xref: /kernel/linux/linux-6.6/arch/arm64/mm/fault.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Based on arch/arm/mm/fault.c
4 *
5 * Copyright (C) 1995  Linus Torvalds
6 * Copyright (C) 1995-2004 Russell King
7 * Copyright (C) 2012 ARM Ltd.
8 */
9
10#include <linux/acpi.h>
11#include <linux/bitfield.h>
12#include <linux/extable.h>
13#include <linux/kfence.h>
14#include <linux/signal.h>
15#include <linux/mm.h>
16#include <linux/hardirq.h>
17#include <linux/init.h>
18#include <linux/kasan.h>
19#include <linux/kprobes.h>
20#include <linux/uaccess.h>
21#include <linux/page-flags.h>
22#include <linux/sched/signal.h>
23#include <linux/sched/debug.h>
24#include <linux/highmem.h>
25#include <linux/perf_event.h>
26#include <linux/preempt.h>
27#include <linux/hugetlb.h>
28
29#include <asm/acpi.h>
30#include <asm/bug.h>
31#include <asm/cmpxchg.h>
32#include <asm/cpufeature.h>
33#include <asm/efi.h>
34#include <asm/exception.h>
35#include <asm/daifflags.h>
36#include <asm/debug-monitors.h>
37#include <asm/esr.h>
38#include <asm/kprobes.h>
39#include <asm/mte.h>
40#include <asm/processor.h>
41#include <asm/sysreg.h>
42#include <asm/system_misc.h>
43#include <asm/tlbflush.h>
44#include <asm/traps.h>
45
46struct fault_info {
47	int	(*fn)(unsigned long far, unsigned long esr,
48		      struct pt_regs *regs);
49	int	sig;
50	int	code;
51	const char *name;
52};
53
54static const struct fault_info fault_info[];
55static struct fault_info debug_fault_info[];
56
57static inline const struct fault_info *esr_to_fault_info(unsigned long esr)
58{
59	return fault_info + (esr & ESR_ELx_FSC);
60}
61
62static inline const struct fault_info *esr_to_debug_fault_info(unsigned long esr)
63{
64	return debug_fault_info + DBG_ESR_EVT(esr);
65}
66
67static void data_abort_decode(unsigned long esr)
68{
69	unsigned long iss2 = ESR_ELx_ISS2(esr);
70
71	pr_alert("Data abort info:\n");
72
73	if (esr & ESR_ELx_ISV) {
74		pr_alert("  Access size = %u byte(s)\n",
75			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
76		pr_alert("  SSE = %lu, SRT = %lu\n",
77			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
78			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
79		pr_alert("  SF = %lu, AR = %lu\n",
80			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
81			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
82	} else {
83		pr_alert("  ISV = 0, ISS = 0x%08lx, ISS2 = 0x%08lx\n",
84			 esr & ESR_ELx_ISS_MASK, iss2);
85	}
86
87	pr_alert("  CM = %lu, WnR = %lu, TnD = %lu, TagAccess = %lu\n",
88		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
89		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT,
90		 (iss2 & ESR_ELx_TnD) >> ESR_ELx_TnD_SHIFT,
91		 (iss2 & ESR_ELx_TagAccess) >> ESR_ELx_TagAccess_SHIFT);
92
93	pr_alert("  GCS = %ld, Overlay = %lu, DirtyBit = %lu, Xs = %llu\n",
94		 (iss2 & ESR_ELx_GCS) >> ESR_ELx_GCS_SHIFT,
95		 (iss2 & ESR_ELx_Overlay) >> ESR_ELx_Overlay_SHIFT,
96		 (iss2 & ESR_ELx_DirtyBit) >> ESR_ELx_DirtyBit_SHIFT,
97		 (iss2 & ESR_ELx_Xs_MASK) >> ESR_ELx_Xs_SHIFT);
98}
99
100static void mem_abort_decode(unsigned long esr)
101{
102	pr_alert("Mem abort info:\n");
103
104	pr_alert("  ESR = 0x%016lx\n", esr);
105	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
106		 ESR_ELx_EC(esr), esr_get_class_string(esr),
107		 (esr & ESR_ELx_IL) ? 32 : 16);
108	pr_alert("  SET = %lu, FnV = %lu\n",
109		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
110		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
111	pr_alert("  EA = %lu, S1PTW = %lu\n",
112		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
113		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
114	pr_alert("  FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC),
115		 esr_to_fault_info(esr)->name);
116
117	if (esr_is_data_abort(esr))
118		data_abort_decode(esr);
119}
120
121static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
122{
123	/* Either init_pg_dir or swapper_pg_dir */
124	if (mm == &init_mm)
125		return __pa_symbol(mm->pgd);
126
127	return (unsigned long)virt_to_phys(mm->pgd);
128}
129
130/*
131 * Dump out the page tables associated with 'addr' in the currently active mm.
