1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * GICv3 ITS emulation
4 *
5 * Copyright (C) 2015,2016 ARM Ltd.
6 * Author: Andre Przywara <andre.przywara@arm.com>
7 */
8
9#include <linux/cpu.h>
10#include <linux/kvm.h>
11#include <linux/kvm_host.h>
12#include <linux/interrupt.h>
13#include <linux/list.h>
14#include <linux/uaccess.h>
15#include <linux/list_sort.h>
16
17#include <linux/irqchip/arm-gic-v3.h>
18
19#include <asm/kvm_emulate.h>
20#include <asm/kvm_arm.h>
21#include <asm/kvm_mmu.h>
22
23#include "vgic.h"
24#include "vgic-mmio.h"
25
26static int vgic_its_save_tables_v0(struct vgic_its *its);
27static int vgic_its_restore_tables_v0(struct vgic_its *its);
28static int vgic_its_commit_v0(struct vgic_its *its);
29static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
30			     struct kvm_vcpu *filter_vcpu, bool needs_inv);
31
32/*
33 * Creates a new (reference to a) struct vgic_irq for a given LPI.
34 * If this LPI is already mapped on another ITS, we increase its refcount
35 * and return a pointer to the existing structure.
36 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
37 * This function returns a pointer to the _unlocked_ structure.
38 */
39static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
40				     struct kvm_vcpu *vcpu)
41{
42	struct vgic_dist *dist = &kvm->arch.vgic;
43	struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
44	unsigned long flags;
45	int ret;
46
47	/* In this case there is no put, since we keep the reference. */
48	if (irq)
49		return irq;
50
51	irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
52	if (!irq)
53		return ERR_PTR(-ENOMEM);
54
55	INIT_LIST_HEAD(&irq->lpi_list);
56	INIT_LIST_HEAD(&irq->ap_list);
57	raw_spin_lock_init(&irq->irq_lock);
58
59	irq->config = VGIC_CONFIG_EDGE;
60	kref_init(&irq->refcount);
61	irq->intid = intid;
62	irq->target_vcpu = vcpu;
63	irq->group = 1;
64
65	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
66
67	/*
68	 * There could be a race with another vgic_add_lpi(), so we need to
69	 * check that we don't add a second list entry with the same LPI.
70	 */
71	list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
72		if (oldirq->intid != intid)
73			continue;
74
75		/* Someone was faster with adding this LPI, lets use that. */
76		kfree(irq);
77		irq = oldirq;
78
79		/*
80		 * This increases the refcount, the caller is expected to
81		 * call vgic_put_irq() on the returned pointer once it's
82		 * finished with the IRQ.
83		 */
84		vgic_get_irq_kref(irq);
85
86		goto out_unlock;
87	}
88
89	list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
90	dist->lpi_list_count++;
91
92out_unlock:
93	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
94
95	/*
96	 * We "cache" the configuration table entries in our struct vgic_irq's.
97	 * However we only have those structs for mapped IRQs, so we read in
98	 * the respective config data from memory here upon mapping the LPI.
99	 *
100	 * Should any of these fail, behave as if we couldn't create the LPI
101	 * by dropping the refcount and returning the error.
102	 */
103	ret = update_lpi_config(kvm, irq, NULL, false);
104	if (ret) {
105		vgic_put_irq(kvm, irq);
106		return ERR_PTR(ret);
107	}
108
109	ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
110	if (ret) {
111		vgic_put_irq(kvm, irq);
112		return ERR_PTR(ret);
113	}
114
115	return irq;
116}
117
118struct its_device {
119	struct list_head dev_list;
120
121	/* the head for the list of ITTEs */
122	struct list_head itt_head;
123	u32 num_eventid_bits;
124	gpa_t itt_addr;
125	u32 device_id;
126};
127
128#define COLLECTION_NOT_MAPPED ((u32)~0)
129
130struct its_collection {
131	struct list_head coll_list;
132
133	u32 collection_id;
134	u32 target_addr;
135};
136
137#define its_is_collection_mapped(coll) ((coll) && \
138				((coll)->target_addr != COLLECTION_NOT_MAPPED))
139
140struct its_ite {
141	struct list_head ite_list;
142
143	struct vgic_irq *irq;
144	struct its_collection *collection;
145	u32 event_id;
146};
147
148struct vgic_translation_cache_entry {
149	struct list_head	entry;
150	phys_addr_t		db;
151	u32			devid;
152	u32			eventid;
153	struct vgic_irq		*irq;
154};
155
156/**
157 * struct vgic_its_abi - ITS abi ops and settings
158 * @cte_esz: collection table entry size
159 * @dte_esz: device table entry size
160 * @ite_esz: interrupt translation table entry size
161 * @save tables: save the ITS tables into guest RAM
162 * @restore_tables: restore the ITS internal structs from tables
163 *  stored in guest RAM
164 * @commit: initialize the registers which expose the ABI settings,
165 *  especially the entry sizes
166 */
167struct vgic_its_abi {
168	int cte_esz;
169	int dte_esz;
170	int ite_esz;
171	int (*save_tables)(struct vgic_its *its);
172	int (*restore_tables)(struct vgic_its *its);
173	int (*commit)(struct vgic_its *its);
174};
175
176#define ABI_0_ESZ	8
177#define ESZ_MAX		ABI_0_ESZ
178
179static const struct vgic_its_abi its_table_abi_versions[] = {
180	[0] = {
181	 .cte_esz = ABI_0_ESZ,
182	 .dte_esz = ABI_0_ESZ,
183	 .ite_esz = ABI_0_ESZ,
184	 .save_tables = vgic_its_save_tables_v0,
185	 .restore_tables = vgic_its_restore_tables_v0,
186	 .commit = vgic_its_commit_v0,
187	},
188};
189
190#define NR_ITS_ABIS	ARRAY_SIZE(its_table_abi_versions)
191
192inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
193{
194	return &its_table_abi_versions[its->abi_rev];
195}
196
197static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
198{
199	const struct vgic_its_abi *abi;
200
201	its->abi_rev = rev;
202	abi = vgic_its_get_abi(its);
203	return abi->commit(its);
204}
205
206/*
207 * Find and returns a device in the device table for an ITS.
208 * Must be called with the its_lock mutex held.
209 */
210static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
211{
212	struct its_device *device;
213
214	list_for_each_entry(device, &its->device_list, dev_list)
215		if (device_id == device->device_id)
216			return device;
217
218	return NULL;
219}
220
221/*
222 * Find and returns an interrupt translation table entry (ITTE) for a given
223 * Device ID/Event ID pair on an ITS.
224 * Must be called with the its_lock mutex held.
225 */
226static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
227				  u32 event_id)
228{
229	struct its_device *device;
230	struct its_ite *ite;
231
232	device = find_its_device(its, device_id);
233	if (device == NULL)
234		return NULL;
235
236	list_for_each_entry(ite, &device->itt_head, ite_list)
237		if (ite->event_id == event_id)
238			return ite;
239
240	return NULL;
241}
242
243/* To be used as an iterator this macro misses the enclosing parentheses */
244#define for_each_lpi_its(dev, ite, its) \
245	list_for_each_entry(dev, &(its)->device_list, dev_list) \
246		list_for_each_entry(ite, &(dev)->itt_head, ite_list)
247
248#define GIC_LPI_OFFSET 8192
249
250#define VITS_TYPER_IDBITS 16
251#define VITS_TYPER_DEVBITS 16
252#define VITS_DTE_MAX_DEVID_OFFSET	(BIT(14) - 1)
253#define VITS_ITE_MAX_EVENTID_OFFSET	(BIT(16) - 1)
254
255/*
256 * Finds and returns a collection in the ITS collection table.
257 * Must be called with the its_lock mutex held.
258 */
259static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
260{
261	struct its_collection *collection;
262
263	list_for_each_entry(collection, &its->collection_list, coll_list) {
264		if (coll_id == collection->collection_id)
265			return collection;
266	}
267
268	return NULL;
269}
270
271#define LPI_PROP_ENABLE_BIT(p)	((p) & LPI_PROP_ENABLED)
272#define LPI_PROP_PRIORITY(p)	((p) & 0xfc)
273
274/*
275 * Reads the configuration data for a given LPI from guest memory and
276 * updates the fields in struct vgic_irq.
277 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
278 * VCPU. Unconditionally applies if filter_vcpu is NULL.
279 */
280static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
281			     struct kvm_vcpu *filter_vcpu, bool needs_inv)
282{
283	u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
284	u8 prop;
285	int ret;
286	unsigned long flags;
287
288	ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
289				  &prop, 1);
290
291	if (ret)
292		return ret;
293
294	raw_spin_lock_irqsave(&irq->irq_lock, flags);
295
296	if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
297		irq->priority = LPI_PROP_PRIORITY(prop);
298		irq->enabled = LPI_PROP_ENABLE_BIT(prop);
299
300		if (!irq->hw) {
301			vgic_queue_irq_unlock(kvm, irq, flags);
302			return 0;
303		}
304	}
305
306	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
307
308	if (irq->hw)
309		return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
310
311	return 0;
312}
313
314/*
315 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
316 * enumerate those LPIs without holding any lock.
317 * Returns their number and puts the kmalloc'ed array into intid_ptr.
318 */
319int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
320{
321	struct vgic_dist *dist = &kvm->arch.vgic;
322	struct vgic_irq *irq;
323	unsigned long flags;
324	u32 *intids;
325	int irq_count, i = 0;
326
327	/*
328	 * There is an obvious race between allocating the array and LPIs
329	 * being mapped/unmapped. If we ended up here as a result of a
330	 * command, we're safe (locks are held, preventing another
331	 * command). If coming from another path (such as enabling LPIs),
332	 * we must be careful not to overrun the array.
333	 */
334	irq_count = READ_ONCE(dist->lpi_list_count);
335	intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL_ACCOUNT);
336	if (!intids)
337		return -ENOMEM;
338
339	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
340	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
341		if (i == irq_count)
342			break;
343		/* We don't need to "get" the IRQ, as we hold the list lock. */
344		if (vcpu && irq->target_vcpu != vcpu)
345			continue;
346		intids[i++] = irq->intid;
347	}
348	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
349
350	*intid_ptr = intids;
351	return i;
352}
353
354static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
355{
356	int ret = 0;
357	unsigned long flags;
358
359	raw_spin_lock_irqsave(&irq->irq_lock, flags);
360	irq->target_vcpu = vcpu;
361	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
362
363	if (irq->hw) {
364		struct its_vlpi_map map;
365
366		ret = its_get_vlpi(irq->host_irq, &map);
367		if (ret)
368			return ret;
369
370		if (map.vpe)
371			atomic_dec(&map.vpe->vlpi_count);
372		map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
373		atomic_inc(&map.vpe->vlpi_count);
374
375		ret = its_map_vlpi(irq->host_irq, &map);
376	}
377
378	return ret;
379}
380
381/*
382 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
383 * is targeting) to the VGIC's view, which deals with target VCPUs.
