xref: /kernel/linux/linux-6.6/arch/arm64/kvm/sys_regs.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/coproc.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Authors: Rusty Russell <rusty@rustcorp.com.au>
9 *          Christoffer Dall <c.dall@virtualopensystems.com>
10 */
11
12#include <linux/bitfield.h>
13#include <linux/bsearch.h>
14#include <linux/cacheinfo.h>
15#include <linux/kvm_host.h>
16#include <linux/mm.h>
17#include <linux/printk.h>
18#include <linux/uaccess.h>
19
20#include <asm/cacheflush.h>
21#include <asm/cputype.h>
22#include <asm/debug-monitors.h>
23#include <asm/esr.h>
24#include <asm/kvm_arm.h>
25#include <asm/kvm_emulate.h>
26#include <asm/kvm_hyp.h>
27#include <asm/kvm_mmu.h>
28#include <asm/kvm_nested.h>
29#include <asm/perf_event.h>
30#include <asm/sysreg.h>
31
32#include <trace/events/kvm.h>
33
34#include "sys_regs.h"
35
36#include "trace.h"
37
38/*
39 * For AArch32, we only take care of what is being trapped. Anything
40 * that has to do with init and userspace access has to go via the
41 * 64bit interface.
42 */
43
44static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
45static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
46		      u64 val);
47
48static bool read_from_write_only(struct kvm_vcpu *vcpu,
49				 struct sys_reg_params *params,
50				 const struct sys_reg_desc *r)
51{
52	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
53	print_sys_reg_instr(params);
54	kvm_inject_undefined(vcpu);
55	return false;
56}
57
58static bool write_to_read_only(struct kvm_vcpu *vcpu,
59			       struct sys_reg_params *params,
60			       const struct sys_reg_desc *r)
61{
62	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
63	print_sys_reg_instr(params);
64	kvm_inject_undefined(vcpu);
65	return false;
66}
67
68u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
69{
70	u64 val = 0x8badf00d8badf00d;
71
72	if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
73	    __vcpu_read_sys_reg_from_cpu(reg, &val))
74		return val;
75
76	return __vcpu_sys_reg(vcpu, reg);
77}
78
79void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
80{
81	if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
82	    __vcpu_write_sys_reg_to_cpu(val, reg))
83		return;
84
85	__vcpu_sys_reg(vcpu, reg) = val;
86}
87
88/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
89#define CSSELR_MAX 14
90
91/*
92 * Returns the minimum line size for the selected cache, expressed as
93 * Log2(bytes).
94 */
95static u8 get_min_cache_line_size(bool icache)
96{
97	u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
98	u8 field;
99
100	if (icache)
101		field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
102	else
103		field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
104
105	/*
106	 * Cache line size is represented as Log2(words) in CTR_EL0.
107	 * Log2(bytes) can be derived with the following:
108	 *
109	 * Log2(words) + 2 = Log2(bytes / 4) + 2
110	 * 		   = Log2(bytes) - 2 + 2
111	 * 		   = Log2(bytes)
112	 */
113	return field + 2;
114}
115
116/* Which cache CCSIDR represents depends on CSSELR value. */
117static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
118{
119	u8 line_size;
120
121	if (vcpu->arch.ccsidr)
122		return vcpu->arch.ccsidr[csselr];
123
124	line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
125
126	/*
127	 * Fabricate a CCSIDR value as the overriding value does not exist.
128	 * The real CCSIDR value will not be used as it can vary by the
129	 * physical CPU which the vcpu currently resides in.
130	 *
131	 * The line size is determined with get_min_cache_line_size(), which
132	 * should be valid for all CPUs even if they have different cache
133	 * configuration.
134	 *
135	 * The associativity bits are cleared, meaning the geometry of all data
136	 * and unified caches (which are guaranteed to be PIPT and thus
137	 * non-aliasing) are 1 set and 1 way.
138	 * Guests should not be doing cache operations by set/way at all, and
139	 * for this reason, we trap them and attempt to infer the intent, so
140	 * that we can flush the entire guest's address space at the appropriate
141	 * time. The exposed geometry minimizes the number of the traps.
142	 * [If guests should attempt to infer aliasing properties from the
143	 * geometry (which is not permitted by the architecture), they would
144	 * only do so for virtually indexed caches.]
145	 *
146	 * We don't check if the cache level exists as it is allowed to return
147	 * an UNKNOWN value if not.
148	 */
149	return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
150}
151
152static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
153{
154	u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
155	u32 *ccsidr = vcpu->arch.ccsidr;
156	u32 i;
157
158	if ((val & CCSIDR_EL1_RES0) ||
159	    line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
160		return -EINVAL;
161
162	if (!ccsidr) {
163		if (val == get_ccsidr(vcpu, csselr))
164			return 0;
165
166		ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
167		if (!ccsidr)
168			return -ENOMEM;
169
170		for (i = 0; i < CSSELR_MAX; i++)
171			ccsidr[i] = get_ccsidr(vcpu, i);
172
173		vcpu->arch.ccsidr = ccsidr;
174	}
175
176	ccsidr[csselr] = val;
177
178	return 0;
179}
180
181static bool access_rw(struct kvm_vcpu *vcpu,
182		      struct sys_reg_params *p,
183		      const struct sys_reg_desc *r)
184{
185	if (p->is_write)
186		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
187	else
188		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
189
190	return true;
191}
192
193/*
194 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
195 */
196static bool access_dcsw(struct kvm_vcpu *vcpu,
197			struct sys_reg_params *p,
198			const struct sys_reg_desc *r)
199{
200	if (!p->is_write)
201		return read_from_write_only(vcpu, p, r);
202
203	/*
204	 * Only track S/W ops if we don't have FWB. It still indicates
205	 * that the guest is a bit broken (S/W operations should only
206	 * be done by firmware, knowing that there is only a single
207	 * CPU left in the system, and certainly not from non-secure
208	 * software).
209	 */
210	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
211		kvm_set_way_flush(vcpu);
212
213	return true;
214}
215
216static bool access_dcgsw(struct kvm_vcpu *vcpu,
217			 struct sys_reg_params *p,
218			 const struct sys_reg_desc *r)
219{
220	if (!kvm_has_mte(vcpu->kvm)) {
221		kvm_inject_undefined(vcpu);
222		return false;
223	}
224
225	/* Treat MTE S/W ops as we treat the classic ones: with contempt */
226	return access_dcsw(vcpu, p, r);
227}
228
229static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
230{
231	switch (r->aarch32_map) {
232	case AA32_LO:
233		*mask = GENMASK_ULL(31, 0);
234		*shift = 0;
235		break;
236	case AA32_HI:
237		*mask = GENMASK_ULL(63, 32);
238		*shift = 32;
239		break;
240	default:
241		*mask = GENMASK_ULL(63, 0);
242		*shift = 0;
243		break;
244	}
245}
246
247/*
248 * Generic accessor for VM registers. Only called as long as HCR_TVM
249 * is set. If the guest enables the MMU, we stop trapping the VM
250 * sys_regs and leave it in complete control of the caches.
251 */
252static bool access_vm_reg(struct kvm_vcpu *vcpu,
253			  struct sys_reg_params *p,
254			  const struct sys_reg_desc *r)
255{
256	bool was_enabled = vcpu_has_cache_enabled(vcpu);
257	u64 val, mask, shift;
258
259	BUG_ON(!p->is_write);
260
261	get_access_mask(r, &mask, &shift);
262
263	if (~mask) {
264		val = vcpu_read_sys_reg(vcpu, r->reg);
265		val &= ~mask;
266	} else {
267		val = 0;
268	}
269
270	val |= (p->regval & (mask >> shift)) << shift;
271	vcpu_write_sys_reg(vcpu, val, r->reg);
272
273	kvm_toggle_cache(vcpu, was_enabled);
274	return true;
275}
276
277static bool access_actlr(struct kvm_vcpu *vcpu,
278			 struct sys_reg_params *p,
279			 const struct sys_reg_desc *r)
280{
281	u64 mask, shift;
282
283	if (p->is_write)
284		return ignore_write(vcpu, p);
285
286	get_access_mask(r, &mask, &shift);
287	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
288
289	return true;
290}
291
292/*
293 * Trap handler for the GICv3 SGI generation system register.
294 * Forward the request to the VGIC emulation.
295 * The cp15_64 code makes sure this automatically works
296 * for both AArch64 and AArch32 accesses.
297 */
298static bool access_gic_sgi(struct kvm_vcpu *vcpu,
299			   struct sys_reg_params *p,
300			   const struct sys_reg_desc *r)
301{
302	bool g1;
303
304	if (!p->is_write)
305		return read_from_write_only(vcpu, p, r);
306
307	/*
308	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
309	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
310	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
311	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
312	 * group.
313	 */
314	if (p->Op0 == 0) {		/* AArch32 */
315		switch (p->Op1) {
316		default:		/* Keep GCC quiet */
317		case 0:			/* ICC_SGI1R */
318			g1 = true;
319			break;
320		case 1:			/* ICC_ASGI1R */
321		case 2:			/* ICC_SGI0R */
322			g1 = false;
323			break;
324		}
325	} else {			/* AArch64 */
326		switch (p->Op2) {
327		default:		/* Keep GCC quiet */
328		case 5:			/* ICC_SGI1R_EL1 */
329			g1 = true;
330			break;
331		case 6:			/* ICC_ASGI1R_EL1 */
332		case 7:			/* ICC_SGI0R_EL1 */
333			g1 = false;
334			break;
335		}
336	}
337
338	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
339
340	return true;
341}
342
343static bool access_gic_sre(struct kvm_vcpu *vcpu,
344			   struct sys_reg_params *p,
345			   const struct sys_reg_desc *r)
346{
347	if (p->is_write)
348		return ignore_write(vcpu, p);
349
350	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
351	return true;
352}
353
354static bool trap_raz_wi(struct kvm_vcpu *vcpu,
355			struct sys_reg_params *p,
356			const struct sys_reg_desc *r)
357{
358	if (p->is_write)
359		return ignore_write(vcpu, p);
360	else
361		return read_zero(vcpu, p);
362}
363
364static bool trap_undef(struct kvm_vcpu *vcpu,
365		       struct sys_reg_params *p,
366		       const struct sys_reg_desc *r)
367{
368	kvm_inject_undefined(vcpu);
369	return false;
370}
371
372/*
373 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
374 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
375 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
376 * treat it separately.
377 */
378static bool trap_loregion(struct kvm_vcpu *vcpu,
379			  struct sys_reg_params *p,
380			  const struct sys_reg_desc *r)
381{
382	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
383	u32 sr = reg_to_encoding(r);
384
385	if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
386		kvm_inject_undefined(vcpu);
387		return false;
388	}
389
390	if (p->is_write && sr == SYS_LORID_EL1)
391		return write_to_read_only(vcpu, p, r);
392
393	return trap_raz_wi(vcpu, p, r);
394}
395
396static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
397			   struct sys_reg_params *p,
398			   const struct sys_reg_desc *r)
399{
400	u64 oslsr;
401
402	if (!p->is_write)
403		return read_from_write_only(vcpu, p, r);
404
405	/* Forward the OSLK bit to OSLSR */
406	oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
407	if (p->regval & OSLAR_EL1_OSLK)
408		oslsr |= OSLSR_EL1_OSLK;
409
410	__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
411	return true;
412}
413
414static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
415			   struct sys_reg_params *p,
416			   const struct sys_reg_desc *r)
417{
418	if (p->is_write)
419		return write_to_read_only(vcpu, p, r);
420
421	p->regval = __vcpu_sys_reg(vcpu, r->reg);
422	return true;
423}
424
425static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
426			 u64 val)
427{
428	/*
429	 * The only modifiable bit is the OSLK bit. Refuse the write if
430	 * userspace attempts to change any other bit in the register.
431	 */
432	if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
433		return -EINVAL;
434
435	__vcpu_sys_reg(vcpu, rd->reg) = val;
436	return 0;
437}
438
439static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
440				   struct sys_reg_params *p,
441				   const struct sys_reg_desc *r)
442{
443	if (p->is_write) {
444		return ignore_write(vcpu, p);
445	} else {
446		p->regval = read_sysreg(dbgauthstatus_el1);
447		return true;
448	}
449}
450
451/*
452 * We want to avoid world-switching all the DBG registers all the
453 * time:
454 *
455 * - If we've touched any debug register, it is likely that we're
456 *   going to touch more of them. It then makes sense to disable the
457 *   traps and start doing the save/restore dance
458 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
459 *   then mandatory to save/restore the registers, as the guest
460 *   depends on them.
461 *
462 * For this, we use a DIRTY bit, indicating the guest has modified the
463 * debug registers, used as follow:
464 *
465 * On guest entry:
466 * - If the dirty bit is set (because we're coming back from trapping),
467 *   disable the traps, save host registers, restore guest registers.
468 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
469 *   set the dirty bit, disable the traps, save host registers,
470 *   restore guest registers.
471 * - Otherwise, enable the traps
472 *
473 * On guest exit:
474 * - If the dirty bit is set, save guest registers, restore host
475 *   registers and clear the dirty bit. This ensure that the host can
476 *   now use the debug registers.
