1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * VGICv3 MMIO handling functions
4 */
5
6#include <linux/bitfield.h>
7#include <linux/irqchip/arm-gic-v3.h>
8#include <linux/kvm.h>
9#include <linux/kvm_host.h>
10#include <linux/interrupt.h>
11#include <kvm/iodev.h>
12#include <kvm/arm_vgic.h>
13
14#include <asm/kvm_emulate.h>
15#include <asm/kvm_arm.h>
16#include <asm/kvm_mmu.h>
17
18#include "vgic.h"
19#include "vgic-mmio.h"
20
21/* extract @num bytes at @offset bytes offset in data */
22unsigned long extract_bytes(u64 data, unsigned int offset,
23			    unsigned int num)
24{
25	return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
26}
27
28/* allows updates of any half of a 64-bit register (or the whole thing) */
29u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
30		     unsigned long val)
31{
32	int lower = (offset & 4) * 8;
33	int upper = lower + 8 * len - 1;
34
35	reg &= ~GENMASK_ULL(upper, lower);
36	val &= GENMASK_ULL(len * 8 - 1, 0);
37
38	return reg | ((u64)val << lower);
39}
40
41bool vgic_has_its(struct kvm *kvm)
42{
43	struct vgic_dist *dist = &kvm->arch.vgic;
44
45	if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
46		return false;
47
48	return dist->has_its;
49}
50
51bool vgic_supports_direct_msis(struct kvm *kvm)
52{
53	return (kvm_vgic_global_state.has_gicv4_1 ||
54		(kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
55}
56
57/*
58 * The Revision field in the IIDR have the following meanings:
59 *
60 * Revision 2: Interrupt groups are guest-configurable and signaled using
61 * 	       their configured groups.
62 */
63
64static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
65					    gpa_t addr, unsigned int len)
66{
67	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
68	u32 value = 0;
69
70	switch (addr & 0x0c) {
71	case GICD_CTLR:
72		if (vgic->enabled)
73			value |= GICD_CTLR_ENABLE_SS_G1;
74		value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
75		if (vgic->nassgireq)
76			value |= GICD_CTLR_nASSGIreq;
77		break;
78	case GICD_TYPER:
79		value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
80		value = (value >> 5) - 1;
81		if (vgic_has_its(vcpu->kvm)) {
82			value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
83			value |= GICD_TYPER_LPIS;
84		} else {
85			value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
86		}
87		break;
88	case GICD_TYPER2:
89		if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi())
90			value = GICD_TYPER2_nASSGIcap;
91		break;
92	case GICD_IIDR:
93		value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
94			(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
95			(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
96		break;
97	default:
98		return 0;
99	}
100
101	return value;
102}
103
104static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
105				    gpa_t addr, unsigned int len,
106				    unsigned long val)
107{
108	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
109
110	switch (addr & 0x0c) {
111	case GICD_CTLR: {
112		bool was_enabled, is_hwsgi;
113
114		mutex_lock(&vcpu->kvm->arch.config_lock);
115
116		was_enabled = dist->enabled;
117		is_hwsgi = dist->nassgireq;
118
119		dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
120
121		/* Not a GICv4.1? No HW SGIs */
122		if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi())
123			val &= ~GICD_CTLR_nASSGIreq;
124
125		/* Dist stays enabled? nASSGIreq is RO */
126		if (was_enabled && dist->enabled) {
127			val &= ~GICD_CTLR_nASSGIreq;
128			val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
129		}
130
131		/* Switching HW SGIs? */
132		dist->nassgireq = val & GICD_CTLR_nASSGIreq;
133		if (is_hwsgi != dist->nassgireq)
134			vgic_v4_configure_vsgis(vcpu->kvm);
135
