162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci * Copyright (C) 2012,2013 - ARM Ltd
462306a36Sopenharmony_ci * Author: Marc Zyngier <marc.zyngier@arm.com>
562306a36Sopenharmony_ci *
662306a36Sopenharmony_ci * Derived from arch/arm/kvm/coproc.c:
762306a36Sopenharmony_ci * Copyright (C) 2012 - Virtual Open Systems and Columbia University
862306a36Sopenharmony_ci * Authors: Rusty Russell <rusty@rustcorp.com.au>
962306a36Sopenharmony_ci *          Christoffer Dall <c.dall@virtualopensystems.com>
1062306a36Sopenharmony_ci */
1162306a36Sopenharmony_ci
1262306a36Sopenharmony_ci#include <linux/bitfield.h>
1362306a36Sopenharmony_ci#include <linux/bsearch.h>
1462306a36Sopenharmony_ci#include <linux/cacheinfo.h>
1562306a36Sopenharmony_ci#include <linux/kvm_host.h>
1662306a36Sopenharmony_ci#include <linux/mm.h>
1762306a36Sopenharmony_ci#include <linux/printk.h>
1862306a36Sopenharmony_ci#include <linux/uaccess.h>
1962306a36Sopenharmony_ci
2062306a36Sopenharmony_ci#include <asm/cacheflush.h>
2162306a36Sopenharmony_ci#include <asm/cputype.h>
2262306a36Sopenharmony_ci#include <asm/debug-monitors.h>
2362306a36Sopenharmony_ci#include <asm/esr.h>
2462306a36Sopenharmony_ci#include <asm/kvm_arm.h>
2562306a36Sopenharmony_ci#include <asm/kvm_emulate.h>
2662306a36Sopenharmony_ci#include <asm/kvm_hyp.h>
2762306a36Sopenharmony_ci#include <asm/kvm_mmu.h>
2862306a36Sopenharmony_ci#include <asm/kvm_nested.h>
2962306a36Sopenharmony_ci#include <asm/perf_event.h>
3062306a36Sopenharmony_ci#include <asm/sysreg.h>
3162306a36Sopenharmony_ci
3262306a36Sopenharmony_ci#include <trace/events/kvm.h>
3362306a36Sopenharmony_ci
3462306a36Sopenharmony_ci#include "sys_regs.h"
3562306a36Sopenharmony_ci
3662306a36Sopenharmony_ci#include "trace.h"
3762306a36Sopenharmony_ci
3862306a36Sopenharmony_ci/*
3962306a36Sopenharmony_ci * For AArch32, we only take care of what is being trapped. Anything
4062306a36Sopenharmony_ci * that has to do with init and userspace access has to go via the
4162306a36Sopenharmony_ci * 64bit interface.
4262306a36Sopenharmony_ci */
4362306a36Sopenharmony_ci
4462306a36Sopenharmony_cistatic u64 sys_reg_to_index(const struct sys_reg_desc *reg);
4562306a36Sopenharmony_cistatic int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
4662306a36Sopenharmony_ci		      u64 val);
4762306a36Sopenharmony_ci
4862306a36Sopenharmony_cistatic bool read_from_write_only(struct kvm_vcpu *vcpu,
4962306a36Sopenharmony_ci				 struct sys_reg_params *params,
5062306a36Sopenharmony_ci				 const struct sys_reg_desc *r)
5162306a36Sopenharmony_ci{
5262306a36Sopenharmony_ci	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
5362306a36Sopenharmony_ci	print_sys_reg_instr(params);
5462306a36Sopenharmony_ci	kvm_inject_undefined(vcpu);
5562306a36Sopenharmony_ci	return false;
5662306a36Sopenharmony_ci}
5762306a36Sopenharmony_ci
5862306a36Sopenharmony_cistatic bool write_to_read_only(struct kvm_vcpu *vcpu,
5962306a36Sopenharmony_ci			       struct sys_reg_params *params,
6062306a36Sopenharmony_ci			       const struct sys_reg_desc *r)
6162306a36Sopenharmony_ci{
6262306a36Sopenharmony_ci	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
6362306a36Sopenharmony_ci	print_sys_reg_instr(params);
6462306a36Sopenharmony_ci	kvm_inject_undefined(vcpu);
6562306a36Sopenharmony_ci	return false;
6662306a36Sopenharmony_ci}
6762306a36Sopenharmony_ci
6862306a36Sopenharmony_ciu64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
6962306a36Sopenharmony_ci{
7062306a36Sopenharmony_ci	u64 val = 0x8badf00d8badf00d;
7162306a36Sopenharmony_ci
7262306a36Sopenharmony_ci	if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
7362306a36Sopenharmony_ci	    __vcpu_read_sys_reg_from_cpu(reg, &val))
7462306a36Sopenharmony_ci		return val;
7562306a36Sopenharmony_ci
7662306a36Sopenharmony_ci	return __vcpu_sys_reg(vcpu, reg);
7762306a36Sopenharmony_ci}
7862306a36Sopenharmony_ci
7962306a36Sopenharmony_civoid vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
8062306a36Sopenharmony_ci{
8162306a36Sopenharmony_ci	if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
8262306a36Sopenharmony_ci	    __vcpu_write_sys_reg_to_cpu(val, reg))
8362306a36Sopenharmony_ci		return;
8462306a36Sopenharmony_ci
8562306a36Sopenharmony_ci	__vcpu_sys_reg(vcpu, reg) = val;
8662306a36Sopenharmony_ci}
8762306a36Sopenharmony_ci
8862306a36Sopenharmony_ci/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
8962306a36Sopenharmony_ci#define CSSELR_MAX 14
9062306a36Sopenharmony_ci
9162306a36Sopenharmony_ci/*
9262306a36Sopenharmony_ci * Returns the minimum line size for the selected cache, expressed as
9362306a36Sopenharmony_ci * Log2(bytes).
9462306a36Sopenharmony_ci */
9562306a36Sopenharmony_cistatic u8 get_min_cache_line_size(bool icache)
9662306a36Sopenharmony_ci{
9762306a36Sopenharmony_ci	u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
9862306a36Sopenharmony_ci	u8 field;
9962306a36Sopenharmony_ci
10062306a36Sopenharmony_ci	if (icache)
10162306a36Sopenharmony_ci		field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
10262306a36Sopenharmony_ci	else
10362306a36Sopenharmony_ci		field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
10462306a36Sopenharmony_ci
10562306a36Sopenharmony_ci	/*
10662306a36Sopenharmony_ci	 * Cache line size is represented as Log2(words) in CTR_EL0.
10762306a36Sopenharmony_ci	 * Log2(bytes) can be derived with the following:
10862306a36Sopenharmony_ci	 *
10962306a36Sopenharmony_ci	 * Log2(words) + 2 = Log2(bytes / 4) + 2
11062306a36Sopenharmony_ci	 * 		   = Log2(bytes) - 2 + 2
11162306a36Sopenharmony_ci	 * 		   = Log2(bytes)
11262306a36Sopenharmony_ci	 */
11362306a36Sopenharmony_ci	return field + 2;
11462306a36Sopenharmony_ci}
11562306a36Sopenharmony_ci
11662306a36Sopenharmony_ci/* Which cache CCSIDR represents depends on CSSELR value. */
11762306a36Sopenharmony_cistatic u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
11862306a36Sopenharmony_ci{
11962306a36Sopenharmony_ci	u8 line_size;
12062306a36Sopenharmony_ci
12162306a36Sopenharmony_ci	if (vcpu->arch.ccsidr)
12262306a36Sopenharmony_ci		return vcpu->arch.ccsidr[csselr];
12362306a36Sopenharmony_ci
12462306a36Sopenharmony_ci	line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
12562306a36Sopenharmony_ci
12662306a36Sopenharmony_ci	/*
12762306a36Sopenharmony_ci	 * Fabricate a CCSIDR value as the overriding value does not exist.
12862306a36Sopenharmony_ci	 * The real CCSIDR value will not be used as it can vary by the
12962306a36Sopenharmony_ci	 * physical CPU which the vcpu currently resides in.
13062306a36Sopenharmony_ci	 *
13162306a36Sopenharmony_ci	 * The line size is determined with get_min_cache_line_size(), which
13262306a36Sopenharmony_ci	 * should be valid for all CPUs even if they have different cache
13362306a36Sopenharmony_ci	 * configuration.
13462306a36Sopenharmony_ci	 *
13562306a36Sopenharmony_ci	 * The associativity bits are cleared, meaning the geometry of all data
13662306a36Sopenharmony_ci	 * and unified caches (which are guaranteed to be PIPT and thus
13762306a36Sopenharmony_ci	 * non-aliasing) are 1 set and 1 way.