477 */
478static bool trap_debug_regs(struct kvm_vcpu *vcpu,
479			    struct sys_reg_params *p,
480			    const struct sys_reg_desc *r)
481{
482	access_rw(vcpu, p, r);
483	if (p->is_write)
484		vcpu_set_flag(vcpu, DEBUG_DIRTY);
485
486	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
487
488	return true;
489}
490
491/*
492 * reg_to_dbg/dbg_to_reg
493 *
494 * A 32 bit write to a debug register leave top bits alone
495 * A 32 bit read from a debug register only returns the bottom bits
496 *
497 * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
498 * switches between host and guest values in future.
499 */
500static void reg_to_dbg(struct kvm_vcpu *vcpu,
501		       struct sys_reg_params *p,
502		       const struct sys_reg_desc *rd,
503		       u64 *dbg_reg)
504{
505	u64 mask, shift, val;
506
507	get_access_mask(rd, &mask, &shift);
508
509	val = *dbg_reg;
510	val &= ~mask;
511	val |= (p->regval & (mask >> shift)) << shift;
512	*dbg_reg = val;
513
514	vcpu_set_flag(vcpu, DEBUG_DIRTY);
515}
516
517static void dbg_to_reg(struct kvm_vcpu *vcpu,
518		       struct sys_reg_params *p,
519		       const struct sys_reg_desc *rd,
520		       u64 *dbg_reg)
521{
522	u64 mask, shift;
523
524	get_access_mask(rd, &mask, &shift);
525	p->regval = (*dbg_reg & mask) >> shift;
526}
527
528static bool trap_bvr(struct kvm_vcpu *vcpu,
529		     struct sys_reg_params *p,
530		     const struct sys_reg_desc *rd)
531{
532	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
533
534	if (p->is_write)
535		reg_to_dbg(vcpu, p, rd, dbg_reg);
536	else
537		dbg_to_reg(vcpu, p, rd, dbg_reg);
538
539	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
540
541	return true;
542}
543
544static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
545		   u64 val)
546{
547	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
548	return 0;
549}
550
551static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
552		   u64 *val)
553{
554	*val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
555	return 0;
556}
557
558static u64 reset_bvr(struct kvm_vcpu *vcpu,
559		      const struct sys_reg_desc *rd)
560{
561	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
562	return rd->val;
563}
564
565static bool trap_bcr(struct kvm_vcpu *vcpu,
566		     struct sys_reg_params *p,
567		     const struct sys_reg_desc *rd)
568{
569	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
570
571	if (p->is_write)
572		reg_to_dbg(vcpu, p, rd, dbg_reg);
573	else
574		dbg_to_reg(vcpu, p, rd, dbg_reg);
575
576	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
577
578	return true;
579}
580
581static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
582		   u64 val)
583{
584	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
585	return 0;
586}
587
588static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
589		   u64 *val)
590{
591	*val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
592	return 0;
593}
594
595static u64 reset_bcr(struct kvm_vcpu *vcpu,
596		      const struct sys_reg_desc *rd)
597{
598	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
599	return rd->val;
600}
601
602static bool trap_wvr(struct kvm_vcpu *vcpu,
603		     struct sys_reg_params *p,
604		     const struct sys_reg_desc *rd)
605{
606	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
607
608	if (p->is_write)
609		reg_to_dbg(vcpu, p, rd, dbg_reg);
610	else
611		dbg_to_reg(vcpu, p, rd, dbg_reg);
612
613	trace_trap_reg(__func__, rd->CRm, p->is_write,
614		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
615
616	return true;
617}
618
619static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
620		   u64 val)
621{
622	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
623	return 0;
624}
625
626static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
627		   u64 *val)
628{
629	*val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
630	return 0;
631}
632
633static u64 reset_wvr(struct kvm_vcpu *vcpu,
634		      const struct sys_reg_desc *rd)
635{
636	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
637	return rd->val;
638}
639
640static bool trap_wcr(struct kvm_vcpu *vcpu,
641		     struct sys_reg_params *p,
642		     const struct sys_reg_desc *rd)
643{
644	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
645
646	if (p->is_write)
647		reg_to_dbg(vcpu, p, rd, dbg_reg);
648	else
649		dbg_to_reg(vcpu, p, rd, dbg_reg);
650
651	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
652
653	return true;
654}
655
656static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
657		   u64 val)
658{
659	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
660	return 0;
661}
662
663static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
664		   u64 *val)
665{
666	*val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
667	return 0;
668}
669
670static u64 reset_wcr(struct kvm_vcpu *vcpu,
671		      const struct sys_reg_desc *rd)
672{
673	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
674	return rd->val;
675}
676
677static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
678{
679	u64 amair = read_sysreg(amair_el1);
680	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
681	return amair;
682}
683
684static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
685{
686	u64 actlr = read_sysreg(actlr_el1);
687	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
688	return actlr;
689}
690
691static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
692{
693	u64 mpidr;
694
695	/*
696	 * Map the vcpu_id into the first three affinity level fields of
697	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
698	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
699	 * of the GICv3 to be able to address each CPU directly when
700	 * sending IPIs.
701	 */
702	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
703	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
704	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
705	mpidr |= (1ULL << 31);
706	vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
707
708	return mpidr;
709}
710
711static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
712				   const struct sys_reg_desc *r)
713{
714	if (kvm_vcpu_has_pmu(vcpu))
715		return 0;
716
717	return REG_HIDDEN;
718}
719
720static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
721{
722	u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
723
724	/* No PMU available, any PMU reg may UNDEF... */
725	if (!kvm_arm_support_pmu_v3())
726		return 0;
727
728	n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
729	n &= ARMV8_PMU_PMCR_N_MASK;
730	if (n)
731		mask |= GENMASK(n - 1, 0);
732
733	reset_unknown(vcpu, r);
734	__vcpu_sys_reg(vcpu, r->reg) &= mask;
735
736	return __vcpu_sys_reg(vcpu, r->reg);
737}
738
739static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
740{
741	reset_unknown(vcpu, r);
742	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
743
744	return __vcpu_sys_reg(vcpu, r->reg);
745}
746
747static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
748{
749	reset_unknown(vcpu, r);
750	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
751
752	return __vcpu_sys_reg(vcpu, r->reg);
753}
754
755static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
756{
757	reset_unknown(vcpu, r);
758	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
759
760	return __vcpu_sys_reg(vcpu, r->reg);
761}
762
763static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
764{
765	u64 pmcr;
766
767	/* No PMU available, PMCR_EL0 may UNDEF... */
768	if (!kvm_arm_support_pmu_v3())
769		return 0;
770
771	/* Only preserve PMCR_EL0.N, and reset the rest to 0 */
772	pmcr = read_sysreg(pmcr_el0) & (ARMV8_PMU_PMCR_N_MASK << ARMV8_PMU_PMCR_N_SHIFT);
773	if (!kvm_supports_32bit_el0())
774		pmcr |= ARMV8_PMU_PMCR_LC;
775
776	__vcpu_sys_reg(vcpu, r->reg) = pmcr;
777
778	return __vcpu_sys_reg(vcpu, r->reg);
779}
780
781static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
782{
783	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
784	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
785
786	if (!enabled)
787		kvm_inject_undefined(vcpu);
788
789	return !enabled;
790}
791
792static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
793{
794	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
795}
796
797static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
798{
799	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
800}
801
802static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
803{
804	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
805}
806
807static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
808{
809	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
810}
811
812static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
813			const struct sys_reg_desc *r)
814{
815	u64 val;
816
817	if (pmu_access_el0_disabled(vcpu))
818		return false;
819
820	if (p->is_write) {
821		/*
822		 * Only update writeable bits of PMCR (continuing into
823		 * kvm_pmu_handle_pmcr() as well)
824		 */
825		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
826		val &= ~ARMV8_PMU_PMCR_MASK;
827		val |= p->regval & ARMV8_PMU_PMCR_MASK;
828		if (!kvm_supports_32bit_el0())
829			val |= ARMV8_PMU_PMCR_LC;
830		kvm_pmu_handle_pmcr(vcpu, val);
831	} else {
832		/* PMCR.P & PMCR.C are RAZ */
833		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
834		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
835		p->regval = val;
836	}
837
838	return true;
839}
840
841static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
842			  const struct sys_reg_desc *r)
843{
844	if (pmu_access_event_counter_el0_disabled(vcpu))
845		return false;
846
847	if (p->is_write)
848		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
849	else
850		/* return PMSELR.SEL field */
851		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
852			    & ARMV8_PMU_COUNTER_MASK;
853
854	return true;
855}
856
857static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
858			  const struct sys_reg_desc *r)
859{
860	u64 pmceid, mask, shift;
861
862	BUG_ON(p->is_write);
863
864	if (pmu_access_el0_disabled(vcpu))
865		return false;
866
867	get_access_mask(r, &mask, &shift);
868
869	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
870	pmceid &= mask;
871	pmceid >>= shift;
872
873	p->regval = pmceid;
874
875	return true;
876}
877
878static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
879{
880	u64 pmcr, val;
881
882	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
883	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
884	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
885		kvm_inject_undefined(vcpu);
886		return false;
887	}
888
889	return true;
890}
891
892static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
893			  u64 *val)
894{
895	u64 idx;
896
897	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
898		/* PMCCNTR_EL0 */
899		idx = ARMV8_PMU_CYCLE_IDX;
900	else
901		/* PMEVCNTRn_EL0 */
902		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
903
904	*val = kvm_pmu_get_counter_value(vcpu, idx);
905	return 0;
906}
907
908static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
909			      struct sys_reg_params *p,
910			      const struct sys_reg_desc *r)
911{
912	u64 idx = ~0UL;
913
914	if (r->CRn == 9 && r->CRm == 13) {
915		if (r->Op2 == 2) {
916			/* PMXEVCNTR_EL0 */
917			if (pmu_access_event_counter_el0_disabled(vcpu))
918				return false;
919
920			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
921			      & ARMV8_PMU_COUNTER_MASK;
922		} else if (r->Op2 == 0) {
923			/* PMCCNTR_EL0 */
924			if (pmu_access_cycle_counter_el0_disabled(vcpu))
925				return false;
926
927			idx = ARMV8_PMU_CYCLE_IDX;
928		}
929	} else if (r->CRn == 0 && r->CRm == 9) {
930		/* PMCCNTR */
931		if (pmu_access_event_counter_el0_disabled(vcpu))
932			return false;
933
934		idx = ARMV8_PMU_CYCLE_IDX;
935	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
936		/* PMEVCNTRn_EL0 */
937		if (pmu_access_event_counter_el0_disabled(vcpu))
938			return false;
939
940		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
941	}
942
943	/* Catch any decoding mistake */
944	WARN_ON(idx == ~0UL);
945
946	if (!pmu_counter_idx_valid(vcpu, idx))
947		return false;
948
949	if (p->is_write) {
950		if (pmu_access_el0_disabled(vcpu))
951			return false;
952
953		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
954	} else {
955		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
956	}
957
958	return true;
959}
960
961static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
962			       const struct sys_reg_desc *r)
963{
964	u64 idx, reg;
965
966	if (pmu_access_el0_disabled(vcpu))
967		return false;
968
969	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
970		/* PMXEVTYPER_EL0 */
971		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
972		reg = PMEVTYPER0_EL0 + idx;
973	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
974		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
975		if (idx == ARMV8_PMU_CYCLE_IDX)
976			reg = PMCCFILTR_EL0;
977		else
978			/* PMEVTYPERn_EL0 */
979			reg = PMEVTYPER0_EL0 + idx;
980	} else {
981		BUG();
982	}
983
984	if (!pmu_counter_idx_valid(vcpu, idx))
985		return false;
986
987	if (p->is_write) {
988		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
989		kvm_vcpu_pmu_restore_guest(vcpu);
990	} else {
991		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
992	}
993
994	return true;
995}
996
997static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
998			   const struct sys_reg_desc *r)
999{
1000	u64 val, mask;
1001
1002	if (pmu_access_el0_disabled(vcpu))
1003		return false;
1004
1005	mask = kvm_pmu_valid_counter_mask(vcpu);
1006	if (p->is_write) {
1007		val = p->regval & mask;
1008		if (r->Op2 & 0x1) {
1009			/* accessing PMCNTENSET_EL0 */
1010			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1011			kvm_pmu_enable_counter_mask(vcpu, val);
1012			kvm_vcpu_pmu_restore_guest(vcpu);
1013		} else {
1014			/* accessing PMCNTENCLR_EL0 */
1015			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1016			kvm_pmu_disable_counter_mask(vcpu, val);
1017		}
1018	} else {
1019		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1020	}
1021
1022	return true;
1023}
1024
1025static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1026			   const struct sys_reg_desc *r)
1027{
1028	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1029
1030	if (check_pmu_access_disabled(vcpu, 0))
1031		return false;
1032
1033	if (p->is_write) {
1034		u64 val = p->regval & mask;
1035
1036		if (r->Op2 & 0x1)
1037			/* accessing PMINTENSET_EL1 */
1038			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1039		else
1040			/* accessing PMINTENCLR_EL1 */
1041			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1042	} else {
1043		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1044	}
1045
1046	return true;
1047}
1048
1049static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1050			 const struct sys_reg_desc *r)
1051{
1052	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1053
1054	if (pmu_access_el0_disabled(vcpu))
1055		return false;
1056
1057	if (p->is_write) {
1058		if (r->CRm & 0x2)
1059			/* accessing PMOVSSET_EL0 */
1060			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1061		else
1062			/* accessing PMOVSCLR_EL0 */
1063			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1064	} else {
1065		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1066	}
1067
1068	return true;
1069}
1070
1071static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1072			   const struct sys_reg_desc *r)
1073{
1074	u64 mask;
1075
1076	if (!p->is_write)
1077		return read_from_write_only(vcpu, p, r);
1078
1079	if (pmu_write_swinc_el0_disabled(vcpu))
1080		return false;
1081
1082	mask = kvm_pmu_valid_counter_mask(vcpu);
1083	kvm_pmu_software_increment(vcpu, p->regval & mask);
1084	return true;
1085}
1086
1087static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1088			     const struct sys_reg_desc *r)
1089{
1090	if (p->is_write) {
1091		if (!vcpu_mode_priv(vcpu)) {
1092			kvm_inject_undefined(vcpu);
1093			return false;
1094		}
1095
1096		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1097			       p->regval & ARMV8_PMU_USERENR_MASK;
1098	} else {
1099		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1100			    & ARMV8_PMU_USERENR_MASK;
1101	}
1102
1103	return true;
1104}
1105
1106/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1107#define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1108	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1109	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
1110	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1111	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
1112	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1113	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
1114	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1115	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1116
1117#define PMU_SYS_REG(name)						\
1118	SYS_DESC(SYS_##name), .reset = reset_pmu_reg,			\
1119	.visibility = pmu_visibility
1120
1121/* Macro to expand the PMEVCNTRn_EL0 register */
1122#define PMU_PMEVCNTR_EL0(n)						\
1123	{ PMU_SYS_REG(PMEVCNTRn_EL0(n)),				\
1124	  .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,		\
1125	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1126
1127/* Macro to expand the PMEVTYPERn_EL0 register */
1128#define PMU_PMEVTYPER_EL0(n)						\
1129	{ PMU_SYS_REG(PMEVTYPERn_EL0(n)),				\
1130	  .reset = reset_pmevtyper,					\
1131	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1132
1133static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1134			 const struct sys_reg_desc *r)
1135{
1136	kvm_inject_undefined(vcpu);
1137
1138	return false;
1139}
1140
1141/* Macro to expand the AMU counter and type registers*/
1142#define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1143#define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1144#define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1145#define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1146
1147static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1148			const struct sys_reg_desc *rd)
1149{
1150	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1151}
1152
1153/*
1154 * If we land here on a PtrAuth access, that is because we didn't
1155 * fixup the access on exit by allowing the PtrAuth sysregs. The only
1156 * way this happens is when the guest does not have PtrAuth support
1157 * enabled.
