xref: /kernel/linux/linux-6.6/arch/hexagon/mm/init.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Memory subsystem initialization for Hexagon
4 *
5 * Copyright (c) 2010-2013, The Linux Foundation. All rights reserved.
6 */
7
8#include <linux/init.h>
9#include <linux/mm.h>
10#include <linux/memblock.h>
11#include <asm/atomic.h>
12#include <linux/highmem.h>
13#include <asm/tlb.h>
14#include <asm/sections.h>
15#include <asm/vm_mmu.h>
16
17/*
18 * Define a startpg just past the end of the kernel image and a lastpg
19 * that corresponds to the end of real or simulated platform memory.
20 */
21#define bootmem_startpg (PFN_UP(((unsigned long) _end) - PAGE_OFFSET + PHYS_OFFSET))
22
23unsigned long bootmem_lastpg;	/*  Should be set by platform code  */
24unsigned long __phys_offset;	/*  physical kernel offset >> 12  */
25
26/*  Set as variable to limit PMD copies  */
27int max_kernel_seg = 0x303;
28
29/*  indicate pfn's of high memory  */
30unsigned long highstart_pfn, highend_pfn;
31
32/* Default cache attribute for newly created page tables */
33unsigned long _dflt_cache_att = CACHEDEF;
34
35/*
36 * The current "generation" of kernel map, which should not roll
37 * over until Hell freezes over.  Actual bound in years needs to be
38 * calculated to confirm.
39 */
40DEFINE_SPINLOCK(kmap_gen_lock);
41
42/*  checkpatch says don't init this to 0.  */
43unsigned long long kmap_generation;
44
45/*
46 * mem_init - initializes memory
47 *
48 * Frees up bootmem
49 * Fixes up more stuff for HIGHMEM
50 * Calculates and displays memory available/used
51 */
52void __init mem_init(void)
53{
54	/*  No idea where this is actually declared.  Seems to evade LXR.  */
55	memblock_free_all();
56
57	/*
58	 *  To-Do:  someone somewhere should wipe out the bootmem map
59	 *  after we're done?
60	 */
61
62	/*
63	 * This can be moved to some more virtual-memory-specific
64	 * initialization hook at some point.  Set the init_mm
65	 * descriptors "context" value to point to the initial
66	 * kernel segment table's physical address.
67	 */
68	init_mm.context.ptbase = __pa(init_mm.pgd);
69}
70
71void sync_icache_dcache(pte_t pte)
72{
73	unsigned long addr;
74	struct page *page;
75
76	page = pte_page(pte);
77	addr = (unsigned long) page_address(page);
78
79	__vmcache_idsync(addr, PAGE_SIZE);
80}
81
82/*
83 * In order to set up page allocator "nodes",
84 * somebody has to call free_area_init() for UMA.
85 *
86 * In this mode, we only have one pg_data_t
87 * structure: contig_mem_data.
88 */
89void __init paging_init(void)
90{
91	unsigned long max_zone_pfn[MAX_NR_ZONES] = {0, };
92
93	/*
94	 *  This is not particularly well documented anywhere, but
95	 *  give ZONE_NORMAL all the memory, including the big holes
96	 *  left by the kernel+bootmem_map which are already left as reserved
97	 *  in the bootmem_map; free_area_init should see those bits and
98	 *  adjust accordingly.
99	 */
100
101	max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
102
103	free_area_init(max_zone_pfn);  /*  sets up the zonelists and mem_map  */
104
105	/*
106	 * Start of high memory area.  Will probably need something more
107	 * fancy if we...  get more fancy.