132 */
133static void show_pte(unsigned long addr)
134{
135	struct mm_struct *mm;
136	pgd_t *pgdp;
137	pgd_t pgd;
138
139	if (is_ttbr0_addr(addr)) {
140		/* TTBR0 */
141		mm = current->active_mm;
142		if (mm == &init_mm) {
143			pr_alert("[%016lx] user address but active_mm is swapper\n",
144				 addr);
145			return;
146		}
147	} else if (is_ttbr1_addr(addr)) {
148		/* TTBR1 */
149		mm = &init_mm;
150	} else {
151		pr_alert("[%016lx] address between user and kernel address ranges\n",
152			 addr);
153		return;
154	}
155
156	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
157		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
158		 vabits_actual, mm_to_pgd_phys(mm));
159	pgdp = pgd_offset(mm, addr);
160	pgd = READ_ONCE(*pgdp);
161	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
162
163	do {
164		p4d_t *p4dp, p4d;
165		pud_t *pudp, pud;
166		pmd_t *pmdp, pmd;
167		pte_t *ptep, pte;
168
169		if (pgd_none(pgd) || pgd_bad(pgd))
170			break;
171
172		p4dp = p4d_offset(pgdp, addr);
173		p4d = READ_ONCE(*p4dp);
174		pr_cont(", p4d=%016llx", p4d_val(p4d));
175		if (p4d_none(p4d) || p4d_bad(p4d))
176			break;
177
178		pudp = pud_offset(p4dp, addr);
179		pud = READ_ONCE(*pudp);
180		pr_cont(", pud=%016llx", pud_val(pud));
181		if (pud_none(pud) || pud_bad(pud))
182			break;
183
184		pmdp = pmd_offset(pudp, addr);
185		pmd = READ_ONCE(*pmdp);
186		pr_cont(", pmd=%016llx", pmd_val(pmd));
187		if (pmd_none(pmd) || pmd_bad(pmd))
188			break;
189
190		ptep = pte_offset_map(pmdp, addr);
191		if (!ptep)
192			break;
193
194		pte = READ_ONCE(*ptep);
195		pr_cont(", pte=%016llx", pte_val(pte));
196		pte_unmap(ptep);
197	} while(0);
198
199	pr_cont("\n");
200}
201
202/*
203 * This function sets the access flags (dirty, accessed), as well as write
204 * permission, and only to a more permissive setting.
205 *
206 * It needs to cope with hardware update of the accessed/dirty state by other
207 * agents in the system and can safely skip the __sync_icache_dcache() call as,
208 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
209 *
210 * Returns whether or not the PTE actually changed.
211 */
212int ptep_set_access_flags(struct vm_area_struct *vma,
213			  unsigned long address, pte_t *ptep,
214			  pte_t entry, int dirty)
215{
216	pteval_t old_pteval, pteval;
217	pte_t pte = READ_ONCE(*ptep);
218
219	if (pte_same(pte, entry))
220		return 0;
221
222	/* only preserve the access flags and write permission */
223	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
224
225	/*
226	 * Setting the flags must be done atomically to avoid racing with the
227	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
228	 * be set to the most permissive (lowest value) of *ptep and entry
229	 * (calculated as: a & b == ~(~a | ~b)).
