xref: /kernel/linux/linux-6.6/arch/arm64/mm/init.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Based on arch/arm/mm/init.c
4 *
5 * Copyright (C) 1995-2005 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9#include <linux/kernel.h>
10#include <linux/export.h>
11#include <linux/errno.h>
12#include <linux/swap.h>
13#include <linux/init.h>
14#include <linux/cache.h>
15#include <linux/mman.h>
16#include <linux/nodemask.h>
17#include <linux/initrd.h>
18#include <linux/gfp.h>
19#include <linux/memblock.h>
20#include <linux/sort.h>
21#include <linux/of.h>
22#include <linux/of_fdt.h>
23#include <linux/dma-direct.h>
24#include <linux/dma-map-ops.h>
25#include <linux/efi.h>
26#include <linux/swiotlb.h>
27#include <linux/vmalloc.h>
28#include <linux/mm.h>
29#include <linux/kexec.h>
30#include <linux/crash_dump.h>
31#include <linux/hugetlb.h>
32#include <linux/acpi_iort.h>
33#include <linux/kmemleak.h>
34
35#include <asm/boot.h>
36#include <asm/fixmap.h>
37#include <asm/kasan.h>
38#include <asm/kernel-pgtable.h>
39#include <asm/kvm_host.h>
40#include <asm/memory.h>
41#include <asm/numa.h>
42#include <asm/sections.h>
43#include <asm/setup.h>
44#include <linux/sizes.h>
45#include <asm/tlb.h>
46#include <asm/alternative.h>
47#include <asm/xen/swiotlb-xen.h>
48
49/*
50 * We need to be able to catch inadvertent references to memstart_addr
51 * that occur (potentially in generic code) before arm64_memblock_init()
52 * executes, which assigns it its actual value. So use a default value
53 * that cannot be mistaken for a real physical address.
54 */
55s64 memstart_addr __ro_after_init = -1;
56EXPORT_SYMBOL(memstart_addr);
57
58/*
59 * If the corresponding config options are enabled, we create both ZONE_DMA
60 * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
61 * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
62 * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
63 * otherwise it is empty.
64 */
65phys_addr_t __ro_after_init arm64_dma_phys_limit;
66
67/* Current arm64 boot protocol requires 2MB alignment */
68#define CRASH_ALIGN			SZ_2M
69
70#define CRASH_ADDR_LOW_MAX		arm64_dma_phys_limit
71#define CRASH_ADDR_HIGH_MAX		(PHYS_MASK + 1)
72#define CRASH_HIGH_SEARCH_BASE		SZ_4G
73
74#define DEFAULT_CRASH_KERNEL_LOW_SIZE	(128UL << 20)
75
76/*
77 * To make optimal use of block mappings when laying out the linear
78 * mapping, round down the base of physical memory to a size that can
79 * be mapped efficiently, i.e., either PUD_SIZE (4k granule) or PMD_SIZE
80 * (64k granule), or a multiple that can be mapped using contiguous bits
81 * in the page tables: 32 * PMD_SIZE (16k granule)
82 */
83#if defined(CONFIG_ARM64_4K_PAGES)
84#define ARM64_MEMSTART_SHIFT		PUD_SHIFT
85#elif defined(CONFIG_ARM64_16K_PAGES)
86#define ARM64_MEMSTART_SHIFT		CONT_PMD_SHIFT
87#else
88#define ARM64_MEMSTART_SHIFT		PMD_SHIFT
89#endif
90
91/*
92 * sparsemem vmemmap imposes an additional requirement on the alignment of
93 * memstart_addr, due to the fact that the base of the vmemmap region
94 * has a direct correspondence, and needs to appear sufficiently aligned
95 * in the virtual address space.
96 */
97#if ARM64_MEMSTART_SHIFT < SECTION_SIZE_BITS
98#define ARM64_MEMSTART_ALIGN	(1UL << SECTION_SIZE_BITS)
99#else
100#define ARM64_MEMSTART_ALIGN	(1UL << ARM64_MEMSTART_SHIFT)
101#endif
102
103static int __init reserve_crashkernel_low(unsigned long long low_size)
104{
105	unsigned long long low_base;
106
107	low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
108	if (!low_base) {
109		pr_err("cannot allocate crashkernel low memory (size:0x%llx).\n", low_size);
110		return -ENOMEM;
111	}
112
113	pr_info("crashkernel low memory reserved: 0x%08llx - 0x%08llx (%lld MB)\n",
114		low_base, low_base + low_size, low_size >> 20);
115
116	crashk_low_res.start = low_base;
117	crashk_low_res.end   = low_base + low_size - 1;
118	insert_resource(&iomem_resource, &crashk_low_res);
119
120	return 0;
121}
122
123/*
124 * reserve_crashkernel() - reserves memory for crash kernel
125 *
126 * This function reserves memory area given in "crashkernel=" kernel command
127 * line parameter. The memory reserved is used by dump capture kernel when
128 * primary kernel is crashing.