1158 */
1159#define __PTRAUTH_KEY(k)						\
1160	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1161	.visibility = ptrauth_visibility}
1162
1163#define PTRAUTH_KEY(k)							\
1164	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1165	__PTRAUTH_KEY(k ## KEYHI_EL1)
1166
1167static bool access_arch_timer(struct kvm_vcpu *vcpu,
1168			      struct sys_reg_params *p,
1169			      const struct sys_reg_desc *r)
1170{
1171	enum kvm_arch_timers tmr;
1172	enum kvm_arch_timer_regs treg;
1173	u64 reg = reg_to_encoding(r);
1174
1175	switch (reg) {
1176	case SYS_CNTP_TVAL_EL0:
1177	case SYS_AARCH32_CNTP_TVAL:
1178		tmr = TIMER_PTIMER;
1179		treg = TIMER_REG_TVAL;
1180		break;
1181	case SYS_CNTP_CTL_EL0:
1182	case SYS_AARCH32_CNTP_CTL:
1183		tmr = TIMER_PTIMER;
1184		treg = TIMER_REG_CTL;
1185		break;
1186	case SYS_CNTP_CVAL_EL0:
1187	case SYS_AARCH32_CNTP_CVAL:
1188		tmr = TIMER_PTIMER;
1189		treg = TIMER_REG_CVAL;
1190		break;
1191	case SYS_CNTPCT_EL0:
1192	case SYS_CNTPCTSS_EL0:
1193	case SYS_AARCH32_CNTPCT:
1194		tmr = TIMER_PTIMER;
1195		treg = TIMER_REG_CNT;
1196		break;
1197	default:
1198		print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1199		kvm_inject_undefined(vcpu);
1200		return false;
1201	}
1202
1203	if (p->is_write)
1204		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1205	else
1206		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1207
1208	return true;
1209}
1210
1211static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1212				    s64 new, s64 cur)
1213{
1214	struct arm64_ftr_bits kvm_ftr = *ftrp;
1215
1216	/* Some features have different safe value type in KVM than host features */
1217	switch (id) {
1218	case SYS_ID_AA64DFR0_EL1:
1219		if (kvm_ftr.shift == ID_AA64DFR0_EL1_PMUVer_SHIFT)
1220			kvm_ftr.type = FTR_LOWER_SAFE;
1221		break;
1222	case SYS_ID_DFR0_EL1:
1223		if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1224			kvm_ftr.type = FTR_LOWER_SAFE;
1225		break;
1226	}
1227
1228	return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1229}
1230
1231/**
1232 * arm64_check_features() - Check if a feature register value constitutes
1233 * a subset of features indicated by the idreg's KVM sanitised limit.
1234 *
1235 * This function will check if each feature field of @val is the "safe" value
1236 * against idreg's KVM sanitised limit return from reset() callback.
1237 * If a field value in @val is the same as the one in limit, it is always
1238 * considered the safe value regardless For register fields that are not in
1239 * writable, only the value in limit is considered the safe value.
1240 *
1241 * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1242 */
1243static int arm64_check_features(struct kvm_vcpu *vcpu,
1244				const struct sys_reg_desc *rd,
1245				u64 val)
1246{
1247	const struct arm64_ftr_reg *ftr_reg;
1248	const struct arm64_ftr_bits *ftrp = NULL;
1249	u32 id = reg_to_encoding(rd);
1250	u64 writable_mask = rd->val;
1251	u64 limit = rd->reset(vcpu, rd);
1252	u64 mask = 0;
1253
1254	/*
1255	 * Hidden and unallocated ID registers may not have a corresponding
1256	 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1257	 * only safe value is 0.
1258	 */
1259	if (sysreg_visible_as_raz(vcpu, rd))
1260		return val ? -E2BIG : 0;
1261
1262	ftr_reg = get_arm64_ftr_reg(id);
1263	if (!ftr_reg)
1264		return -EINVAL;
1265
1266	ftrp = ftr_reg->ftr_bits;
1267
1268	for (; ftrp && ftrp->width; ftrp++) {
1269		s64 f_val, f_lim, safe_val;
1270		u64 ftr_mask;
1271
1272		ftr_mask = arm64_ftr_mask(ftrp);
1273		if ((ftr_mask & writable_mask) != ftr_mask)
1274			continue;
1275
1276		f_val = arm64_ftr_value(ftrp, val);
1277		f_lim = arm64_ftr_value(ftrp, limit);
1278		mask |= ftr_mask;
1279
1280		if (f_val == f_lim)
1281			safe_val = f_val;
1282		else
1283			safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1284
1285		if (safe_val != f_val)
1286			return -E2BIG;
1287	}
1288
1289	/* For fields that are not writable, values in limit are the safe values. */
1290	if ((val & ~mask) != (limit & ~mask))
1291		return -E2BIG;
1292
1293	return 0;
1294}
1295
1296static u8 pmuver_to_perfmon(u8 pmuver)
1297{
1298	switch (pmuver) {
1299	case ID_AA64DFR0_EL1_PMUVer_IMP:
1300		return ID_DFR0_EL1_PerfMon_PMUv3;
1301	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1302		return ID_DFR0_EL1_PerfMon_IMPDEF;
1303	default:
1304		/* Anything ARMv8.1+ and NI have the same value. For now. */
1305		return pmuver;
1306	}
1307}
1308
1309/* Read a sanitised cpufeature ID register by sys_reg_desc */
1310static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1311				       const struct sys_reg_desc *r)
1312{
1313	u32 id = reg_to_encoding(r);
1314	u64 val;
1315
1316	if (sysreg_visible_as_raz(vcpu, r))
1317		return 0;
1318
1319	val = read_sanitised_ftr_reg(id);
1320
1321	switch (id) {
1322	case SYS_ID_AA64PFR1_EL1:
1323		if (!kvm_has_mte(vcpu->kvm))
1324			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1325
1326		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1327		break;
1328	case SYS_ID_AA64ISAR1_EL1:
1329		if (!vcpu_has_ptrauth(vcpu))
1330			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1331				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1332				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1333				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1334		break;
1335	case SYS_ID_AA64ISAR2_EL1:
1336		if (!vcpu_has_ptrauth(vcpu))
1337			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1338				 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1339		if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1340			val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1341		val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_MOPS);
1342		break;
1343	case SYS_ID_AA64MMFR2_EL1:
1344		val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1345		break;
1346	case SYS_ID_MMFR4_EL1:
1347		val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1348		break;
1349	}
1350
1351	return val;
1352}
1353
1354static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1355				     const struct sys_reg_desc *r)
1356{
1357	return __kvm_read_sanitised_id_reg(vcpu, r);
1358}
1359
1360static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1361{
1362	return IDREG(vcpu->kvm, reg_to_encoding(r));
1363}
1364
1365/*
1366 * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1367 * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
1368 */
1369static inline bool is_id_reg(u32 id)
1370{
1371	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1372		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1373		sys_reg_CRm(id) < 8);
1374}
1375
1376static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1377				  const struct sys_reg_desc *r)
1378{
1379	u32 id = reg_to_encoding(r);
1380
1381	switch (id) {
1382	case SYS_ID_AA64ZFR0_EL1:
1383		if (!vcpu_has_sve(vcpu))
1384			return REG_RAZ;
1385		break;
1386	}
1387
1388	return 0;
1389}
1390
1391static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1392				       const struct sys_reg_desc *r)
1393{
1394	/*
1395	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1396	 * EL. Promote to RAZ/WI in order to guarantee consistency between
1397	 * systems.
1398	 */
1399	if (!kvm_supports_32bit_el0())
1400		return REG_RAZ | REG_USER_WI;
1401
1402	return id_visibility(vcpu, r);
1403}
1404
1405static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1406				   const struct sys_reg_desc *r)
1407{
1408	return REG_RAZ;
1409}
1410
1411/* cpufeature ID register access trap handlers */
1412
1413static bool access_id_reg(struct kvm_vcpu *vcpu,
1414			  struct sys_reg_params *p,
1415			  const struct sys_reg_desc *r)
1416{
1417	if (p->is_write)
1418		return write_to_read_only(vcpu, p, r);
1419
1420	p->regval = read_id_reg(vcpu, r);
1421	if (vcpu_has_nv(vcpu))
1422		access_nested_id_reg(vcpu, p, r);
1423
1424	return true;
1425}
1426
1427/* Visibility overrides for SVE-specific control registers */
1428static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1429				   const struct sys_reg_desc *rd)
1430{
1431	if (vcpu_has_sve(vcpu))
1432		return 0;
1433
1434	return REG_HIDDEN;
1435}
1436
1437static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1438					  const struct sys_reg_desc *rd)
1439{
1440	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1441
1442	if (!vcpu_has_sve(vcpu))
1443		val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1444
1445	/*
1446	 * The default is to expose CSV2 == 1 if the HW isn't affected.
1447	 * Although this is a per-CPU feature, we make it global because
1448	 * asymmetric systems are just a nuisance.
1449	 *
1450	 * Userspace can override this as long as it doesn't promise
1451	 * the impossible.
1452	 */
1453	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1454		val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1455		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1456	}
1457	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1458		val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1459		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1460	}
1461
1462	if (kvm_vgic_global_state.type == VGIC_V3) {
1463		val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1464		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1465	}
1466
1467	val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1468
1469	return val;
1470}
1471
1472static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1473					  const struct sys_reg_desc *rd)
1474{
1475	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1476
1477	/* Limit debug to ARMv8.0 */
1478	val &= ~ID_AA64DFR0_EL1_DebugVer_MASK;
1479	val |= SYS_FIELD_PREP_ENUM(ID_AA64DFR0_EL1, DebugVer, IMP);
1480
1481	/*
1482	 * Only initialize the PMU version if the vCPU was configured with one.