230	 */
231	pte_val(entry) ^= PTE_RDONLY;
232	pteval = pte_val(pte);
233	do {
234		old_pteval = pteval;
235		pteval ^= PTE_RDONLY;
236		pteval |= pte_val(entry);
237		pteval ^= PTE_RDONLY;
238		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
239	} while (pteval != old_pteval);
240
241	/* Invalidate a stale read-only entry */
242	if (dirty)
243		flush_tlb_page(vma, address);
244	return 1;
245}
246
247static bool is_el1_instruction_abort(unsigned long esr)
248{
249	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
250}
251
252static bool is_el1_data_abort(unsigned long esr)
253{
254	return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
255}
256
257static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr,
258					   struct pt_regs *regs)
259{
260	unsigned long fsc_type = esr & ESR_ELx_FSC_TYPE;
261
262	if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
263		return false;
264
265	if (fsc_type == ESR_ELx_FSC_PERM)
266		return true;
267
268	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
269		return fsc_type == ESR_ELx_FSC_FAULT &&
270			(regs->pstate & PSR_PAN_BIT);
271
272	return false;
273}
274
275static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
276							unsigned long esr,
277							struct pt_regs *regs)
278{
279	unsigned long flags;
280	u64 par, dfsc;
281
282	if (!is_el1_data_abort(esr) ||
283	    (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
284		return false;
285
286	local_irq_save(flags);
287	asm volatile("at s1e1r, %0" :: "r" (addr));
288	isb();
289	par = read_sysreg_par();
290	local_irq_restore(flags);
291
292	/*
293	 * If we now have a valid translation, treat the translation fault as
294	 * spurious.
295	 */
296	if (!(par & SYS_PAR_EL1_F))
297		return true;
298
299	/*
300	 * If we got a different type of fault from the AT instruction,
301	 * treat the translation fault as spurious.
302	 */
303	dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
304	return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
305}
306
307static void die_kernel_fault(const char *msg, unsigned long addr,
308			     unsigned long esr, struct pt_regs *regs)
309{
310	bust_spinlocks(1);
311
312	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
313		 addr);
314
315	kasan_non_canonical_hook(addr);
316
317	mem_abort_decode(esr);
318
319	show_pte(addr);
320	die("Oops", regs, esr);
321	bust_spinlocks(0);
322	make_task_dead(SIGKILL);
323}
324
325#ifdef CONFIG_KASAN_HW_TAGS
326static void report_tag_fault(unsigned long addr, unsigned long esr,
327			     struct pt_regs *regs)
328{
329	/*
330	 * SAS bits aren't set for all faults reported in EL1, so we can't
331	 * find out access size.
332	 */
333	bool is_write = !!(esr & ESR_ELx_WNR);
334	kasan_report((void *)addr, 0, is_write, regs->pc);
335}
336#else
337/* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
338static inline void report_tag_fault(unsigned long addr, unsigned long esr,
339				    struct pt_regs *regs) { }
340#endif
341
342static void do_tag_recovery(unsigned long addr, unsigned long esr,
343			   struct pt_regs *regs)
344{
345
346	report_tag_fault(addr, esr, regs);
347
348	/*
349	 * Disable MTE Tag Checking on the local CPU for the current EL.
350	 * It will be done lazily on the other CPUs when they will hit a
351	 * tag fault.
352	 */
353	sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
354			 SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE));
355	isb();
356}
357
358static bool is_el1_mte_sync_tag_check_fault(unsigned long esr)
359{
360	unsigned long fsc = esr & ESR_ELx_FSC;
361
362	if (!is_el1_data_abort(esr))
363		return false;
364
365	if (fsc == ESR_ELx_FSC_MTE)
366		return true;
367
368	return false;
369}
370
371static bool is_translation_fault(unsigned long esr)
372{
373	return (esr & ESR_ELx_FSC_TYPE) == ESR_ELx_FSC_FAULT;
374}
375
376static void __do_kernel_fault(unsigned long addr, unsigned long esr,
377			      struct pt_regs *regs)
378{
379	const char *msg;
380
381	/*
382	 * Are we prepared to handle this kernel fault?
383	 * We are almost certainly not prepared to handle instruction faults.