136		if (kvm_vgic_global_state.has_gicv4_1 &&
137		    was_enabled != dist->enabled)
138			kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
139		else if (!was_enabled && dist->enabled)
140			vgic_kick_vcpus(vcpu->kvm);
141
142		mutex_unlock(&vcpu->kvm->arch.config_lock);
143		break;
144	}
145	case GICD_TYPER:
146	case GICD_TYPER2:
147	case GICD_IIDR:
148		/* This is at best for documentation purposes... */
149		return;
150	}
151}
152
153static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
154					   gpa_t addr, unsigned int len,
155					   unsigned long val)
156{
157	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
158	u32 reg;
159
160	switch (addr & 0x0c) {
161	case GICD_TYPER2:
162		if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
163			return -EINVAL;
164		return 0;
165	case GICD_IIDR:
166		reg = vgic_mmio_read_v3_misc(vcpu, addr, len);
167		if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
168			return -EINVAL;
169
170		reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
171		switch (reg) {
172		case KVM_VGIC_IMP_REV_2:
173		case KVM_VGIC_IMP_REV_3:
174			dist->implementation_rev = reg;
175			return 0;
176		default:
177			return -EINVAL;
178		}
179	case GICD_CTLR:
180		/* Not a GICv4.1? No HW SGIs */
181		if (!kvm_vgic_global_state.has_gicv4_1)
182			val &= ~GICD_CTLR_nASSGIreq;
183
184		dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
185		dist->nassgireq = val & GICD_CTLR_nASSGIreq;
186		return 0;
187	}
188
189	vgic_mmio_write_v3_misc(vcpu, addr, len, val);
190	return 0;
191}
192
193static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
194					    gpa_t addr, unsigned int len)
195{
196	int intid = VGIC_ADDR_TO_INTID(addr, 64);
197	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
198	unsigned long ret = 0;
199
200	if (!irq)
201		return 0;
202
203	/* The upper word is RAZ for us. */
204	if (!(addr & 4))
205		ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
206
207	vgic_put_irq(vcpu->kvm, irq);
208	return ret;
209}
210
211static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
212				    gpa_t addr, unsigned int len,
213				    unsigned long val)
214{
215	int intid = VGIC_ADDR_TO_INTID(addr, 64);
216	struct vgic_irq *irq;
217	unsigned long flags;
218
219	/* The upper word is WI for us since we don't implement Aff3. */
220	if (addr & 4)
221		return;
222
223	irq = vgic_get_irq(vcpu->kvm, NULL, intid);
224
225	if (!irq)
226		return;
227
228	raw_spin_lock_irqsave(&irq->irq_lock, flags);
229
230	/* We only care about and preserve Aff0, Aff1 and Aff2. */
231	irq->mpidr = val & GENMASK(23, 0);
232	irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
233
234	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
235	vgic_put_irq(vcpu->kvm, irq);
236}
237
238bool vgic_lpis_enabled(struct kvm_vcpu *vcpu)
239{
240	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
241
242	return atomic_read(&vgic_cpu->ctlr) == GICR_CTLR_ENABLE_LPIS;
243}
244
245static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
246					     gpa_t addr, unsigned int len)
247{
248	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
249	unsigned long val;
250
251	val = atomic_read(&vgic_cpu->ctlr);
252	if (vgic_get_implementation_rev(vcpu) >= KVM_VGIC_IMP_REV_3)
253		val |= GICR_CTLR_IR | GICR_CTLR_CES;
254
255	return val;
256}
257
258static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
259				     gpa_t addr, unsigned int len,
260				     unsigned long val)
261{
262	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
263	u32 ctlr;
264
265	if (!vgic_has_its(vcpu->kvm))
266		return;
267
268	if (!(val & GICR_CTLR_ENABLE_LPIS)) {
269		/*
270		 * Don't disable if RWP is set, as there already an
271		 * ongoing disable. Funky guest...