129 */
130static void __init reserve_crashkernel(void)
131{
132	unsigned long long crash_low_size = 0, search_base = 0;
133	unsigned long long crash_max = CRASH_ADDR_LOW_MAX;
134	unsigned long long crash_base, crash_size;
135	char *cmdline = boot_command_line;
136	bool fixed_base = false;
137	bool high = false;
138	int ret;
139
140	if (!IS_ENABLED(CONFIG_KEXEC_CORE))
141		return;
142
143	/* crashkernel=X[@offset] */
144	ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
145				&crash_size, &crash_base);
146	if (ret == -ENOENT) {
147		ret = parse_crashkernel_high(cmdline, 0, &crash_size, &crash_base);
148		if (ret || !crash_size)
149			return;
150
151		/*
152		 * crashkernel=Y,low can be specified or not, but invalid value
153		 * is not allowed.
154		 */
155		ret = parse_crashkernel_low(cmdline, 0, &crash_low_size, &crash_base);
156		if (ret == -ENOENT)
157			crash_low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE;
158		else if (ret)
159			return;
160
161		search_base = CRASH_HIGH_SEARCH_BASE;
162		crash_max = CRASH_ADDR_HIGH_MAX;
163		high = true;
164	} else if (ret || !crash_size) {
165		/* The specified value is invalid */
166		return;
167	}
168
169	crash_size = PAGE_ALIGN(crash_size);
170
171	/* User specifies base address explicitly. */
172	if (crash_base) {
173		fixed_base = true;
174		search_base = crash_base;
175		crash_max = crash_base + crash_size;
176	}
177
178retry:
179	crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
180					       search_base, crash_max);
181	if (!crash_base) {
182		/*
183		 * For crashkernel=size[KMG]@offset[KMG], print out failure
184		 * message if can't reserve the specified region.
185		 */
186		if (fixed_base) {
187			pr_warn("crashkernel reservation failed - memory is in use.\n");
188			return;
189		}
190
191		/*
192		 * For crashkernel=size[KMG], if the first attempt was for
193		 * low memory, fall back to high memory, the minimum required
194		 * low memory will be reserved later.
195		 */
196		if (!high && crash_max == CRASH_ADDR_LOW_MAX) {
197			crash_max = CRASH_ADDR_HIGH_MAX;
198			search_base = CRASH_ADDR_LOW_MAX;
199			crash_low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE;
200			goto retry;
201		}
202
203		/*
204		 * For crashkernel=size[KMG],high, if the first attempt was
205		 * for high memory, fall back to low memory.
206		 */
207		if (high && crash_max == CRASH_ADDR_HIGH_MAX) {
208			crash_max = CRASH_ADDR_LOW_MAX;
209			search_base = 0;
210			goto retry;
211		}
212		pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
213			crash_size);
214		return;
215	}
216
217	if ((crash_base >= CRASH_ADDR_LOW_MAX) && crash_low_size &&
218	     reserve_crashkernel_low(crash_low_size)) {
219		memblock_phys_free(crash_base, crash_size);
220		return;
221	}
222
223	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
224		crash_base, crash_base + crash_size, crash_size >> 20);
225
226	/*
227	 * The crashkernel memory will be removed from the kernel linear
228	 * map. Inform kmemleak so that it won't try to access it.
229	 */
230	kmemleak_ignore_phys(crash_base);
231	if (crashk_low_res.end)
232		kmemleak_ignore_phys(crashk_low_res.start);
233
234	crashk_res.start = crash_base;
235	crashk_res.end = crash_base + crash_size - 1;
236	insert_resource(&iomem_resource, &crashk_res);
237}
238
239/*
240 * Return the maximum physical address for a zone accessible by the given bits
241 * limit. If DRAM starts above 32-bit, expand the zone to the maximum
242 * available memory, otherwise cap it at 32-bit.