384 * Needs to be called whenever either the collection for a LPIs has
385 * changed or the collection itself got retargeted.
386 */
387static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
388{
389	struct kvm_vcpu *vcpu;
390
391	if (!its_is_collection_mapped(ite->collection))
392		return;
393
394	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
395	update_affinity(ite->irq, vcpu);
396}
397
398/*
399 * Updates the target VCPU for every LPI targeting this collection.
400 * Must be called with the its_lock mutex held.
401 */
402static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
403				       struct its_collection *coll)
404{
405	struct its_device *device;
406	struct its_ite *ite;
407
408	for_each_lpi_its(device, ite, its) {
409		if (ite->collection != coll)
410			continue;
411
412		update_affinity_ite(kvm, ite);
413	}
414}
415
416static u32 max_lpis_propbaser(u64 propbaser)
417{
418	int nr_idbits = (propbaser & 0x1f) + 1;
419
420	return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
421}
422
423/*
424 * Sync the pending table pending bit of LPIs targeting @vcpu
425 * with our own data structures. This relies on the LPI being
426 * mapped before.
427 */
428static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
429{
430	gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
431	struct vgic_irq *irq;
432	int last_byte_offset = -1;
433	int ret = 0;
434	u32 *intids;
435	int nr_irqs, i;
436	unsigned long flags;
437	u8 pendmask;
438
439	nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
440	if (nr_irqs < 0)
441		return nr_irqs;
442
443	for (i = 0; i < nr_irqs; i++) {
444		int byte_offset, bit_nr;
445
446		byte_offset = intids[i] / BITS_PER_BYTE;
447		bit_nr = intids[i] % BITS_PER_BYTE;
448
449		/*
450		 * For contiguously allocated LPIs chances are we just read
451		 * this very same byte in the last iteration. Reuse that.
452		 */
453		if (byte_offset != last_byte_offset) {
454			ret = kvm_read_guest_lock(vcpu->kvm,
455						  pendbase + byte_offset,
456						  &pendmask, 1);
457			if (ret) {
458				kfree(intids);
459				return ret;
460			}
461			last_byte_offset = byte_offset;
462		}
463
464		irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
465		if (!irq)
466			continue;
467
468		raw_spin_lock_irqsave(&irq->irq_lock, flags);
469		irq->pending_latch = pendmask & (1U << bit_nr);
470		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
471		vgic_put_irq(vcpu->kvm, irq);
472	}
473
474	kfree(intids);
475
476	return ret;
477}
478
479static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
480					      struct vgic_its *its,
481					      gpa_t addr, unsigned int len)
482{
483	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
484	u64 reg = GITS_TYPER_PLPIS;
485
486	/*
487	 * We use linear CPU numbers for redistributor addressing,
488	 * so GITS_TYPER.PTA is 0.
489	 * Also we force all PROPBASER registers to be the same, so
490	 * CommonLPIAff is 0 as well.
491	 * To avoid memory waste in the guest, we keep the number of IDBits and
492	 * DevBits low - as least for the time being.
493	 */
494	reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
495	reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
496	reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
497
498	return extract_bytes(reg, addr & 7, len);
499}
500
501static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
502					     struct vgic_its *its,
503					     gpa_t addr, unsigned int len)
504{
505	u32 val;
506
507	val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
508	val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
509	return val;
510}
511
512static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
513					    struct vgic_its *its,
514					    gpa_t addr, unsigned int len,
515					    unsigned long val)
516{
517	u32 rev = GITS_IIDR_REV(val);
518
519	if (rev >= NR_ITS_ABIS)
520		return -EINVAL;
521	return vgic_its_set_abi(its, rev);
522}
523
524static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
525					       struct vgic_its *its,
526					       gpa_t addr, unsigned int len)
527{
528	switch (addr & 0xffff) {
529	case GITS_PIDR0:
530		return 0x92;	/* part number, bits[7:0] */
531	case GITS_PIDR1:
532		return 0xb4;	/* part number, bits[11:8] */
533	case GITS_PIDR2:
534		return GIC_PIDR2_ARCH_GICv3 | 0x0b;
535	case GITS_PIDR4:
536		return 0x40;	/* This is a 64K software visible page */
537	/* The following are the ID registers for (any) GIC. */
538	case GITS_CIDR0:
539		return 0x0d;
540	case GITS_CIDR1:
541		return 0xf0;
542	case GITS_CIDR2:
543		return 0x05;
544	case GITS_CIDR3:
545		return 0xb1;
546	}
547
548	return 0;
549}
550
551static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
552					       phys_addr_t db,
553					       u32 devid, u32 eventid)
554{
555	struct vgic_translation_cache_entry *cte;
556
557	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
558		/*
559		 * If we hit a NULL entry, there is nothing after this
560		 * point.
561		 */
562		if (!cte->irq)
563			break;
564
565		if (cte->db != db || cte->devid != devid ||
566		    cte->eventid != eventid)
567			continue;
568
569		/*
570		 * Move this entry to the head, as it is the most
571		 * recently used.
572		 */
573		if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
574			list_move(&cte->entry, &dist->lpi_translation_cache);
575
576		return cte->irq;
577	}
578
579	return NULL;
580}
581
582static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
583					     u32 devid, u32 eventid)
584{
585	struct vgic_dist *dist = &kvm->arch.vgic;
586	struct vgic_irq *irq;
587	unsigned long flags;
588
589	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
590
591	irq = __vgic_its_check_cache(dist, db, devid, eventid);
592	if (irq)
593		vgic_get_irq_kref(irq);
594
595	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
596
597	return irq;
598}
599
600static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
601				       u32 devid, u32 eventid,
602				       struct vgic_irq *irq)
603{
604	struct vgic_dist *dist = &kvm->arch.vgic;
605	struct vgic_translation_cache_entry *cte;
606	unsigned long flags;
607	phys_addr_t db;
608
609	/* Do not cache a directly injected interrupt */
610	if (irq->hw)
611		return;
612
613	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
614
615	if (unlikely(list_empty(&dist->lpi_translation_cache)))
616		goto out;
617
618	/*
619	 * We could have raced with another CPU caching the same
620	 * translation behind our back, so let's check it is not in
621	 * already
622	 */
623	db = its->vgic_its_base + GITS_TRANSLATER;
624	if (__vgic_its_check_cache(dist, db, devid, eventid))
625		goto out;
626
627	/* Always reuse the last entry (LRU policy) */
628	cte = list_last_entry(&dist->lpi_translation_cache,
629			      typeof(*cte), entry);
630
631	/*
632	 * Caching the translation implies having an extra reference
633	 * to the interrupt, so drop the potential reference on what
634	 * was in the cache, and increment it on the new interrupt.
635	 */
636	if (cte->irq)
637		__vgic_put_lpi_locked(kvm, cte->irq);
638
639	vgic_get_irq_kref(irq);
640
641	cte->db		= db;
642	cte->devid	= devid;
643	cte->eventid	= eventid;
644	cte->irq	= irq;
645
646	/* Move the new translation to the head of the list */
647	list_move(&cte->entry, &dist->lpi_translation_cache);
648
649out:
650	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
651}
652
653void vgic_its_invalidate_cache(struct kvm *kvm)
654{
655	struct vgic_dist *dist = &kvm->arch.vgic;
656	struct vgic_translation_cache_entry *cte;
657	unsigned long flags;
658
659	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
660
661	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
662		/*
663		 * If we hit a NULL entry, there is nothing after this
664		 * point.
665		 */
666		if (!cte->irq)
667			break;
668
669		__vgic_put_lpi_locked(kvm, cte->irq);
670		cte->irq = NULL;
671	}
672
673	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
674}
675
676int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
677			 u32 devid, u32 eventid, struct vgic_irq **irq)
678{
679	struct kvm_vcpu *vcpu;
680	struct its_ite *ite;
681
682	if (!its->enabled)
683		return -EBUSY;
684
685	ite = find_ite(its, devid, eventid);
686	if (!ite || !its_is_collection_mapped(ite->collection))
687		return E_ITS_INT_UNMAPPED_INTERRUPT;
688
689	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
690	if (!vcpu)
691		return E_ITS_INT_UNMAPPED_INTERRUPT;
692
693	if (!vgic_lpis_enabled(vcpu))
694		return -EBUSY;
695
696	vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
697
698	*irq = ite->irq;
699	return 0;
700}
701
702struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
703{
704	u64 address;
705	struct kvm_io_device *kvm_io_dev;
706	struct vgic_io_device *iodev;
707
708	if (!vgic_has_its(kvm))
709		return ERR_PTR(-ENODEV);
710
711	if (!(msi->flags & KVM_MSI_VALID_DEVID))
712		return ERR_PTR(-EINVAL);
713
714	address = (u64)msi->address_hi << 32 | msi->address_lo;
715
716	kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
717	if (!kvm_io_dev)
718		return ERR_PTR(-EINVAL);
719
720	if (kvm_io_dev->ops != &kvm_io_gic_ops)
721		return ERR_PTR(-EINVAL);
722
723	iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
724	if (iodev->iodev_type != IODEV_ITS)
725		return ERR_PTR(-EINVAL);
726
727	return iodev->its;
728}
729
730/*
731 * Find the target VCPU and the LPI number for a given devid/eventid pair
732 * and make this IRQ pending, possibly injecting it.
733 * Must be called with the its_lock mutex held.
734 * Returns 0 on success, a positive error value for any ITS mapping
735 * related errors and negative error values for generic errors.