272		 */
273		ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr,
274					      GICR_CTLR_ENABLE_LPIS,
275					      GICR_CTLR_RWP);
276		if (ctlr != GICR_CTLR_ENABLE_LPIS)
277			return;
278
279		vgic_flush_pending_lpis(vcpu);
280		vgic_its_invalidate_cache(vcpu->kvm);
281		atomic_set_release(&vgic_cpu->ctlr, 0);
282	} else {
283		ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, 0,
284					      GICR_CTLR_ENABLE_LPIS);
285		if (ctlr != 0)
286			return;
287
288		vgic_enable_lpis(vcpu);
289	}
290}
291
292static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
293{
294	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
295	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
296	struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
297
298	if (!rdreg)
299		return false;
300
301	if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
302		return false;
303	} else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
304		struct list_head *rd_regions = &vgic->rd_regions;
305		gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
306
307		/*
308		 * the rdist is the last one of the redist region,
309		 * check whether there is no other contiguous rdist region
310		 */
311		list_for_each_entry(iter, rd_regions, list) {
312			if (iter->base == end && iter->free_index > 0)
313				return false;
314		}
315	}
316	return true;
317}
318
319static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
320					      gpa_t addr, unsigned int len)
321{
322	unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
323	int target_vcpu_id = vcpu->vcpu_id;
324	u64 value;
325
326	value = (u64)(mpidr & GENMASK(23, 0)) << 32;
327	value |= ((target_vcpu_id & 0xffff) << 8);
328
329	if (vgic_has_its(vcpu->kvm))
330		value |= GICR_TYPER_PLPIS;
331
332	if (vgic_mmio_vcpu_rdist_is_last(vcpu))
333		value |= GICR_TYPER_LAST;
334
335	return extract_bytes(value, addr & 7, len);
336}
337
338static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
339					     gpa_t addr, unsigned int len)
340{
341	return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
342}
343
344static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
345					      gpa_t addr, unsigned int len)
346{
347	switch (addr & 0xffff) {
348	case GICD_PIDR2:
349		/* report a GICv3 compliant implementation */
350		return 0x3b;
351	}
352
353	return 0;
354}
355
356static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
357					 gpa_t addr, unsigned int len,
358					 unsigned long val)
359{
360	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
361	int i;
362	unsigned long flags;
363
364	for (i = 0; i < len * 8; i++) {
365		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
366
367		raw_spin_lock_irqsave(&irq->irq_lock, flags);
368
369		/*
370		 * pending_latch is set irrespective of irq type
371		 * (level or edge) to avoid dependency that VM should
372		 * restore irq config before pending info.
373		 */
374		irq->pending_latch = test_bit(i, &val);
375
376		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
377			irq_set_irqchip_state(irq->host_irq,
378					      IRQCHIP_STATE_PENDING,
379					      irq->pending_latch);
380			irq->pending_latch = false;
381		}
382
383		if (irq->pending_latch)
384			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
385		else
386			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
387
388		vgic_put_irq(vcpu->kvm, irq);
389	}
390
391	return 0;
392}
393
394/* We want to avoid outer shareable. */
395u64 vgic_sanitise_shareability(u64 field)
396{
397	switch (field) {
398	case GIC_BASER_OuterShareable:
399		return GIC_BASER_InnerShareable;
400	default:
401		return field;
402	}
403}
404
405/* Avoid any inner non-cacheable mapping. */
406u64 vgic_sanitise_inner_cacheability(u64 field)
407{
408	switch (field) {
409	case GIC_BASER_CACHE_nCnB:
410	case GIC_BASER_CACHE_nC:
411		return GIC_BASER_CACHE_RaWb;
412	default:
413		return field;
414	}
415}
416
417/* Non-cacheable or same-as-inner are OK. */
418u64 vgic_sanitise_outer_cacheability(u64 field)
419{
420	switch (field) {
421	case GIC_BASER_CACHE_SameAsInner:
422	case GIC_BASER_CACHE_nC:
423		return field;
424	default:
425		return GIC_BASER_CACHE_SameAsInner;
426	}
427}
428
429u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
430			u64 (*sanitise_fn)(u64))
431{
432	u64 field = (reg & field_mask) >> field_shift;
433
434	field = sanitise_fn(field) << field_shift;
435	return (reg & ~field_mask) | field;
436}
437
438#define PROPBASER_RES0_MASK						\
439	(GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
440#define PENDBASER_RES0_MASK						\
441	(BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |	\
442	 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
443
444static u64 vgic_sanitise_pendbaser(u64 reg)
445{
446	reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