13862306a36Sopenharmony_ci	 * Guests should not be doing cache operations by set/way at all, and
13962306a36Sopenharmony_ci	 * for this reason, we trap them and attempt to infer the intent, so
14062306a36Sopenharmony_ci	 * that we can flush the entire guest's address space at the appropriate
14162306a36Sopenharmony_ci	 * time. The exposed geometry minimizes the number of the traps.
14262306a36Sopenharmony_ci	 * [If guests should attempt to infer aliasing properties from the
14362306a36Sopenharmony_ci	 * geometry (which is not permitted by the architecture), they would
14462306a36Sopenharmony_ci	 * only do so for virtually indexed caches.]
14562306a36Sopenharmony_ci	 *
14662306a36Sopenharmony_ci	 * We don't check if the cache level exists as it is allowed to return
14762306a36Sopenharmony_ci	 * an UNKNOWN value if not.
14862306a36Sopenharmony_ci	 */
14962306a36Sopenharmony_ci	return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
15062306a36Sopenharmony_ci}
15162306a36Sopenharmony_ci
15262306a36Sopenharmony_cistatic int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
15362306a36Sopenharmony_ci{
15462306a36Sopenharmony_ci	u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
15562306a36Sopenharmony_ci	u32 *ccsidr = vcpu->arch.ccsidr;
15662306a36Sopenharmony_ci	u32 i;
15762306a36Sopenharmony_ci
15862306a36Sopenharmony_ci	if ((val & CCSIDR_EL1_RES0) ||
15962306a36Sopenharmony_ci	    line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
16062306a36Sopenharmony_ci		return -EINVAL;
16162306a36Sopenharmony_ci
16262306a36Sopenharmony_ci	if (!ccsidr) {
16362306a36Sopenharmony_ci		if (val == get_ccsidr(vcpu, csselr))
16462306a36Sopenharmony_ci			return 0;
16562306a36Sopenharmony_ci
16662306a36Sopenharmony_ci		ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
16762306a36Sopenharmony_ci		if (!ccsidr)
16862306a36Sopenharmony_ci			return -ENOMEM;
16962306a36Sopenharmony_ci
17062306a36Sopenharmony_ci		for (i = 0; i < CSSELR_MAX; i++)
17162306a36Sopenharmony_ci			ccsidr[i] = get_ccsidr(vcpu, i);
17262306a36Sopenharmony_ci
17362306a36Sopenharmony_ci		vcpu->arch.ccsidr = ccsidr;
17462306a36Sopenharmony_ci	}
17562306a36Sopenharmony_ci
17662306a36Sopenharmony_ci	ccsidr[csselr] = val;
17762306a36Sopenharmony_ci
17862306a36Sopenharmony_ci	return 0;
17962306a36Sopenharmony_ci}
18062306a36Sopenharmony_ci
18162306a36Sopenharmony_cistatic bool access_rw(struct kvm_vcpu *vcpu,
18262306a36Sopenharmony_ci		      struct sys_reg_params *p,
18362306a36Sopenharmony_ci		      const struct sys_reg_desc *r)
18462306a36Sopenharmony_ci{
18562306a36Sopenharmony_ci	if (p->is_write)
18662306a36Sopenharmony_ci		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
18762306a36Sopenharmony_ci	else
18862306a36Sopenharmony_ci		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
18962306a36Sopenharmony_ci
19062306a36Sopenharmony_ci	return true;
19162306a36Sopenharmony_ci}
19262306a36Sopenharmony_ci
19362306a36Sopenharmony_ci/*
19462306a36Sopenharmony_ci * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
19562306a36Sopenharmony_ci */
19662306a36Sopenharmony_cistatic bool access_dcsw(struct kvm_vcpu *vcpu,
19762306a36Sopenharmony_ci			struct sys_reg_params *p,
19862306a36Sopenharmony_ci			const struct sys_reg_desc *r)
19962306a36Sopenharmony_ci{
20062306a36Sopenharmony_ci	if (!p->is_write)
20162306a36Sopenharmony_ci		return read_from_write_only(vcpu, p, r);
20262306a36Sopenharmony_ci
20362306a36Sopenharmony_ci	/*
20462306a36Sopenharmony_ci	 * Only track S/W ops if we don't have FWB. It still indicates
20562306a36Sopenharmony_ci	 * that the guest is a bit broken (S/W operations should only
20662306a36Sopenharmony_ci	 * be done by firmware, knowing that there is only a single
20762306a36Sopenharmony_ci	 * CPU left in the system, and certainly not from non-secure
20862306a36Sopenharmony_ci	 * software).
20962306a36Sopenharmony_ci	 */
21062306a36Sopenharmony_ci	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
21162306a36Sopenharmony_ci		kvm_set_way_flush(vcpu);
21262306a36Sopenharmony_ci
21362306a36Sopenharmony_ci	return true;
21462306a36Sopenharmony_ci}
21562306a36Sopenharmony_ci
21662306a36Sopenharmony_cistatic bool access_dcgsw(struct kvm_vcpu *vcpu,
21762306a36Sopenharmony_ci			 struct sys_reg_params *p,
21862306a36Sopenharmony_ci			 const struct sys_reg_desc *r)
21962306a36Sopenharmony_ci{
22062306a36Sopenharmony_ci	if (!kvm_has_mte(vcpu->kvm)) {
22162306a36Sopenharmony_ci		kvm_inject_undefined(vcpu);
22262306a36Sopenharmony_ci		return false;
22362306a36Sopenharmony_ci	}
22462306a36Sopenharmony_ci
22562306a36Sopenharmony_ci	/* Treat MTE S/W ops as we treat the classic ones: with contempt */
22662306a36Sopenharmony_ci	return access_dcsw(vcpu, p, r);
22762306a36Sopenharmony_ci}
22862306a36Sopenharmony_ci
22962306a36Sopenharmony_cistatic void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
23062306a36Sopenharmony_ci{
23162306a36Sopenharmony_ci	switch (r->aarch32_map) {
23262306a36Sopenharmony_ci	case AA32_LO:
23362306a36Sopenharmony_ci		*mask = GENMASK_ULL(31, 0);
23462306a36Sopenharmony_ci		*shift = 0;
23562306a36Sopenharmony_ci		break;
23662306a36Sopenharmony_ci	case AA32_HI:
23762306a36Sopenharmony_ci		*mask = GENMASK_ULL(63, 32);
23862306a36Sopenharmony_ci		*shift = 32;
23962306a36Sopenharmony_ci		break;
24062306a36Sopenharmony_ci	default:
24162306a36Sopenharmony_ci		*mask = GENMASK_ULL(63, 0);
24262306a36Sopenharmony_ci		*shift = 0;
24362306a36Sopenharmony_ci		break;
24462306a36Sopenharmony_ci	}
24562306a36Sopenharmony_ci}
24662306a36Sopenharmony_ci
24762306a36Sopenharmony_ci/*
24862306a36Sopenharmony_ci * Generic accessor for VM registers. Only called as long as HCR_TVM
24962306a36Sopenharmony_ci * is set. If the guest enables the MMU, we stop trapping the VM
25062306a36Sopenharmony_ci * sys_regs and leave it in complete control of the caches.