736 */
737static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
738				u32 devid, u32 eventid)
739{
740	struct vgic_irq *irq = NULL;
741	unsigned long flags;
742	int err;
743
744	err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
745	if (err)
746		return err;
747
748	if (irq->hw)
749		return irq_set_irqchip_state(irq->host_irq,
750					     IRQCHIP_STATE_PENDING, true);
751
752	raw_spin_lock_irqsave(&irq->irq_lock, flags);
753	irq->pending_latch = true;
754	vgic_queue_irq_unlock(kvm, irq, flags);
755
756	return 0;
757}
758
759int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
760{
761	struct vgic_irq *irq;
762	unsigned long flags;
763	phys_addr_t db;
764
765	db = (u64)msi->address_hi << 32 | msi->address_lo;
766	irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
767	if (!irq)
768		return -EWOULDBLOCK;
769
770	raw_spin_lock_irqsave(&irq->irq_lock, flags);
771	irq->pending_latch = true;
772	vgic_queue_irq_unlock(kvm, irq, flags);
773	vgic_put_irq(kvm, irq);
774
775	return 0;
776}
777
778/*
779 * Queries the KVM IO bus framework to get the ITS pointer from the given
780 * doorbell address.
781 * We then call vgic_its_trigger_msi() with the decoded data.
782 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
783 */
784int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
785{
786	struct vgic_its *its;
787	int ret;
788
789	if (!vgic_its_inject_cached_translation(kvm, msi))
790		return 1;
791
792	its = vgic_msi_to_its(kvm, msi);
793	if (IS_ERR(its))
794		return PTR_ERR(its);
795
796	mutex_lock(&its->its_lock);
797	ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
798	mutex_unlock(&its->its_lock);
799
800	if (ret < 0)
801		return ret;
802
803	/*
804	 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
805	 * if the guest has blocked the MSI. So we map any LPI mapping
806	 * related error to that.
807	 */
808	if (ret)
809		return 0;
810	else
811		return 1;
812}
813
814/* Requires the its_lock to be held. */
815static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
816{
817	list_del(&ite->ite_list);
818
819	/* This put matches the get in vgic_add_lpi. */
820	if (ite->irq) {
821		if (ite->irq->hw)
822			WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
823
824		vgic_put_irq(kvm, ite->irq);
825	}
826
827	kfree(ite);
828}
829
830static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
831{
832	return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
833}
834
835#define its_cmd_get_command(cmd)	its_cmd_mask_field(cmd, 0,  0,  8)
836#define its_cmd_get_deviceid(cmd)	its_cmd_mask_field(cmd, 0, 32, 32)
837#define its_cmd_get_size(cmd)		(its_cmd_mask_field(cmd, 1,  0,  5) + 1)
838#define its_cmd_get_id(cmd)		its_cmd_mask_field(cmd, 1,  0, 32)
839#define its_cmd_get_physical_id(cmd)	its_cmd_mask_field(cmd, 1, 32, 32)
840#define its_cmd_get_collection(cmd)	its_cmd_mask_field(cmd, 2,  0, 16)
841#define its_cmd_get_ittaddr(cmd)	(its_cmd_mask_field(cmd, 2,  8, 44) << 8)
842#define its_cmd_get_target_addr(cmd)	its_cmd_mask_field(cmd, 2, 16, 32)
843#define its_cmd_get_validbit(cmd)	its_cmd_mask_field(cmd, 2, 63,  1)
844
845/*
846 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
847 * Must be called with the its_lock mutex held.
848 */
849static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
850				       u64 *its_cmd)
851{
852	u32 device_id = its_cmd_get_deviceid(its_cmd);
853	u32 event_id = its_cmd_get_id(its_cmd);
854	struct its_ite *ite;
855
856	ite = find_ite(its, device_id, event_id);
857	if (ite && its_is_collection_mapped(ite->collection)) {
858		/*
859		 * Though the spec talks about removing the pending state, we
860		 * don't bother here since we clear the ITTE anyway and the
861		 * pending state is a property of the ITTE struct.
862		 */
863		vgic_its_invalidate_cache(kvm);
864
865		its_free_ite(kvm, ite);
866		return 0;
867	}
868
869	return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
870}
871
872/*
873 * The MOVI command moves an ITTE to a different collection.
874 * Must be called with the its_lock mutex held.
875 */
876static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
877				    u64 *its_cmd)
878{
879	u32 device_id = its_cmd_get_deviceid(its_cmd);
880	u32 event_id = its_cmd_get_id(its_cmd);
881	u32 coll_id = its_cmd_get_collection(its_cmd);
882	struct kvm_vcpu *vcpu;
883	struct its_ite *ite;
884	struct its_collection *collection;
885
886	ite = find_ite(its, device_id, event_id);
887	if (!ite)
888		return E_ITS_MOVI_UNMAPPED_INTERRUPT;
889
890	if (!its_is_collection_mapped(ite->collection))
891		return E_ITS_MOVI_UNMAPPED_COLLECTION;
892
893	collection = find_collection(its, coll_id);
894	if (!its_is_collection_mapped(collection))
895		return E_ITS_MOVI_UNMAPPED_COLLECTION;
896
897	ite->collection = collection;
898	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
899
900	vgic_its_invalidate_cache(kvm);
901
902	return update_affinity(ite->irq, vcpu);
903}
904
905static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa)
906{
907	gfn_t gfn = gpa >> PAGE_SHIFT;
908	int idx;
909	bool ret;
910
911	idx = srcu_read_lock(&its->dev->kvm->srcu);
912	ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
913	srcu_read_unlock(&its->dev->kvm->srcu, idx);
914	return ret;
915}
916
917/*
918 * Check whether an ID can be stored into the corresponding guest table.
919 * For a direct table this is pretty easy, but gets a bit nasty for
920 * indirect tables. We check whether the resulting guest physical address
921 * is actually valid (covered by a memslot and guest accessible).
922 * For this we have to read the respective first level entry.
923 */
924static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
925			      gpa_t *eaddr)
926{
927	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
928	u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
929	phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
930	int esz = GITS_BASER_ENTRY_SIZE(baser);
931	int index;
932
933	switch (type) {
934	case GITS_BASER_TYPE_DEVICE:
935		if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
936			return false;
937		break;
938	case GITS_BASER_TYPE_COLLECTION:
939		/* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
940		if (id >= BIT_ULL(16))
941			return false;
942		break;
943	default:
944		return false;
945	}
946
947	if (!(baser & GITS_BASER_INDIRECT)) {
948		phys_addr_t addr;
949
950		if (id >= (l1_tbl_size / esz))
951			return false;
952
953		addr = base + id * esz;
954
955		if (eaddr)
956			*eaddr = addr;
957
958		return __is_visible_gfn_locked(its, addr);
959	}
960
961	/* calculate and check the index into the 1st level */
962	index = id / (SZ_64K / esz);
963	if (index >= (l1_tbl_size / sizeof(u64)))
964		return false;
965
966	/* Each 1st level entry is represented by a 64-bit value. */
967	if (kvm_read_guest_lock(its->dev->kvm,
968			   base + index * sizeof(indirect_ptr),
969			   &indirect_ptr, sizeof(indirect_ptr)))
970		return false;
971
972	indirect_ptr = le64_to_cpu(indirect_ptr);
973
974	/* check the valid bit of the first level entry */
975	if (!(indirect_ptr & BIT_ULL(63)))
976		return false;
977
978	/* Mask the guest physical address and calculate the frame number. */
979	indirect_ptr &= GENMASK_ULL(51, 16);
980
981	/* Find the address of the actual entry */
982	index = id % (SZ_64K / esz);
983	indirect_ptr += index * esz;
984
985	if (eaddr)
986		*eaddr = indirect_ptr;
987
988	return __is_visible_gfn_locked(its, indirect_ptr);
989}
990
991/*
992 * Check whether an event ID can be stored in the corresponding Interrupt
993 * Translation Table, which starts at device->itt_addr.
994 */
995static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device,
996		u32 event_id)
997{
998	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
999	int ite_esz = abi->ite_esz;
1000	gpa_t gpa;
1001
1002	/* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */
1003	if (event_id >= BIT_ULL(device->num_eventid_bits))
1004		return false;
1005
1006	gpa = device->itt_addr + event_id * ite_esz;
1007	return __is_visible_gfn_locked(its, gpa);
1008}
1009
1010/*
1011 * Add a new collection into the ITS collection table.
1012 * Returns 0 on success, and a negative error value for generic errors.
1013 */
1014static int vgic_its_alloc_collection(struct vgic_its *its,
1015				     struct its_collection **colp,
1016				     u32 coll_id)
1017{
1018	struct its_collection *collection;
1019
1020	collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT);
1021	if (!collection)
1022		return -ENOMEM;
1023
1024	collection->collection_id = coll_id;
1025	collection->target_addr = COLLECTION_NOT_MAPPED;
1026
1027	list_add_tail(&collection->coll_list, &its->collection_list);
1028	*colp = collection;
1029
1030	return 0;
1031}
1032
1033static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
1034{
1035	struct its_collection *collection;
1036	struct its_device *device;
1037	struct its_ite *ite;
1038
1039	/*
1040	 * Clearing the mapping for that collection ID removes the
1041	 * entry from the list. If there wasn't any before, we can
1042	 * go home early.
1043	 */
1044	collection = find_collection(its, coll_id);
1045	if (!collection)
1046		return;
1047
1048	for_each_lpi_its(device, ite, its)
1049		if (ite->collection &&
1050		    ite->collection->collection_id == coll_id)
1051			ite->collection = NULL;
1052
1053	list_del(&collection->coll_list);
1054	kfree(collection);
1055}
1056
1057/* Must be called with its_lock mutex held */
1058static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1059					  struct its_collection *collection,
1060					  u32 event_id)
1061{
1062	struct its_ite *ite;
1063
1064	ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT);
1065	if (!ite)
1066		return ERR_PTR(-ENOMEM);
1067
1068	ite->event_id	= event_id;
1069	ite->collection = collection;
1070
1071	list_add_tail(&ite->ite_list, &device->itt_head);
1072	return ite;
1073}
1074
1075/*
1076 * The MAPTI and MAPI commands map LPIs to ITTEs.
1077 * Must be called with its_lock mutex held.