1483	 */
1484	val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1485	if (kvm_vcpu_has_pmu(vcpu))
1486		val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1487				      kvm_arm_pmu_get_pmuver_limit());
1488
1489	/* Hide SPE from guests */
1490	val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1491
1492	return val;
1493}
1494
1495static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1496			       const struct sys_reg_desc *rd,
1497			       u64 val)
1498{
1499	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1500
1501	/*
1502	 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1503	 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1504	 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1505	 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1506	 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1507	 *
1508	 * At minimum, we're on the hook to allow values that were given to
1509	 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1510	 * with a more sensible NI. The value of an ID register changing under
1511	 * the nose of the guest is unfortunate, but is certainly no more
1512	 * surprising than an ill-guided PMU driver poking at impdef system
1513	 * registers that end in an UNDEF...
1514	 */
1515	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1516		val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1517
1518	return set_id_reg(vcpu, rd, val);
1519}
1520
1521static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1522				      const struct sys_reg_desc *rd)
1523{
1524	u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1525	u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1526
1527	val &= ~ID_DFR0_EL1_PerfMon_MASK;
1528	if (kvm_vcpu_has_pmu(vcpu))
1529		val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1530
1531	return val;
1532}
1533
1534static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1535			   const struct sys_reg_desc *rd,
1536			   u64 val)
1537{
1538	u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1539
1540	if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1541		val &= ~ID_DFR0_EL1_PerfMon_MASK;
1542		perfmon = 0;
1543	}
1544
1545	/*
1546	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1547	 * it doesn't promise more than what the HW gives us on the
1548	 * AArch64 side (as everything is emulated with that), and
1549	 * that this is a PMUv3.
1550	 */
1551	if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1552		return -EINVAL;
1553
1554	return set_id_reg(vcpu, rd, val);
1555}
1556
1557/*
1558 * cpufeature ID register user accessors
1559 *
1560 * For now, these registers are immutable for userspace, so no values
1561 * are stored, and for set_id_reg() we don't allow the effective value
1562 * to be changed.
1563 */
1564static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1565		      u64 *val)
1566{
1567	/*
1568	 * Avoid locking if the VM has already started, as the ID registers are
1569	 * guaranteed to be invariant at that point.
1570	 */
1571	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1572		*val = read_id_reg(vcpu, rd);
1573		return 0;
1574	}
1575
1576	mutex_lock(&vcpu->kvm->arch.config_lock);
1577	*val = read_id_reg(vcpu, rd);
1578	mutex_unlock(&vcpu->kvm->arch.config_lock);
1579
1580	return 0;
1581}
1582
1583static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1584		      u64 val)
1585{
1586	u32 id = reg_to_encoding(rd);
1587	int ret;
1588
1589	mutex_lock(&vcpu->kvm->arch.config_lock);
1590
1591	/*
1592	 * Once the VM has started the ID registers are immutable. Reject any
1593	 * write that does not match the final register value.
1594	 */
1595	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1596		if (val != read_id_reg(vcpu, rd))
1597			ret = -EBUSY;
1598		else
1599			ret = 0;
1600
1601		mutex_unlock(&vcpu->kvm->arch.config_lock);
1602		return ret;
1603	}
1604
1605	ret = arm64_check_features(vcpu, rd, val);
1606	if (!ret)
1607		IDREG(vcpu->kvm, id) = val;
1608
1609	mutex_unlock(&vcpu->kvm->arch.config_lock);
1610
1611	/*
1612	 * arm64_check_features() returns -E2BIG to indicate the register's
1613	 * feature set is a superset of the maximally-allowed register value.
1614	 * While it would be nice to precisely describe this to userspace, the
1615	 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
1616	 * writes return -EINVAL.
1617	 */
1618	if (ret == -E2BIG)
1619		ret = -EINVAL;
1620	return ret;
1621}
1622
1623static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1624		       u64 *val)
1625{
1626	*val = 0;
1627	return 0;
1628}
1629
1630static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1631		      u64 val)
1632{
1633	return 0;
1634}
1635
1636static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1637		       const struct sys_reg_desc *r)
1638{
1639	if (p->is_write)
1640		return write_to_read_only(vcpu, p, r);
1641
1642	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1643	return true;
1644}
1645
1646static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1647			 const struct sys_reg_desc *r)
1648{
1649	if (p->is_write)
1650		return write_to_read_only(vcpu, p, r);
1651
1652	p->regval = __vcpu_sys_reg(vcpu, r->reg);
1653	return true;
1654}
1655
1656/*
1657 * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1658 * by the physical CPU which the vcpu currently resides in.
1659 */
1660static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1661{
1662	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1663	u64 clidr;
1664	u8 loc;
1665
1666	if ((ctr_el0 & CTR_EL0_IDC)) {
1667		/*
1668		 * Data cache clean to the PoU is not required so LoUU and LoUIS
1669		 * will not be set and a unified cache, which will be marked as
1670		 * LoC, will be added.
1671		 *
1672		 * If not DIC, let the unified cache L2 so that an instruction
1673		 * cache can be added as L1 later.
1674		 */
1675		loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1676		clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1677	} else {
1678		/*
1679		 * Data cache clean to the PoU is required so let L1 have a data
1680		 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1681		 * it can be marked as LoC too.
1682		 */
1683		loc = 1;
1684		clidr = 1 << CLIDR_LOUU_SHIFT;
1685		clidr |= 1 << CLIDR_LOUIS_SHIFT;
1686		clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1687	}
1688
1689	/*
1690	 * Instruction cache invalidation to the PoU is required so let L1 have
1691	 * an instruction cache. If L1 already has a data cache, it will be
1692	 * CACHE_TYPE_SEPARATE.
1693	 */
1694	if (!(ctr_el0 & CTR_EL0_DIC))
1695		clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1696
1697	clidr |= loc << CLIDR_LOC_SHIFT;
1698
1699	/*
1700	 * Add tag cache unified to data cache. Allocation tags and data are
1701	 * unified in a cache line so that it looks valid even if there is only
1702	 * one cache line.
1703	 */
1704	if (kvm_has_mte(vcpu->kvm))
1705		clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
1706
1707	__vcpu_sys_reg(vcpu, r->reg) = clidr;
1708
1709	return __vcpu_sys_reg(vcpu, r->reg);
1710}
1711
1712static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1713		      u64 val)
1714{
1715	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1716	u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1717
1718	if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1719		return -EINVAL;
1720
1721	__vcpu_sys_reg(vcpu, rd->reg) = val;
1722
1723	return 0;
1724}
1725
1726static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1727			  const struct sys_reg_desc *r)
1728{
1729	int reg = r->reg;
1730
1731	if (p->is_write)
1732		vcpu_write_sys_reg(vcpu, p->regval, reg);
1733	else
1734		p->regval = vcpu_read_sys_reg(vcpu, reg);
1735	return true;
1736}
1737
1738static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1739			  const struct sys_reg_desc *r)
1740{
1741	u32 csselr;
1742
1743	if (p->is_write)
1744		return write_to_read_only(vcpu, p, r);
1745
1746	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1747	csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
1748	if (csselr < CSSELR_MAX)
1749		p->regval = get_ccsidr(vcpu, csselr);
1750
1751	return true;
1752}
1753
1754static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1755				   const struct sys_reg_desc *rd)
1756{
1757	if (kvm_has_mte(vcpu->kvm))
1758		return 0;
1759
1760	return REG_HIDDEN;
1761}
1762
1763#define MTE_REG(name) {				\
1764	SYS_DESC(SYS_##name),			\
1765	.access = undef_access,			\
1766	.reset = reset_unknown,			\
1767	.reg = name,				\
1768	.visibility = mte_visibility,		\
1769}
1770
1771static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
1772				   const struct sys_reg_desc *rd)
1773{
1774	if (vcpu_has_nv(vcpu))
1775		return 0;
1776
1777	return REG_HIDDEN;
1778}
1779
1780#define EL2_REG(name, acc, rst, v) {		\
1781	SYS_DESC(SYS_##name),			\
1782	.access = acc,				\
1783	.reset = rst,				\
1784	.reg = name,				\
1785	.visibility = el2_visibility,		\
1786	.val = v,				\
1787}
1788
1789/*
1790 * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
1791 * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
1792 * handling traps. Given that, they are always hidden from userspace.
1793 */
1794static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu,
1795				    const struct sys_reg_desc *rd)
1796{
1797	return REG_HIDDEN_USER;
1798}
1799
1800#define EL12_REG(name, acc, rst, v) {		\
1801	SYS_DESC(SYS_##name##_EL12),		\
1802	.access = acc,				\
1803	.reset = rst,				\
1804	.reg = name##_EL1,			\
1805	.val = v,				\
1806	.visibility = elx2_visibility,		\
1807}
1808
1809/*
1810 * Since reset() callback and field val are not used for idregs, they will be
1811 * used for specific purposes for idregs.
1812 * The reset() would return KVM sanitised register value. The value would be the
1813 * same as the host kernel sanitised value if there is no KVM sanitisation.
1814 * The val would be used as a mask indicating writable fields for the idreg.
1815 * Only bits with 1 are writable from userspace. This mask might not be
1816 * necessary in the future whenever all ID registers are enabled as writable
1817 * from userspace.
1818 */
1819
1820/* sys_reg_desc initialiser for known cpufeature ID registers */
1821#define ID_SANITISED(name) {			\
1822	SYS_DESC(SYS_##name),			\
1823	.access	= access_id_reg,		\
1824	.get_user = get_id_reg,			\
1825	.set_user = set_id_reg,			\
1826	.visibility = id_visibility,		\
1827	.reset = kvm_read_sanitised_id_reg,	\
1828	.val = 0,				\
1829}
1830
1831/* sys_reg_desc initialiser for known cpufeature ID registers */
1832#define AA32_ID_SANITISED(name) {		\
1833	SYS_DESC(SYS_##name),			\
1834	.access	= access_id_reg,		\
1835	.get_user = get_id_reg,			\
1836	.set_user = set_id_reg,			\
1837	.visibility = aa32_id_visibility,	\
1838	.reset = kvm_read_sanitised_id_reg,	\
1839	.val = 0,				\
1840}
1841
1842/*
1843 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1844 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1845 * (1 <= crm < 8, 0 <= Op2 < 8).
1846 */
1847#define ID_UNALLOCATED(crm, op2) {			\
1848	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1849	.access = access_id_reg,			\
1850	.get_user = get_id_reg,				\
1851	.set_user = set_id_reg,				\
1852	.visibility = raz_visibility,			\
1853	.reset = kvm_read_sanitised_id_reg,		\
1854	.val = 0,					\
1855}
1856
1857/*
1858 * sys_reg_desc initialiser for known ID registers that we hide from guests.
1859 * For now, these are exposed just like unallocated ID regs: they appear
1860 * RAZ for the guest.
1861 */
1862#define ID_HIDDEN(name) {			\
1863	SYS_DESC(SYS_##name),			\
1864	.access = access_id_reg,		\
1865	.get_user = get_id_reg,			\
1866	.set_user = set_id_reg,			\
1867	.visibility = raz_visibility,		\
1868	.reset = kvm_read_sanitised_id_reg,	\
1869	.val = 0,				\
1870}
1871
1872static bool access_sp_el1(struct kvm_vcpu *vcpu,
1873			  struct sys_reg_params *p,
1874			  const struct sys_reg_desc *r)
1875{
1876	if (p->is_write)
1877		__vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
1878	else
1879		p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
1880
1881	return true;
1882}
1883
1884static bool access_elr(struct kvm_vcpu *vcpu,
1885		       struct sys_reg_params *p,
1886		       const struct sys_reg_desc *r)
1887{
1888	if (p->is_write)
1889		vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
1890	else
1891		p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
1892
1893	return true;
1894}
1895
1896static bool access_spsr(struct kvm_vcpu *vcpu,
1897			struct sys_reg_params *p,
1898			const struct sys_reg_desc *r)
1899{
1900	if (p->is_write)
1901		__vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
1902	else
1903		p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
1904
1905	return true;
1906}
1907
1908/*
1909 * Architected system registers.
1910 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1911 *
1912 * Debug handling: We do trap most, if not all debug related system
1913 * registers. The implementation is good enough to ensure that a guest
1914 * can use these with minimal performance degradation. The drawback is
1915 * that we don't implement any of the external debug architecture.
1916 * This should be revisited if we ever encounter a more demanding
1917 * guest...
