		for (i = 0, p = efi_map_start; p < efi_map_end;
566		     ++i, p += efi_desc_size)
567		{
568			const char *unit;
569			unsigned long size;
570			char buf[64];
571
572			md = p;
573			size = md->num_pages << EFI_PAGE_SHIFT;
574
575			if ((size >> 40) > 0) {
576				size >>= 40;
577				unit = "TB";
578			} else if ((size >> 30) > 0) {
579				size >>= 30;
580				unit = "GB";
581			} else if ((size >> 20) > 0) {
582				size >>= 20;
583				unit = "MB";
584			} else {
585				size >>= 10;
586				unit = "KB";
587			}
588
589			printk("mem%02d: %s "
590			       "range=[0x%016llx-0x%016llx) (%4lu%s)\n",
591			       i, efi_md_typeattr_format(buf, sizeof(buf), md),
592			       md->phys_addr,
593			       md->phys_addr + efi_md_size(md), size, unit);
594		}
595	}
596#endif
597
598	efi_map_pal_code();
599	efi_enter_virtual_mode();
600}
601
602void
603efi_enter_virtual_mode (void)
604{
605	void *efi_map_start, *efi_map_end, *p;
606	efi_memory_desc_t *md;
607	efi_status_t status;
608	u64 efi_desc_size;
609
610	efi_map_start = __va(ia64_boot_param->efi_memmap);
611	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
612	efi_desc_size = ia64_boot_param->efi_memdesc_size;
613
614	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
615		md = p;
616		if (md->attribute & EFI_MEMORY_RUNTIME) {
617			/*
618			 * Some descriptors have multiple bits set, so the
619			 * order of the tests is relevant.
620			 */
621			if (md->attribute & EFI_MEMORY_WB) {
622				md->virt_addr = (u64) __va(md->phys_addr);
623			} else if (md->attribute & EFI_MEMORY_UC) {
624				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
625			} else if (md->attribute & EFI_MEMORY_WC) {
626#if 0
627				md->virt_addr = ia64_remap(md->phys_addr,
628							   (_PAGE_A |
629							    _PAGE_P |
630							    _PAGE_D |
631							    _PAGE_MA_WC |
632							    _PAGE_PL_0 |
633							    _PAGE_AR_RW));
634#else
635				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
636				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
637#endif
638			} else if (md->attribute & EFI_MEMORY_WT) {
639#if 0
640				md->virt_addr = ia64_remap(md->phys_addr,
641							   (_PAGE_A |
642							    _PAGE_P |
643							    _PAGE_D |
644							    _PAGE_MA_WT |
645							    _PAGE_PL_0 |
646							    _PAGE_AR_RW));
647#else
648				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
649				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
650#endif
651			}
652		}
653	}
654
655	status = efi_call_phys(__va(runtime->set_virtual_address_map),
656			       ia64_boot_param->efi_memmap_size,
657			       efi_desc_size,
658			       ia64_boot_param->efi_memdesc_version,
659			       ia64_boot_param->efi_memmap);
660	if (status != EFI_SUCCESS) {
661		printk(KERN_WARNING "warning: unable to switch EFI into "
662		       "virtual mode (status=%lu)\n", status);
663		return;
664	}
665
666	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
667
668	/*
669	 * Now that EFI is in virtual mode, we call the EFI functions more
670	 * efficiently:
671	 */
672	efi.get_time = virt_get_time;
673	efi.set_time = virt_set_time;
674	efi.get_wakeup_time = virt_get_wakeup_time;
675	efi.set_wakeup_time = virt_set_wakeup_time;
676	efi.get_variable = virt_get_variable;
677	efi.get_next_variable = virt_get_next_variable;
678	efi.set_variable = virt_set_variable;
679	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
680	efi.reset_system = virt_reset_system;
681}
682
683/*
684 * Walk the EFI memory map looking for the I/O port range.  There can only be
685 * one entry of this type, other I/O port ranges should be described via ACPI.