243 */
244static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
245{
246	phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits);
247	phys_addr_t phys_start = memblock_start_of_DRAM();
248
249	if (phys_start > U32_MAX)
250		zone_mask = PHYS_ADDR_MAX;
251	else if (phys_start > zone_mask)
252		zone_mask = U32_MAX;
253
254	return min(zone_mask, memblock_end_of_DRAM() - 1) + 1;
255}
256
257static void __init zone_sizes_init(void)
258{
259	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
260	unsigned int __maybe_unused acpi_zone_dma_bits;
261	unsigned int __maybe_unused dt_zone_dma_bits;
262	phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32);
263
264#ifdef CONFIG_ZONE_DMA
265	acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address());
266	dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL));
267	zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits);
268	arm64_dma_phys_limit = max_zone_phys(zone_dma_bits);
269	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
270#endif
271#ifdef CONFIG_ZONE_DMA32
272	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
273	if (!arm64_dma_phys_limit)
274		arm64_dma_phys_limit = dma32_phys_limit;
275#endif
276	if (!arm64_dma_phys_limit)
277		arm64_dma_phys_limit = PHYS_MASK + 1;
278	max_zone_pfns[ZONE_NORMAL] = max_pfn;
279
280	free_area_init(max_zone_pfns);
281}
282
283int pfn_is_map_memory(unsigned long pfn)
284{
285	phys_addr_t addr = PFN_PHYS(pfn);
286
287	/* avoid false positives for bogus PFNs, see comment in pfn_valid() */
288	if (PHYS_PFN(addr) != pfn)
289		return 0;
290
291	return memblock_is_map_memory(addr);
292}
293EXPORT_SYMBOL(pfn_is_map_memory);
294
295static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX;
296
297/*
298 * Limit the memory size that was specified via FDT.
299 */
300static int __init early_mem(char *p)
301{
302	if (!p)
303		return 1;
304
305	memory_limit = memparse(p, &p) & PAGE_MASK;
306	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
307
308	return 0;
309}
310early_param("mem", early_mem);
311
312void __init arm64_memblock_init(void)
313{
314	s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
315
316	/*
317	 * Corner case: 52-bit VA capable systems running KVM in nVHE mode may
318	 * be limited in their ability to support a linear map that exceeds 51
319	 * bits of VA space, depending on the placement of the ID map. Given
320	 * that the placement of the ID map may be randomized, let's simply
321	 * limit the kernel's linear map to 51 bits as well if we detect this
322	 * configuration.
323	 */
324	if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
325	    is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
326		pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
327		linear_region_size = min_t(u64, linear_region_size, BIT(51));
328	}
329
330	/* Remove memory above our supported physical address size */
331	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
332
333	/*
334	 * Select a suitable value for the base of physical memory.
335	 */
336	memstart_addr = round_down(memblock_start_of_DRAM(),
337				   ARM64_MEMSTART_ALIGN);
338
339	if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
340		pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
341
342	/*
343	 * Remove the memory that we will not be able to cover with the
344	 * linear mapping. Take care not to clip the kernel which may be
345	 * high in memory.
346	 */
347	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
348			__pa_symbol(_end)), ULLONG_MAX);
349	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
350		/* ensure that memstart_addr remains sufficiently aligned */
351		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
352					 ARM64_MEMSTART_ALIGN);
353		memblock_remove(0, memstart_addr);
354	}
355
356	/*
357	 * If we are running with a 52-bit kernel VA config on a system that
358	 * does not support it, we have to place the available physical
359	 * memory in the 48-bit addressable part of the linear region, i.e.,
360	 * we have to move it upward. Since memstart_addr represents the
361	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
362	 */
363	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
364		memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52);
365
366	/*
367	 * Apply the memory limit if it was set. Since the kernel may be loaded
368	 * high up in memory, add back the kernel region that must be accessible
369	 * via the linear mapping.
370	 */
371	if (memory_limit != PHYS_ADDR_MAX) {
372		memblock_mem_limit_remove_map(memory_limit);
373		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
374	}
375
376	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
377		/*
378		 * Add back the memory we just removed if it results in the
379		 * initrd to become inaccessible via the linear mapping.
380		 * Otherwise, this is a no-op
381		 */
382		u64 base = phys_initrd_start & PAGE_MASK;
383		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
384
385		/*
386		 * We can only add back the initrd memory if we don't end up
387		 * with more memory than we can address via the linear mapping.
388		 * It is up to the bootloader to position the kernel and the
389		 * initrd reasonably close to each other (i.e., within 32 GB of
390		 * each other) so that all granule/#levels combinations can
391		 * always access both.