1078 */
1079static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1080				    u64 *its_cmd)
1081{
1082	u32 device_id = its_cmd_get_deviceid(its_cmd);
1083	u32 event_id = its_cmd_get_id(its_cmd);
1084	u32 coll_id = its_cmd_get_collection(its_cmd);
1085	struct its_ite *ite;
1086	struct kvm_vcpu *vcpu = NULL;
1087	struct its_device *device;
1088	struct its_collection *collection, *new_coll = NULL;
1089	struct vgic_irq *irq;
1090	int lpi_nr;
1091
1092	device = find_its_device(its, device_id);
1093	if (!device)
1094		return E_ITS_MAPTI_UNMAPPED_DEVICE;
1095
1096	if (!vgic_its_check_event_id(its, device, event_id))
1097		return E_ITS_MAPTI_ID_OOR;
1098
1099	if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1100		lpi_nr = its_cmd_get_physical_id(its_cmd);
1101	else
1102		lpi_nr = event_id;
1103	if (lpi_nr < GIC_LPI_OFFSET ||
1104	    lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1105		return E_ITS_MAPTI_PHYSICALID_OOR;
1106
1107	/* If there is an existing mapping, behavior is UNPREDICTABLE. */
1108	if (find_ite(its, device_id, event_id))
1109		return 0;
1110
1111	collection = find_collection(its, coll_id);
1112	if (!collection) {
1113		int ret;
1114
1115		if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
1116			return E_ITS_MAPC_COLLECTION_OOR;
1117
1118		ret = vgic_its_alloc_collection(its, &collection, coll_id);
1119		if (ret)
1120			return ret;
1121		new_coll = collection;
1122	}
1123
1124	ite = vgic_its_alloc_ite(device, collection, event_id);
1125	if (IS_ERR(ite)) {
1126		if (new_coll)
1127			vgic_its_free_collection(its, coll_id);
1128		return PTR_ERR(ite);
1129	}
1130
1131	if (its_is_collection_mapped(collection))
1132		vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1133
1134	irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1135	if (IS_ERR(irq)) {
1136		if (new_coll)
1137			vgic_its_free_collection(its, coll_id);
1138		its_free_ite(kvm, ite);
1139		return PTR_ERR(irq);
1140	}
1141	ite->irq = irq;
1142
1143	return 0;
1144}
1145
1146/* Requires the its_lock to be held. */
1147static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1148{
1149	struct its_ite *ite, *temp;
1150
1151	/*
1152	 * The spec says that unmapping a device with still valid
1153	 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1154	 * since we cannot leave the memory unreferenced.
1155	 */
1156	list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1157		its_free_ite(kvm, ite);
1158
1159	vgic_its_invalidate_cache(kvm);
1160
1161	list_del(&device->dev_list);
1162	kfree(device);
1163}
1164
1165/* its lock must be held */
1166static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1167{
1168	struct its_device *cur, *temp;
1169
1170	list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1171		vgic_its_free_device(kvm, cur);
1172}
1173
1174/* its lock must be held */
1175static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1176{
1177	struct its_collection *cur, *temp;
1178
1179	list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1180		vgic_its_free_collection(its, cur->collection_id);
1181}
1182
1183/* Must be called with its_lock mutex held */
1184static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1185						u32 device_id, gpa_t itt_addr,
1186						u8 num_eventid_bits)
1187{
1188	struct its_device *device;
1189
1190	device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT);
1191	if (!device)
1192		return ERR_PTR(-ENOMEM);
1193
1194	device->device_id = device_id;
1195	device->itt_addr = itt_addr;
1196	device->num_eventid_bits = num_eventid_bits;
1197	INIT_LIST_HEAD(&device->itt_head);
1198
1199	list_add_tail(&device->dev_list, &its->device_list);
1200	return device;
1201}
1202
1203/*
1204 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1205 * Must be called with the its_lock mutex held.
1206 */
1207static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1208				    u64 *its_cmd)
1209{
1210	u32 device_id = its_cmd_get_deviceid(its_cmd);
1211	bool valid = its_cmd_get_validbit(its_cmd);
1212	u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1213	gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1214	struct its_device *device;
1215
1216	if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1217		return E_ITS_MAPD_DEVICE_OOR;
1218
1219	if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1220		return E_ITS_MAPD_ITTSIZE_OOR;
1221
1222	device = find_its_device(its, device_id);
1223
1224	/*
1225	 * The spec says that calling MAPD on an already mapped device
1226	 * invalidates all cached data for this device. We implement this
1227	 * by removing the mapping and re-establishing it.
1228	 */
1229	if (device)
1230		vgic_its_free_device(kvm, device);
1231
1232	/*
1233	 * The spec does not say whether unmapping a not-mapped device
1234	 * is an error, so we are done in any case.
1235	 */
1236	if (!valid)
1237		return 0;
1238
1239	device = vgic_its_alloc_device(its, device_id, itt_addr,
1240				       num_eventid_bits);
1241
1242	return PTR_ERR_OR_ZERO(device);
1243}
1244
1245/*
1246 * The MAPC command maps collection IDs to redistributors.
1247 * Must be called with the its_lock mutex held.
1248 */
1249static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1250				    u64 *its_cmd)
1251{
1252	u16 coll_id;
1253	u32 target_addr;
1254	struct its_collection *collection;
1255	bool valid;
1256
1257	valid = its_cmd_get_validbit(its_cmd);
1258	coll_id = its_cmd_get_collection(its_cmd);
1259	target_addr = its_cmd_get_target_addr(its_cmd);
1260
1261	if (target_addr >= atomic_read(&kvm->online_vcpus))
1262		return E_ITS_MAPC_PROCNUM_OOR;
1263
1264	if (!valid) {
1265		vgic_its_free_collection(its, coll_id);
1266		vgic_its_invalidate_cache(kvm);
1267	} else {
1268		collection = find_collection(its, coll_id);
1269
1270		if (!collection) {
1271			int ret;
1272
1273			if (!vgic_its_check_id(its, its->baser_coll_table,
1274						coll_id, NULL))
1275				return E_ITS_MAPC_COLLECTION_OOR;
1276
1277			ret = vgic_its_alloc_collection(its, &collection,
1278							coll_id);
1279			if (ret)
1280				return ret;
1281			collection->target_addr = target_addr;
1282		} else {
1283			collection->target_addr = target_addr;
1284			update_affinity_collection(kvm, its, collection);
1285		}
1286	}
1287
1288	return 0;
1289}
1290
1291/*
1292 * The CLEAR command removes the pending state for a particular LPI.
1293 * Must be called with the its_lock mutex held.
1294 */
1295static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1296				     u64 *its_cmd)
1297{
1298	u32 device_id = its_cmd_get_deviceid(its_cmd);
1299	u32 event_id = its_cmd_get_id(its_cmd);
1300	struct its_ite *ite;
1301
1302
1303	ite = find_ite(its, device_id, event_id);
1304	if (!ite)
1305		return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1306
1307	ite->irq->pending_latch = false;
1308
1309	if (ite->irq->hw)
1310		return irq_set_irqchip_state(ite->irq->host_irq,
1311					     IRQCHIP_STATE_PENDING, false);
1312
1313	return 0;
1314}
1315
1316int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq)
1317{
1318	return update_lpi_config(kvm, irq, NULL, true);
1319}
1320
1321/*
1322 * The INV command syncs the configuration bits from the memory table.
1323 * Must be called with the its_lock mutex held.
1324 */
1325static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1326				   u64 *its_cmd)
1327{
1328	u32 device_id = its_cmd_get_deviceid(its_cmd);
1329	u32 event_id = its_cmd_get_id(its_cmd);
1330	struct its_ite *ite;
1331
1332
1333	ite = find_ite(its, device_id, event_id);
1334	if (!ite)
1335		return E_ITS_INV_UNMAPPED_INTERRUPT;
1336
1337	return vgic_its_inv_lpi(kvm, ite->irq);
1338}
1339
1340/**
1341 * vgic_its_invall - invalidate all LPIs targetting a given vcpu
1342 * @vcpu: the vcpu for which the RD is targetted by an invalidation
1343 *
1344 * Contrary to the INVALL command, this targets a RD instead of a
1345 * collection, and we don't need to hold the its_lock, since no ITS is
1346 * involved here.
1347 */
1348int vgic_its_invall(struct kvm_vcpu *vcpu)
1349{
1350	struct kvm *kvm = vcpu->kvm;
1351	int irq_count, i = 0;
1352	u32 *intids;
1353
1354	irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1355	if (irq_count < 0)
1356		return irq_count;
1357
1358	for (i = 0; i < irq_count; i++) {
1359		struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intids[i]);
1360		if (!irq)
1361			continue;
1362		update_lpi_config(kvm, irq, vcpu, false);
1363		vgic_put_irq(kvm, irq);
1364	}
1365
1366	kfree(intids);
1367
1368	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1369		its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1370
1371	return 0;
1372}
1373
1374/*
1375 * The INVALL command requests flushing of all IRQ data in this collection.
1376 * Find the VCPU mapped to that collection, then iterate over the VM's list
1377 * of mapped LPIs and update the configuration for each IRQ which targets
1378 * the specified vcpu. The configuration will be read from the in-memory
1379 * configuration table.
1380 * Must be called with the its_lock mutex held.
1381 */
1382static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1383				      u64 *its_cmd)
1384{
1385	u32 coll_id = its_cmd_get_collection(its_cmd);
1386	struct its_collection *collection;
1387	struct kvm_vcpu *vcpu;
1388
1389	collection = find_collection(its, coll_id);
1390	if (!its_is_collection_mapped(collection))
1391		return E_ITS_INVALL_UNMAPPED_COLLECTION;
1392
1393	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1394	vgic_its_invall(vcpu);
1395
1396	return 0;
1397}
1398
1399/*
1400 * The MOVALL command moves the pending state of all IRQs targeting one
1401 * redistributor to another. We don't hold the pending state in the VCPUs,
1402 * but in the IRQs instead, so there is really not much to do for us here.
1403 * However the spec says that no IRQ must target the old redistributor
1404 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1405 * This command affects all LPIs in the system that target that redistributor.
1406 */
1407static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1408				      u64 *its_cmd)
1409{
1410	u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1411	u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1412	struct kvm_vcpu *vcpu1, *vcpu2;
1413	struct vgic_irq *irq;
1414	u32 *intids;
1415	int irq_count, i;
1416
1417	if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1418	    target2_addr >= atomic_read(&kvm->online_vcpus))
1419		return E_ITS_MOVALL_PROCNUM_OOR;
1420
1421	if (target1_addr == target2_addr)
1422		return 0;
1423
1424	vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1425	vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1426
1427	irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1428	if (irq_count < 0)
1429		return irq_count;
1430
1431	for (i = 0; i < irq_count; i++) {
1432		irq = vgic_get_irq(kvm, NULL, intids[i]);
1433		if (!irq)
1434			continue;
1435
1436		update_affinity(irq, vcpu2);
1437
1438		vgic_put_irq(kvm, irq);
1439	}
1440
1441	vgic_its_invalidate_cache(kvm);
1442
1443	kfree(intids);
1444	return 0;
1445}
1446
1447/*
1448 * The INT command injects the LPI associated with that DevID/EvID pair.
1449 * Must be called with the its_lock mutex held.