447				  GICR_PENDBASER_SHAREABILITY_SHIFT,
448				  vgic_sanitise_shareability);
449	reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
450				  GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
451				  vgic_sanitise_inner_cacheability);
452	reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
453				  GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
454				  vgic_sanitise_outer_cacheability);
455
456	reg &= ~PENDBASER_RES0_MASK;
457
458	return reg;
459}
460
461static u64 vgic_sanitise_propbaser(u64 reg)
462{
463	reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
464				  GICR_PROPBASER_SHAREABILITY_SHIFT,
465				  vgic_sanitise_shareability);
466	reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
467				  GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
468				  vgic_sanitise_inner_cacheability);
469	reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
470				  GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
471				  vgic_sanitise_outer_cacheability);
472
473	reg &= ~PROPBASER_RES0_MASK;
474	return reg;
475}
476
477static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
478					     gpa_t addr, unsigned int len)
479{
480	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
481
482	return extract_bytes(dist->propbaser, addr & 7, len);
483}
484
485static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
486				     gpa_t addr, unsigned int len,
487				     unsigned long val)
488{
489	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
490	u64 old_propbaser, propbaser;
491
492	/* Storing a value with LPIs already enabled is undefined */
493	if (vgic_lpis_enabled(vcpu))
494		return;
495
496	do {
497		old_propbaser = READ_ONCE(dist->propbaser);
498		propbaser = old_propbaser;
499		propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
500		propbaser = vgic_sanitise_propbaser(propbaser);
501	} while (cmpxchg64(&dist->propbaser, old_propbaser,
502			   propbaser) != old_propbaser);
503}
504
505static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
506					     gpa_t addr, unsigned int len)
507{
508	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
509	u64 value = vgic_cpu->pendbaser;
510
511	value &= ~GICR_PENDBASER_PTZ;
512
513	return extract_bytes(value, addr & 7, len);
514}
515
516static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
517				     gpa_t addr, unsigned int len,
518				     unsigned long val)
519{
520	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
521	u64 old_pendbaser, pendbaser;
522
523	/* Storing a value with LPIs already enabled is undefined */
524	if (vgic_lpis_enabled(vcpu))
525		return;
526
527	do {
528		old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
529		pendbaser = old_pendbaser;
530		pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
531		pendbaser = vgic_sanitise_pendbaser(pendbaser);
532	} while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
533			   pendbaser) != old_pendbaser);
534}
535
536static unsigned long vgic_mmio_read_sync(struct kvm_vcpu *vcpu,
537					 gpa_t addr, unsigned int len)
538{
539	return !!atomic_read(&vcpu->arch.vgic_cpu.syncr_busy);
540}
541
542static void vgic_set_rdist_busy(struct kvm_vcpu *vcpu, bool busy)
543{
544	if (busy) {
545		atomic_inc(&vcpu->arch.vgic_cpu.syncr_busy);
546		smp_mb__after_atomic();
547	} else {
548		smp_mb__before_atomic();
549		atomic_dec(&vcpu->arch.vgic_cpu.syncr_busy);
550	}
551}
552
553static void vgic_mmio_write_invlpi(struct kvm_vcpu *vcpu,
554				   gpa_t addr, unsigned int len,
555				   unsigned long val)
556{
557	struct vgic_irq *irq;
558
559	/*
560	 * If the guest wrote only to the upper 32bit part of the
561	 * register, drop the write on the floor, as it is only for
562	 * vPEs (which we don't support for obvious reasons).
563	 *
564	 * Also discard the access if LPIs are not enabled.
565	 */
566	if ((addr & 4) || !vgic_lpis_enabled(vcpu))
567		return;
568
569	vgic_set_rdist_busy(vcpu, true);
570
571	irq = vgic_get_irq(vcpu->kvm, NULL, lower_32_bits(val));
572	if (irq) {
573		vgic_its_inv_lpi(vcpu->kvm, irq);
574		vgic_put_irq(vcpu->kvm, irq);
575	}
576
577	vgic_set_rdist_busy(vcpu, false);
578}
579
580static void vgic_mmio_write_invall(struct kvm_vcpu *vcpu,
581				   gpa_t addr, unsigned int len,
582				   unsigned long val)
583{
584	/* See vgic_mmio_write_invlpi() for the early return rationale */
585	if ((addr & 4) || !vgic_lpis_enabled(vcpu))
586		return;
587
588	vgic_set_rdist_busy(vcpu, true);
589	vgic_its_invall(vcpu);
590	vgic_set_rdist_busy(vcpu, false);
591}
592
593/*
594 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
595 * redistributors, while SPIs are covered by registers in the distributor
596 * block. Trying to set private IRQs in this block gets ignored.
597 * We take some special care here to fix the calculation of the register
598 * offset.