384	 */
385	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
386		return;
387
388	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
389	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
390		return;
391
392	if (is_el1_mte_sync_tag_check_fault(esr)) {
393		do_tag_recovery(addr, esr, regs);
394
395		return;
396	}
397
398	if (is_el1_permission_fault(addr, esr, regs)) {
399		if (esr & ESR_ELx_WNR)
400			msg = "write to read-only memory";
401		else if (is_el1_instruction_abort(esr))
402			msg = "execute from non-executable memory";
403		else
404			msg = "read from unreadable memory";
405	} else if (addr < PAGE_SIZE) {
406		msg = "NULL pointer dereference";
407	} else {
408		if (is_translation_fault(esr) &&
409		    kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
410			return;
411
412		msg = "paging request";
413	}
414
415	if (efi_runtime_fixup_exception(regs, msg))
416		return;
417
418	die_kernel_fault(msg, addr, esr, regs);
419}
420
421static void set_thread_esr(unsigned long address, unsigned long esr)
422{
423	current->thread.fault_address = address;
424
425	/*
426	 * If the faulting address is in the kernel, we must sanitize the ESR.
427	 * From userspace's point of view, kernel-only mappings don't exist
428	 * at all, so we report them as level 0 translation faults.
429	 * (This is not quite the way that "no mapping there at all" behaves:
430	 * an alignment fault not caused by the memory type would take
431	 * precedence over translation fault for a real access to empty
432	 * space. Unfortunately we can't easily distinguish "alignment fault
433	 * not caused by memory type" from "alignment fault caused by memory
434	 * type", so we ignore this wrinkle and just return the translation
435	 * fault.)
436	 */
437	if (!is_ttbr0_addr(current->thread.fault_address)) {
438		switch (ESR_ELx_EC(esr)) {
439		case ESR_ELx_EC_DABT_LOW:
440			/*
441			 * These bits provide only information about the
442			 * faulting instruction, which userspace knows already.
443			 * We explicitly clear bits which are architecturally
444			 * RES0 in case they are given meanings in future.
445			 * We always report the ESR as if the fault was taken
446			 * to EL1 and so ISV and the bits in ISS[23:14] are
447			 * clear. (In fact it always will be a fault to EL1.)
448			 */
449			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
450				ESR_ELx_CM | ESR_ELx_WNR;
451			esr |= ESR_ELx_FSC_FAULT;
452			break;
453		case ESR_ELx_EC_IABT_LOW:
454			/*
455			 * Claim a level 0 translation fault.
456			 * All other bits are architecturally RES0 for faults
457			 * reported with that DFSC value, so we clear them.
458			 */
459			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
460			esr |= ESR_ELx_FSC_FAULT;
461			break;
462		default:
463			/*
464			 * This should never happen (entry.S only brings us
465			 * into this code for insn and data aborts from a lower
466			 * exception level). Fail safe by not providing an ESR
467			 * context record at all.
468			 */
469			WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr);
470			esr = 0;
471			break;
472		}
473	}
474
475	current->thread.fault_code = esr;
476}
477
478static void do_bad_area(unsigned long far, unsigned long esr,
479			struct pt_regs *regs)
480{
481	unsigned long addr = untagged_addr(far);
482
483	/*
484	 * If we are in kernel mode at this point, we have no context to
485	 * handle this fault with.
486	 */
487	if (user_mode(regs)) {
488		const struct fault_info *inf = esr_to_fault_info(esr);
489
490		set_thread_esr(addr, esr);
491		arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
492	} else {
493		__do_kernel_fault(addr, esr, regs);
494	}
495}
496
497#define VM_FAULT_BADMAP		((__force vm_fault_t)0x010000)
498#define VM_FAULT_BADACCESS	((__force vm_fault_t)0x020000)
499
500static vm_fault_t __do_page_fault(struct mm_struct *mm,
501				  struct vm_area_struct *vma, unsigned long addr,
502				  unsigned int mm_flags, unsigned long vm_flags,
503				  struct pt_regs *regs)
504{
505	/*
506	 * Ok, we have a good vm_area for this memory access, so we can handle
507	 * it.