392		 */
393		if (WARN(base < memblock_start_of_DRAM() ||
394			 base + size > memblock_start_of_DRAM() +
395				       linear_region_size,
396			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
397			phys_initrd_size = 0;
398		} else {
399			memblock_add(base, size);
400			memblock_clear_nomap(base, size);
401			memblock_reserve(base, size);
402		}
403	}
404
405	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
406		extern u16 memstart_offset_seed;
407		u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
408		int parange = cpuid_feature_extract_unsigned_field(
409					mmfr0, ID_AA64MMFR0_EL1_PARANGE_SHIFT);
410		s64 range = linear_region_size -
411			    BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
412
413		/*
414		 * If the size of the linear region exceeds, by a sufficient
415		 * margin, the size of the region that the physical memory can
416		 * span, randomize the linear region as well.
417		 */
418		if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
419			range /= ARM64_MEMSTART_ALIGN;
420			memstart_addr -= ARM64_MEMSTART_ALIGN *
421					 ((range * memstart_offset_seed) >> 16);
422		}
423	}
424
425	/*
426	 * Register the kernel text, kernel data, initrd, and initial
427	 * pagetables with memblock.
428	 */
429	memblock_reserve(__pa_symbol(_stext), _end - _stext);
430	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
431		/* the generic initrd code expects virtual addresses */
432		initrd_start = __phys_to_virt(phys_initrd_start);
433		initrd_end = initrd_start + phys_initrd_size;
434	}
435
436	early_init_fdt_scan_reserved_mem();
437
438	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
439}
440
441void __init bootmem_init(void)
442{
443	unsigned long min, max;
444
445	min = PFN_UP(memblock_start_of_DRAM());
446	max = PFN_DOWN(memblock_end_of_DRAM());
447
448	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
449
450	max_pfn = max_low_pfn = max;
451	min_low_pfn = min;
452
453	arch_numa_init();
454
455	/*
456	 * must be done after arch_numa_init() which calls numa_init() to
457	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
458	 * while allocating required CMA size across online nodes.
459	 */
460#if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
461	arm64_hugetlb_cma_reserve();
462#endif
463
464	kvm_hyp_reserve();
465
466	/*
467	 * sparse_init() tries to allocate memory from memblock, so must be
468	 * done after the fixed reservations
469	 */
470	sparse_init();
471	zone_sizes_init();
472
473	/*
474	 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
475	 */
476	dma_contiguous_reserve(arm64_dma_phys_limit);
477
478	/*
479	 * request_standard_resources() depends on crashkernel's memory being
480	 * reserved, so do it here.
481	 */
482	reserve_crashkernel();
483
484	memblock_dump_all();
485}
486
487/*
488 * mem_init() marks the free areas in the mem_map and tells us how much memory
489 * is free.  This is done after various parts of the system have claimed their
490 * memory after the kernel image.
491 */
492void __init mem_init(void)
493{
494	bool swiotlb = max_pfn > PFN_DOWN(arm64_dma_phys_limit);
495
496	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC))
497		swiotlb = true;
498
499	swiotlb_init(swiotlb, SWIOTLB_VERBOSE);
500
501	/* this will put all unused low memory onto the freelists */
502	memblock_free_all();
503
504	/*
505	 * Check boundaries twice: Some fundamental inconsistencies can be
506	 * detected at build time already.
507	 */
508#ifdef CONFIG_COMPAT
509	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
510#endif
511
512	/*
513	 * Selected page table levels should match when derived from
514	 * scratch using the virtual address range and page size.
515	 */
516	BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
517		     CONFIG_PGTABLE_LEVELS);
518
519	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
520		extern int sysctl_overcommit_memory;
521		/*
522		 * On a machine this small we won't get anywhere without
523		 * overcommit, so turn it on by default.
524		 */
525		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
526	}
527}
528
529void free_initmem(void)
530{
531	free_reserved_area(lm_alias(__init_begin),
532			   lm_alias(__init_end),
533			   POISON_FREE_INITMEM, "unused kernel");
534	/*
535	 * Unmap the __init region but leave the VM area in place. This
536	 * prevents the region from being reused for kernel modules, which
537	 * is not supported by kallsyms.
538	 */
539	vunmap_range((u64)__init_begin, (u64)__init_end);
540}
541
542void dump_mem_limit(void)
543{
544	if (memory_limit != PHYS_ADDR_MAX) {
545		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
546	} else {
547		pr_emerg("Memory Limit: none\n");
548	}
549}
550