599 */
600#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
601	{								\
602		.reg_offset = off,					\
603		.bits_per_irq = bpi,					\
604		.len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,		\
605		.access_flags = acc,					\
606		.read = vgic_mmio_read_raz,				\
607		.write = vgic_mmio_write_wi,				\
608	}, {								\
609		.reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,	\
610		.bits_per_irq = bpi,					\
611		.len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,	\
612		.access_flags = acc,					\
613		.read = rd,						\
614		.write = wr,						\
615		.uaccess_read = ur,					\
616		.uaccess_write = uw,					\
617	}
618
619static const struct vgic_register_region vgic_v3_dist_registers[] = {
620	REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
621		vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
622		NULL, vgic_mmio_uaccess_write_v3_misc,
623		16, VGIC_ACCESS_32bit),
624	REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
625		vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
626		VGIC_ACCESS_32bit),
627	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
628		vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
629		VGIC_ACCESS_32bit),
630	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
631		vgic_mmio_read_enable, vgic_mmio_write_senable,
632		NULL, vgic_uaccess_write_senable, 1,
633		VGIC_ACCESS_32bit),
634	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
635		vgic_mmio_read_enable, vgic_mmio_write_cenable,
636	       NULL, vgic_uaccess_write_cenable, 1,
637		VGIC_ACCESS_32bit),
638	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
639		vgic_mmio_read_pending, vgic_mmio_write_spending,
640		vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
641		VGIC_ACCESS_32bit),
642	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
643		vgic_mmio_read_pending, vgic_mmio_write_cpending,
644		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
645		VGIC_ACCESS_32bit),
646	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
647		vgic_mmio_read_active, vgic_mmio_write_sactive,
648		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
649		VGIC_ACCESS_32bit),
650	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
651		vgic_mmio_read_active, vgic_mmio_write_cactive,
652		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
653		1, VGIC_ACCESS_32bit),
654	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
655		vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
656		8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
657	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
658		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
659		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
660	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
661		vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
662		VGIC_ACCESS_32bit),
663	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
664		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
665		VGIC_ACCESS_32bit),
666	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
667		vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
668		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
669	REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
670		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
671		VGIC_ACCESS_32bit),
672};
673
674static const struct vgic_register_region vgic_v3_rd_registers[] = {
675	/* RD_base registers */
676	REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
677		vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
678		VGIC_ACCESS_32bit),
679	REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
680		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
681		VGIC_ACCESS_32bit),
682	REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
683		vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
684		VGIC_ACCESS_32bit),
685	REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
686		vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
687		NULL, vgic_mmio_uaccess_write_wi, 8,
688		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
689	REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
690		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
691		VGIC_ACCESS_32bit),
692	REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
693		vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
694		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
695	REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
696		vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
697		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
698	REGISTER_DESC_WITH_LENGTH(GICR_INVLPIR,
699		vgic_mmio_read_raz, vgic_mmio_write_invlpi, 8,
700		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
701	REGISTER_DESC_WITH_LENGTH(GICR_INVALLR,
702		vgic_mmio_read_raz, vgic_mmio_write_invall, 8,
703		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
704	REGISTER_DESC_WITH_LENGTH(GICR_SYNCR,
705		vgic_mmio_read_sync, vgic_mmio_write_wi, 4,
706		VGIC_ACCESS_32bit),
707	REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
708		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
709		VGIC_ACCESS_32bit),
710	/* SGI_base registers */
711	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
712		vgic_mmio_read_group, vgic_mmio_write_group, 4,
713		VGIC_ACCESS_32bit),
714	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
715		vgic_mmio_read_enable, vgic_mmio_write_senable,
716		NULL, vgic_uaccess_write_senable, 4,
717		VGIC_ACCESS_32bit),
718	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
719		vgic_mmio_read_enable, vgic_mmio_write_cenable,
720		NULL, vgic_uaccess_write_cenable, 4,
721		VGIC_ACCESS_32bit),
722	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
723		vgic_mmio_read_pending, vgic_mmio_write_spending,
724		vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
725		VGIC_ACCESS_32bit),
726	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
727		vgic_mmio_read_pending, vgic_mmio_write_cpending,
728		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
729		VGIC_ACCESS_32bit),
730	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
731		vgic_mmio_read_active, vgic_mmio_write_sactive,
732		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
733		VGIC_ACCESS_32bit),
734	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
735		vgic_mmio_read_active, vgic_mmio_write_cactive,
736		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
737		VGIC_ACCESS_32bit),
738	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
739		vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
740		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
741	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
742		vgic_mmio_read_config, vgic_mmio_write_config, 8,
743		VGIC_ACCESS_32bit),
744	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
745		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
746		VGIC_ACCESS_32bit),
747	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
748		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
749		VGIC_ACCESS_32bit),
750};
751
752unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
753{
754	dev->regions = vgic_v3_dist_registers;
755	dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
756
757	kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
758
759	return SZ_64K;
760}
761
762/**
763 * vgic_register_redist_iodev - register a single redist iodev
764 * @vcpu:    The VCPU to which the redistributor belongs
765 *
766 * Register a KVM iodev for this VCPU's redistributor using the address
767 * provided.