508	 * Check that the permissions on the VMA allow for the fault which
509	 * occurred.
510	 */
511	if (!(vma->vm_flags & vm_flags))
512		return VM_FAULT_BADACCESS;
513	return handle_mm_fault(vma, addr, mm_flags, regs);
514}
515
516static bool is_el0_instruction_abort(unsigned long esr)
517{
518	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
519}
520
521/*
522 * Note: not valid for EL1 DC IVAC, but we never use that such that it
523 * should fault. EL0 cannot issue DC IVAC (undef).
524 */
525static bool is_write_abort(unsigned long esr)
526{
527	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
528}
529
530static int __kprobes do_page_fault(unsigned long far, unsigned long esr,
531				   struct pt_regs *regs)
532{
533	const struct fault_info *inf;
534	struct mm_struct *mm = current->mm;
535	vm_fault_t fault;
536	unsigned long vm_flags;
537	unsigned int mm_flags = FAULT_FLAG_DEFAULT;
538	unsigned long addr = untagged_addr(far);
539	struct vm_area_struct *vma;
540
541	if (kprobe_page_fault(regs, esr))
542		return 0;
543
544	/*
545	 * If we're in an interrupt or have no user context, we must not take
546	 * the fault.
547	 */
548	if (faulthandler_disabled() || !mm)
549		goto no_context;
550
551	if (user_mode(regs))
552		mm_flags |= FAULT_FLAG_USER;
553
554	/*
555	 * vm_flags tells us what bits we must have in vma->vm_flags
556	 * for the fault to be benign, __do_page_fault() would check
557	 * vma->vm_flags & vm_flags and returns an error if the
558	 * intersection is empty
559	 */
560	if (is_el0_instruction_abort(esr)) {
561		/* It was exec fault */
562		vm_flags = VM_EXEC;
563		mm_flags |= FAULT_FLAG_INSTRUCTION;
564	} else if (is_write_abort(esr)) {
565		/* It was write fault */
566		vm_flags = VM_WRITE;
567		mm_flags |= FAULT_FLAG_WRITE;
568	} else {
569		/* It was read fault */
570		vm_flags = VM_READ;
571		/* Write implies read */
572		vm_flags |= VM_WRITE;
573		/* If EPAN is absent then exec implies read */
574		if (!cpus_have_const_cap(ARM64_HAS_EPAN))
575			vm_flags |= VM_EXEC;
576	}
577
578	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
579		if (is_el1_instruction_abort(esr))
580			die_kernel_fault("execution of user memory",
581					 addr, esr, regs);
582
583		if (!search_exception_tables(regs->pc))
584			die_kernel_fault("access to user memory outside uaccess routines",
585					 addr, esr, regs);
586	}
587
588	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
589
590	if (!(mm_flags & FAULT_FLAG_USER))
591		goto lock_mmap;
592
593	vma = lock_vma_under_rcu(mm, addr);
594	if (!vma)
595		goto lock_mmap;
596
597	if (!(vma->vm_flags & vm_flags)) {
598		vma_end_read(vma);
599		goto lock_mmap;
600	}
601	fault = handle_mm_fault(vma, addr, mm_flags | FAULT_FLAG_VMA_LOCK, regs);
602	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
603		vma_end_read(vma);
604
605	if (!(fault & VM_FAULT_RETRY)) {
606		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
607		goto done;
608	}
609	count_vm_vma_lock_event(VMA_LOCK_RETRY);
610
611	/* Quick path to respond to signals */
612	if (fault_signal_pending(fault, regs)) {
613		if (!user_mode(regs))
614			goto no_context;
615		return 0;
616	}
617lock_mmap:
618
619retry:
620	vma = lock_mm_and_find_vma(mm, addr, regs);
621	if (unlikely(!vma)) {
622		fault = VM_FAULT_BADMAP;
623		goto done;
624	}
625
626	fault = __do_page_fault(mm, vma, addr, mm_flags, vm_flags, regs);
627
628	/* Quick path to respond to signals */
629	if (fault_signal_pending(fault, regs)) {
630		if (!user_mode(regs))
631			goto no_context;
632		return 0;
633	}
634
635	/* The fault is fully completed (including releasing mmap lock) */
636	if (fault & VM_FAULT_COMPLETED)
637		return 0;
638
639	if (fault & VM_FAULT_RETRY) {
640		mm_flags |= FAULT_FLAG_TRIED;
641		goto retry;
642	}
643	mmap_read_unlock(mm);
644
645done:
646	/*
647	 * Handle the "normal" (no error) case first.