686 */
687u64
688efi_get_iobase (void)
689{
690	void *efi_map_start, *efi_map_end, *p;
691	efi_memory_desc_t *md;
692	u64 efi_desc_size;
693
694	efi_map_start = __va(ia64_boot_param->efi_memmap);
695	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
696	efi_desc_size = ia64_boot_param->efi_memdesc_size;
697
698	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
699		md = p;
700		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
701			if (md->attribute & EFI_MEMORY_UC)
702				return md->phys_addr;
703		}
704	}
705	return 0;
706}
707
708static struct kern_memdesc *
709kern_memory_descriptor (unsigned long phys_addr)
710{
711	struct kern_memdesc *md;
712
713	for (md = kern_memmap; md->start != ~0UL; md++) {
714		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
715			 return md;
716	}
717	return NULL;
718}
719
720static efi_memory_desc_t *
721efi_memory_descriptor (unsigned long phys_addr)
722{
723	void *efi_map_start, *efi_map_end, *p;
724	efi_memory_desc_t *md;
725	u64 efi_desc_size;
726
727	efi_map_start = __va(ia64_boot_param->efi_memmap);
728	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
729	efi_desc_size = ia64_boot_param->efi_memdesc_size;
730
731	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
732		md = p;
733
734		if (phys_addr - md->phys_addr < efi_md_size(md))
735			 return md;
736	}
737	return NULL;
738}
739
740static int
741efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
742{
743	void *efi_map_start, *efi_map_end, *p;
744	efi_memory_desc_t *md;
745	u64 efi_desc_size;
746	unsigned long end;
747
748	efi_map_start = __va(ia64_boot_param->efi_memmap);
749	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
750	efi_desc_size = ia64_boot_param->efi_memdesc_size;
751
752	end = phys_addr + size;
753
754	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
755		md = p;
756		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
757			return 1;
758	}
759	return 0;
760}
761
762int
763efi_mem_type (unsigned long phys_addr)
764{
765	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
766
767	if (md)
768		return md->type;
769	return -EINVAL;
770}
771
772u64
773efi_mem_attributes (unsigned long phys_addr)
774{
775	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
776
777	if (md)
778		return md->attribute;
779	return 0;
780}
781EXPORT_SYMBOL(efi_mem_attributes);
782
783u64
784efi_mem_attribute (unsigned long phys_addr, unsigned long size)
785{
786	unsigned long end = phys_addr + size;
787	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
788	u64 attr;
789
790	if (!md)
791		return 0;
792
793	/*
794	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
795	 * the kernel that firmware needs this region mapped.
796	 */
797	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
798	do {
799		unsigned long md_end = efi_md_end(md);
800
801		if (end <= md_end)
802			return attr;
803
804		md = efi_memory_descriptor(md_end);
805		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
806			return 0;
807	} while (md);
808	return 0;	/* never reached */
809}
810
811u64
812kern_mem_attribute (unsigned long phys_addr, unsigned long size)
813{
814	unsigned long end = phys_addr + size;
815	struct kern_memdesc *md;
816	u64 attr;
817
818	/*
819	 * This is a hack for ioremap calls before we set up kern_memmap.
820	 * Maybe we should do efi_memmap_init() earlier instead.
821	 */
822	if (!kern_memmap) {
823		attr = efi_mem_attribute(phys_addr, size);
824		if (attr & EFI_MEMORY_WB)
825			return EFI_MEMORY_WB;
826		return 0;
827	}
828
829	md = kern_memory_descriptor(phys_addr);
830	if (!md)
831		return 0;
832
833	attr = md->attribute;
834	do {
835		unsigned long md_end = kmd_end(md);
836
837		if (end <= md_end)
838			return attr;
839
840		md = kern_memory_descriptor(md_end);
841		if (!md || md->attribute != attr)
842			return 0;
843	} while (md);
844	return 0;	/* never reached */
845}
846
847int
848valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
849{
850	u64 attr;
851
852	/*
853	 * /dev/mem reads and writes use copy_to_user(), which implicitly
854	 * uses a granule-sized kernel identity mapping.  It's really
855	 * only safe to do this for regions in kern_memmap.  For more
856	 * details, see Documentation/arch/ia64/aliasing.rst.