768 *
769 * Return 0 on success, -ERRNO otherwise.
770 */
771int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
772{
773	struct kvm *kvm = vcpu->kvm;
774	struct vgic_dist *vgic = &kvm->arch.vgic;
775	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
776	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
777	struct vgic_redist_region *rdreg;
778	gpa_t rd_base;
779	int ret = 0;
780
781	lockdep_assert_held(&kvm->slots_lock);
782	mutex_lock(&kvm->arch.config_lock);
783
784	if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
785		goto out_unlock;
786
787	/*
788	 * We may be creating VCPUs before having set the base address for the
789	 * redistributor region, in which case we will come back to this
790	 * function for all VCPUs when the base address is set.  Just return
791	 * without doing any work for now.
792	 */
793	rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
794	if (!rdreg)
795		goto out_unlock;
796
797	if (!vgic_v3_check_base(kvm)) {
798		ret = -EINVAL;
799		goto out_unlock;
800	}
801
802	vgic_cpu->rdreg = rdreg;
803	vgic_cpu->rdreg_index = rdreg->free_index;
804
805	rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
806
807	kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
808	rd_dev->base_addr = rd_base;
809	rd_dev->iodev_type = IODEV_REDIST;
810	rd_dev->regions = vgic_v3_rd_registers;
811	rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
812	rd_dev->redist_vcpu = vcpu;
813
814	mutex_unlock(&kvm->arch.config_lock);
815
816	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
817				      2 * SZ_64K, &rd_dev->dev);
818	if (ret)
819		return ret;
820
821	/* Protected by slots_lock */
822	rdreg->free_index++;
823	return 0;
824
825out_unlock:
826	mutex_unlock(&kvm->arch.config_lock);
827	return ret;
828}
829
830void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
831{
832	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
833
834	kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
835}
836
837static int vgic_register_all_redist_iodevs(struct kvm *kvm)
838{
839	struct kvm_vcpu *vcpu;
840	unsigned long c;
841	int ret = 0;
842
843	kvm_for_each_vcpu(c, vcpu, kvm) {
844		ret = vgic_register_redist_iodev(vcpu);
845		if (ret)
846			break;
847	}
848
849	if (ret) {
850		/* The current c failed, so iterate over the previous ones. */
851		int i;
852
853		for (i = 0; i < c; i++) {
854			vcpu = kvm_get_vcpu(kvm, i);
855			vgic_unregister_redist_iodev(vcpu);
856		}
857	}
858
859	return ret;
860}
861
862/**
863 * vgic_v3_alloc_redist_region - Allocate a new redistributor region
864 *
865 * Performs various checks before inserting the rdist region in the list.
866 * Those tests depend on whether the size of the rdist region is known
867 * (ie. count != 0). The list is sorted by rdist region index.