25162306a36Sopenharmony_ci */
25262306a36Sopenharmony_cistatic bool access_vm_reg(struct kvm_vcpu *vcpu,
25362306a36Sopenharmony_ci			  struct sys_reg_params *p,
25462306a36Sopenharmony_ci			  const struct sys_reg_desc *r)
25562306a36Sopenharmony_ci{
25662306a36Sopenharmony_ci	bool was_enabled = vcpu_has_cache_enabled(vcpu);
25762306a36Sopenharmony_ci	u64 val, mask, shift;
25862306a36Sopenharmony_ci
25962306a36Sopenharmony_ci	BUG_ON(!p->is_write);
26062306a36Sopenharmony_ci
26162306a36Sopenharmony_ci	get_access_mask(r, &mask, &shift);
26262306a36Sopenharmony_ci
26362306a36Sopenharmony_ci	if (~mask) {
26462306a36Sopenharmony_ci		val = vcpu_read_sys_reg(vcpu, r->reg);
26562306a36Sopenharmony_ci		val &= ~mask;
26662306a36Sopenharmony_ci	} else {
26762306a36Sopenharmony_ci		val = 0;
26862306a36Sopenharmony_ci	}
26962306a36Sopenharmony_ci
27062306a36Sopenharmony_ci	val |= (p->regval & (mask >> shift)) << shift;
27162306a36Sopenharmony_ci	vcpu_write_sys_reg(vcpu, val, r->reg);
27262306a36Sopenharmony_ci
27362306a36Sopenharmony_ci	kvm_toggle_cache(vcpu, was_enabled);
27462306a36Sopenharmony_ci	return true;
27562306a36Sopenharmony_ci}
27662306a36Sopenharmony_ci
27762306a36Sopenharmony_cistatic bool access_actlr(struct kvm_vcpu *vcpu,
27862306a36Sopenharmony_ci			 struct sys_reg_params *p,
27962306a36Sopenharmony_ci			 const struct sys_reg_desc *r)
28062306a36Sopenharmony_ci{
28162306a36Sopenharmony_ci	u64 mask, shift;
28262306a36Sopenharmony_ci
28362306a36Sopenharmony_ci	if (p->is_write)
28462306a36Sopenharmony_ci		return ignore_write(vcpu, p);
28562306a36Sopenharmony_ci
28662306a36Sopenharmony_ci	get_access_mask(r, &mask, &shift);
28762306a36Sopenharmony_ci	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
28862306a36Sopenharmony_ci
28962306a36Sopenharmony_ci	return true;
29062306a36Sopenharmony_ci}
29162306a36Sopenharmony_ci
29262306a36Sopenharmony_ci/*
29362306a36Sopenharmony_ci * Trap handler for the GICv3 SGI generation system register.
29462306a36Sopenharmony_ci * Forward the request to the VGIC emulation.
29562306a36Sopenharmony_ci * The cp15_64 code makes sure this automatically works
29662306a36Sopenharmony_ci * for both AArch64 and AArch32 accesses.
29762306a36Sopenharmony_ci */
29862306a36Sopenharmony_cistatic bool access_gic_sgi(struct kvm_vcpu *vcpu,
29962306a36Sopenharmony_ci			   struct sys_reg_params *p,
30062306a36Sopenharmony_ci			   const struct sys_reg_desc *r)
30162306a36Sopenharmony_ci{
30262306a36Sopenharmony_ci	bool g1;
30362306a36Sopenharmony_ci
30462306a36Sopenharmony_ci	if (!p->is_write)
30562306a36Sopenharmony_ci		return read_from_write_only(vcpu, p, r);
30662306a36Sopenharmony_ci
30762306a36Sopenharmony_ci	/*
30862306a36Sopenharmony_ci	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
30962306a36Sopenharmony_ci	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
31062306a36Sopenharmony_ci	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
31162306a36Sopenharmony_ci	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
31262306a36Sopenharmony_ci	 * group.
31362306a36Sopenharmony_ci	 */
31462306a36Sopenharmony_ci	if (p->Op0 == 0) {		/* AArch32 */
31562306a36Sopenharmony_ci		switch (p->Op1) {
31662306a36Sopenharmony_ci		default:		/* Keep GCC quiet */
31762306a36Sopenharmony_ci		case 0:			/* ICC_SGI1R */
31862306a36Sopenharmony_ci			g1 = true;
31962306a36Sopenharmony_ci			break;
32062306a36Sopenharmony_ci		case 1:			/* ICC_ASGI1R */
32162306a36Sopenharmony_ci		case 2:			/* ICC_SGI0R */
32262306a36Sopenharmony_ci			g1 = false;
32362306a36Sopenharmony_ci			break;
32462306a36Sopenharmony_ci		}
32562306a36Sopenharmony_ci	} else {			/* AArch64 */
32662306a36Sopenharmony_ci		switch (p->Op2) {
32762306a36Sopenharmony_ci		default:		/* Keep GCC quiet */
32862306a36Sopenharmony_ci		case 5:			/* ICC_SGI1R_EL1 */
32962306a36Sopenharmony_ci			g1 = true;
33062306a36Sopenharmony_ci			break;
33162306a36Sopenharmony_ci		case 6:			/* ICC_ASGI1R_EL1 */
33262306a36Sopenharmony_ci		case 7:			/* ICC_SGI0R_EL1 */
33362306a36Sopenharmony_ci			g1 = false;
33462306a36Sopenharmony_ci			break;
33562306a36Sopenharmony_ci		}
33662306a36Sopenharmony_ci	}
33762306a36Sopenharmony_ci
33862306a36Sopenharmony_ci	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
33962306a36Sopenharmony_ci
34062306a36Sopenharmony_ci	return true;
34162306a36Sopenharmony_ci}
34262306a36Sopenharmony_ci
34362306a36Sopenharmony_cistatic bool access_gic_sre(struct kvm_vcpu *vcpu,
34462306a36Sopenharmony_ci			   struct sys_reg_params *p,
34562306a36Sopenharmony_ci			   const struct sys_reg_desc *r)
34662306a36Sopenharmony_ci{
34762306a36Sopenharmony_ci	if (p->is_write)
34862306a36Sopenharmony_ci		return ignore_write(vcpu, p);
34962306a36Sopenharmony_ci
35062306a36Sopenharmony_ci	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
35162306a36Sopenharmony_ci	return true;
35262306a36Sopenharmony_ci}
35362306a36Sopenharmony_ci
35462306a36Sopenharmony_cistatic bool trap_raz_wi(struct kvm_vcpu *vcpu,
35562306a36Sopenharmony_ci			struct sys_reg_params *p,
35662306a36Sopenharmony_ci			const struct sys_reg_desc *r)
35762306a36Sopenharmony_ci{
35862306a36Sopenharmony_ci	if (p->is_write)
35962306a36Sopenharmony_ci		return ignore_write(vcpu, p);
36062306a36Sopenharmony_ci	else
36162306a36Sopenharmony_ci		return read_zero(vcpu, p);
36262306a36Sopenharmony_ci}
36362306a36Sopenharmony_ci
36462306a36Sopenharmony_cistatic bool trap_undef(struct kvm_vcpu *vcpu,
36562306a36Sopenharmony_ci		       struct sys_reg_params *p,
36662306a36Sopenharmony_ci		       const struct sys_reg_desc *r)
36762306a36Sopenharmony_ci{
36862306a36Sopenharmony_ci	kvm_inject_undefined(vcpu);
36962306a36Sopenharmony_ci	return false;
37062306a36Sopenharmony_ci}
37162306a36Sopenharmony_ci
37262306a36Sopenharmony_ci/*
37362306a36Sopenharmony_ci * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
37462306a36Sopenharmony_ci * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
37562306a36Sopenharmony_ci * system, these registers should UNDEF. LORID_EL1 being a RO register, we
37662306a36Sopenharmony_ci * treat it separately.
37762306a36Sopenharmony_ci */
37862306a36Sopenharmony_cistatic bool trap_loregion(struct kvm_vcpu *vcpu,
37962306a36Sopenharmony_ci			  struct sys_reg_params *p,
38062306a36Sopenharmony_ci			  const struct sys_reg_desc *r)
38162306a36Sopenharmony_ci{
38262306a36Sopenharmony_ci	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
38362306a36Sopenharmony_ci	u32 sr = reg_to_encoding(r);
38462306a36Sopenharmony_ci
38562306a36Sopenharmony_ci	if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
38662306a36Sopenharmony_ci		kvm_inject_undefined(vcpu);
38762306a36Sopenharmony_ci		return false;
38862306a36Sopenharmony_ci	}
38962306a36Sopenharmony_ci
39062306a36Sopenharmony_ci	if (p->is_write && sr == SYS_LORID_EL1)
39162306a36Sopenharmony_ci		return write_to_read_only(vcpu, p, r);
39262306a36Sopenharmony_ci
39362306a36Sopenharmony_ci	return trap_raz_wi(vcpu, p, r);
39462306a36Sopenharmony_ci}
39562306a36Sopenharmony_ci
39662306a36Sopenharmony_cistatic bool trap_oslar_el1(struct kvm_vcpu *vcpu,
39762306a36Sopenharmony_ci			   struct sys_reg_params *p,
39862306a36Sopenharmony_ci			   const struct sys_reg_desc *r)
39962306a36Sopenharmony_ci{
40062306a36Sopenharmony_ci	u64 oslsr;
40162306a36Sopenharmony_ci
40262306a36Sopenharmony_ci	if (!p->is_write)
40362306a36Sopenharmony_ci		return read_from_write_only(vcpu, p, r);
40462306a36Sopenharmony_ci
40562306a36Sopenharmony_ci	/* Forward the OSLK bit to OSLSR */
40662306a36Sopenharmony_ci	oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
40762306a36Sopenharmony_ci	if (p->regval & OSLAR_EL1_OSLK)
40862306a36Sopenharmony_ci		oslsr |= OSLSR_EL1_OSLK;
40962306a36Sopenharmony_ci
41062306a36Sopenharmony_ci	__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
41162306a36Sopenharmony_ci	return true;
41262306a36Sopenharmony_ci}
41362306a36Sopenharmony_ci
41462306a36Sopenharmony_cistatic bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
41562306a36Sopenharmony_ci			   struct sys_reg_params *p,
41662306a36Sopenharmony_ci			   const struct sys_reg_desc *r)
41762306a36Sopenharmony_ci{
41862306a36Sopenharmony_ci	if (p->is_write)
41962306a36Sopenharmony_ci		return write_to_read_only(vcpu, p, r);
42062306a36Sopenharmony_ci
42162306a36Sopenharmony_ci	p->regval = __vcpu_sys_reg(vcpu, r->reg);
42262306a36Sopenharmony_ci	return true;
42362306a36Sopenharmony_ci}
42462306a36Sopenharmony_ci
42562306a36Sopenharmony_cistatic int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
42662306a36Sopenharmony_ci			 u64 val)
42762306a36Sopenharmony_ci{
42862306a36Sopenharmony_ci	/*
42962306a36Sopenharmony_ci	 * The only modifiable bit is the OSLK bit. Refuse the write if
43062306a36Sopenharmony_ci	 * userspace attempts to change any other bit in the register.