857	 */
858	attr = kern_mem_attribute(phys_addr, size);
859	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
860		return 1;
861	return 0;
862}
863
864int
865valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
866{
867	unsigned long phys_addr = pfn << PAGE_SHIFT;
868	u64 attr;
869
870	attr = efi_mem_attribute(phys_addr, size);
871
872	/*
873	 * /dev/mem mmap uses normal user pages, so we don't need the entire
874	 * granule, but the entire region we're mapping must support the same
875	 * attribute.
876	 */
877	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
878		return 1;
879
880	/*
881	 * Intel firmware doesn't tell us about all the MMIO regions, so
882	 * in general we have to allow mmap requests.  But if EFI *does*
883	 * tell us about anything inside this region, we should deny it.
884	 * The user can always map a smaller region to avoid the overlap.
885	 */
886	if (efi_memmap_intersects(phys_addr, size))
887		return 0;
888
889	return 1;
890}
891
892pgprot_t
893phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
894		     pgprot_t vma_prot)
895{
896	unsigned long phys_addr = pfn << PAGE_SHIFT;
897	u64 attr;
898
899	/*
900	 * For /dev/mem mmap, we use user mappings, but if the region is
901	 * in kern_memmap (and hence may be covered by a kernel mapping),
902	 * we must use the same attribute as the kernel mapping.
903	 */
904	attr = kern_mem_attribute(phys_addr, size);
905	if (attr & EFI_MEMORY_WB)
906		return pgprot_cacheable(vma_prot);
907	else if (attr & EFI_MEMORY_UC)
908		return pgprot_noncached(vma_prot);
909
910	/*
911	 * Some chipsets don't support UC access to memory.  If
912	 * WB is supported, we prefer that.
913	 */
914	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
915		return pgprot_cacheable(vma_prot);
916
917	return pgprot_noncached(vma_prot);
918}
919
920int __init
921efi_uart_console_only(void)
922{
923	efi_status_t status;
924	char *s, name[] = "ConOut";
925	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
926	efi_char16_t *utf16, name_utf16[32];
927	unsigned char data[1024];
928	unsigned long size = sizeof(data);
929	struct efi_generic_dev_path *hdr, *end_addr;
930	int uart = 0;
931
932	/* Convert to UTF-16 */
933	utf16 = name_utf16;
934	s = name;
935	while (*s)
936		*utf16++ = *s++ & 0x7f;
937	*utf16 = 0;
938
939	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
940	if (status != EFI_SUCCESS) {
941		printk(KERN_ERR "No EFI %s variable?\n", name);
942		return 0;
943	}
944
945	hdr = (struct efi_generic_dev_path *) data;
946	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
947	while (hdr < end_addr) {
948		if (hdr->type == EFI_DEV_MSG &&
949		    hdr->sub_type == EFI_DEV_MSG_UART)
950			uart = 1;
951		else if (hdr->type == EFI_DEV_END_PATH ||
952			  hdr->type == EFI_DEV_END_PATH2) {
953			if (!uart)
954				return 0;
955			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
956				return 1;
957			uart = 0;
958		}
959		hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
960	}
961	printk(KERN_ERR "Malformed %s value\n", name);
962	return 0;
963}
964
965/*
966 * Look for the first granule aligned memory descriptor memory
967 * that is big enough to hold EFI memory map. Make sure this
968 * descriptor is at least granule sized so it does not get trimmed
969 */
970struct kern_memdesc *
971find_memmap_space (void)
972{
973	u64	contig_low=0, contig_high=0;
974	u64	as = 0, ae;
975	void *efi_map_start, *efi_map_end, *p, *q;
976	efi_memory_desc_t *md, *pmd = NULL, *check_md;
977	u64	space_needed, efi_desc_size;
978	unsigned long total_mem = 0;
979
980	efi_map_start = __va(ia64_boot_param->efi_memmap);
981	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
982	efi_desc_size = ia64_boot_param->efi_memdesc_size;
983
984	/*
985	 * Worst case: we need 3 kernel descriptors for each efi descriptor
986	 * (if every entry has a WB part in the middle, and UC head and tail),
987	 * plus one for the end marker.