648	 */
649	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
650			      VM_FAULT_BADACCESS))))
651		return 0;
652
653	/*
654	 * If we are in kernel mode at this point, we have no context to
655	 * handle this fault with.
656	 */
657	if (!user_mode(regs))
658		goto no_context;
659
660	if (fault & VM_FAULT_OOM) {
661		/*
662		 * We ran out of memory, call the OOM killer, and return to
663		 * userspace (which will retry the fault, or kill us if we got
664		 * oom-killed).
665		 */
666		pagefault_out_of_memory();
667		return 0;
668	}
669
670	inf = esr_to_fault_info(esr);
671	set_thread_esr(addr, esr);
672	if (fault & VM_FAULT_SIGBUS) {
673		/*
674		 * We had some memory, but were unable to successfully fix up
675		 * this page fault.
676		 */
677		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
678	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
679		unsigned int lsb;
680
681		lsb = PAGE_SHIFT;
682		if (fault & VM_FAULT_HWPOISON_LARGE)
683			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
684
685		arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
686	} else {
687		/*
688		 * Something tried to access memory that isn't in our memory
689		 * map.
690		 */
691		arm64_force_sig_fault(SIGSEGV,
692				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
693				      far, inf->name);
694	}
695
696	return 0;
697
698no_context:
699	__do_kernel_fault(addr, esr, regs);
700	return 0;
701}
702
703static int __kprobes do_translation_fault(unsigned long far,
704					  unsigned long esr,
705					  struct pt_regs *regs)
706{
707	unsigned long addr = untagged_addr(far);
708
709	if (is_ttbr0_addr(addr))
710		return do_page_fault(far, esr, regs);
711
712	do_bad_area(far, esr, regs);
713	return 0;
714}
715
716static int do_alignment_fault(unsigned long far, unsigned long esr,
717			      struct pt_regs *regs)
718{
719	if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) &&
720	    compat_user_mode(regs))
721		return do_compat_alignment_fixup(far, regs);
722	do_bad_area(far, esr, regs);
723	return 0;
724}
725
726static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs)
727{
728	return 1; /* "fault" */
729}
730
731static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs)
732{
733	const struct fault_info *inf;
734	unsigned long siaddr;
735
736	inf = esr_to_fault_info(esr);
737
738	if (user_mode(regs) && apei_claim_sea(regs) == 0) {
739		/*
740		 * APEI claimed this as a firmware-first notification.
741		 * Some processing deferred to task_work before ret_to_user().
742		 */
743		return 0;
744	}
745
746	if (esr & ESR_ELx_FnV) {
747		siaddr = 0;
748	} else {
749		/*
750		 * The architecture specifies that the tag bits of FAR_EL1 are
751		 * UNKNOWN for synchronous external aborts. Mask them out now
752		 * so that userspace doesn't see them.
753		 */
754		siaddr  = untagged_addr(far);
755	}
756	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
757
758	return 0;
759}
760
761static int do_tag_check_fault(unsigned long far, unsigned long esr,
762			      struct pt_regs *regs)
763{
764	/*
765	 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
766	 * for tag check faults. Set them to corresponding bits in the untagged
767	 * address.