1450 */
1451static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1452				   u64 *its_cmd)
1453{
1454	u32 msi_data = its_cmd_get_id(its_cmd);
1455	u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1456
1457	return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1458}
1459
1460/*
1461 * This function is called with the its_cmd lock held, but the ITS data
1462 * structure lock dropped.
1463 */
1464static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1465				   u64 *its_cmd)
1466{
1467	int ret = -ENODEV;
1468
1469	mutex_lock(&its->its_lock);
1470	switch (its_cmd_get_command(its_cmd)) {
1471	case GITS_CMD_MAPD:
1472		ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1473		break;
1474	case GITS_CMD_MAPC:
1475		ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1476		break;
1477	case GITS_CMD_MAPI:
1478		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1479		break;
1480	case GITS_CMD_MAPTI:
1481		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1482		break;
1483	case GITS_CMD_MOVI:
1484		ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1485		break;
1486	case GITS_CMD_DISCARD:
1487		ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1488		break;
1489	case GITS_CMD_CLEAR:
1490		ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1491		break;
1492	case GITS_CMD_MOVALL:
1493		ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1494		break;
1495	case GITS_CMD_INT:
1496		ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1497		break;
1498	case GITS_CMD_INV:
1499		ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1500		break;
1501	case GITS_CMD_INVALL:
1502		ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1503		break;
1504	case GITS_CMD_SYNC:
1505		/* we ignore this command: we are in sync all of the time */
1506		ret = 0;
1507		break;
1508	}
1509	mutex_unlock(&its->its_lock);
1510
1511	return ret;
1512}
1513
1514static u64 vgic_sanitise_its_baser(u64 reg)
1515{
1516	reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1517				  GITS_BASER_SHAREABILITY_SHIFT,
1518				  vgic_sanitise_shareability);
1519	reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1520				  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1521				  vgic_sanitise_inner_cacheability);
1522	reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1523				  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1524				  vgic_sanitise_outer_cacheability);
1525
1526	/* We support only one (ITS) page size: 64K */
1527	reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1528
1529	return reg;
1530}
1531
1532static u64 vgic_sanitise_its_cbaser(u64 reg)
1533{
1534	reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1535				  GITS_CBASER_SHAREABILITY_SHIFT,
1536				  vgic_sanitise_shareability);
1537	reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1538				  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1539				  vgic_sanitise_inner_cacheability);
1540	reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1541				  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1542				  vgic_sanitise_outer_cacheability);
1543
1544	/* Sanitise the physical address to be 64k aligned. */
1545	reg &= ~GENMASK_ULL(15, 12);
1546
1547	return reg;
1548}
1549
1550static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1551					       struct vgic_its *its,
1552					       gpa_t addr, unsigned int len)
1553{
1554	return extract_bytes(its->cbaser, addr & 7, len);
1555}
1556
1557static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1558				       gpa_t addr, unsigned int len,
1559				       unsigned long val)
1560{
1561	/* When GITS_CTLR.Enable is 1, this register is RO. */
1562	if (its->enabled)
1563		return;
1564
1565	mutex_lock(&its->cmd_lock);
1566	its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1567	its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1568	its->creadr = 0;
1569	/*
1570	 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1571	 * it to CREADR to make sure we start with an empty command buffer.
1572	 */
1573	its->cwriter = its->creadr;
1574	mutex_unlock(&its->cmd_lock);
1575}
1576
1577#define ITS_CMD_BUFFER_SIZE(baser)	((((baser) & 0xff) + 1) << 12)
1578#define ITS_CMD_SIZE			32
1579#define ITS_CMD_OFFSET(reg)		((reg) & GENMASK(19, 5))
1580
1581/* Must be called with the cmd_lock held. */
1582static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1583{
1584	gpa_t cbaser;
1585	u64 cmd_buf[4];
1586
1587	/* Commands are only processed when the ITS is enabled. */
1588	if (!its->enabled)
1589		return;
1590
1591	cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1592
1593	while (its->cwriter != its->creadr) {
1594		int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1595					      cmd_buf, ITS_CMD_SIZE);
1596		/*
1597		 * If kvm_read_guest() fails, this could be due to the guest
1598		 * programming a bogus value in CBASER or something else going
1599		 * wrong from which we cannot easily recover.
1600		 * According to section 6.3.2 in the GICv3 spec we can just
1601		 * ignore that command then.
1602		 */
1603		if (!ret)
1604			vgic_its_handle_command(kvm, its, cmd_buf);
1605
1606		its->creadr += ITS_CMD_SIZE;
1607		if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1608			its->creadr = 0;
1609	}
1610}
1611
1612/*
1613 * By writing to CWRITER the guest announces new commands to be processed.
1614 * To avoid any races in the first place, we take the its_cmd lock, which
1615 * protects our ring buffer variables, so that there is only one user
1616 * per ITS handling commands at a given time.
1617 */
1618static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1619					gpa_t addr, unsigned int len,
1620					unsigned long val)
1621{
1622	u64 reg;
1623
1624	if (!its)
1625		return;
1626
1627	mutex_lock(&its->cmd_lock);
1628
1629	reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1630	reg = ITS_CMD_OFFSET(reg);
1631	if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1632		mutex_unlock(&its->cmd_lock);
1633		return;
1634	}
1635	its->cwriter = reg;
1636
1637	vgic_its_process_commands(kvm, its);
1638
1639	mutex_unlock(&its->cmd_lock);
1640}
1641
1642static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1643						struct vgic_its *its,
1644						gpa_t addr, unsigned int len)
1645{
1646	return extract_bytes(its->cwriter, addr & 0x7, len);
1647}
1648
1649static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1650					       struct vgic_its *its,
1651					       gpa_t addr, unsigned int len)
1652{
1653	return extract_bytes(its->creadr, addr & 0x7, len);
1654}
1655
1656static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1657					      struct vgic_its *its,
1658					      gpa_t addr, unsigned int len,
1659					      unsigned long val)
1660{
1661	u32 cmd_offset;
1662	int ret = 0;
1663
1664	mutex_lock(&its->cmd_lock);
1665
1666	if (its->enabled) {
1667		ret = -EBUSY;
1668		goto out;
1669	}
1670
1671	cmd_offset = ITS_CMD_OFFSET(val);
1672	if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1673		ret = -EINVAL;
1674		goto out;
1675	}
1676
1677	its->creadr = cmd_offset;
1678out:
1679	mutex_unlock(&its->cmd_lock);
1680	return ret;
1681}
1682
1683#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1684static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1685					      struct vgic_its *its,
1686					      gpa_t addr, unsigned int len)
1687{
1688	u64 reg;
1689
1690	switch (BASER_INDEX(addr)) {
1691	case 0:
1692		reg = its->baser_device_table;
1693		break;
1694	case 1:
1695		reg = its->baser_coll_table;
1696		break;
1697	default:
1698		reg = 0;
1699		break;
1700	}
1701
1702	return extract_bytes(reg, addr & 7, len);
1703}
1704
1705#define GITS_BASER_RO_MASK	(GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1706static void vgic_mmio_write_its_baser(struct kvm *kvm,
1707				      struct vgic_its *its,
1708				      gpa_t addr, unsigned int len,
1709				      unsigned long val)
1710{
1711	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1712	u64 entry_size, table_type;
1713	u64 reg, *regptr, clearbits = 0;
1714
1715	/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1716	if (its->enabled)
1717		return;
1718
1719	switch (BASER_INDEX(addr)) {
1720	case 0:
1721		regptr = &its->baser_device_table;
1722		entry_size = abi->dte_esz;
1723		table_type = GITS_BASER_TYPE_DEVICE;
1724		break;
1725	case 1:
1726		regptr = &its->baser_coll_table;
1727		entry_size = abi->cte_esz;
1728		table_type = GITS_BASER_TYPE_COLLECTION;
1729		clearbits = GITS_BASER_INDIRECT;
1730		break;
1731	default:
1732		return;
1733	}
1734
1735	reg = update_64bit_reg(*regptr, addr & 7, len, val);
1736	reg &= ~GITS_BASER_RO_MASK;
1737	reg &= ~clearbits;
1738
1739	reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1740	reg |= table_type << GITS_BASER_TYPE_SHIFT;
1741	reg = vgic_sanitise_its_baser(reg);
1742
1743	*regptr = reg;
1744
1745	if (!(reg & GITS_BASER_VALID)) {
1746		/* Take the its_lock to prevent a race with a save/restore */
1747		mutex_lock(&its->its_lock);
1748		switch (table_type) {
1749		case GITS_BASER_TYPE_DEVICE:
1750			vgic_its_free_device_list(kvm, its);
1751			break;
1752		case GITS_BASER_TYPE_COLLECTION:
1753			vgic_its_free_collection_list(kvm, its);
1754			break;
1755		}
1756		mutex_unlock(&its->its_lock);
1757	}
1758}
1759
1760static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1761					     struct vgic_its *its,
1762					     gpa_t addr, unsigned int len)
1763{
1764	u32 reg = 0;
1765
1766	mutex_lock(&its->cmd_lock);
1767	if (its->creadr == its->cwriter)
1768		reg |= GITS_CTLR_QUIESCENT;
1769	if (its->enabled)
1770		reg |= GITS_CTLR_ENABLE;
1771	mutex_unlock(&its->cmd_lock);
1772
1773	return reg;
1774}
1775
1776static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1777				     gpa_t addr, unsigned int len,
1778				     unsigned long val)
1779{
1780	mutex_lock(&its->cmd_lock);
1781
1782	/*
1783	 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1784	 * device/collection BASER are invalid
1785	 */
1786	if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1787		(!(its->baser_device_table & GITS_BASER_VALID) ||
1788		 !(its->baser_coll_table & GITS_BASER_VALID) ||
1789		 !(its->cbaser & GITS_CBASER_VALID)))
1790		goto out;
1791
1792	its->enabled = !!(val & GITS_CTLR_ENABLE);
1793	if (!its->enabled)
1794		vgic_its_invalidate_cache(kvm);
1795
1796	/*
1797	 * Try to process any pending commands. This function bails out early
1798	 * if the ITS is disabled or no commands have been queued.