868 *
869 * @kvm: kvm handle
870 * @index: redist region index
871 * @base: base of the new rdist region
872 * @count: number of redistributors the region is made of (0 in the old style
873 * single region, whose size is induced from the number of vcpus)
874 *
875 * Return 0 on success, < 0 otherwise
876 */
877static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
878				       gpa_t base, uint32_t count)
879{
880	struct vgic_dist *d = &kvm->arch.vgic;
881	struct vgic_redist_region *rdreg;
882	struct list_head *rd_regions = &d->rd_regions;
883	int nr_vcpus = atomic_read(&kvm->online_vcpus);
884	size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE
885			    : nr_vcpus * KVM_VGIC_V3_REDIST_SIZE;
886	int ret;
887
888	/* cross the end of memory ? */
889	if (base + size < base)
890		return -EINVAL;
891
892	if (list_empty(rd_regions)) {
893		if (index != 0)
894			return -EINVAL;
895	} else {
896		rdreg = list_last_entry(rd_regions,
897					struct vgic_redist_region, list);
898
899		/* Don't mix single region and discrete redist regions */
900		if (!count && rdreg->count)
901			return -EINVAL;
902
903		if (!count)
904			return -EEXIST;
905
906		if (index != rdreg->index + 1)
907			return -EINVAL;
908	}
909
910	/*
911	 * For legacy single-region redistributor regions (!count),
912	 * check that the redistributor region does not overlap with the
913	 * distributor's address space.
914	 */
915	if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
916		vgic_dist_overlap(kvm, base, size))
917		return -EINVAL;
918
919	/* collision with any other rdist region? */
920	if (vgic_v3_rdist_overlap(kvm, base, size))
921		return -EINVAL;
922
923	rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT);
924	if (!rdreg)
925		return -ENOMEM;
926
927	rdreg->base = VGIC_ADDR_UNDEF;
928
929	ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size);
930	if (ret)
931		goto free;
932
933	rdreg->base = base;
934	rdreg->count = count;
935	rdreg->free_index = 0;
936	rdreg->index = index;
937
938	list_add_tail(&rdreg->list, rd_regions);
939	return 0;
940free:
941	kfree(rdreg);
942	return ret;
943}
944
945void vgic_v3_free_redist_region(struct vgic_redist_region *rdreg)
946{
947	list_del(&rdreg->list);
948	kfree(rdreg);
949}
950
951int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
952{
953	int ret;
954
955	mutex_lock(&kvm->arch.config_lock);
956	ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
957	mutex_unlock(&kvm->arch.config_lock);
958	if (ret)
959		return ret;
960
961	/*
962	 * Register iodevs for each existing VCPU.  Adding more VCPUs
963	 * afterwards will register the iodevs when needed.
964	 */
965	ret = vgic_register_all_redist_iodevs(kvm);
966	if (ret) {
967		struct vgic_redist_region *rdreg;
968
969		mutex_lock(&kvm->arch.config_lock);
970		rdreg = vgic_v3_rdist_region_from_index(kvm, index);
971		vgic_v3_free_redist_region(rdreg);
972		mutex_unlock(&kvm->arch.config_lock);
973		return ret;
974	}
975
976	return 0;
977}
978
979int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
980{
981	const struct vgic_register_region *region;
982	struct vgic_io_device iodev;
983	struct vgic_reg_attr reg_attr;
984	struct kvm_vcpu *vcpu;
985	gpa_t addr;
986	int ret;
987
988	ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
989	if (ret)
990		return ret;
991
992	vcpu = reg_attr.vcpu;
993	addr = reg_attr.addr;
994
995	switch (attr->group) {
996	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
997		iodev.regions = vgic_v3_dist_registers;
998		iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
999		iodev.base_addr = 0;
1000		break;
1001	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
1002		iodev.regions = vgic_v3_rd_registers;
1003		iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
1004		iodev.base_addr = 0;
1005		break;
1006	}
1007	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
1008		return vgic_v3_has_cpu_sysregs_attr(vcpu, attr);
1009	default:
1010		return -ENXIO;
1011	}
1012
1013	/* We only support aligned 32-bit accesses. */
1014	if (addr & 3)
1015		return -ENXIO;
1016
1017	region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
1018	if (!region)
1019		return -ENXIO;
1020
1021	return 0;
1022}
1023/*
1024 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
1025 * generation register ICC_SGI1R_EL1) with a given VCPU.
1026 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
1027 * return -1.
1028 */
1029static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
1030{
1031	unsigned long affinity;
1032	int level0;
1033
1034	/*
1035	 * Split the current VCPU's MPIDR into affinity level 0 and the
1036	 * rest as this is what we have to compare against.