43162306a36Sopenharmony_ci	 */
43262306a36Sopenharmony_ci	if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
43362306a36Sopenharmony_ci		return -EINVAL;
43462306a36Sopenharmony_ci
43562306a36Sopenharmony_ci	__vcpu_sys_reg(vcpu, rd->reg) = val;
43662306a36Sopenharmony_ci	return 0;
43762306a36Sopenharmony_ci}
43862306a36Sopenharmony_ci
43962306a36Sopenharmony_cistatic bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
44062306a36Sopenharmony_ci				   struct sys_reg_params *p,
44162306a36Sopenharmony_ci				   const struct sys_reg_desc *r)
44262306a36Sopenharmony_ci{
44362306a36Sopenharmony_ci	if (p->is_write) {
44462306a36Sopenharmony_ci		return ignore_write(vcpu, p);
44562306a36Sopenharmony_ci	} else {
44662306a36Sopenharmony_ci		p->regval = read_sysreg(dbgauthstatus_el1);
44762306a36Sopenharmony_ci		return true;
44862306a36Sopenharmony_ci	}
44962306a36Sopenharmony_ci}
45062306a36Sopenharmony_ci
45162306a36Sopenharmony_ci/*
45262306a36Sopenharmony_ci * We want to avoid world-switching all the DBG registers all the
45362306a36Sopenharmony_ci * time:
45462306a36Sopenharmony_ci *
45562306a36Sopenharmony_ci * - If we've touched any debug register, it is likely that we're
45662306a36Sopenharmony_ci *   going to touch more of them. It then makes sense to disable the
45762306a36Sopenharmony_ci *   traps and start doing the save/restore dance
45862306a36Sopenharmony_ci * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
45962306a36Sopenharmony_ci *   then mandatory to save/restore the registers, as the guest
46062306a36Sopenharmony_ci *   depends on them.
46162306a36Sopenharmony_ci *
46262306a36Sopenharmony_ci * For this, we use a DIRTY bit, indicating the guest has modified the
46362306a36Sopenharmony_ci * debug registers, used as follow:
46462306a36Sopenharmony_ci *
46562306a36Sopenharmony_ci * On guest entry:
46662306a36Sopenharmony_ci * - If the dirty bit is set (because we're coming back from trapping),
46762306a36Sopenharmony_ci *   disable the traps, save host registers, restore guest registers.
46862306a36Sopenharmony_ci * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
46962306a36Sopenharmony_ci *   set the dirty bit, disable the traps, save host registers,
47062306a36Sopenharmony_ci *   restore guest registers.
47162306a36Sopenharmony_ci * - Otherwise, enable the traps
47262306a36Sopenharmony_ci *
47362306a36Sopenharmony_ci * On guest exit:
47462306a36Sopenharmony_ci * - If the dirty bit is set, save guest registers, restore host
47562306a36Sopenharmony_ci *   registers and clear the dirty bit. This ensure that the host can
47662306a36Sopenharmony_ci *   now use the debug registers.
47762306a36Sopenharmony_ci */
47862306a36Sopenharmony_cistatic bool trap_debug_regs(struct kvm_vcpu *vcpu,
47962306a36Sopenharmony_ci			    struct sys_reg_params *p,
48062306a36Sopenharmony_ci			    const struct sys_reg_desc *r)
48162306a36Sopenharmony_ci{
48262306a36Sopenharmony_ci	access_rw(vcpu, p, r);
48362306a36Sopenharmony_ci	if (p->is_write)
48462306a36Sopenharmony_ci		vcpu_set_flag(vcpu, DEBUG_DIRTY);
48562306a36Sopenharmony_ci
48662306a36Sopenharmony_ci	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
48762306a36Sopenharmony_ci
48862306a36Sopenharmony_ci	return true;
48962306a36Sopenharmony_ci}
49062306a36Sopenharmony_ci
49162306a36Sopenharmony_ci/*
49262306a36Sopenharmony_ci * reg_to_dbg/dbg_to_reg
49362306a36Sopenharmony_ci *
49462306a36Sopenharmony_ci * A 32 bit write to a debug register leave top bits alone
49562306a36Sopenharmony_ci * A 32 bit read from a debug register only returns the bottom bits
49662306a36Sopenharmony_ci *
49762306a36Sopenharmony_ci * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
49862306a36Sopenharmony_ci * switches between host and guest values in future.
49962306a36Sopenharmony_ci */
50062306a36Sopenharmony_cistatic void reg_to_dbg(struct kvm_vcpu *vcpu,
50162306a36Sopenharmony_ci		       struct sys_reg_params *p,
50262306a36Sopenharmony_ci		       const struct sys_reg_desc *rd,
50362306a36Sopenharmony_ci		       u64 *dbg_reg)
50462306a36Sopenharmony_ci{
50562306a36Sopenharmony_ci	u64 mask, shift, val;
50662306a36Sopenharmony_ci
50762306a36Sopenharmony_ci	get_access_mask(rd, &mask, &shift);
50862306a36Sopenharmony_ci
50962306a36Sopenharmony_ci	val = *dbg_reg;
51062306a36Sopenharmony_ci	val &= ~mask;
51162306a36Sopenharmony_ci	val |= (p->regval & (mask >> shift)) << shift;
51262306a36Sopenharmony_ci	*dbg_reg = val;
51362306a36Sopenharmony_ci
51462306a36Sopenharmony_ci	vcpu_set_flag(vcpu, DEBUG_DIRTY);
51562306a36Sopenharmony_ci}
51662306a36Sopenharmony_ci
51762306a36Sopenharmony_cistatic void dbg_to_reg(struct kvm_vcpu *vcpu,
51862306a36Sopenharmony_ci		       struct sys_reg_params *p,
51962306a36Sopenharmony_ci		       const struct sys_reg_desc *rd,
52062306a36Sopenharmony_ci		       u64 *dbg_reg)
52162306a36Sopenharmony_ci{
52262306a36Sopenharmony_ci	u64 mask, shift;
52362306a36Sopenharmony_ci
52462306a36Sopenharmony_ci	get_access_mask(rd, &mask, &shift);
52562306a36Sopenharmony_ci	p->regval = (*dbg_reg & mask) >> shift;
52662306a36Sopenharmony_ci}
52762306a36Sopenharmony_ci
52862306a36Sopenharmony_cistatic bool trap_bvr(struct kvm_vcpu *vcpu,
52962306a36Sopenharmony_ci		     struct sys_reg_params *p,
53062306a36Sopenharmony_ci		     const struct sys_reg_desc *rd)
53162306a36Sopenharmony_ci{
53262306a36Sopenharmony_ci	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
53362306a36Sopenharmony_ci
53462306a36Sopenharmony_ci	if (p->is_write)
53562306a36Sopenharmony_ci		reg_to_dbg(vcpu, p, rd, dbg_reg);
53662306a36Sopenharmony_ci	else
53762306a36Sopenharmony_ci		dbg_to_reg(vcpu, p, rd, dbg_reg);
53862306a36Sopenharmony_ci
53962306a36Sopenharmony_ci	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
54062306a36Sopenharmony_ci
54162306a36Sopenharmony_ci	return true;
54262306a36Sopenharmony_ci}
54362306a36Sopenharmony_ci
54462306a36Sopenharmony_cistatic int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
54562306a36Sopenharmony_ci		   u64 val)
54662306a36Sopenharmony_ci{
54762306a36Sopenharmony_ci	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
54862306a36Sopenharmony_ci	return 0;
54962306a36Sopenharmony_ci}
55062306a36Sopenharmony_ci
55162306a36Sopenharmony_cistatic int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
55262306a36Sopenharmony_ci		   u64 *val)
55362306a36Sopenharmony_ci{
55462306a36Sopenharmony_ci	*val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
55562306a36Sopenharmony_ci	return 0;
55662306a36Sopenharmony_ci}
55762306a36Sopenharmony_ci
55862306a36Sopenharmony_cistatic u64 reset_bvr(struct kvm_vcpu *vcpu,
55962306a36Sopenharmony_ci		      const struct sys_reg_desc *rd)
56062306a36Sopenharmony_ci{
56162306a36Sopenharmony_ci	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