1799	 */
1800	vgic_its_process_commands(kvm, its);
1801
1802out:
1803	mutex_unlock(&its->cmd_lock);
1804}
1805
1806#define REGISTER_ITS_DESC(off, rd, wr, length, acc)		\
1807{								\
1808	.reg_offset = off,					\
1809	.len = length,						\
1810	.access_flags = acc,					\
1811	.its_read = rd,						\
1812	.its_write = wr,					\
1813}
1814
1815#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1816{								\
1817	.reg_offset = off,					\
1818	.len = length,						\
1819	.access_flags = acc,					\
1820	.its_read = rd,						\
1821	.its_write = wr,					\
1822	.uaccess_its_write = uwr,				\
1823}
1824
1825static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1826			      gpa_t addr, unsigned int len, unsigned long val)
1827{
1828	/* Ignore */
1829}
1830
1831static struct vgic_register_region its_registers[] = {
1832	REGISTER_ITS_DESC(GITS_CTLR,
1833		vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1834		VGIC_ACCESS_32bit),
1835	REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1836		vgic_mmio_read_its_iidr, its_mmio_write_wi,
1837		vgic_mmio_uaccess_write_its_iidr, 4,
1838		VGIC_ACCESS_32bit),
1839	REGISTER_ITS_DESC(GITS_TYPER,
1840		vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1841		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1842	REGISTER_ITS_DESC(GITS_CBASER,
1843		vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1844		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1845	REGISTER_ITS_DESC(GITS_CWRITER,
1846		vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1847		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1848	REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1849		vgic_mmio_read_its_creadr, its_mmio_write_wi,
1850		vgic_mmio_uaccess_write_its_creadr, 8,
1851		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1852	REGISTER_ITS_DESC(GITS_BASER,
1853		vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1854		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1855	REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1856		vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1857		VGIC_ACCESS_32bit),
1858};
1859
1860/* This is called on setting the LPI enable bit in the redistributor. */
1861void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1862{
1863	if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1864		its_sync_lpi_pending_table(vcpu);
1865}
1866
1867static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1868				   u64 addr)
1869{
1870	struct vgic_io_device *iodev = &its->iodev;
1871	int ret;
1872
1873	mutex_lock(&kvm->slots_lock);
1874	if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1875		ret = -EBUSY;
1876		goto out;
1877	}
1878
1879	its->vgic_its_base = addr;
1880	iodev->regions = its_registers;
1881	iodev->nr_regions = ARRAY_SIZE(its_registers);
1882	kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1883
1884	iodev->base_addr = its->vgic_its_base;
1885	iodev->iodev_type = IODEV_ITS;
1886	iodev->its = its;
1887	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1888				      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1889out:
1890	mutex_unlock(&kvm->slots_lock);
1891
1892	return ret;
1893}
1894
1895/* Default is 16 cached LPIs per vcpu */
1896#define LPI_DEFAULT_PCPU_CACHE_SIZE	16
1897
1898void vgic_lpi_translation_cache_init(struct kvm *kvm)
1899{
1900	struct vgic_dist *dist = &kvm->arch.vgic;
1901	unsigned int sz;
1902	int i;
1903
1904	if (!list_empty(&dist->lpi_translation_cache))
1905		return;
1906
1907	sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1908
1909	for (i = 0; i < sz; i++) {
1910		struct vgic_translation_cache_entry *cte;
1911
1912		/* An allocation failure is not fatal */
1913		cte = kzalloc(sizeof(*cte), GFP_KERNEL_ACCOUNT);
1914		if (WARN_ON(!cte))
1915			break;
1916
1917		INIT_LIST_HEAD(&cte->entry);
1918		list_add(&cte->entry, &dist->lpi_translation_cache);
1919	}
1920}
1921
1922void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1923{
1924	struct vgic_dist *dist = &kvm->arch.vgic;
1925	struct vgic_translation_cache_entry *cte, *tmp;
1926
1927	vgic_its_invalidate_cache(kvm);
1928
1929	list_for_each_entry_safe(cte, tmp,
1930				 &dist->lpi_translation_cache, entry) {
1931		list_del(&cte->entry);
1932		kfree(cte);
1933	}
1934}
1935
1936#define INITIAL_BASER_VALUE						  \
1937	(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)		| \
1938	 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)		| \
1939	 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)		| \
1940	 GITS_BASER_PAGE_SIZE_64K)
1941
1942#define INITIAL_PROPBASER_VALUE						  \
1943	(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)		| \
1944	 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)	| \
1945	 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1946
1947static int vgic_its_create(struct kvm_device *dev, u32 type)
1948{
1949	int ret;
1950	struct vgic_its *its;
1951
1952	if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1953		return -ENODEV;
1954
1955	its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT);
1956	if (!its)
1957		return -ENOMEM;
1958
1959	mutex_lock(&dev->kvm->arch.config_lock);
1960
1961	if (vgic_initialized(dev->kvm)) {
1962		ret = vgic_v4_init(dev->kvm);
1963		if (ret < 0) {
1964			mutex_unlock(&dev->kvm->arch.config_lock);
1965			kfree(its);
1966			return ret;
1967		}
1968
1969		vgic_lpi_translation_cache_init(dev->kvm);
1970	}
1971
1972	mutex_init(&its->its_lock);
1973	mutex_init(&its->cmd_lock);
1974
1975	/* Yep, even more trickery for lock ordering... */
1976#ifdef CONFIG_LOCKDEP
1977	mutex_lock(&its->cmd_lock);
1978	mutex_lock(&its->its_lock);
1979	mutex_unlock(&its->its_lock);
1980	mutex_unlock(&its->cmd_lock);
1981#endif
1982
1983	its->vgic_its_base = VGIC_ADDR_UNDEF;
1984
1985	INIT_LIST_HEAD(&its->device_list);
1986	INIT_LIST_HEAD(&its->collection_list);
1987
1988	dev->kvm->arch.vgic.msis_require_devid = true;
1989	dev->kvm->arch.vgic.has_its = true;
1990	its->enabled = false;
1991	its->dev = dev;
1992
1993	its->baser_device_table = INITIAL_BASER_VALUE			|
1994		((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1995	its->baser_coll_table = INITIAL_BASER_VALUE |
1996		((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1997	dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1998
1999	dev->private = its;
2000
2001	ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1);
2002
2003	mutex_unlock(&dev->kvm->arch.config_lock);
2004
2005	return ret;
2006}
2007
2008static void vgic_its_destroy(struct kvm_device *kvm_dev)
2009{
2010	struct kvm *kvm = kvm_dev->kvm;
2011	struct vgic_its *its = kvm_dev->private;
2012
2013	mutex_lock(&its->its_lock);
2014
2015	vgic_its_free_device_list(kvm, its);
2016	vgic_its_free_collection_list(kvm, its);
2017
2018	mutex_unlock(&its->its_lock);
2019	kfree(its);
2020	kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
2021}
2022
2023static int vgic_its_has_attr_regs(struct kvm_device *dev,
2024				  struct kvm_device_attr *attr)
2025{
2026	const struct vgic_register_region *region;
2027	gpa_t offset = attr->attr;
2028	int align;
2029
2030	align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
2031
2032	if (offset & align)
2033		return -EINVAL;
2034
2035	region = vgic_find_mmio_region(its_registers,
2036				       ARRAY_SIZE(its_registers),
2037				       offset);
2038	if (!region)
2039		return -ENXIO;
2040
2041	return 0;
2042}
2043
2044static int vgic_its_attr_regs_access(struct kvm_device *dev,
2045				     struct kvm_device_attr *attr,
2046				     u64 *reg, bool is_write)
2047{
2048	const struct vgic_register_region *region;
2049	struct vgic_its *its;
2050	gpa_t addr, offset;
2051	unsigned int len;
2052	int align, ret = 0;
2053
2054	its = dev->private;
2055	offset = attr->attr;
2056
2057	/*
2058	 * Although the spec supports upper/lower 32-bit accesses to
2059	 * 64-bit ITS registers, the userspace ABI requires 64-bit
2060	 * accesses to all 64-bit wide registers. We therefore only
2061	 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
2062	 * registers
2063	 */
2064	if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
2065		align = 0x3;
2066	else
2067		align = 0x7;
2068
2069	if (offset & align)
2070		return -EINVAL;
2071
2072	mutex_lock(&dev->kvm->lock);
2073
2074	if (!lock_all_vcpus(dev->kvm)) {
2075		mutex_unlock(&dev->kvm->lock);
2076		return -EBUSY;
2077	}
2078
2079	mutex_lock(&dev->kvm->arch.config_lock);
2080
2081	if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
2082		ret = -ENXIO;
2083		goto out;
2084	}
2085
2086	region = vgic_find_mmio_region(its_registers,
2087				       ARRAY_SIZE(its_registers),
2088				       offset);
2089	if (!region) {
2090		ret = -ENXIO;
2091		goto out;
2092	}
2093
2094	addr = its->vgic_its_base + offset;
2095
2096	len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2097
2098	if (is_write) {
2099		if (region->uaccess_its_write)
2100			ret = region->uaccess_its_write(dev->kvm, its, addr,
2101							len, *reg);
2102		else
2103			region->its_write(dev->kvm, its, addr, len, *reg);
2104	} else {
2105		*reg = region->its_read(dev->kvm, its, addr, len);
2106	}
2107out:
2108	mutex_unlock(&dev->kvm->arch.config_lock);
2109	unlock_all_vcpus(dev->kvm);
2110	mutex_unlock(&dev->kvm->lock);
2111	return ret;
2112}
2113
2114static u32 compute_next_devid_offset(struct list_head *h,
2115				     struct its_device *dev)
2116{
2117	struct its_device *next;
2118	u32 next_offset;
2119
2120	if (list_is_last(&dev->dev_list, h))
2121		return 0;
2122	next = list_next_entry(dev, dev_list);
2123	next_offset = next->device_id - dev->device_id;
2124
2125	return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2126}
2127
2128static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2129{
2130	struct its_ite *next;
2131	u32 next_offset;
2132
2133	if (list_is_last(&ite->ite_list, h))
2134		return 0;
2135	next = list_next_entry(ite, ite_list);
2136	next_offset = next->event_id - ite->event_id;
2137
2138	return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2139}
2140
2141/**
2142 * entry_fn_t - Callback called on a table entry restore path
2143 * @its: its handle
2144 * @id: id of the entry
2145 * @entry: pointer to the entry
2146 * @opaque: pointer to an opaque data
2147 *
2148 * Return: < 0 on error, 0 if last element was identified, id offset to next
2149 * element otherwise
2150 */
2151typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2152			  void *opaque);
2153
2154/**
2155 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2156 * to each entry
2157 *
2158 * @its: its handle
2159 * @base: base gpa of the table
2160 * @size: size of the table in bytes
2161 * @esz: entry size in bytes
2162 * @start_id: the ID of the first entry in the table
2163 * (non zero for 2d level tables)
2164 * @fn: function to apply on each entry
2165 *
2166 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2167 * (the last element may not be found on second level tables)
2168 */
2169static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2170			  int start_id, entry_fn_t fn, void *opaque)