768	 */
769	far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
770	do_bad_area(far, esr, regs);
771	return 0;
772}
773
774static const struct fault_info fault_info[] = {
775	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
776	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
777	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
778	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
779	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
780	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
781	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
782	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
783	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
784	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
785	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
786	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
787	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
788	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
789	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
790	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
791	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
792	{ do_tag_check_fault,	SIGSEGV, SEGV_MTESERR,	"synchronous tag check fault"	},
793	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
794	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
795	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
796	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
797	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
798	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
799	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
800	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
801	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
802	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
803	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
804	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
805	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
806	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
807	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
808	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
809	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
810	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
811	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
812	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
813	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
814	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
815	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
816	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
817	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
818	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
819	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
820	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
821	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
822	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
823	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
824	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
825	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
826	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
827	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
828	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
829	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
830	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
831	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
832	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
833	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
834	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
835	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
836	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
837	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
838	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
839};
840
841void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs)
842{
843	const struct fault_info *inf = esr_to_fault_info(esr);
844	unsigned long addr = untagged_addr(far);
845
846	if (!inf->fn(far, esr, regs))
847		return;
848
849	if (!user_mode(regs))
850		die_kernel_fault(inf->name, addr, esr, regs);
851
852	/*
853	 * At this point we have an unrecognized fault type whose tag bits may
854	 * have been defined as UNKNOWN. Therefore we only expose the untagged
855	 * address to the signal handler.
856	 */
857	arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
858}
859NOKPROBE_SYMBOL(do_mem_abort);
860
861void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs)
862{
863	arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
864			 addr, esr);
865}
866NOKPROBE_SYMBOL(do_sp_pc_abort);
867
868/*
869 * __refdata because early_brk64 is __init, but the reference to it is
870 * clobbered at arch_initcall time.
871 * See traps.c and debug-monitors.c:debug_traps_init().
872 */
873static struct fault_info __refdata debug_fault_info[] = {
874	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
875	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
876	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
877	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
878	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
879	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
880	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
881	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
882};
883
884void __init hook_debug_fault_code(int nr,
885				  int (*fn)(unsigned long, unsigned long, struct pt_regs *),
886				  int sig, int code, const char *name)
887{
888	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
889
890	debug_fault_info[nr].fn		= fn;
891	debug_fault_info[nr].sig	= sig;
892	debug_fault_info[nr].code	= code;
893	debug_fault_info[nr].name	= name;
894}
895
896/*
897 * In debug exception context, we explicitly disable preemption despite
898 * having interrupts disabled.
899 * This serves two purposes: it makes it much less likely that we would
900 * accidentally schedule in exception context and it will force a warning
901 * if we somehow manage to schedule by accident.
902 */
903static void debug_exception_enter(struct pt_regs *regs)
904{
905	preempt_disable();
906
907	/* This code is a bit fragile.  Test it. */
908	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
909}
910NOKPROBE_SYMBOL(debug_exception_enter);
911
912static void debug_exception_exit(struct pt_regs *regs)
913{
914	preempt_enable_no_resched();
915}
916NOKPROBE_SYMBOL(debug_exception_exit);
917
918void do_debug_exception(unsigned long addr_if_watchpoint, unsigned long esr,
919			struct pt_regs *regs)
920{
921	const struct fault_info *inf = esr_to_debug_fault_info(esr);
922	unsigned long pc = instruction_pointer(regs);
923
924	debug_exception_enter(regs);
925
926	if (user_mode(regs) && !is_ttbr0_addr(pc))
927		arm64_apply_bp_hardening();
928
929	if (inf->fn(addr_if_watchpoint, esr, regs)) {
930		arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
931	}
932
933	debug_exception_exit(regs);
934}
935NOKPROBE_SYMBOL(do_debug_exception);
936
937/*
938 * Used during anonymous page fault handling.
939 */
940struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
941						unsigned long vaddr)
942{
943	gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO | __GFP_CMA;
944
945	/*
946	 * If the page is mapped with PROT_MTE, initialise the tags at the
947	 * point of allocation and page zeroing as this is usually faster than
948	 * separate DC ZVA and STGM.
949	 */
950	if (vma->vm_flags & VM_MTE)
951		flags |= __GFP_ZEROTAGS;
952
953	return vma_alloc_folio(flags, 0, vma, vaddr, false);
954}
955
956void tag_clear_highpage(struct page *page)
957{
958	/* Newly allocated page, shouldn't have been tagged yet */
959	WARN_ON_ONCE(!try_page_mte_tagging(page));
960	mte_zero_clear_page_tags(page_address(page));
961	set_page_mte_tagged(page);
962}
963