988	 */
989	space_needed = sizeof(kern_memdesc_t) *
990		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
991
992	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
993		md = p;
994		if (!efi_wb(md)) {
995			continue;
996		}
997		if (pmd == NULL || !efi_wb(pmd) ||
998		    efi_md_end(pmd) != md->phys_addr) {
999			contig_low = GRANULEROUNDUP(md->phys_addr);
1000			contig_high = efi_md_end(md);
1001			for (q = p + efi_desc_size; q < efi_map_end;
1002			     q += efi_desc_size) {
1003				check_md = q;
1004				if (!efi_wb(check_md))
1005					break;
1006				if (contig_high != check_md->phys_addr)
1007					break;
1008				contig_high = efi_md_end(check_md);
1009			}
1010			contig_high = GRANULEROUNDDOWN(contig_high);
1011		}
1012		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1013			continue;
1014
1015		/* Round ends inward to granule boundaries */
1016		as = max(contig_low, md->phys_addr);
1017		ae = min(contig_high, efi_md_end(md));
1018
1019		/* keep within max_addr= and min_addr= command line arg */
1020		as = max(as, min_addr);
1021		ae = min(ae, max_addr);
1022		if (ae <= as)
1023			continue;
1024
1025		/* avoid going over mem= command line arg */
1026		if (total_mem + (ae - as) > mem_limit)
1027			ae -= total_mem + (ae - as) - mem_limit;
1028
1029		if (ae <= as)
1030			continue;
1031
1032		if (ae - as > space_needed)
1033			break;
1034	}
1035	if (p >= efi_map_end)
1036		panic("Can't allocate space for kernel memory descriptors");
1037
1038	return __va(as);
1039}
1040
1041/*
1042 * Walk the EFI memory map and gather all memory available for kernel
1043 * to use.  We can allocate partial granules only if the unavailable
1044 * parts exist, and are WB.
1045 */
1046unsigned long
1047efi_memmap_init(u64 *s, u64 *e)
1048{
1049	struct kern_memdesc *k, *prev = NULL;
1050	u64	contig_low=0, contig_high=0;
1051	u64	as, ae, lim;
1052	void *efi_map_start, *efi_map_end, *p, *q;
1053	efi_memory_desc_t *md, *pmd = NULL, *check_md;
1054	u64	efi_desc_size;
1055	unsigned long total_mem = 0;
1056
1057	k = kern_memmap = find_memmap_space();
1058
1059	efi_map_start = __va(ia64_boot_param->efi_memmap);
1060	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1061	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1062
1063	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1064		md = p;
1065		if (!efi_wb(md)) {
1066			if (efi_uc(md) &&
1067			    (md->type == EFI_CONVENTIONAL_MEMORY ||
1068			     md->type == EFI_BOOT_SERVICES_DATA)) {
1069				k->attribute = EFI_MEMORY_UC;
1070				k->start = md->phys_addr;
1071				k->num_pages = md->num_pages;
1072				k++;
1073			}
1074			continue;
1075		}
1076		if (pmd == NULL || !efi_wb(pmd) ||
1077		    efi_md_end(pmd) != md->phys_addr) {
1078			contig_low = GRANULEROUNDUP(md->phys_addr);
1079			contig_high = efi_md_end(md);
1080			for (q = p + efi_desc_size; q < efi_map_end;
1081			     q += efi_desc_size) {
1082				check_md = q;
1083				if (!efi_wb(check_md))
1084					break;
1085				if (contig_high != check_md->phys_addr)
1086					break;
1087				contig_high = efi_md_end(check_md);
1088			}
1089			contig_high = GRANULEROUNDDOWN(contig_high);
1090		}
1091		if (!is_memory_available(md))
1092			continue;
1093
1094		/*
1095		 * Round ends inward to granule boundaries
1096		 * Give trimmings to uncached allocator
1097		 */
1098		if (md->phys_addr < contig_low) {
1099			lim = min(efi_md_end(md), contig_low);
1100			if (efi_uc(md)) {
1101				if (k > kern_memmap &&
1102				    (k-1)->attribute == EFI_MEMORY_UC &&
1103				    kmd_end(k-1) == md->phys_addr) {
1104					(k-1)->num_pages +=
1105						(lim - md->phys_addr)
1106						>> EFI_PAGE_SHIFT;
1107				} else {
1108					k->attribute = EFI_MEMORY_UC;
1109					k->start = md->phys_addr;
1110					k->num_pages = (lim - md->phys_addr)
1111						>> EFI_PAGE_SHIFT;
1112					k++;
1113				}
1114			}
1115			as = contig_low;
1116		} else
1117			as = md->phys_addr;
1118
1119		if (efi_md_end(md) > contig_high) {
1120			lim = max(md->phys_addr, contig_high);