2171{
2172	struct kvm *kvm = its->dev->kvm;
2173	unsigned long len = size;
2174	int id = start_id;
2175	gpa_t gpa = base;
2176	char entry[ESZ_MAX];
2177	int ret;
2178
2179	memset(entry, 0, esz);
2180
2181	while (true) {
2182		int next_offset;
2183		size_t byte_offset;
2184
2185		ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2186		if (ret)
2187			return ret;
2188
2189		next_offset = fn(its, id, entry, opaque);
2190		if (next_offset <= 0)
2191			return next_offset;
2192
2193		byte_offset = next_offset * esz;
2194		if (byte_offset >= len)
2195			break;
2196
2197		id += next_offset;
2198		gpa += byte_offset;
2199		len -= byte_offset;
2200	}
2201	return 1;
2202}
2203
2204/**
2205 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2206 */
2207static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2208			      struct its_ite *ite, gpa_t gpa, int ite_esz)
2209{
2210	struct kvm *kvm = its->dev->kvm;
2211	u32 next_offset;
2212	u64 val;
2213
2214	next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2215	val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2216	       ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2217		ite->collection->collection_id;
2218	val = cpu_to_le64(val);
2219	return vgic_write_guest_lock(kvm, gpa, &val, ite_esz);
2220}
2221
2222/**
2223 * vgic_its_restore_ite - restore an interrupt translation entry
2224 * @event_id: id used for indexing
2225 * @ptr: pointer to the ITE entry
2226 * @opaque: pointer to the its_device
2227 */
2228static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2229				void *ptr, void *opaque)
2230{
2231	struct its_device *dev = opaque;
2232	struct its_collection *collection;
2233	struct kvm *kvm = its->dev->kvm;
2234	struct kvm_vcpu *vcpu = NULL;
2235	u64 val;
2236	u64 *p = (u64 *)ptr;
2237	struct vgic_irq *irq;
2238	u32 coll_id, lpi_id;
2239	struct its_ite *ite;
2240	u32 offset;
2241
2242	val = *p;
2243
2244	val = le64_to_cpu(val);
2245
2246	coll_id = val & KVM_ITS_ITE_ICID_MASK;
2247	lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2248
2249	if (!lpi_id)
2250		return 1; /* invalid entry, no choice but to scan next entry */
2251
2252	if (lpi_id < VGIC_MIN_LPI)
2253		return -EINVAL;
2254
2255	offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2256	if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2257		return -EINVAL;
2258
2259	collection = find_collection(its, coll_id);
2260	if (!collection)
2261		return -EINVAL;
2262
2263	if (!vgic_its_check_event_id(its, dev, event_id))
2264		return -EINVAL;
2265
2266	ite = vgic_its_alloc_ite(dev, collection, event_id);
2267	if (IS_ERR(ite))
2268		return PTR_ERR(ite);
2269
2270	if (its_is_collection_mapped(collection))
2271		vcpu = kvm_get_vcpu(kvm, collection->target_addr);
2272
2273	irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2274	if (IS_ERR(irq)) {
2275		its_free_ite(kvm, ite);
2276		return PTR_ERR(irq);
2277	}
2278	ite->irq = irq;
2279
2280	return offset;
2281}
2282
2283static int vgic_its_ite_cmp(void *priv, const struct list_head *a,
2284			    const struct list_head *b)
2285{
2286	struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2287	struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2288
2289	if (itea->event_id < iteb->event_id)
2290		return -1;
2291	else
2292		return 1;
2293}
2294
2295static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2296{
2297	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2298	gpa_t base = device->itt_addr;
2299	struct its_ite *ite;
2300	int ret;
2301	int ite_esz = abi->ite_esz;
2302
2303	list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2304
2305	list_for_each_entry(ite, &device->itt_head, ite_list) {
2306		gpa_t gpa = base + ite->event_id * ite_esz;
2307
2308		/*
2309		 * If an LPI carries the HW bit, this means that this
2310		 * interrupt is controlled by GICv4, and we do not
2311		 * have direct access to that state without GICv4.1.
2312		 * Let's simply fail the save operation...
2313		 */
2314		if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1)
2315			return -EACCES;
2316
2317		ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2318		if (ret)
2319			return ret;
2320	}
2321	return 0;
2322}
2323
2324/**
2325 * vgic_its_restore_itt - restore the ITT of a device
2326 *
2327 * @its: its handle
2328 * @dev: device handle
2329 *
2330 * Return 0 on success, < 0 on error
2331 */
2332static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2333{
2334	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2335	gpa_t base = dev->itt_addr;
2336	int ret;
2337	int ite_esz = abi->ite_esz;
2338	size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2339
2340	ret = scan_its_table(its, base, max_size, ite_esz, 0,
2341			     vgic_its_restore_ite, dev);
2342
2343	/* scan_its_table returns +1 if all ITEs are invalid */
2344	if (ret > 0)
2345		ret = 0;
2346
2347	return ret;
2348}
2349
2350/**
2351 * vgic_its_save_dte - Save a device table entry at a given GPA
2352 *
2353 * @its: ITS handle
2354 * @dev: ITS device
2355 * @ptr: GPA
2356 */
2357static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2358			     gpa_t ptr, int dte_esz)
2359{
2360	struct kvm *kvm = its->dev->kvm;
2361	u64 val, itt_addr_field;
2362	u32 next_offset;
2363
2364	itt_addr_field = dev->itt_addr >> 8;
2365	next_offset = compute_next_devid_offset(&its->device_list, dev);
2366	val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2367	       ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2368	       (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2369		(dev->num_eventid_bits - 1));
2370	val = cpu_to_le64(val);
2371	return vgic_write_guest_lock(kvm, ptr, &val, dte_esz);
2372}
2373
2374/**
2375 * vgic_its_restore_dte - restore a device table entry
2376 *
2377 * @its: its handle
2378 * @id: device id the DTE corresponds to
2379 * @ptr: kernel VA where the 8 byte DTE is located
2380 * @opaque: unused
2381 *
2382 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2383 * next dte otherwise
2384 */
2385static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2386				void *ptr, void *opaque)
2387{
2388	struct its_device *dev;
2389	u64 baser = its->baser_device_table;
2390	gpa_t itt_addr;
2391	u8 num_eventid_bits;
2392	u64 entry = *(u64 *)ptr;
2393	bool valid;
2394	u32 offset;
2395	int ret;
2396
2397	entry = le64_to_cpu(entry);
2398
2399	valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2400	num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2401	itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2402			>> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2403
2404	if (!valid)
2405		return 1;
2406
2407	/* dte entry is valid */
2408	offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2409
2410	if (!vgic_its_check_id(its, baser, id, NULL))
2411		return -EINVAL;
2412
2413	dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2414	if (IS_ERR(dev))
2415		return PTR_ERR(dev);
2416
2417	ret = vgic_its_restore_itt(its, dev);
2418	if (ret) {
2419		vgic_its_free_device(its->dev->kvm, dev);
2420		return ret;
2421	}
2422
2423	return offset;
2424}
2425
2426static int vgic_its_device_cmp(void *priv, const struct list_head *a,
2427			       const struct list_head *b)
2428{
2429	struct its_device *deva = container_of(a, struct its_device, dev_list);
2430	struct its_device *devb = container_of(b, struct its_device, dev_list);
2431
2432	if (deva->device_id < devb->device_id)
2433		return -1;
2434	else
2435		return 1;
2436}
2437
2438/**
2439 * vgic_its_save_device_tables - Save the device table and all ITT
2440 * into guest RAM
2441 *
2442 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2443 * returns the GPA of the device entry
2444 */
2445static int vgic_its_save_device_tables(struct vgic_its *its)
2446{
2447	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2448	u64 baser = its->baser_device_table;
2449	struct its_device *dev;
2450	int dte_esz = abi->dte_esz;
2451
2452	if (!(baser & GITS_BASER_VALID))
2453		return 0;
2454
2455	list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2456
2457	list_for_each_entry(dev, &its->device_list, dev_list) {
2458		int ret;
2459		gpa_t eaddr;
2460
2461		if (!vgic_its_check_id(its, baser,
2462				       dev->device_id, &eaddr))
2463			return -EINVAL;
2464
2465		ret = vgic_its_save_itt(its, dev);
2466		if (ret)
2467			return ret;
2468
2469		ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2470		if (ret)
2471			return ret;
2472	}
2473	return 0;
2474}
2475
2476/**
2477 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2478 *
2479 * @its: its handle
2480 * @id: index of the entry in the L1 table
2481 * @addr: kernel VA
2482 * @opaque: unused
2483 *
2484 * L1 table entries are scanned by steps of 1 entry
2485 * Return < 0 if error, 0 if last dte was found when scanning the L2
2486 * table, +1 otherwise (meaning next L1 entry must be scanned)
2487 */
2488static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2489			 void *opaque)
2490{
2491	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2492	int l2_start_id = id * (SZ_64K / abi->dte_esz);
2493	u64 entry = *(u64 *)addr;
2494	int dte_esz = abi->dte_esz;
2495	gpa_t gpa;
2496	int ret;
2497
2498	entry = le64_to_cpu(entry);
2499
2500	if (!(entry & KVM_ITS_L1E_VALID_MASK))
2501		return 1;
2502
2503	gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2504
2505	ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2506			     l2_start_id, vgic_its_restore_dte, NULL);
2507
2508	return ret;
2509}
2510
2511/**
2512 * vgic_its_restore_device_tables - Restore the device table and all ITT
2513 * from guest RAM to internal data structs
2514 */
2515static int vgic_its_restore_device_tables(struct vgic_its *its)
2516{
2517	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2518	u64 baser = its->baser_device_table;
2519	int l1_esz, ret;
2520	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2521	gpa_t l1_gpa;
2522
2523	if (!(baser & GITS_BASER_VALID))
2524		return 0;
2525
2526	l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2527
2528	if (baser & GITS_BASER_INDIRECT) {
2529		l1_esz = GITS_LVL1_ENTRY_SIZE;
2530		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2531				     handle_l1_dte, NULL);
2532	} else {
2533		l1_esz = abi->dte_esz;
2534		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2535				     vgic_its_restore_dte, NULL);
2536	}
2537
2538	/* scan_its_table returns +1 if all entries are invalid */
2539	if (ret > 0)
2540		ret = 0;
2541
2542	if (ret < 0)
2543		vgic_its_free_device_list(its->dev->kvm, its);
2544
2545	return ret;
2546}
2547
2548static int vgic_its_save_cte(struct vgic_its *its,
2549			     struct its_collection *collection,
2550			     gpa_t gpa, int esz)
2551{
2552	u64 val;
2553
2554	val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2555	       ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2556	       collection->collection_id);
2557	val = cpu_to_le64(val);
2558	return vgic_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2559}
2560
2561/*
2562 * Restore a collection entry into the ITS collection table.