1918 */
1919static const struct sys_reg_desc sys_reg_descs[] = {
1920	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
1921	{ SYS_DESC(SYS_DC_IGSW), access_dcgsw },
1922	{ SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
1923	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
1924	{ SYS_DESC(SYS_DC_CGSW), access_dcgsw },
1925	{ SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
1926	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1927	{ SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
1928	{ SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
1929
1930	DBG_BCR_BVR_WCR_WVR_EL1(0),
1931	DBG_BCR_BVR_WCR_WVR_EL1(1),
1932	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1933	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1934	DBG_BCR_BVR_WCR_WVR_EL1(2),
1935	DBG_BCR_BVR_WCR_WVR_EL1(3),
1936	DBG_BCR_BVR_WCR_WVR_EL1(4),
1937	DBG_BCR_BVR_WCR_WVR_EL1(5),
1938	DBG_BCR_BVR_WCR_WVR_EL1(6),
1939	DBG_BCR_BVR_WCR_WVR_EL1(7),
1940	DBG_BCR_BVR_WCR_WVR_EL1(8),
1941	DBG_BCR_BVR_WCR_WVR_EL1(9),
1942	DBG_BCR_BVR_WCR_WVR_EL1(10),
1943	DBG_BCR_BVR_WCR_WVR_EL1(11),
1944	DBG_BCR_BVR_WCR_WVR_EL1(12),
1945	DBG_BCR_BVR_WCR_WVR_EL1(13),
1946	DBG_BCR_BVR_WCR_WVR_EL1(14),
1947	DBG_BCR_BVR_WCR_WVR_EL1(15),
1948
1949	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1950	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
1951	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
1952		OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
1953	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1954	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1955	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1956	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1957	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1958
1959	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1960	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1961	// DBGDTR[TR]X_EL0 share the same encoding
1962	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1963
1964	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1965
1966	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1967
1968	/*
1969	 * ID regs: all ID_SANITISED() entries here must have corresponding
1970	 * entries in arm64_ftr_regs[].
1971	 */
1972
1973	/* AArch64 mappings of the AArch32 ID registers */
1974	/* CRm=1 */
1975	AA32_ID_SANITISED(ID_PFR0_EL1),
1976	AA32_ID_SANITISED(ID_PFR1_EL1),
1977	{ SYS_DESC(SYS_ID_DFR0_EL1),
1978	  .access = access_id_reg,
1979	  .get_user = get_id_reg,
1980	  .set_user = set_id_dfr0_el1,
1981	  .visibility = aa32_id_visibility,
1982	  .reset = read_sanitised_id_dfr0_el1,
1983	  .val = ID_DFR0_EL1_PerfMon_MASK, },
1984	ID_HIDDEN(ID_AFR0_EL1),
1985	AA32_ID_SANITISED(ID_MMFR0_EL1),
1986	AA32_ID_SANITISED(ID_MMFR1_EL1),
1987	AA32_ID_SANITISED(ID_MMFR2_EL1),
1988	AA32_ID_SANITISED(ID_MMFR3_EL1),
1989
1990	/* CRm=2 */
1991	AA32_ID_SANITISED(ID_ISAR0_EL1),
1992	AA32_ID_SANITISED(ID_ISAR1_EL1),
1993	AA32_ID_SANITISED(ID_ISAR2_EL1),
1994	AA32_ID_SANITISED(ID_ISAR3_EL1),
1995	AA32_ID_SANITISED(ID_ISAR4_EL1),
1996	AA32_ID_SANITISED(ID_ISAR5_EL1),
1997	AA32_ID_SANITISED(ID_MMFR4_EL1),
1998	AA32_ID_SANITISED(ID_ISAR6_EL1),
1999
2000	/* CRm=3 */
2001	AA32_ID_SANITISED(MVFR0_EL1),
2002	AA32_ID_SANITISED(MVFR1_EL1),
2003	AA32_ID_SANITISED(MVFR2_EL1),
2004	ID_UNALLOCATED(3,3),
2005	AA32_ID_SANITISED(ID_PFR2_EL1),
2006	ID_HIDDEN(ID_DFR1_EL1),
2007	AA32_ID_SANITISED(ID_MMFR5_EL1),
2008	ID_UNALLOCATED(3,7),
2009
2010	/* AArch64 ID registers */
2011	/* CRm=4 */
2012	{ SYS_DESC(SYS_ID_AA64PFR0_EL1),
2013	  .access = access_id_reg,
2014	  .get_user = get_id_reg,
2015	  .set_user = set_id_reg,
2016	  .reset = read_sanitised_id_aa64pfr0_el1,
2017	  .val = ID_AA64PFR0_EL1_CSV2_MASK | ID_AA64PFR0_EL1_CSV3_MASK, },
2018	ID_SANITISED(ID_AA64PFR1_EL1),
2019	ID_UNALLOCATED(4,2),
2020	ID_UNALLOCATED(4,3),
2021	ID_SANITISED(ID_AA64ZFR0_EL1),
2022	ID_HIDDEN(ID_AA64SMFR0_EL1),
2023	ID_UNALLOCATED(4,6),
2024	ID_UNALLOCATED(4,7),
2025
2026	/* CRm=5 */
2027	{ SYS_DESC(SYS_ID_AA64DFR0_EL1),
2028	  .access = access_id_reg,
2029	  .get_user = get_id_reg,
2030	  .set_user = set_id_aa64dfr0_el1,
2031	  .reset = read_sanitised_id_aa64dfr0_el1,
2032	  .val = ID_AA64DFR0_EL1_PMUVer_MASK, },
2033	ID_SANITISED(ID_AA64DFR1_EL1),
2034	ID_UNALLOCATED(5,2),
2035	ID_UNALLOCATED(5,3),
2036	ID_HIDDEN(ID_AA64AFR0_EL1),
2037	ID_HIDDEN(ID_AA64AFR1_EL1),
2038	ID_UNALLOCATED(5,6),
2039	ID_UNALLOCATED(5,7),
2040
2041	/* CRm=6 */
2042	ID_SANITISED(ID_AA64ISAR0_EL1),
2043	ID_SANITISED(ID_AA64ISAR1_EL1),
2044	ID_SANITISED(ID_AA64ISAR2_EL1),
2045	ID_UNALLOCATED(6,3),
2046	ID_UNALLOCATED(6,4),
2047	ID_UNALLOCATED(6,5),
2048	ID_UNALLOCATED(6,6),
2049	ID_UNALLOCATED(6,7),
2050
2051	/* CRm=7 */
2052	ID_SANITISED(ID_AA64MMFR0_EL1),
2053	ID_SANITISED(ID_AA64MMFR1_EL1),
2054	ID_SANITISED(ID_AA64MMFR2_EL1),
2055	ID_SANITISED(ID_AA64MMFR3_EL1),
2056	ID_UNALLOCATED(7,4),
2057	ID_UNALLOCATED(7,5),
2058	ID_UNALLOCATED(7,6),
2059	ID_UNALLOCATED(7,7),
2060
2061	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2062	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2063	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2064
2065	MTE_REG(RGSR_EL1),
2066	MTE_REG(GCR_EL1),
2067
2068	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2069	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
2070	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
2071	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
2072	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2073	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2074	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2075	{ SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },
2076
2077	PTRAUTH_KEY(APIA),
2078	PTRAUTH_KEY(APIB),
2079	PTRAUTH_KEY(APDA),
2080	PTRAUTH_KEY(APDB),
2081	PTRAUTH_KEY(APGA),
2082
2083	{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
2084	{ SYS_DESC(SYS_ELR_EL1), access_elr},
2085
2086	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2087	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2088	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2089
2090	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2091	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2092	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2093	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2094	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2095	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2096	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2097	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2098
2099	MTE_REG(TFSR_EL1),
2100	MTE_REG(TFSRE0_EL1),
2101
2102	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2103	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2104
2105	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
2106	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2107	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
2108	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2109	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2110	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2111	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2112	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2113	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2114	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2115	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
2116	/* PMBIDR_EL1 is not trapped */
2117
2118	{ PMU_SYS_REG(PMINTENSET_EL1),
2119	  .access = access_pminten, .reg = PMINTENSET_EL1 },
2120	{ PMU_SYS_REG(PMINTENCLR_EL1),
2121	  .access = access_pminten, .reg = PMINTENSET_EL1 },
2122	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2123
2124	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2125	{ SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 },
2126	{ SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 },
2127	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2128
2129	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2130	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2131	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
2132	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
2133	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
2134
2135	{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2136	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2137
2138	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
2139	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
2140	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
2141	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
2142	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
2143	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2144	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
2145	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
2146	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
2147	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
2148	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
2149	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
2150
2151	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
2152	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
2153
2154	{ SYS_DESC(SYS_ACCDATA_EL1), undef_access },
2155
2156	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
2157
2158	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
2159
2160	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
2161	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
2162	  .set_user = set_clidr },
2163	{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
2164	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
2165	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
2166	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
2167	{ SYS_DESC(SYS_SVCR), undef_access },
2168
2169	{ PMU_SYS_REG(PMCR_EL0), .access = access_pmcr,
2170	  .reset = reset_pmcr, .reg = PMCR_EL0 },
2171	{ PMU_SYS_REG(PMCNTENSET_EL0),
2172	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
2173	{ PMU_SYS_REG(PMCNTENCLR_EL0),
2174	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
2175	{ PMU_SYS_REG(PMOVSCLR_EL0),
2176	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
2177	/*
2178	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
2179	 * previously (and pointlessly) advertised in the past...
2180	 */
2181	{ PMU_SYS_REG(PMSWINC_EL0),
2182	  .get_user = get_raz_reg, .set_user = set_wi_reg,
2183	  .access = access_pmswinc, .reset = NULL },
2184	{ PMU_SYS_REG(PMSELR_EL0),
2185	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2186	{ PMU_SYS_REG(PMCEID0_EL0),
2187	  .access = access_pmceid, .reset = NULL },
2188	{ PMU_SYS_REG(PMCEID1_EL0),
2189	  .access = access_pmceid, .reset = NULL },
2190	{ PMU_SYS_REG(PMCCNTR_EL0),
2191	  .access = access_pmu_evcntr, .reset = reset_unknown,
2192	  .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2193	{ PMU_SYS_REG(PMXEVTYPER_EL0),
2194	  .access = access_pmu_evtyper, .reset = NULL },
2195	{ PMU_SYS_REG(PMXEVCNTR_EL0),
2196	  .access = access_pmu_evcntr, .reset = NULL },
2197	/*
2198	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2199	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2200	 */
2201	{ PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
2202	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2203	{ PMU_SYS_REG(PMOVSSET_EL0),
2204	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
2205
2206	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2207	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2208	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2209
2210	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2211
2212	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
2213	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2214	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2215	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2216	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2217	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2218	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2219	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2220	AMU_AMEVCNTR0_EL0(0),
2221	AMU_AMEVCNTR0_EL0(1),
2222	AMU_AMEVCNTR0_EL0(2),
2223	AMU_AMEVCNTR0_EL0(3),
2224	AMU_AMEVCNTR0_EL0(4),
2225	AMU_AMEVCNTR0_EL0(5),
2226	AMU_AMEVCNTR0_EL0(6),
2227	AMU_AMEVCNTR0_EL0(7),
2228	AMU_AMEVCNTR0_EL0(8),
2229	AMU_AMEVCNTR0_EL0(9),
2230	AMU_AMEVCNTR0_EL0(10),
2231	AMU_AMEVCNTR0_EL0(11),