1037	 */
1038	affinity = kvm_vcpu_get_mpidr_aff(vcpu);
1039	level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
1040	affinity &= ~MPIDR_LEVEL_MASK;
1041
1042	/* bail out if the upper three levels don't match */
1043	if (sgi_aff != affinity)
1044		return -1;
1045
1046	/* Is this VCPU's bit set in the mask ? */
1047	if (!(sgi_cpu_mask & BIT(level0)))
1048		return -1;
1049
1050	return level0;
1051}
1052
1053/*
1054 * The ICC_SGI* registers encode the affinity differently from the MPIDR,
1055 * so provide a wrapper to use the existing defines to isolate a certain
1056 * affinity level.
1057 */
1058#define SGI_AFFINITY_LEVEL(reg, level) \
1059	((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
1060	>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
1061
1062/**
1063 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
1064 * @vcpu: The VCPU requesting a SGI
1065 * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
1066 * @allow_group1: Does the sysreg access allow generation of G1 SGIs
1067 *
1068 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
1069 * This will trap in sys_regs.c and call this function.
1070 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
1071 * target processors as well as a bitmask of 16 Aff0 CPUs.
1072 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
1073 * check for matching ones. If this bit is set, we signal all, but not the
1074 * calling VCPU.
1075 */
1076void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
1077{
1078	struct kvm *kvm = vcpu->kvm;
1079	struct kvm_vcpu *c_vcpu;
1080	u16 target_cpus;
1081	u64 mpidr;
1082	int sgi;
1083	int vcpu_id = vcpu->vcpu_id;
1084	bool broadcast;
1085	unsigned long c, flags;
1086
1087	sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
1088	broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
1089	target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
1090	mpidr = SGI_AFFINITY_LEVEL(reg, 3);
1091	mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
1092	mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
1093
1094	/*
1095	 * We iterate over all VCPUs to find the MPIDRs matching the request.
1096	 * If we have handled one CPU, we clear its bit to detect early
1097	 * if we are already finished. This avoids iterating through all
1098	 * VCPUs when most of the times we just signal a single VCPU.
1099	 */
1100	kvm_for_each_vcpu(c, c_vcpu, kvm) {
1101		struct vgic_irq *irq;
1102
1103		/* Exit early if we have dealt with all requested CPUs */
1104		if (!broadcast && target_cpus == 0)
1105			break;
1106
1107		/* Don't signal the calling VCPU */
1108		if (broadcast && c == vcpu_id)
1109			continue;
1110
1111		if (!broadcast) {
1112			int level0;
1113
1114			level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
1115			if (level0 == -1)
1116				continue;
1117
1118			/* remove this matching VCPU from the mask */
1119			target_cpus &= ~BIT(level0);
1120		}
1121
1122		irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
1123
1124		raw_spin_lock_irqsave(&irq->irq_lock, flags);
1125
1126		/*
1127		 * An access targeting Group0 SGIs can only generate
1128		 * those, while an access targeting Group1 SGIs can
1129		 * generate interrupts of either group.
1130		 */
1131		if (!irq->group || allow_group1) {
1132			if (!irq->hw) {
1133				irq->pending_latch = true;
1134				vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
1135			} else {
1136				/* HW SGI? Ask the GIC to inject it */
1137				int err;
1138				err = irq_set_irqchip_state(irq->host_irq,
1139							    IRQCHIP_STATE_PENDING,
1140							    true);
1141				WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
1142				raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1143			}
1144		} else {
1145			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1146		}
1147
1148		vgic_put_irq(vcpu->kvm, irq);
1149	}
1150}
1151
1152int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1153			 int offset, u32 *val)
1154{
1155	struct vgic_io_device dev = {
1156		.regions = vgic_v3_dist_registers,
1157		.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1158	};
1159
1160	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1161}
1162
1163int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1164			   int offset, u32 *val)
1165{
1166	struct vgic_io_device rd_dev = {
1167		.regions = vgic_v3_rd_registers,
1168		.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
1169	};
1170
1171	return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1172}
1173
1174int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1175				    u32 intid, u32 *val)
1176{
1177	if (intid % 32)
1178		return -EINVAL;
1179
1180	if (is_write)
1181		vgic_write_irq_line_level_info(vcpu, intid, *val);
1182	else
1183		*val = vgic_read_irq_line_level_info(vcpu, intid);
1184
1185	return 0;
1186}
1187