108	 */
109	high_memory = (void *)((bootmem_lastpg + 1) << PAGE_SHIFT);
110}
111
112#ifndef DMA_RESERVE
113#define DMA_RESERVE		(4)
114#endif
115
116#define DMA_CHUNKSIZE		(1<<22)
117#define DMA_RESERVED_BYTES	(DMA_RESERVE * DMA_CHUNKSIZE)
118
119/*
120 * Pick out the memory size.  We look for mem=size,
121 * where size is "size[KkMm]"
122 */
123static int __init early_mem(char *p)
124{
125	unsigned long size;
126	char *endp;
127
128	size = memparse(p, &endp);
129
130	bootmem_lastpg = PFN_DOWN(size);
131
132	return 0;
133}
134early_param("mem", early_mem);
135
136size_t hexagon_coherent_pool_size = (size_t) (DMA_RESERVE << 22);
137
138void __init setup_arch_memory(void)
139{
140	/*  XXX Todo: this probably should be cleaned up  */
141	u32 *segtable = (u32 *) &swapper_pg_dir[0];
142	u32 *segtable_end;
143
144	/*
145	 * Set up boot memory allocator
146	 *
147	 * The Gorman book also talks about these functions.
148	 * This needs to change for highmem setups.
149	 */
150
151	/*  Prior to this, bootmem_lastpg is actually mem size  */
152	bootmem_lastpg += ARCH_PFN_OFFSET;
153
154	/* Memory size needs to be a multiple of 16M */
155	bootmem_lastpg = PFN_DOWN((bootmem_lastpg << PAGE_SHIFT) &
156		~((BIG_KERNEL_PAGE_SIZE) - 1));
157
158	memblock_add(PHYS_OFFSET,
159		     (bootmem_lastpg - ARCH_PFN_OFFSET) << PAGE_SHIFT);
160
161	/* Reserve kernel text/data/bss */
162	memblock_reserve(PHYS_OFFSET,
163			 (bootmem_startpg - ARCH_PFN_OFFSET) << PAGE_SHIFT);
164	/*
165	 * Reserve the top DMA_RESERVE bytes of RAM for DMA (uncached)
166	 * memory allocation
167	 */
168	max_low_pfn = bootmem_lastpg - PFN_DOWN(DMA_RESERVED_BYTES);
169	min_low_pfn = ARCH_PFN_OFFSET;
170	memblock_reserve(PFN_PHYS(max_low_pfn), DMA_RESERVED_BYTES);
171
172	printk(KERN_INFO "bootmem_startpg:  0x%08lx\n", bootmem_startpg);
173	printk(KERN_INFO "bootmem_lastpg:  0x%08lx\n", bootmem_lastpg);
174	printk(KERN_INFO "min_low_pfn:  0x%08lx\n", min_low_pfn);
175	printk(KERN_INFO "max_low_pfn:  0x%08lx\n", max_low_pfn);
176
177	/*
178	 * The default VM page tables (will be) populated with
179	 * VA=PA+PAGE_OFFSET mapping.  We go in and invalidate entries
180	 * higher than what we have memory for.
181	 */
182
183	/*  this is pointer arithmetic; each entry covers 4MB  */
184	segtable = segtable + (PAGE_OFFSET >> 22);
185
186	/*  this actually only goes to the end of the first gig  */
187	segtable_end = segtable + (1<<(30-22));
188
189	/*
190	 * Move forward to the start of empty pages; take into account
191	 * phys_offset shift.