2232	AMU_AMEVCNTR0_EL0(12),
2233	AMU_AMEVCNTR0_EL0(13),
2234	AMU_AMEVCNTR0_EL0(14),
2235	AMU_AMEVCNTR0_EL0(15),
2236	AMU_AMEVTYPER0_EL0(0),
2237	AMU_AMEVTYPER0_EL0(1),
2238	AMU_AMEVTYPER0_EL0(2),
2239	AMU_AMEVTYPER0_EL0(3),
2240	AMU_AMEVTYPER0_EL0(4),
2241	AMU_AMEVTYPER0_EL0(5),
2242	AMU_AMEVTYPER0_EL0(6),
2243	AMU_AMEVTYPER0_EL0(7),
2244	AMU_AMEVTYPER0_EL0(8),
2245	AMU_AMEVTYPER0_EL0(9),
2246	AMU_AMEVTYPER0_EL0(10),
2247	AMU_AMEVTYPER0_EL0(11),
2248	AMU_AMEVTYPER0_EL0(12),
2249	AMU_AMEVTYPER0_EL0(13),
2250	AMU_AMEVTYPER0_EL0(14),
2251	AMU_AMEVTYPER0_EL0(15),
2252	AMU_AMEVCNTR1_EL0(0),
2253	AMU_AMEVCNTR1_EL0(1),
2254	AMU_AMEVCNTR1_EL0(2),
2255	AMU_AMEVCNTR1_EL0(3),
2256	AMU_AMEVCNTR1_EL0(4),
2257	AMU_AMEVCNTR1_EL0(5),
2258	AMU_AMEVCNTR1_EL0(6),
2259	AMU_AMEVCNTR1_EL0(7),
2260	AMU_AMEVCNTR1_EL0(8),
2261	AMU_AMEVCNTR1_EL0(9),
2262	AMU_AMEVCNTR1_EL0(10),
2263	AMU_AMEVCNTR1_EL0(11),
2264	AMU_AMEVCNTR1_EL0(12),
2265	AMU_AMEVCNTR1_EL0(13),
2266	AMU_AMEVCNTR1_EL0(14),
2267	AMU_AMEVCNTR1_EL0(15),
2268	AMU_AMEVTYPER1_EL0(0),
2269	AMU_AMEVTYPER1_EL0(1),
2270	AMU_AMEVTYPER1_EL0(2),
2271	AMU_AMEVTYPER1_EL0(3),
2272	AMU_AMEVTYPER1_EL0(4),
2273	AMU_AMEVTYPER1_EL0(5),
2274	AMU_AMEVTYPER1_EL0(6),
2275	AMU_AMEVTYPER1_EL0(7),
2276	AMU_AMEVTYPER1_EL0(8),
2277	AMU_AMEVTYPER1_EL0(9),
2278	AMU_AMEVTYPER1_EL0(10),
2279	AMU_AMEVTYPER1_EL0(11),
2280	AMU_AMEVTYPER1_EL0(12),
2281	AMU_AMEVTYPER1_EL0(13),
2282	AMU_AMEVTYPER1_EL0(14),
2283	AMU_AMEVTYPER1_EL0(15),
2284
2285	{ SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2286	{ SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
2287	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2288	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2289	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2290
2291	/* PMEVCNTRn_EL0 */
2292	PMU_PMEVCNTR_EL0(0),
2293	PMU_PMEVCNTR_EL0(1),
2294	PMU_PMEVCNTR_EL0(2),
2295	PMU_PMEVCNTR_EL0(3),
2296	PMU_PMEVCNTR_EL0(4),
2297	PMU_PMEVCNTR_EL0(5),
2298	PMU_PMEVCNTR_EL0(6),
2299	PMU_PMEVCNTR_EL0(7),
2300	PMU_PMEVCNTR_EL0(8),
2301	PMU_PMEVCNTR_EL0(9),
2302	PMU_PMEVCNTR_EL0(10),
2303	PMU_PMEVCNTR_EL0(11),
2304	PMU_PMEVCNTR_EL0(12),
2305	PMU_PMEVCNTR_EL0(13),
2306	PMU_PMEVCNTR_EL0(14),
2307	PMU_PMEVCNTR_EL0(15),
2308	PMU_PMEVCNTR_EL0(16),
2309	PMU_PMEVCNTR_EL0(17),
2310	PMU_PMEVCNTR_EL0(18),
2311	PMU_PMEVCNTR_EL0(19),
2312	PMU_PMEVCNTR_EL0(20),
2313	PMU_PMEVCNTR_EL0(21),
2314	PMU_PMEVCNTR_EL0(22),
2315	PMU_PMEVCNTR_EL0(23),
2316	PMU_PMEVCNTR_EL0(24),
2317	PMU_PMEVCNTR_EL0(25),
2318	PMU_PMEVCNTR_EL0(26),
2319	PMU_PMEVCNTR_EL0(27),
2320	PMU_PMEVCNTR_EL0(28),
2321	PMU_PMEVCNTR_EL0(29),
2322	PMU_PMEVCNTR_EL0(30),
2323	/* PMEVTYPERn_EL0 */
2324	PMU_PMEVTYPER_EL0(0),
2325	PMU_PMEVTYPER_EL0(1),
2326	PMU_PMEVTYPER_EL0(2),
2327	PMU_PMEVTYPER_EL0(3),
2328	PMU_PMEVTYPER_EL0(4),
2329	PMU_PMEVTYPER_EL0(5),
2330	PMU_PMEVTYPER_EL0(6),
2331	PMU_PMEVTYPER_EL0(7),
2332	PMU_PMEVTYPER_EL0(8),
2333	PMU_PMEVTYPER_EL0(9),
2334	PMU_PMEVTYPER_EL0(10),
2335	PMU_PMEVTYPER_EL0(11),
2336	PMU_PMEVTYPER_EL0(12),
2337	PMU_PMEVTYPER_EL0(13),
2338	PMU_PMEVTYPER_EL0(14),
2339	PMU_PMEVTYPER_EL0(15),
2340	PMU_PMEVTYPER_EL0(16),
2341	PMU_PMEVTYPER_EL0(17),
2342	PMU_PMEVTYPER_EL0(18),
2343	PMU_PMEVTYPER_EL0(19),
2344	PMU_PMEVTYPER_EL0(20),
2345	PMU_PMEVTYPER_EL0(21),
2346	PMU_PMEVTYPER_EL0(22),
2347	PMU_PMEVTYPER_EL0(23),
2348	PMU_PMEVTYPER_EL0(24),
2349	PMU_PMEVTYPER_EL0(25),
2350	PMU_PMEVTYPER_EL0(26),
2351	PMU_PMEVTYPER_EL0(27),
2352	PMU_PMEVTYPER_EL0(28),
2353	PMU_PMEVTYPER_EL0(29),
2354	PMU_PMEVTYPER_EL0(30),
2355	/*
2356	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2357	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2358	 */
2359	{ PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
2360	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2361
2362	EL2_REG(VPIDR_EL2, access_rw, reset_unknown, 0),
2363	EL2_REG(VMPIDR_EL2, access_rw, reset_unknown, 0),
2364	EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2365	EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2366	EL2_REG(HCR_EL2, access_rw, reset_val, 0),
2367	EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2368	EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
2369	EL2_REG(HSTR_EL2, access_rw, reset_val, 0),
2370	EL2_REG(HFGRTR_EL2, access_rw, reset_val, 0),
2371	EL2_REG(HFGWTR_EL2, access_rw, reset_val, 0),
2372	EL2_REG(HFGITR_EL2, access_rw, reset_val, 0),
2373	EL2_REG(HACR_EL2, access_rw, reset_val, 0),
2374
2375	EL2_REG(HCRX_EL2, access_rw, reset_val, 0),
2376
2377	EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2378	EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2379	EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2380	EL2_REG(VTTBR_EL2, access_rw, reset_val, 0),
2381	EL2_REG(VTCR_EL2, access_rw, reset_val, 0),
2382
2383	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
2384	EL2_REG(HDFGRTR_EL2, access_rw, reset_val, 0),
2385	EL2_REG(HDFGWTR_EL2, access_rw, reset_val, 0),
2386	EL2_REG(SPSR_EL2, access_rw, reset_val, 0),
2387	EL2_REG(ELR_EL2, access_rw, reset_val, 0),
2388	{ SYS_DESC(SYS_SP_EL1), access_sp_el1},
2389
2390	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
2391	EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2392	EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2393	EL2_REG(ESR_EL2, access_rw, reset_val, 0),
2394	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
2395
2396	EL2_REG(FAR_EL2, access_rw, reset_val, 0),
2397	EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2398
2399	EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2400	EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2401
2402	EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2403	EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2404	{ SYS_DESC(SYS_RMR_EL2), trap_undef },
2405
2406	EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2407	EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2408
2409	EL2_REG(CNTVOFF_EL2, access_rw, reset_val, 0),
2410	EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2411
2412	EL12_REG(SCTLR, access_vm_reg, reset_val, 0x00C50078),
2413	EL12_REG(CPACR, access_rw, reset_val, 0),
2414	EL12_REG(TTBR0, access_vm_reg, reset_unknown, 0),
2415	EL12_REG(TTBR1, access_vm_reg, reset_unknown, 0),
2416	EL12_REG(TCR, access_vm_reg, reset_val, 0),
2417	{ SYS_DESC(SYS_SPSR_EL12), access_spsr},
2418	{ SYS_DESC(SYS_ELR_EL12), access_elr},
2419	EL12_REG(AFSR0, access_vm_reg, reset_unknown, 0),
2420	EL12_REG(AFSR1, access_vm_reg, reset_unknown, 0),
2421	EL12_REG(ESR, access_vm_reg, reset_unknown, 0),
2422	EL12_REG(FAR, access_vm_reg, reset_unknown, 0),
2423	EL12_REG(MAIR, access_vm_reg, reset_unknown, 0),
2424	EL12_REG(AMAIR, access_vm_reg, reset_amair_el1, 0),
2425	EL12_REG(VBAR, access_rw, reset_val, 0),
2426	EL12_REG(CONTEXTIDR, access_vm_reg, reset_val, 0),
2427	EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2428
2429	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2430};
2431
2432static const struct sys_reg_desc *first_idreg;
2433
2434static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
2435			struct sys_reg_params *p,
2436			const struct sys_reg_desc *r)
2437{
2438	if (p->is_write) {
2439		return ignore_write(vcpu, p);
2440	} else {
2441		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
2442		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2443		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL1_EL3_SHIFT);
2444
2445		p->regval = ((((dfr >> ID_AA64DFR0_EL1_WRPs_SHIFT) & 0xf) << 28) |
2446			     (((dfr >> ID_AA64DFR0_EL1_BRPs_SHIFT) & 0xf) << 24) |
2447			     (((dfr >> ID_AA64DFR0_EL1_CTX_CMPs_SHIFT) & 0xf) << 20)
2448			     | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
2449		return true;
2450	}
2451}
2452
2453/*
2454 * AArch32 debug register mappings
2455 *
2456 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
2457 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
2458 *
2459 * None of the other registers share their location, so treat them as
2460 * if they were 64bit.
2461 */
2462#define DBG_BCR_BVR_WCR_WVR(n)						      \
2463	/* DBGBVRn */							      \
2464	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
2465	/* DBGBCRn */							      \
2466	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
2467	/* DBGWVRn */							      \
2468	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
2469	/* DBGWCRn */							      \
2470	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
2471
2472#define DBGBXVR(n)							      \
2473	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
2474
2475/*
2476 * Trapped cp14 registers. We generally ignore most of the external
2477 * debug, on the principle that they don't really make sense to a
2478 * guest. Revisit this one day, would this principle change.
2479 */
2480static const struct sys_reg_desc cp14_regs[] = {
2481	/* DBGDIDR */
2482	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
2483	/* DBGDTRRXext */
2484	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
2485
2486	DBG_BCR_BVR_WCR_WVR(0),
2487	/* DBGDSCRint */
2488	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
2489	DBG_BCR_BVR_WCR_WVR(1),
2490	/* DBGDCCINT */
2491	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
2492	/* DBGDSCRext */
2493	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
2494	DBG_BCR_BVR_WCR_WVR(2),
2495	/* DBGDTR[RT]Xint */
2496	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
2497	/* DBGDTR[RT]Xext */
2498	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
2499	DBG_BCR_BVR_WCR_WVR(3),
2500	DBG_BCR_BVR_WCR_WVR(4),
2501	DBG_BCR_BVR_WCR_WVR(5),
2502	/* DBGWFAR */
2503	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
2504	/* DBGOSECCR */
2505	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
2506	DBG_BCR_BVR_WCR_WVR(6),
2507	/* DBGVCR */
2508	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
2509	DBG_BCR_BVR_WCR_WVR(7),
2510	DBG_BCR_BVR_WCR_WVR(8),
2511	DBG_BCR_BVR_WCR_WVR(9),
2512	DBG_BCR_BVR_WCR_WVR(10),
2513	DBG_BCR_BVR_WCR_WVR(11),
2514	DBG_BCR_BVR_WCR_WVR(12),
2515	DBG_BCR_BVR_WCR_WVR(13),
2516	DBG_BCR_BVR_WCR_WVR(14),
2517	DBG_BCR_BVR_WCR_WVR(15),
2518
2519	/* DBGDRAR (32bit) */
2520	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2521
2522	DBGBXVR(0),
2523	/* DBGOSLAR */
2524	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2525	DBGBXVR(1),
2526	/* DBGOSLSR */
2527	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2528	DBGBXVR(2),
2529	DBGBXVR(3),
2530	/* DBGOSDLR */
2531	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2532	DBGBXVR(4),
2533	/* DBGPRCR */
2534	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2535	DBGBXVR(5),
2536	DBGBXVR(6),
2537	DBGBXVR(7),
2538	DBGBXVR(8),
2539	DBGBXVR(9),
2540	DBGBXVR(10),
2541	DBGBXVR(11),
2542	DBGBXVR(12),
2543	DBGBXVR(13),
2544	DBGBXVR(14),
2545	DBGBXVR(15),
2546
2547	/* DBGDSAR (32bit) */
2548	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2549
2550	/* DBGDEVID2 */
2551	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2552	/* DBGDEVID1 */
2553	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2554	/* DBGDEVID */
2555	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2556	/* DBGCLAIMSET */
2557	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2558	/* DBGCLAIMCLR */
2559	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2560	/* DBGAUTHSTATUS */
2561	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2562};
2563
2564/* Trapped cp14 64bit registers */
2565static const struct sys_reg_desc cp14_64_regs[] = {
2566	/* DBGDRAR (64bit) */
2567	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
2568
2569	/* DBGDSAR (64bit) */
2570	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
2571};
2572
2573#define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
2574	AA32(_map),							\
2575	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
2576	.visibility = pmu_visibility
2577
2578/* Macro to expand the PMEVCNTRn register */
2579#define PMU_PMEVCNTR(n)							\
2580	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2581	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2582	  .access = access_pmu_evcntr }
2583
2584/* Macro to expand the PMEVTYPERn register */
2585#define PMU_PMEVTYPER(n)						\
2586	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2587	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2588	  .access = access_pmu_evtyper }
2589/*
2590 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2591 * depending on the way they are accessed (as a 32bit or a 64bit
2592 * register).