2563 * Return +1 on success, 0 if the entry was invalid (which should be
2564 * interpreted as end-of-table), and a negative error value for generic errors.
2565 */
2566static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2567{
2568	struct its_collection *collection;
2569	struct kvm *kvm = its->dev->kvm;
2570	u32 target_addr, coll_id;
2571	u64 val;
2572	int ret;
2573
2574	BUG_ON(esz > sizeof(val));
2575	ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2576	if (ret)
2577		return ret;
2578	val = le64_to_cpu(val);
2579	if (!(val & KVM_ITS_CTE_VALID_MASK))
2580		return 0;
2581
2582	target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2583	coll_id = val & KVM_ITS_CTE_ICID_MASK;
2584
2585	if (target_addr != COLLECTION_NOT_MAPPED &&
2586	    target_addr >= atomic_read(&kvm->online_vcpus))
2587		return -EINVAL;
2588
2589	collection = find_collection(its, coll_id);
2590	if (collection)
2591		return -EEXIST;
2592
2593	if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
2594		return -EINVAL;
2595
2596	ret = vgic_its_alloc_collection(its, &collection, coll_id);
2597	if (ret)
2598		return ret;
2599	collection->target_addr = target_addr;
2600	return 1;
2601}
2602
2603/**
2604 * vgic_its_save_collection_table - Save the collection table into
2605 * guest RAM
2606 */
2607static int vgic_its_save_collection_table(struct vgic_its *its)
2608{
2609	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2610	u64 baser = its->baser_coll_table;
2611	gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2612	struct its_collection *collection;
2613	u64 val;
2614	size_t max_size, filled = 0;
2615	int ret, cte_esz = abi->cte_esz;
2616
2617	if (!(baser & GITS_BASER_VALID))
2618		return 0;
2619
2620	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2621
2622	list_for_each_entry(collection, &its->collection_list, coll_list) {
2623		ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2624		if (ret)
2625			return ret;
2626		gpa += cte_esz;
2627		filled += cte_esz;
2628	}
2629
2630	if (filled == max_size)
2631		return 0;
2632
2633	/*
2634	 * table is not fully filled, add a last dummy element
2635	 * with valid bit unset
2636	 */
2637	val = 0;
2638	BUG_ON(cte_esz > sizeof(val));
2639	ret = vgic_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2640	return ret;
2641}
2642
2643/**
2644 * vgic_its_restore_collection_table - reads the collection table
2645 * in guest memory and restores the ITS internal state. Requires the
2646 * BASER registers to be restored before.
2647 */
2648static int vgic_its_restore_collection_table(struct vgic_its *its)
2649{
2650	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2651	u64 baser = its->baser_coll_table;
2652	int cte_esz = abi->cte_esz;
2653	size_t max_size, read = 0;
2654	gpa_t gpa;
2655	int ret;
2656
2657	if (!(baser & GITS_BASER_VALID))
2658		return 0;
2659
2660	gpa = GITS_BASER_ADDR_48_to_52(baser);
2661
2662	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2663
2664	while (read < max_size) {
2665		ret = vgic_its_restore_cte(its, gpa, cte_esz);
2666		if (ret <= 0)
2667			break;
2668		gpa += cte_esz;
2669		read += cte_esz;
2670	}
2671
2672	if (ret > 0)
2673		return 0;
2674
2675	if (ret < 0)
2676		vgic_its_free_collection_list(its->dev->kvm, its);
2677
2678	return ret;
2679}
2680
2681/**
2682 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2683 * according to v0 ABI
2684 */
2685static int vgic_its_save_tables_v0(struct vgic_its *its)
2686{
2687	int ret;
2688
2689	ret = vgic_its_save_device_tables(its);
2690	if (ret)
2691		return ret;
2692
2693	return vgic_its_save_collection_table(its);
2694}
2695
2696/**
2697 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2698 * to internal data structs according to V0 ABI
2699 *
2700 */
2701static int vgic_its_restore_tables_v0(struct vgic_its *its)
2702{
2703	int ret;
2704
2705	ret = vgic_its_restore_collection_table(its);
2706	if (ret)
2707		return ret;
2708
2709	ret = vgic_its_restore_device_tables(its);
2710	if (ret)
2711		vgic_its_free_collection_list(its->dev->kvm, its);
2712	return ret;
2713}
2714
2715static int vgic_its_commit_v0(struct vgic_its *its)
2716{
2717	const struct vgic_its_abi *abi;
2718
2719	abi = vgic_its_get_abi(its);
2720	its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2721	its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2722
2723	its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2724					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2725
2726	its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2727					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2728	return 0;
2729}
2730
2731static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2732{
2733	/* We need to keep the ABI specific field values */
2734	its->baser_coll_table &= ~GITS_BASER_VALID;
2735	its->baser_device_table &= ~GITS_BASER_VALID;
2736	its->cbaser = 0;
2737	its->creadr = 0;
2738	its->cwriter = 0;
2739	its->enabled = 0;
2740	vgic_its_free_device_list(kvm, its);
2741	vgic_its_free_collection_list(kvm, its);
2742}
2743
2744static int vgic_its_has_attr(struct kvm_device *dev,
2745			     struct kvm_device_attr *attr)
2746{
2747	switch (attr->group) {
2748	case KVM_DEV_ARM_VGIC_GRP_ADDR:
2749		switch (attr->attr) {
2750		case KVM_VGIC_ITS_ADDR_TYPE:
2751			return 0;
2752		}
2753		break;
2754	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2755		switch (attr->attr) {
2756		case KVM_DEV_ARM_VGIC_CTRL_INIT:
2757			return 0;
2758		case KVM_DEV_ARM_ITS_CTRL_RESET:
2759			return 0;
2760		case KVM_DEV_ARM_ITS_SAVE_TABLES:
2761			return 0;
2762		case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2763			return 0;
2764		}
2765		break;
2766	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2767		return vgic_its_has_attr_regs(dev, attr);
2768	}
2769	return -ENXIO;
2770}
2771
2772static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2773{
2774	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2775	int ret = 0;
2776
2777	if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2778		return 0;
2779
2780	mutex_lock(&kvm->lock);
2781
2782	if (!lock_all_vcpus(kvm)) {
2783		mutex_unlock(&kvm->lock);
2784		return -EBUSY;
2785	}
2786
2787	mutex_lock(&kvm->arch.config_lock);
2788	mutex_lock(&its->its_lock);
2789
2790	switch (attr) {
2791	case KVM_DEV_ARM_ITS_CTRL_RESET:
2792		vgic_its_reset(kvm, its);
2793		break;
2794	case KVM_DEV_ARM_ITS_SAVE_TABLES:
2795		ret = abi->save_tables(its);
2796		break;
2797	case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2798		ret = abi->restore_tables(its);
2799		break;
2800	}
2801
2802	mutex_unlock(&its->its_lock);
2803	mutex_unlock(&kvm->arch.config_lock);
2804	unlock_all_vcpus(kvm);
2805	mutex_unlock(&kvm->lock);
2806	return ret;
2807}
2808
2809/*
2810 * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory
2811 * without the running VCPU when dirty ring is enabled.
2812 *
2813 * The running VCPU is required to track dirty guest pages when dirty ring
2814 * is enabled. Otherwise, the backup bitmap should be used to track the
2815 * dirty guest pages. When vgic/its tables are being saved, the backup
2816 * bitmap is used to track the dirty guest pages due to the missed running
2817 * VCPU in the period.
2818 */
2819bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm)
2820{
2821	struct vgic_dist *dist = &kvm->arch.vgic;
2822
2823	return dist->table_write_in_progress;
2824}
2825
2826static int vgic_its_set_attr(struct kvm_device *dev,
2827			     struct kvm_device_attr *attr)
2828{
2829	struct vgic_its *its = dev->private;
2830	int ret;
2831
2832	switch (attr->group) {
2833	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2834		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2835		unsigned long type = (unsigned long)attr->attr;
2836		u64 addr;
2837
2838		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2839			return -ENODEV;
2840
2841		if (copy_from_user(&addr, uaddr, sizeof(addr)))
2842			return -EFAULT;
2843
2844		ret = vgic_check_iorange(dev->kvm, its->vgic_its_base,
2845					 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE);
2846		if (ret)
2847			return ret;
2848
2849		return vgic_register_its_iodev(dev->kvm, its, addr);
2850	}
2851	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2852		return vgic_its_ctrl(dev->kvm, its, attr->attr);
2853	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2854		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2855		u64 reg;
2856
2857		if (get_user(reg, uaddr))
2858			return -EFAULT;
2859
2860		return vgic_its_attr_regs_access(dev, attr, &reg, true);
2861	}
2862	}
2863	return -ENXIO;
2864}
2865
2866static int vgic_its_get_attr(struct kvm_device *dev,
2867			     struct kvm_device_attr *attr)
2868{
2869	switch (attr->group) {
2870	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2871		struct vgic_its *its = dev->private;
2872		u64 addr = its->vgic_its_base;
2873		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2874		unsigned long type = (unsigned long)attr->attr;
2875
2876		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2877			return -ENODEV;
2878
2879		if (copy_to_user(uaddr, &addr, sizeof(addr)))
2880			return -EFAULT;
2881		break;
2882	}
2883	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2884		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2885		u64 reg;
2886		int ret;
2887
2888		ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2889		if (ret)
2890			return ret;
2891		return put_user(reg, uaddr);
2892	}
2893	default:
2894		return -ENXIO;
2895	}
2896
2897	return 0;
2898}
2899
2900static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2901	.name = "kvm-arm-vgic-its",
2902	.create = vgic_its_create,
2903	.destroy = vgic_its_destroy,
2904	.set_attr = vgic_its_set_attr,
2905	.get_attr = vgic_its_get_attr,
2906	.has_attr = vgic_its_has_attr,
2907};
2908
2909int kvm_vgic_register_its_device(void)
2910{
2911	return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2912				       KVM_DEV_TYPE_ARM_VGIC_ITS);
2913}
2914