1121			if (efi_uc(md)) {
1122				if (lim == md->phys_addr && k > kern_memmap &&
1123				    (k-1)->attribute == EFI_MEMORY_UC &&
1124				    kmd_end(k-1) == md->phys_addr) {
1125					(k-1)->num_pages += md->num_pages;
1126				} else {
1127					k->attribute = EFI_MEMORY_UC;
1128					k->start = lim;
1129					k->num_pages = (efi_md_end(md) - lim)
1130						>> EFI_PAGE_SHIFT;
1131					k++;
1132				}
1133			}
1134			ae = contig_high;
1135		} else
1136			ae = efi_md_end(md);
1137
1138		/* keep within max_addr= and min_addr= command line arg */
1139		as = max(as, min_addr);
1140		ae = min(ae, max_addr);
1141		if (ae <= as)
1142			continue;
1143
1144		/* avoid going over mem= command line arg */
1145		if (total_mem + (ae - as) > mem_limit)
1146			ae -= total_mem + (ae - as) - mem_limit;
1147
1148		if (ae <= as)
1149			continue;
1150		if (prev && kmd_end(prev) == md->phys_addr) {
1151			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1152			total_mem += ae - as;
1153			continue;
1154		}
1155		k->attribute = EFI_MEMORY_WB;
1156		k->start = as;
1157		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1158		total_mem += ae - as;
1159		prev = k++;
1160	}
1161	k->start = ~0L; /* end-marker */
1162
1163	/* reserve the memory we are using for kern_memmap */
1164	*s = (u64)kern_memmap;
1165	*e = (u64)++k;
1166
1167	return total_mem;
1168}
1169
1170void
1171efi_initialize_iomem_resources(struct resource *code_resource,
1172			       struct resource *data_resource,
1173			       struct resource *bss_resource)
1174{
1175	struct resource *res;
1176	void *efi_map_start, *efi_map_end, *p;
1177	efi_memory_desc_t *md;
1178	u64 efi_desc_size;
1179	char *name;
1180	unsigned long flags, desc;
1181
1182	efi_map_start = __va(ia64_boot_param->efi_memmap);
1183	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1184	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1185
1186	res = NULL;
1187
1188	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1189		md = p;
1190
1191		if (md->num_pages == 0) /* should not happen */
1192			continue;
1193
1194		flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1195		desc = IORES_DESC_NONE;
1196
1197		switch (md->type) {
1198
1199			case EFI_MEMORY_MAPPED_IO:
1200			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1201				continue;
1202
1203			case EFI_LOADER_CODE:
1204			case EFI_LOADER_DATA:
1205			case EFI_BOOT_SERVICES_DATA:
1206			case EFI_BOOT_SERVICES_CODE:
1207			case EFI_CONVENTIONAL_MEMORY:
1208				if (md->attribute & EFI_MEMORY_WP) {
1209					name = "System ROM";
1210					flags |= IORESOURCE_READONLY;
1211				} else if (md->attribute == EFI_MEMORY_UC) {
1212					name = "Uncached RAM";
1213				} else {
1214					name = "System RAM";
1215					flags |= IORESOURCE_SYSRAM;
1216				}
1217				break;
1218
1219			case EFI_ACPI_MEMORY_NVS:
1220				name = "ACPI Non-volatile Storage";
1221				desc = IORES_DESC_ACPI_NV_STORAGE;
1222				break;
1223
1224			case EFI_UNUSABLE_MEMORY:
1225				name = "reserved";
1226				flags |= IORESOURCE_DISABLED;
1227				break;
1228
1229			case EFI_PERSISTENT_MEMORY:
1230				name = "Persistent Memory";
1231				desc = IORES_DESC_PERSISTENT_MEMORY;
1232				break;
1233
1234			case EFI_RESERVED_TYPE:
1235			case EFI_RUNTIME_SERVICES_CODE:
1236			case EFI_RUNTIME_SERVICES_DATA:
1237			case EFI_ACPI_RECLAIM_MEMORY:
1238			default:
1239				name = "reserved";
1240				break;
1241		}
1242
1243		if ((res = kzalloc(sizeof(struct resource),
1244				   GFP_KERNEL)) == NULL) {
1245			printk(KERN_ERR
1246			       "failed to allocate resource for iomem\n");
1247			return;
1248		}
1249
1250		res->name = name;
1251		res->start = md->phys_addr;
1252		res->end = md->phys_addr + efi_md_size(md) - 1;
1253		res->flags = flags;
1254		res->desc = desc;
1255
1256		if (insert_resource(&iomem_resource, res) < 0)
1257			kfree(res);
1258		else {
1259			/*
1260			 * We don't know which region contains
1261			 * kernel data so we try it repeatedly and
1262			 * let the resource manager test it.