56262306a36Sopenharmony_ci	return rd->val;
56362306a36Sopenharmony_ci}
56462306a36Sopenharmony_ci
56562306a36Sopenharmony_cistatic bool trap_bcr(struct kvm_vcpu *vcpu,
56662306a36Sopenharmony_ci		     struct sys_reg_params *p,
56762306a36Sopenharmony_ci		     const struct sys_reg_desc *rd)
56862306a36Sopenharmony_ci{
56962306a36Sopenharmony_ci	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
57062306a36Sopenharmony_ci
57162306a36Sopenharmony_ci	if (p->is_write)
57262306a36Sopenharmony_ci		reg_to_dbg(vcpu, p, rd, dbg_reg);
57362306a36Sopenharmony_ci	else
57462306a36Sopenharmony_ci		dbg_to_reg(vcpu, p, rd, dbg_reg);
57562306a36Sopenharmony_ci
57662306a36Sopenharmony_ci	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
57762306a36Sopenharmony_ci
57862306a36Sopenharmony_ci	return true;
57962306a36Sopenharmony_ci}
58062306a36Sopenharmony_ci
58162306a36Sopenharmony_cistatic int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
58262306a36Sopenharmony_ci		   u64 val)
58362306a36Sopenharmony_ci{
58462306a36Sopenharmony_ci	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
58562306a36Sopenharmony_ci	return 0;
58662306a36Sopenharmony_ci}
58762306a36Sopenharmony_ci
58862306a36Sopenharmony_cistatic int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
58962306a36Sopenharmony_ci		   u64 *val)
59062306a36Sopenharmony_ci{
59162306a36Sopenharmony_ci	*val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
59262306a36Sopenharmony_ci	return 0;
59362306a36Sopenharmony_ci}
59462306a36Sopenharmony_ci
59562306a36Sopenharmony_cistatic u64 reset_bcr(struct kvm_vcpu *vcpu,
59662306a36Sopenharmony_ci		      const struct sys_reg_desc *rd)
59762306a36Sopenharmony_ci{
59862306a36Sopenharmony_ci	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
59962306a36Sopenharmony_ci	return rd->val;
60062306a36Sopenharmony_ci}
60162306a36Sopenharmony_ci
60262306a36Sopenharmony_cistatic bool trap_wvr(struct kvm_vcpu *vcpu,
60362306a36Sopenharmony_ci		     struct sys_reg_params *p,
60462306a36Sopenharmony_ci		     const struct sys_reg_desc *rd)
60562306a36Sopenharmony_ci{
60662306a36Sopenharmony_ci	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
60762306a36Sopenharmony_ci
60862306a36Sopenharmony_ci	if (p->is_write)
60962306a36Sopenharmony_ci		reg_to_dbg(vcpu, p, rd, dbg_reg);
61062306a36Sopenharmony_ci	else
61162306a36Sopenharmony_ci		dbg_to_reg(vcpu, p, rd, dbg_reg);
61262306a36Sopenharmony_ci
61362306a36Sopenharmony_ci	trace_trap_reg(__func__, rd->CRm, p->is_write,
61462306a36Sopenharmony_ci		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
61562306a36Sopenharmony_ci
61662306a36Sopenharmony_ci	return true;
61762306a36Sopenharmony_ci}
61862306a36Sopenharmony_ci
61962306a36Sopenharmony_cistatic int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
62062306a36Sopenharmony_ci		   u64 val)
62162306a36Sopenharmony_ci{
62262306a36Sopenharmony_ci	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
62362306a36Sopenharmony_ci	return 0;
62462306a36Sopenharmony_ci}
62562306a36Sopenharmony_ci
62662306a36Sopenharmony_cistatic int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
62762306a36Sopenharmony_ci		   u64 *val)
62862306a36Sopenharmony_ci{
62962306a36Sopenharmony_ci	*val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
63062306a36Sopenharmony_ci	return 0;
63162306a36Sopenharmony_ci}
63262306a36Sopenharmony_ci
63362306a36Sopenharmony_cistatic u64 reset_wvr(struct kvm_vcpu *vcpu,
63462306a36Sopenharmony_ci		      const struct sys_reg_desc *rd)
63562306a36Sopenharmony_ci{
63662306a36Sopenharmony_ci	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
63762306a36Sopenharmony_ci	return rd->val;
63862306a36Sopenharmony_ci}
63962306a36Sopenharmony_ci
64062306a36Sopenharmony_cistatic bool trap_wcr(struct kvm_vcpu *vcpu,
64162306a36Sopenharmony_ci		     struct sys_reg_params *p,
64262306a36Sopenharmony_ci		     const struct sys_reg_desc *rd)
64362306a36Sopenharmony_ci{
64462306a36Sopenharmony_ci	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
64562306a36Sopenharmony_ci
64662306a36Sopenharmony_ci	if (p->is_write)
64762306a36Sopenharmony_ci		reg_to_dbg(vcpu, p, rd, dbg_reg);
64862306a36Sopenharmony_ci	else
64962306a36Sopenharmony_ci		dbg_to_reg(vcpu, p, rd, dbg_reg);
65062306a36Sopenharmony_ci
65162306a36Sopenharmony_ci	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
65262306a36Sopenharmony_ci
65362306a36Sopenharmony_ci	return true;
65462306a36Sopenharmony_ci}
65562306a36Sopenharmony_ci
65662306a36Sopenharmony_cistatic int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
65762306a36Sopenharmony_ci		   u64 val)
65862306a36Sopenharmony_ci{
65962306a36Sopenharmony_ci	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
66062306a36Sopenharmony_ci	return 0;
66162306a36Sopenharmony_ci}
66262306a36Sopenharmony_ci
66362306a36Sopenharmony_cistatic int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
66462306a36Sopenharmony_ci		   u64 *val)
66562306a36Sopenharmony_ci{
66662306a36Sopenharmony_ci	*val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
66762306a36Sopenharmony_ci	return 0;
66862306a36Sopenharmony_ci}
66962306a36Sopenharmony_ci
67062306a36Sopenharmony_cistatic u64 reset_wcr(struct kvm_vcpu *vcpu,
67162306a36Sopenharmony_ci		      const struct sys_reg_desc *rd)
67262306a36Sopenharmony_ci{
67362306a36Sopenharmony_ci	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
67462306a36Sopenharmony_ci	return rd->val;
67562306a36Sopenharmony_ci}
67662306a36Sopenharmony_ci
67762306a36Sopenharmony_cistatic u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
67862306a36Sopenharmony_ci{
67962306a36Sopenharmony_ci	u64 amair = read_sysreg(amair_el1);
68062306a36Sopenharmony_ci	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
68162306a36Sopenharmony_ci	return amair;
68262306a36Sopenharmony_ci}
68362306a36Sopenharmony_ci
68462306a36Sopenharmony_cistatic u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
68562306a36Sopenharmony_ci{
68662306a36Sopenharmony_ci	u64 actlr = read_sysreg(actlr_el1);
68762306a36Sopenharmony_ci	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
68862306a36Sopenharmony_ci	return actlr;
68962306a36Sopenharmony_ci}
69062306a36Sopenharmony_ci
69162306a36Sopenharmony_cistatic u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
69262306a36Sopenharmony_ci{
69362306a36Sopenharmony_ci	u64 mpidr;
69462306a36Sopenharmony_ci
69562306a36Sopenharmony_ci	/*
69662306a36Sopenharmony_ci	 * Map the vcpu_id into the first three affinity level fields of
69762306a36Sopenharmony_ci	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
69862306a36Sopenharmony_ci	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
69962306a36Sopenharmony_ci	 * of the GICv3 to be able to address each CPU directly when
70062306a36Sopenharmony_ci	 * sending IPIs.