2593 */
2594static const struct sys_reg_desc cp15_regs[] = {
2595	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2596	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2597	/* ACTLR */
2598	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2599	/* ACTLR2 */
2600	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2601	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2602	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2603	/* TTBCR */
2604	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2605	/* TTBCR2 */
2606	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2607	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2608	/* DFSR */
2609	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2610	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2611	/* ADFSR */
2612	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2613	/* AIFSR */
2614	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2615	/* DFAR */
2616	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2617	/* IFAR */
2618	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2619
2620	/*
2621	 * DC{C,I,CI}SW operations:
2622	 */
2623	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2624	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2625	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2626
2627	/* PMU */
2628	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2629	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2630	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2631	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2632	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2633	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2634	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
2635	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
2636	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2637	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2638	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2639	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2640	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2641	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2642	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2643	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
2644	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
2645	/* PMMIR */
2646	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2647
2648	/* PRRR/MAIR0 */
2649	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2650	/* NMRR/MAIR1 */
2651	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2652	/* AMAIR0 */
2653	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2654	/* AMAIR1 */
2655	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2656
2657	/* ICC_SRE */
2658	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2659
2660	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2661
2662	/* Arch Tmers */
2663	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2664	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2665
2666	/* PMEVCNTRn */
2667	PMU_PMEVCNTR(0),
2668	PMU_PMEVCNTR(1),
2669	PMU_PMEVCNTR(2),
2670	PMU_PMEVCNTR(3),
2671	PMU_PMEVCNTR(4),
2672	PMU_PMEVCNTR(5),
2673	PMU_PMEVCNTR(6),
2674	PMU_PMEVCNTR(7),
2675	PMU_PMEVCNTR(8),
2676	PMU_PMEVCNTR(9),
2677	PMU_PMEVCNTR(10),
2678	PMU_PMEVCNTR(11),
2679	PMU_PMEVCNTR(12),
2680	PMU_PMEVCNTR(13),
2681	PMU_PMEVCNTR(14),
2682	PMU_PMEVCNTR(15),
2683	PMU_PMEVCNTR(16),
2684	PMU_PMEVCNTR(17),
2685	PMU_PMEVCNTR(18),
2686	PMU_PMEVCNTR(19),
2687	PMU_PMEVCNTR(20),
2688	PMU_PMEVCNTR(21),
2689	PMU_PMEVCNTR(22),
2690	PMU_PMEVCNTR(23),
2691	PMU_PMEVCNTR(24),
2692	PMU_PMEVCNTR(25),
2693	PMU_PMEVCNTR(26),
2694	PMU_PMEVCNTR(27),
2695	PMU_PMEVCNTR(28),
2696	PMU_PMEVCNTR(29),
2697	PMU_PMEVCNTR(30),
2698	/* PMEVTYPERn */
2699	PMU_PMEVTYPER(0),
2700	PMU_PMEVTYPER(1),
2701	PMU_PMEVTYPER(2),
2702	PMU_PMEVTYPER(3),
2703	PMU_PMEVTYPER(4),
2704	PMU_PMEVTYPER(5),
2705	PMU_PMEVTYPER(6),
2706	PMU_PMEVTYPER(7),
2707	PMU_PMEVTYPER(8),
2708	PMU_PMEVTYPER(9),
2709	PMU_PMEVTYPER(10),
2710	PMU_PMEVTYPER(11),
2711	PMU_PMEVTYPER(12),
2712	PMU_PMEVTYPER(13),
2713	PMU_PMEVTYPER(14),
2714	PMU_PMEVTYPER(15),
2715	PMU_PMEVTYPER(16),
2716	PMU_PMEVTYPER(17),
2717	PMU_PMEVTYPER(18),
2718	PMU_PMEVTYPER(19),
2719	PMU_PMEVTYPER(20),
2720	PMU_PMEVTYPER(21),
2721	PMU_PMEVTYPER(22),
2722	PMU_PMEVTYPER(23),
2723	PMU_PMEVTYPER(24),
2724	PMU_PMEVTYPER(25),
2725	PMU_PMEVTYPER(26),
2726	PMU_PMEVTYPER(27),
2727	PMU_PMEVTYPER(28),
2728	PMU_PMEVTYPER(29),
2729	PMU_PMEVTYPER(30),
2730	/* PMCCFILTR */
2731	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
2732
2733	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2734	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2735
2736	/* CCSIDR2 */
2737	{ Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
2738
2739	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2740};
2741
2742static const struct sys_reg_desc cp15_64_regs[] = {
2743	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2744	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
2745	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2746	{ SYS_DESC(SYS_AARCH32_CNTPCT),	      access_arch_timer },
2747	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2748	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2749	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2750	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2751	{ SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
2752};
2753
2754static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2755			       bool is_32)
2756{
2757	unsigned int i;
2758
2759	for (i = 0; i < n; i++) {
2760		if (!is_32 && table[i].reg && !table[i].reset) {
2761			kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
2762			return false;
2763		}
2764
2765		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2766			kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
2767			return false;
2768		}
2769	}
2770
2771	return true;
2772}
2773
2774int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2775{
2776	kvm_inject_undefined(vcpu);
2777	return 1;
2778}
2779
2780static void perform_access(struct kvm_vcpu *vcpu,
2781			   struct sys_reg_params *params,
2782			   const struct sys_reg_desc *r)
2783{
2784	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2785
2786	/* Check for regs disabled by runtime config */
2787	if (sysreg_hidden(vcpu, r)) {
2788		kvm_inject_undefined(vcpu);
2789		return;
2790	}
2791
2792	/*
2793	 * Not having an accessor means that we have configured a trap
2794	 * that we don't know how to handle. This certainly qualifies
2795	 * as a gross bug that should be fixed right away.
2796	 */
2797	BUG_ON(!r->access);
2798
2799	/* Skip instruction if instructed so */
2800	if (likely(r->access(vcpu, params, r)))
2801		kvm_incr_pc(vcpu);
2802}
2803
2804/*
2805 * emulate_cp --  tries to match a sys_reg access in a handling table, and
2806 *                call the corresponding trap handler.
2807 *
2808 * @params: pointer to the descriptor of the access
2809 * @table: array of trap descriptors
2810 * @num: size of the trap descriptor array
2811 *
2812 * Return true if the access has been handled, false if not.
2813 */
2814static bool emulate_cp(struct kvm_vcpu *vcpu,
2815		       struct sys_reg_params *params,
2816		       const struct sys_reg_desc *table,
2817		       size_t num)
2818{
2819	const struct sys_reg_desc *r;
2820
2821	if (!table)
2822		return false;	/* Not handled */
2823
2824	r = find_reg(params, table, num);
2825
2826	if (r) {
2827		perform_access(vcpu, params, r);
2828		return true;
2829	}
2830
2831	/* Not handled */
2832	return false;
2833}
2834
2835static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2836				struct sys_reg_params *params)
2837{
2838	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2839	int cp = -1;
2840
2841	switch (esr_ec) {
2842	case ESR_ELx_EC_CP15_32:
2843	case ESR_ELx_EC_CP15_64:
2844		cp = 15;
2845		break;
2846	case ESR_ELx_EC_CP14_MR:
2847	case ESR_ELx_EC_CP14_64:
2848		cp = 14;
2849		break;
2850	default:
2851		WARN_ON(1);
2852	}
2853
2854	print_sys_reg_msg(params,
2855			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2856			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2857	kvm_inject_undefined(vcpu);
2858}
2859
2860/**
2861 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2862 * @vcpu: The VCPU pointer
2863 * @run:  The kvm_run struct
2864 */
2865static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2866			    const struct sys_reg_desc *global,
2867			    size_t nr_global)
2868{
2869	struct sys_reg_params params;
2870	u64 esr = kvm_vcpu_get_esr(vcpu);
2871	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2872	int Rt2 = (esr >> 10) & 0x1f;
2873
2874	params.CRm = (esr >> 1) & 0xf;
2875	params.is_write = ((esr & 1) == 0);
2876
2877	params.Op0 = 0;
2878	params.Op1 = (esr >> 16) & 0xf;
2879	params.Op2 = 0;
2880	params.CRn = 0;
2881
2882	/*
2883	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2884	 * backends between AArch32 and AArch64, we get away with it.
2885	 */
2886	if (params.is_write) {
2887		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2888		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2889	}
2890
2891	/*
2892	 * If the table contains a handler, handle the
2893	 * potential register operation in the case of a read and return
2894	 * with success.
2895	 */
2896	if (emulate_cp(vcpu, &params, global, nr_global)) {
2897		/* Split up the value between registers for the read side */
2898		if (!params.is_write) {
2899			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2900			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2901		}
2902
2903		return 1;
2904	}
2905
2906	unhandled_cp_access(vcpu, &params);
2907	return 1;
2908}
2909
2910static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
2911
2912/*
2913 * The CP10 ID registers are architecturally mapped to AArch64 feature
2914 * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
2915 * from AArch32.
2916 */
2917static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
2918{
2919	u8 reg_id = (esr >> 10) & 0xf;
2920	bool valid;
2921
2922	params->is_write = ((esr & 1) == 0);
2923	params->Op0 = 3;
2924	params->Op1 = 0;
2925	params->CRn = 0;
2926	params->CRm = 3;
2927
2928	/* CP10 ID registers are read-only */
2929	valid = !params->is_write;
2930
2931	switch (reg_id) {
2932	/* MVFR0 */
2933	case 0b0111:
2934		params->Op2 = 0;
2935		break;
2936	/* MVFR1 */
2937	case 0b0110:
2938		params->Op2 = 1;
2939		break;
2940	/* MVFR2 */
2941	case 0b0101:
2942		params->Op2 = 2;
2943		break;
2944	default:
2945		valid = false;
2946	}
2947
2948	if (valid)
2949		return true;
2950
2951	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
2952		      params->is_write ? "write" : "read", reg_id);
2953	return false;
2954}
2955
2956/**
2957 * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
2958 *			  VFP Register' from AArch32.
2959 * @vcpu: The vCPU pointer
2960 *
2961 * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
2962 * Work out the correct AArch64 system register encoding and reroute to the
2963 * AArch64 system register emulation.
2964 */
2965int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
2966{
2967	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2968	u64 esr = kvm_vcpu_get_esr(vcpu);
2969	struct sys_reg_params params;
2970
2971	/* UNDEF on any unhandled register access */
2972	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
2973		kvm_inject_undefined(vcpu);
2974		return 1;
2975	}
2976
2977	if (emulate_sys_reg(vcpu, &params))
2978		vcpu_set_reg(vcpu, Rt, params.regval);
2979
2980	return 1;
2981}
2982
2983/**
2984 * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
2985 *			       CRn=0, which corresponds to the AArch32 feature
2986 *			       registers.
2987 * @vcpu: the vCPU pointer
2988 * @params: the system register access parameters.
2989 *
2990 * Our cp15 system register tables do not enumerate the AArch32 feature
2991 * registers. Conveniently, our AArch64 table does, and the AArch32 system
2992 * register encoding can be trivially remapped into the AArch64 for the feature
2993 * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
2994 *
2995 * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
2996 * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
2997 * range are either UNKNOWN or RES0. Rerouting remains architectural as we
2998 * treat undefined registers in this range as RAZ.
2999 */
3000static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
3001				   struct sys_reg_params *params)
3002{
3003	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3004
3005	/* Treat impossible writes to RO registers as UNDEFINED */
3006	if (params->is_write) {
3007		unhandled_cp_access(vcpu, params);
3008		return 1;
3009	}
3010
3011	params->Op0 = 3;
3012
3013	/*
3014	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
3015	 * Avoid conflicting with future expansion of AArch64 feature registers
3016	 * and simply treat them as RAZ here.
3017	 */
3018	if (params->CRm > 3)
3019		params->regval = 0;
3020	else if (!emulate_sys_reg(vcpu, params))
3021		return 1;
3022
3023	vcpu_set_reg(vcpu, Rt, params->regval);
3024	return 1;
3025}
3026
3027/**
3028 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
3029 * @vcpu: The VCPU pointer
3030 * @run:  The kvm_run struct
3031 */
3032static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
3033			    struct sys_reg_params *params,
3034			    const struct sys_reg_desc *global,
3035			    size_t nr_global)
3036{
3037	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
3038
3039	params->regval = vcpu_get_reg(vcpu, Rt);
3040
3041	if (emulate_cp(vcpu, params, global, nr_global)) {
3042		if (!params->is_write)
3043			vcpu_set_reg(vcpu, Rt, params->regval);
3044		return 1;
3045	}
3046
3047	unhandled_cp_access(vcpu, params);
3048	return 1;
3049}
3050
3051int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
3052{
3053	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
3054}
3055
3056int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
3057{
3058	struct sys_reg_params params;
3059
3060	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3061
3062	/*
3063	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
3064	 * system register table. Registers in the ID range where CRm=0 are
3065	 * excluded from this scheme as they do not trivially map into AArch64
3066	 * system register encodings.
3067	 */
3068	if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
3069		return kvm_emulate_cp15_id_reg(vcpu, &params);
3070
3071	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
3072}
3073
3074int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
3075{
3076	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
3077}
3078
3079int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
3080{
3081	struct sys_reg_params params;
3082
3083	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3084
3085	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
3086}
3087
3088static bool is_imp_def_sys_reg(struct sys_reg_params *params)
3089{
3090	// See ARM DDI 0487E.a, section D12.3.2
3091	return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
3092}
3093
3094/**
3095 * emulate_sys_reg - Emulate a guest access to an AArch64 system register
3096 * @vcpu: The VCPU pointer
3097 * @params: Decoded system register parameters
3098 *
3099 * Return: true if the system register access was successful, false otherwise.