1263			 */
1264			insert_resource(res, code_resource);
1265			insert_resource(res, data_resource);
1266			insert_resource(res, bss_resource);
1267#ifdef CONFIG_KEXEC
1268                        insert_resource(res, &efi_memmap_res);
1269                        insert_resource(res, &boot_param_res);
1270			if (crashk_res.end > crashk_res.start)
1271				insert_resource(res, &crashk_res);
1272#endif
1273		}
1274	}
1275}
1276
1277#ifdef CONFIG_KEXEC
1278/* find a block of memory aligned to 64M exclude reserved regions
1279   rsvd_regions are sorted
1280 */
1281unsigned long __init
1282kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1283{
1284	int i;
1285	u64 start, end;
1286	u64 alignment = 1UL << _PAGE_SIZE_64M;
1287	void *efi_map_start, *efi_map_end, *p;
1288	efi_memory_desc_t *md;
1289	u64 efi_desc_size;
1290
1291	efi_map_start = __va(ia64_boot_param->efi_memmap);
1292	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1293	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1294
1295	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1296		md = p;
1297		if (!efi_wb(md))
1298			continue;
1299		start = ALIGN(md->phys_addr, alignment);
1300		end = efi_md_end(md);
1301		for (i = 0; i < n; i++) {
1302			if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1303				if (__pa(r[i].start) > start + size)
1304					return start;
1305				start = ALIGN(__pa(r[i].end), alignment);
1306				if (i < n-1 &&
1307				    __pa(r[i+1].start) < start + size)
1308					continue;
1309				else
1310					break;
1311			}
1312		}
1313		if (end > start + size)
1314			return start;
1315	}
1316
1317	printk(KERN_WARNING
1318	       "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1319	return ~0UL;
1320}
1321#endif
1322
1323#ifdef CONFIG_CRASH_DUMP
1324/* locate the size find a the descriptor at a certain address */
1325unsigned long __init
1326vmcore_find_descriptor_size (unsigned long address)
1327{
1328	void *efi_map_start, *efi_map_end, *p;
1329	efi_memory_desc_t *md;
1330	u64 efi_desc_size;
1331	unsigned long ret = 0;
1332
1333	efi_map_start = __va(ia64_boot_param->efi_memmap);
1334	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1335	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1336
1337	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1338		md = p;
1339		if (efi_wb(md) && md->type == EFI_LOADER_DATA
1340		    && md->phys_addr == address) {
1341			ret = efi_md_size(md);
1342			break;
1343		}
1344	}
1345
1346	if (ret == 0)
1347		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1348
1349	return ret;
1350}
1351#endif
1352
1353char *efi_systab_show_arch(char *str)
1354{
1355	if (mps_phys != EFI_INVALID_TABLE_ADDR)
1356		str += sprintf(str, "MPS=0x%lx\n", mps_phys);
1357	if (hcdp_phys != EFI_INVALID_TABLE_ADDR)
1358		str += sprintf(str, "HCDP=0x%lx\n", hcdp_phys);
1359	return str;
1360}
1361