70162306a36Sopenharmony_ci	 */
70262306a36Sopenharmony_ci	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
70362306a36Sopenharmony_ci	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
70462306a36Sopenharmony_ci	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
70562306a36Sopenharmony_ci	mpidr |= (1ULL << 31);
70662306a36Sopenharmony_ci	vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
70762306a36Sopenharmony_ci
70862306a36Sopenharmony_ci	return mpidr;
70962306a36Sopenharmony_ci}
71062306a36Sopenharmony_ci
71162306a36Sopenharmony_cistatic unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
71262306a36Sopenharmony_ci				   const struct sys_reg_desc *r)
71362306a36Sopenharmony_ci{
71462306a36Sopenharmony_ci	if (kvm_vcpu_has_pmu(vcpu))
71562306a36Sopenharmony_ci		return 0;
71662306a36Sopenharmony_ci
71762306a36Sopenharmony_ci	return REG_HIDDEN;
71862306a36Sopenharmony_ci}
71962306a36Sopenharmony_ci
72062306a36Sopenharmony_cistatic u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
72162306a36Sopenharmony_ci{
72262306a36Sopenharmony_ci	u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
72362306a36Sopenharmony_ci
72462306a36Sopenharmony_ci	/* No PMU available, any PMU reg may UNDEF... */
72562306a36Sopenharmony_ci	if (!kvm_arm_support_pmu_v3())
72662306a36Sopenharmony_ci		return 0;
72762306a36Sopenharmony_ci
72862306a36Sopenharmony_ci	n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
72962306a36Sopenharmony_ci	n &= ARMV8_PMU_PMCR_N_MASK;
73062306a36Sopenharmony_ci	if (n)
73162306a36Sopenharmony_ci		mask |= GENMASK(n - 1, 0);
73262306a36Sopenharmony_ci
73362306a36Sopenharmony_ci	reset_unknown(vcpu, r);
73462306a36Sopenharmony_ci	__vcpu_sys_reg(vcpu, r->reg) &= mask;
73562306a36Sopenharmony_ci
73662306a36Sopenharmony_ci	return __vcpu_sys_reg(vcpu, r->reg);
73762306a36Sopenharmony_ci}
73862306a36Sopenharmony_ci
73962306a36Sopenharmony_cistatic u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
74062306a36Sopenharmony_ci{
74162306a36Sopenharmony_ci	reset_unknown(vcpu, r);
74262306a36Sopenharmony_ci	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
74362306a36Sopenharmony_ci
74462306a36Sopenharmony_ci	return __vcpu_sys_reg(vcpu, r->reg);
74562306a36Sopenharmony_ci}
74662306a36Sopenharmony_ci
74762306a36Sopenharmony_cistatic u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
74862306a36Sopenharmony_ci{
74962306a36Sopenharmony_ci	reset_unknown(vcpu, r);
75062306a36Sopenharmony_ci	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
75162306a36Sopenharmony_ci
75262306a36Sopenharmony_ci	return __vcpu_sys_reg(vcpu, r->reg);
75362306a36Sopenharmony_ci}
75462306a36Sopenharmony_ci
75562306a36Sopenharmony_cistatic u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
75662306a36Sopenharmony_ci{
75762306a36Sopenharmony_ci	reset_unknown(vcpu, r);
75862306a36Sopenharmony_ci	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
75962306a36Sopenharmony_ci
76062306a36Sopenharmony_ci	return __vcpu_sys_reg(vcpu, r->reg);
76162306a36Sopenharmony_ci}
76262306a36Sopenharmony_ci
76362306a36Sopenharmony_cistatic u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
76462306a36Sopenharmony_ci{
76562306a36Sopenharmony_ci	u64 pmcr;
76662306a36Sopenharmony_ci
76762306a36Sopenharmony_ci	/* No PMU available, PMCR_EL0 may UNDEF... */
76862306a36Sopenharmony_ci	if (!kvm_arm_support_pmu_v3())
76962306a36Sopenharmony_ci		return 0;
77062306a36Sopenharmony_ci
77162306a36Sopenharmony_ci	/* Only preserve PMCR_EL0.N, and reset the rest to 0 */
77262306a36Sopenharmony_ci	pmcr = read_sysreg(pmcr_el0) & (ARMV8_PMU_PMCR_N_MASK << ARMV8_PMU_PMCR_N_SHIFT);
77362306a36Sopenharmony_ci	if (!kvm_supports_32bit_el0())
77462306a36Sopenharmony_ci		pmcr |= ARMV8_PMU_PMCR_LC;
77562306a36Sopenharmony_ci
77662306a36Sopenharmony_ci	__vcpu_sys_reg(vcpu, r->reg) = pmcr;
77762306a36Sopenharmony_ci
77862306a36Sopenharmony_ci	return __vcpu_sys_reg(vcpu, r->reg);
77962306a36Sopenharmony_ci}
78062306a36Sopenharmony_ci
78162306a36Sopenharmony_cistatic bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
78262306a36Sopenharmony_ci{
78362306a36Sopenharmony_ci	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
78462306a36Sopenharmony_ci	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
78562306a36Sopenharmony_ci
78662306a36Sopenharmony_ci	if (!enabled)
78762306a36Sopenharmony_ci		kvm_inject_undefined(vcpu);
78862306a36Sopenharmony_ci
78962306a36Sopenharmony_ci	return !enabled;
79062306a36Sopenharmony_ci}
79162306a36Sopenharmony_ci
79262306a36Sopenharmony_cistatic bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
79362306a36Sopenharmony_ci{
79462306a36Sopenharmony_ci	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
79562306a36Sopenharmony_ci}
79662306a36Sopenharmony_ci
79762306a36Sopenharmony_cistatic bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
79862306a36Sopenharmony_ci{
79962306a36Sopenharmony_ci	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
80062306a36Sopenharmony_ci}
80162306a36Sopenharmony_ci
80262306a36Sopenharmony_cistatic bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
80362306a36Sopenharmony_ci{
80462306a36Sopenharmony_ci	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
80562306a36Sopenharmony_ci}
80662306a36Sopenharmony_ci
80762306a36Sopenharmony_cistatic bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
80862306a36Sopenharmony_ci{
80962306a36Sopenharmony_ci	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
81062306a36Sopenharmony_ci}
81162306a36Sopenharmony_ci
81262306a36Sopenharmony_cistatic bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
81362306a36Sopenharmony_ci			const struct sys_reg_desc *r)
81462306a36Sopenharmony_ci{
81562306a36Sopenharmony_ci	u64 val;
81662306a36Sopenharmony_ci
81762306a36Sopenharmony_ci	if (pmu_access_el0_disabled(vcpu))
81862306a36Sopenharmony_ci		return false;
81962306a36Sopenharmony_ci
82062306a36Sopenharmony_ci	if (p->is_write) {
82162306a36Sopenharmony_ci		/*
82262306a36Sopenharmony_ci		 * Only update writeable bits of PMCR (continuing into
82362306a36Sopenharmony_ci		 * kvm_pmu_handle_pmcr() as well)
82462306a36Sopenharmony_ci		 */
82562306a36Sopenharmony_ci		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
82662306a36Sopenharmony_ci		val &= ~ARMV8_PMU_PMCR_MASK;
82762306a36Sopenharmony_ci		val |= p->regval & ARMV8_PMU_PMCR_MASK;
82862306a36Sopenharmony_ci		if (!kvm_supports_32bit_el0())
82962306a36Sopenharmony_ci			val |= ARMV8_PMU_PMCR_LC;
83062306a36Sopenharmony_ci		kvm_pmu_handle_pmcr(vcpu, val);
83162306a36Sopenharmony_ci	} else {
83262306a36Sopenharmony_ci		/* PMCR.P & PMCR.C are RAZ */
83362306a36Sopenharmony_ci		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
83462306a36Sopenharmony_ci		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
83562306a36Sopenharmony_ci		p->regval = val;
83662306a36Sopenharmony_ci	}
83762306a36Sopenharmony_ci
83862306a36Sopenharmony_ci	return true;
83962306a36Sopenharmony_ci}
84062306a36Sopenharmony_ci
84162306a36Sopenharmony_cistatic bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
84262306a36Sopenharmony_ci			  const struct sys_reg_desc *r)
84362306a36Sopenharmony_ci{
84462306a36Sopenharmony_ci	if (pmu_access_event_counter_el0_disabled(vcpu))
84562306a36Sopenharmony_ci		return false;
84662306a36Sopenharmony_ci
84762306a36Sopenharmony_ci	if (p->is_write)
84862306a36Sopenharmony_ci		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