192	 */
193
194	segtable += (bootmem_lastpg-ARCH_PFN_OFFSET)>>(22-PAGE_SHIFT);
195	{
196		int i;
197
198		for (i = 1 ; i <= DMA_RESERVE ; i++)
199			segtable[-i] = ((segtable[-i] & __HVM_PTE_PGMASK_4MB)
200				| __HVM_PTE_R | __HVM_PTE_W | __HVM_PTE_X
201				| __HEXAGON_C_UNC << 6
202				| __HVM_PDE_S_4MB);
203	}
204
205	printk(KERN_INFO "clearing segtable from %p to %p\n", segtable,
206		segtable_end);
207	while (segtable < (segtable_end-8))
208		*(segtable++) = __HVM_PDE_S_INVALID;
209	/* stop the pointer at the device I/O 4MB page  */
210
211	printk(KERN_INFO "segtable = %p (should be equal to _K_io_map)\n",
212		segtable);
213
214#if 0
215	/*  Other half of the early device table from vm_init_segtable. */
216	printk(KERN_INFO "&_K_init_devicetable = 0x%08x\n",
217		(unsigned long) _K_init_devicetable-PAGE_OFFSET);
218	*segtable = ((u32) (unsigned long) _K_init_devicetable-PAGE_OFFSET) |
219		__HVM_PDE_S_4KB;
220	printk(KERN_INFO "*segtable = 0x%08x\n", *segtable);
221#endif
222
223	/*
224	 *  The bootmem allocator seemingly just lives to feed memory
225	 *  to the paging system
226	 */
227	printk(KERN_INFO "PAGE_SIZE=%lu\n", PAGE_SIZE);
228	paging_init();  /*  See Gorman Book, 2.3  */
229
230	/*
231	 *  At this point, the page allocator is kind of initialized, but
232	 *  apparently no pages are available (just like with the bootmem
233	 *  allocator), and need to be freed themselves via mem_init(),
234	 *  which is called by start_kernel() later on in the process
235	 */
236}
237
238static const pgprot_t protection_map[16] = {
239	[VM_NONE]					= __pgprot(_PAGE_PRESENT | _PAGE_USER |
240								   CACHEDEF),
241	[VM_READ]					= __pgprot(_PAGE_PRESENT | _PAGE_USER |
242								   _PAGE_READ | CACHEDEF),
243	[VM_WRITE]					= __pgprot(_PAGE_PRESENT | _PAGE_USER |
244								   CACHEDEF),
245	[VM_WRITE | VM_READ]				= __pgprot(_PAGE_PRESENT | _PAGE_USER |
246								   _PAGE_READ | CACHEDEF),
247	[VM_EXEC]					= __pgprot(_PAGE_PRESENT | _PAGE_USER |
248								   _PAGE_EXECUTE | CACHEDEF),
249	[VM_EXEC | VM_READ]				= __pgprot(_PAGE_PRESENT | _PAGE_USER |
250								   _PAGE_EXECUTE | _PAGE_READ |
251								   CACHEDEF),
252	[VM_EXEC | VM_WRITE]				= __pgprot(_PAGE_PRESENT | _PAGE_USER |
253								   _PAGE_EXECUTE | CACHEDEF),
254	[VM_EXEC | VM_WRITE | VM_READ]			= __pgprot(_PAGE_PRESENT | _PAGE_USER |
255								   _PAGE_EXECUTE | _PAGE_READ |
256								   CACHEDEF),
257	[VM_SHARED]                                     = __pgprot(_PAGE_PRESENT | _PAGE_USER |
258								   CACHEDEF),
259	[VM_SHARED | VM_READ]				= __pgprot(_PAGE_PRESENT | _PAGE_USER |
260								   _PAGE_READ | CACHEDEF),
261	[VM_SHARED | VM_WRITE]				= __pgprot(_PAGE_PRESENT | _PAGE_USER |
262								   _PAGE_WRITE | CACHEDEF),
263	[VM_SHARED | VM_WRITE | VM_READ]		= __pgprot(_PAGE_PRESENT | _PAGE_USER |
264								   _PAGE_READ | _PAGE_WRITE |
265								   CACHEDEF),
266	[VM_SHARED | VM_EXEC]				= __pgprot(_PAGE_PRESENT | _PAGE_USER |
267								   _PAGE_EXECUTE | CACHEDEF),
268	[VM_SHARED | VM_EXEC | VM_READ]			= __pgprot(_PAGE_PRESENT | _PAGE_USER |
269								   _PAGE_EXECUTE | _PAGE_READ |
270								   CACHEDEF),
271	[VM_SHARED | VM_EXEC | VM_WRITE]		= __pgprot(_PAGE_PRESENT | _PAGE_USER |
272								   _PAGE_EXECUTE | _PAGE_WRITE |
273								   CACHEDEF),
274	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= __pgprot(_PAGE_PRESENT | _PAGE_USER |
275								   _PAGE_READ | _PAGE_EXECUTE |
276								   _PAGE_WRITE | CACHEDEF)
277};
278DECLARE_VM_GET_PAGE_PROT
279