3100 */
3101static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
3102			   struct sys_reg_params *params)
3103{
3104	const struct sys_reg_desc *r;
3105
3106	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3107
3108	if (likely(r)) {
3109		perform_access(vcpu, params, r);
3110		return true;
3111	}
3112
3113	if (is_imp_def_sys_reg(params)) {
3114		kvm_inject_undefined(vcpu);
3115	} else {
3116		print_sys_reg_msg(params,
3117				  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
3118				  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3119		kvm_inject_undefined(vcpu);
3120	}
3121	return false;
3122}
3123
3124static void kvm_reset_id_regs(struct kvm_vcpu *vcpu)
3125{
3126	const struct sys_reg_desc *idreg = first_idreg;
3127	u32 id = reg_to_encoding(idreg);
3128	struct kvm *kvm = vcpu->kvm;
3129
3130	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
3131		return;
3132
3133	lockdep_assert_held(&kvm->arch.config_lock);
3134
3135	/* Initialize all idregs */
3136	while (is_id_reg(id)) {
3137		IDREG(kvm, id) = idreg->reset(vcpu, idreg);
3138
3139		idreg++;
3140		id = reg_to_encoding(idreg);
3141	}
3142
3143	set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
3144}
3145
3146/**
3147 * kvm_reset_sys_regs - sets system registers to reset value
3148 * @vcpu: The VCPU pointer
3149 *
3150 * This function finds the right table above and sets the registers on the
3151 * virtual CPU struct to their architecturally defined reset values.
3152 */
3153void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
3154{
3155	unsigned long i;
3156
3157	kvm_reset_id_regs(vcpu);
3158
3159	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3160		const struct sys_reg_desc *r = &sys_reg_descs[i];
3161
3162		if (is_id_reg(reg_to_encoding(r)))
3163			continue;
3164
3165		if (r->reset)
3166			r->reset(vcpu, r);
3167	}
3168}
3169
3170/**
3171 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
3172 * @vcpu: The VCPU pointer
3173 */
3174int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
3175{
3176	struct sys_reg_params params;
3177	unsigned long esr = kvm_vcpu_get_esr(vcpu);
3178	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3179
3180	trace_kvm_handle_sys_reg(esr);
3181
3182	if (__check_nv_sr_forward(vcpu))
3183		return 1;
3184
3185	params = esr_sys64_to_params(esr);
3186	params.regval = vcpu_get_reg(vcpu, Rt);
3187
3188	if (!emulate_sys_reg(vcpu, &params))
3189		return 1;
3190
3191	if (!params.is_write)
3192		vcpu_set_reg(vcpu, Rt, params.regval);
3193	return 1;
3194}
3195
3196/******************************************************************************
3197 * Userspace API
3198 *****************************************************************************/
3199
3200static bool index_to_params(u64 id, struct sys_reg_params *params)
3201{
3202	switch (id & KVM_REG_SIZE_MASK) {
3203	case KVM_REG_SIZE_U64:
3204		/* Any unused index bits means it's not valid. */
3205		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
3206			      | KVM_REG_ARM_COPROC_MASK
3207			      | KVM_REG_ARM64_SYSREG_OP0_MASK
3208			      | KVM_REG_ARM64_SYSREG_OP1_MASK
3209			      | KVM_REG_ARM64_SYSREG_CRN_MASK
3210			      | KVM_REG_ARM64_SYSREG_CRM_MASK
3211			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
3212			return false;
3213		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
3214			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
3215		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
3216			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
3217		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
3218			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
3219		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
3220			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
3221		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
3222			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
3223		return true;
3224	default:
3225		return false;
3226	}
3227}
3228
3229const struct sys_reg_desc *get_reg_by_id(u64 id,
3230					 const struct sys_reg_desc table[],
3231					 unsigned int num)
3232{
3233	struct sys_reg_params params;
3234
3235	if (!index_to_params(id, &params))
3236		return NULL;
3237
3238	return find_reg(&params, table, num);
3239}
3240
3241/* Decode an index value, and find the sys_reg_desc entry. */
3242static const struct sys_reg_desc *
3243id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
3244		   const struct sys_reg_desc table[], unsigned int num)
3245
3246{
3247	const struct sys_reg_desc *r;
3248
3249	/* We only do sys_reg for now. */
3250	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
3251		return NULL;
3252
3253	r = get_reg_by_id(id, table, num);
3254
3255	/* Not saved in the sys_reg array and not otherwise accessible? */
3256	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
3257		r = NULL;
3258
3259	return r;
3260}
3261
3262/*
3263 * These are the invariant sys_reg registers: we let the guest see the
3264 * host versions of these, so they're part of the guest state.
3265 *
3266 * A future CPU may provide a mechanism to present different values to
3267 * the guest, or a future kvm may trap them.
3268 */
3269
3270#define FUNCTION_INVARIANT(reg)						\
3271	static u64 get_##reg(struct kvm_vcpu *v,			\
3272			      const struct sys_reg_desc *r)		\
3273	{								\
3274		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
3275		return ((struct sys_reg_desc *)r)->val;			\
3276	}
3277
3278FUNCTION_INVARIANT(midr_el1)
3279FUNCTION_INVARIANT(revidr_el1)
3280FUNCTION_INVARIANT(aidr_el1)
3281
3282static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
3283{
3284	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
3285	return ((struct sys_reg_desc *)r)->val;
3286}
3287
3288/* ->val is filled in by kvm_sys_reg_table_init() */
3289static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
3290	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
3291	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
3292	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
3293	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
3294};
3295
3296static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
3297{
3298	const struct sys_reg_desc *r;
3299
3300	r = get_reg_by_id(id, invariant_sys_regs,
3301			  ARRAY_SIZE(invariant_sys_regs));
3302	if (!r)
3303		return -ENOENT;
3304
3305	return put_user(r->val, uaddr);
3306}
3307
3308static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
3309{
3310	const struct sys_reg_desc *r;
3311	u64 val;
3312
3313	r = get_reg_by_id(id, invariant_sys_regs,
3314			  ARRAY_SIZE(invariant_sys_regs));
3315	if (!r)
3316		return -ENOENT;
3317
3318	if (get_user(val, uaddr))
3319		return -EFAULT;
3320
3321	/* This is what we mean by invariant: you can't change it. */
3322	if (r->val != val)
3323		return -EINVAL;
3324
3325	return 0;
3326}
3327
3328static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3329{
3330	u32 val;
3331	u32 __user *uval = uaddr;
3332
3333	/* Fail if we have unknown bits set. */
3334	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3335		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3336		return -ENOENT;
3337
3338	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3339	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3340		if (KVM_REG_SIZE(id) != 4)
3341			return -ENOENT;
3342		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3343			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3344		if (val >= CSSELR_MAX)
3345			return -ENOENT;
3346
3347		return put_user(get_ccsidr(vcpu, val), uval);
3348	default:
3349		return -ENOENT;
3350	}
3351}
3352
3353static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3354{
3355	u32 val, newval;
3356	u32 __user *uval = uaddr;
3357
3358	/* Fail if we have unknown bits set. */
3359	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3360		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3361		return -ENOENT;
3362
3363	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3364	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3365		if (KVM_REG_SIZE(id) != 4)
3366			return -ENOENT;
3367		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3368			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3369		if (val >= CSSELR_MAX)
3370			return -ENOENT;
3371
3372		if (get_user(newval, uval))
3373			return -EFAULT;
3374
3375		return set_ccsidr(vcpu, val, newval);
3376	default:
3377		return -ENOENT;
3378	}
3379}
3380
3381int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3382			 const struct sys_reg_desc table[], unsigned int num)
3383{
3384	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3385	const struct sys_reg_desc *r;
3386	u64 val;
3387	int ret;
3388
3389	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3390	if (!r || sysreg_hidden_user(vcpu, r))
3391		return -ENOENT;
3392
3393	if (r->get_user) {
3394		ret = (r->get_user)(vcpu, r, &val);
3395	} else {
3396		val = __vcpu_sys_reg(vcpu, r->reg);
3397		ret = 0;
3398	}
3399
3400	if (!ret)
3401		ret = put_user(val, uaddr);
3402
3403	return ret;
3404}
3405
3406int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3407{
3408	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3409	int err;
3410
3411	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3412		return demux_c15_get(vcpu, reg->id, uaddr);
3413
3414	err = get_invariant_sys_reg(reg->id, uaddr);
3415	if (err != -ENOENT)
3416		return err;
3417
3418	return kvm_sys_reg_get_user(vcpu, reg,
3419				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3420}
3421
3422int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3423			 const struct sys_reg_desc table[], unsigned int num)
3424{
3425	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3426	const struct sys_reg_desc *r;
3427	u64 val;
3428	int ret;
3429
3430	if (get_user(val, uaddr))
3431		return -EFAULT;
3432
3433	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3434	if (!r || sysreg_hidden_user(vcpu, r))
3435		return -ENOENT;
3436
3437	if (sysreg_user_write_ignore(vcpu, r))
3438		return 0;
3439
3440	if (r->set_user) {
3441		ret = (r->set_user)(vcpu, r, val);
3442	} else {
3443		__vcpu_sys_reg(vcpu, r->reg) = val;
3444		ret = 0;
3445	}
3446
3447	return ret;
3448}
3449
3450int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3451{
3452	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3453	int err;
3454
3455	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3456		return demux_c15_set(vcpu, reg->id, uaddr);
3457
3458	err = set_invariant_sys_reg(reg->id, uaddr);
3459	if (err != -ENOENT)
3460		return err;
3461
3462	return kvm_sys_reg_set_user(vcpu, reg,
3463				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3464}
3465
3466static unsigned int num_demux_regs(void)
3467{
3468	return CSSELR_MAX;
3469}
3470
3471static int write_demux_regids(u64 __user *uindices)
3472{
3473	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
3474	unsigned int i;
3475
3476	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
3477	for (i = 0; i < CSSELR_MAX; i++) {
3478		if (put_user(val | i, uindices))
3479			return -EFAULT;
3480		uindices++;
3481	}
3482	return 0;
3483}
3484
3485static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
3486{
3487	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
3488		KVM_REG_ARM64_SYSREG |
3489		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
3490		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
3491		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
3492		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
3493		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
3494}
3495
3496static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
3497{
3498	if (!*uind)
3499		return true;
3500
3501	if (put_user(sys_reg_to_index(reg), *uind))
3502		return false;
3503
3504	(*uind)++;
3505	return true;
3506}
3507
3508static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
3509			    const struct sys_reg_desc *rd,
3510			    u64 __user **uind,
3511			    unsigned int *total)
3512{
3513	/*
3514	 * Ignore registers we trap but don't save,
3515	 * and for which no custom user accessor is provided.
3516	 */
3517	if (!(rd->reg || rd->get_user))
3518		return 0;
3519
3520	if (sysreg_hidden_user(vcpu, rd))
3521		return 0;
3522
3523	if (!copy_reg_to_user(rd, uind))
3524		return -EFAULT;
3525
3526	(*total)++;
3527	return 0;
3528}
3529
3530/* Assumed ordered tables, see kvm_sys_reg_table_init. */
3531static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3532{
3533	const struct sys_reg_desc *i2, *end2;
3534	unsigned int total = 0;
3535	int err;
3536
3537	i2 = sys_reg_descs;
3538	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3539
3540	while (i2 != end2) {
3541		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
3542		if (err)
3543			return err;
3544	}
3545	return total;
3546}
3547
3548unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3549{
3550	return ARRAY_SIZE(invariant_sys_regs)
3551		+ num_demux_regs()
3552		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
3553}
3554
3555int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3556{
3557	unsigned int i;
3558	int err;
3559
3560	/* Then give them all the invariant registers' indices. */
3561	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3562		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3563			return -EFAULT;
3564		uindices++;
3565	}
3566
3567	err = walk_sys_regs(vcpu, uindices);
3568	if (err < 0)
3569		return err;
3570	uindices += err;
3571
3572	return write_demux_regids(uindices);
3573}
3574
3575int __init kvm_sys_reg_table_init(void)
3576{
3577	struct sys_reg_params params;
3578	bool valid = true;
3579	unsigned int i;
3580
3581	/* Make sure tables are unique and in order. */
3582	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
3583	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
3584	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
3585	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
3586	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
3587	valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
3588
3589	if (!valid)
3590		return -EINVAL;
3591
3592	/* We abuse the reset function to overwrite the table itself. */
3593	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
3594		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
3595
3596	/* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */
3597	params = encoding_to_params(SYS_ID_PFR0_EL1);
3598	first_idreg = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3599	if (!first_idreg)
3600		return -EINVAL;
3601
3602	if (kvm_get_mode() == KVM_MODE_NV)
3603		return populate_nv_trap_config();
3604
3605	return 0;
3606}
3607