84962306a36Sopenharmony_ci	else
85062306a36Sopenharmony_ci		/* return PMSELR.SEL field */
85162306a36Sopenharmony_ci		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
85262306a36Sopenharmony_ci			    & ARMV8_PMU_COUNTER_MASK;
85362306a36Sopenharmony_ci
85462306a36Sopenharmony_ci	return true;
85562306a36Sopenharmony_ci}
85662306a36Sopenharmony_ci
85762306a36Sopenharmony_cistatic bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
85862306a36Sopenharmony_ci			  const struct sys_reg_desc *r)
85962306a36Sopenharmony_ci{
86062306a36Sopenharmony_ci	u64 pmceid, mask, shift;
86162306a36Sopenharmony_ci
86262306a36Sopenharmony_ci	BUG_ON(p->is_write);
86362306a36Sopenharmony_ci
86462306a36Sopenharmony_ci	if (pmu_access_el0_disabled(vcpu))
86562306a36Sopenharmony_ci		return false;
86662306a36Sopenharmony_ci
86762306a36Sopenharmony_ci	get_access_mask(r, &mask, &shift);
86862306a36Sopenharmony_ci
86962306a36Sopenharmony_ci	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
87062306a36Sopenharmony_ci	pmceid &= mask;
87162306a36Sopenharmony_ci	pmceid >>= shift;
87262306a36Sopenharmony_ci
87362306a36Sopenharmony_ci	p->regval = pmceid;
87462306a36Sopenharmony_ci
87562306a36Sopenharmony_ci	return true;
87662306a36Sopenharmony_ci}
87762306a36Sopenharmony_ci
87862306a36Sopenharmony_cistatic bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
87962306a36Sopenharmony_ci{
88062306a36Sopenharmony_ci	u64 pmcr, val;
88162306a36Sopenharmony_ci
88262306a36Sopenharmony_ci	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
88362306a36Sopenharmony_ci	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
88462306a36Sopenharmony_ci	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
88562306a36Sopenharmony_ci		kvm_inject_undefined(vcpu);
88662306a36Sopenharmony_ci		return false;
88762306a36Sopenharmony_ci	}
88862306a36Sopenharmony_ci
88962306a36Sopenharmony_ci	return true;
89062306a36Sopenharmony_ci}
89162306a36Sopenharmony_ci
89262306a36Sopenharmony_cistatic int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
89362306a36Sopenharmony_ci			  u64 *val)
89462306a36Sopenharmony_ci{
89562306a36Sopenharmony_ci	u64 idx;
89662306a36Sopenharmony_ci
89762306a36Sopenharmony_ci	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
89862306a36Sopenharmony_ci		/* PMCCNTR_EL0 */
89962306a36Sopenharmony_ci		idx = ARMV8_PMU_CYCLE_IDX;
90062306a36Sopenharmony_ci	else
90162306a36Sopenharmony_ci		/* PMEVCNTRn_EL0 */
90262306a36Sopenharmony_ci		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
90362306a36Sopenharmony_ci
90462306a36Sopenharmony_ci	*val = kvm_pmu_get_counter_value(vcpu, idx);
90562306a36Sopenharmony_ci	return 0;
90662306a36Sopenharmony_ci}
90762306a36Sopenharmony_ci
90862306a36Sopenharmony_cistatic bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
90962306a36Sopenharmony_ci			      struct sys_reg_params *p,
91062306a36Sopenharmony_ci			      const struct sys_reg_desc *r)
91162306a36Sopenharmony_ci{
91262306a36Sopenharmony_ci	u64 idx = ~0UL;
91362306a36Sopenharmony_ci
91462306a36Sopenharmony_ci	if (r->CRn == 9 && r->CRm == 13) {
91562306a36Sopenharmony_ci		if (r->Op2 == 2) {
91662306a36Sopenharmony_ci			/* PMXEVCNTR_EL0 */
91762306a36Sopenharmony_ci			if (pmu_access_event_counter_el0_disabled(vcpu))
91862306a36Sopenharmony_ci				return false;
91962306a36Sopenharmony_ci
92062306a36Sopenharmony_ci			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
92162306a36Sopenharmony_ci			      & ARMV8_PMU_COUNTER_MASK;
92262306a36Sopenharmony_ci		} else if (r->Op2 == 0) {
92362306a36Sopenharmony_ci			/* PMCCNTR_EL0 */
92462306a36Sopenharmony_ci			if (pmu_access_cycle_counter_el0_disabled(vcpu))
92562306a36Sopenharmony_ci				return false;
92662306a36Sopenharmony_ci
92762306a36Sopenharmony_ci			idx = ARMV8_PMU_CYCLE_IDX;
92862306a36Sopenharmony_ci		}
92962306a36Sopenharmony_ci	} else if (r->CRn == 0 && r->CRm == 9) {
93062306a36Sopenharmony_ci		/* PMCCNTR */
93162306a36Sopenharmony_ci		if (pmu_access_event_counter_el0_disabled(vcpu))
93262306a36Sopenharmony_ci			return false;
93362306a36Sopenharmony_ci
93462306a36Sopenharmony_ci		idx = ARMV8_PMU_CYCLE_IDX;
93562306a36Sopenharmony_ci	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
93662306a36Sopenharmony_ci		/* PMEVCNTRn_EL0 */
93762306a36Sopenharmony_ci		if (pmu_access_event_counter_el0_disabled(vcpu))
93862306a36Sopenharmony_ci			return false;
93962306a36Sopenharmony_ci
94062306a36Sopenharmony_ci		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
94162306a36Sopenharmony_ci	}
94262306a36Sopenharmony_ci
94362306a36Sopenharmony_ci	/* Catch any decoding mistake */
94462306a36Sopenharmony_ci	WARN_ON(idx == ~0UL);
94562306a36Sopenharmony_ci
94662306a36Sopenharmony_ci	if (!pmu_counter_idx_valid(vcpu, idx))
94762306a36Sopenharmony_ci		return false;
94862306a36Sopenharmony_ci
94962306a36Sopenharmony_ci	if (p->is_write) {
95062306a36Sopenharmony_ci		if (pmu_access_el0_disabled(vcpu))
95162306a36Sopenharmony_ci			return false;
95262306a36Sopenharmony_ci
95362306a36Sopenharmony_ci		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
95462306a36Sopenharmony_ci	} else {
95562306a36Sopenharmony_ci		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
95662306a36Sopenharmony_ci	}
95762306a36Sopenharmony_ci
95862306a36Sopenharmony_ci	return true;
95962306a36Sopenharmony_ci}
96062306a36Sopenharmony_ci
96162306a36Sopenharmony_cistatic bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
96262306a36Sopenharmony_ci			       const struct sys_reg_desc *r)
96362306a36Sopenharmony_ci{
96462306a36Sopenharmony_ci	u64 idx, reg;
96562306a36Sopenharmony_ci
96662306a36Sopenharmony_ci	if (pmu_access_el0_disabled(vcpu))
96762306a36Sopenharmony_ci		return false;
96862306a36Sopenharmony_ci
96962306a36Sopenharmony_ci	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
97062306a36Sopenharmony_ci		/* PMXEVTYPER_EL0 */
97162306a36Sopenharmony_ci		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
97262306a36Sopenharmony_ci		reg = PMEVTYPER0_EL0 + idx;
97362306a36Sopenharmony_ci	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
97462306a36Sopenharmony_ci		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
97562306a36Sopenharmony_ci		if (idx == ARMV8_PMU_CYCLE_IDX)
97662306a36Sopenharmony_ci			reg = PMCCFILTR_EL0;
97762306a36Sopenharmony_ci		else
97862306a36Sopenharmony_ci			/* PMEVTYPERn_EL0 */
97962306a36Sopenharmony_ci			reg = PMEVTYPER0_EL0 + idx;
98062306a36Sopenharmony_ci	} else {
98162306a36Sopenharmony_ci		BUG();
98262306a36Sopenharmony_ci	}
98362306a36Sopenharmony_ci
98462306a36Sopenharmony_ci	if (!pmu_counter_idx_valid(vcpu, idx))
98562306a36Sopenharmony_ci		return false;
98662306a36Sopenharmony_ci
98762306a36Sopenharmony_ci	if (p->is_write) {
98862306a36Sopenharmony_ci		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
98962306a36Sopenharmony_ci		kvm_vcpu_pmu_restore_guest(vcpu);
99062306a36Sopenharmony_ci	} else {
99162306a36Sopenharmony_ci		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
99262306a36Sopenharmony_ci	}
99362306a36Sopenharmony_ci
99462306a36Sopenharmony_ci	return true;
99562306a36Sopenharmony_ci}
99662306a36Sopenharmony_ci
99762306a36Sopenharmony_cistatic bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
99862306a36Sopenharmony_ci			   const struct sys_reg_desc *r)
99962306a36Sopenharmony_ci{
100062306a36Sopenharmony_ci	u64 val, mask;
100162306a36Sopenharmony_ci
100262306a36Sopenharmony_ci	if (pmu_access_el0_disabled(vcpu))
100362306a36Sopenharmony_ci		return false;
100462306a36Sopenharmony_ci
100562306a36Sopenharmony_ci	mask = kvm_pmu_valid_counter_mask(vcpu);
100662306a36Sopenharmony_ci	if (p->is_write) {
100762306a36Sopenharmony_ci		val = p->regval & mask;
100862306a36Sopenharmony_ci		if (r->Op2 & 0x1) {
100962306a36Sopenharmony_ci			/* accessing PMCNTENSET_EL0 */
101062306a36Sopenharmony_ci			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
101162306a36Sopenharmony_ci			kvm_pmu_enable_counter_mask(vcpu, val);
101262306a36Sopenharmony_ci			kvm_vcpu_pmu_restore_guest(vcpu);
101362306a36Sopenharmony_ci		} else {
101462306a36Sopenharmony_ci			/* accessing PMCNTENCLR_EL0 */
101562306a36Sopenharmony_ci			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
101662306a36Sopenharmony_ci			kvm_pmu_disable_counter_mask(vcpu, val);
101762306a36Sopenharmony_ci		}
101862306a36Sopenharmony_ci	} else {
101962306a36Sopenharmony_ci		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
102062306a36Sopenharmony_ci	}
102162306a36Sopenharmony_ci
102262306a36Sopenharmony_ci	return true;
102362306a36Sopenharmony_ci}
102462306a36Sopenharmony_ci
102562306a36Sopenharmony_cistatic bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
102662306a36Sopenharmony_ci			   const struct sys_reg_desc *r)
102762306a36Sopenharmony_ci{
102862306a36Sopenharmony_ci	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
102962306a36Sopenharmony_ci
103062306a36Sopenharmony_ci	if (check_pmu_access_disabled(vcpu, 0))
103162306a36Sopenharmony_ci		return false;
103262306a36Sopenharmony_ci
103362306a36Sopenharmony_ci	if (p->is_write) {
103462306a36Sopenharmony_ci		u64 val = p->regval & mask;
103562306a36Sopenharmony_ci
103662306a36Sopenharmony_ci		if (r->Op2 & 0x1)
103762306a36Sopenharmony_ci			/* accessing PMINTENSET_EL1 */
103862306a36Sopenharmony_ci			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
103962306a36Sopenharmony_ci		else
104062306a36Sopenharmony_ci			/* accessing PMINTENCLR_EL1 */
104162306a36Sopenharmony_ci			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
104262306a36Sopenharmony_ci	} else {
104362306a36Sopenharmony_ci		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
104462306a36Sopenharmony_ci	}
104562306a36Sopenharmony_ci
104662306a36Sopenharmony_ci	return true;
104762306a36Sopenharmony_ci}
104862306a36Sopenharmony_ci
104962306a36Sopenharmony_cistatic bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
105062306a36Sopenharmony_ci			 const struct sys_reg_desc *r)
105162306a36Sopenharmony_ci{
105262306a36Sopenharmony_ci	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
105362306a36Sopenharmony_ci
105462306a36Sopenharmony_ci	if (pmu_access_el0_disabled(vcpu))
105562306a36Sopenharmony_ci		return false;
105662306a36Sopenharmony_ci
105762306a36Sopenharmony_ci	if (p->is_write) {
105862306a36Sopenharmony_ci		if (r->CRm & 0x2)
105962306a36Sopenharmony_ci			/* accessing PMOVSSET_EL0 */
106062306a36Sopenharmony_ci			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
106162306a36Sopenharmony_ci		else
106262306a36Sopenharmony_ci			/* accessing PMOVSCLR_EL0 */
106362306a36Sopenharmony_ci			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
106462306a36Sopenharmony_ci	} else {
106562306a36Sopenharmony_ci		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
106662306a36Sopenharmony_ci	}
106762306a36Sopenharmony_ci
106862306a36Sopenharmony_ci	return true;
106962306a36Sopenharmony_ci}
107062306a36Sopenharmony_ci
107162306a36Sopenharmony_cistatic bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
107262306a36Sopenharmony_ci			   const struct sys_reg_desc *r)
107362306a36Sopenharmony_ci{
107462306a36Sopenharmony_ci	u64 mask;
107562306a36Sopenharmony_ci
107662306a36Sopenharmony_ci	if (!p->is_write)
107762306a36Sopenharmony_ci		return read_from_write_only(vcpu, p, r);
107862306a36Sopenharmony_ci
107962306a36Sopenharmony_ci	if (pmu_write_swinc_el0_disabled(vcpu))
108062306a36Sopenharmony_ci		return false;
108162306a36Sopenharmony_ci
108262306a36Sopenharmony_ci	mask = kvm_pmu_valid_counter_mask(vcpu);
108362306a36Sopenharmony_ci	kvm_pmu_software_increment(vcpu, p->regval & mask);
108462306a36Sopenharmony_ci	return true;
108562306a36Sopenharmony_ci}
108662306a36Sopenharmony_ci
108762306a36Sopenharmony_cistatic bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
108862306a36Sopenharmony_ci			     const struct sys_reg_desc *r)
108962306a36Sopenharmony_ci{
109062306a36Sopenharmony_ci	if (p->is_write) {
109162306a36Sopenharmony_ci		if (!vcpu_mode_priv(vcpu)) {
109262306a36Sopenharmony_ci			kvm_inject_undefined(vcpu);
109362306a36Sopenharmony_ci			return false;
109462306a36Sopenharmony_ci		}
109562306a36Sopenharmony_ci
109662306a36Sopenharmony_ci		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
109762306a36Sopenharmony_ci			       p->regval & ARMV8_PMU_USERENR_MASK;
109862306a36Sopenharmony_ci	} else {
109962306a36Sopenharmony_ci		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
110062306a36Sopenharmony_ci			    & ARMV8_PMU_USERENR_MASK;
110162306a36Sopenharmony_ci	}
110262306a36Sopenharmony_ci
110362306a36Sopenharmony_ci	return true;
110462306a36Sopenharmony_ci}
110562306a36Sopenharmony_ci
110662306a36Sopenharmony_ci/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
110762306a36Sopenharmony_ci#define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
110862306a36Sopenharmony_ci	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
110962306a36Sopenharmony_ci	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
111062306a36Sopenharmony_ci	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
111162306a36Sopenharmony_ci	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
111262306a36Sopenharmony_ci	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
111362306a36Sopenharmony_ci	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
111462306a36Sopenharmony_ci	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
111562306a36Sopenharmony_ci	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
111662306a36Sopenharmony_ci
111762306a36Sopenharmony_ci#define PMU_SYS_REG(name)						\
111862306a36Sopenharmony_ci	SYS_DESC(SYS_##name), .reset = reset_pmu_reg,			\
111962306a36Sopenharmony_ci	.visibility = pmu_visibility
112062306a36Sopenharmony_ci
112162306a36Sopenharmony_ci/* Macro to expand the PMEVCNTRn_EL0 register */
112262306a36Sopenharmony_ci#define PMU_PMEVCNTR_EL0(n)						\
112362306a36Sopenharmony_ci	{ PMU_SYS_REG(PMEVCNTRn_EL0(n)),				\
112462306a36Sopenharmony_ci	  .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,		\
112562306a36Sopenharmony_ci	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
112662306a36Sopenharmony_ci
112762306a36Sopenharmony_ci/* Macro to expand the PMEVTYPERn_EL0 register */
112862306a36Sopenharmony_ci#define PMU_PMEVTYPER_EL0(n)						\
112962306a36Sopenharmony_ci	{ PMU_SYS_REG(PMEVTYPERn_EL0(n)),				\
113062306a36Sopenharmony_ci	  .reset = reset_pmevtyper,					\
113162306a36Sopenharmony_ci	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
113262306a36Sopenharmony_ci
113362306a36Sopenharmony_cistatic bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
113462306a36Sopenharmony_ci			 const struct sys_reg_desc *r)
113562306a36Sopenharmony_ci{
113662306a36Sopenharmony_ci	kvm_inject_undefined(vcpu);
113762306a36Sopenharmony_ci
113862306a36Sopenharmony_ci	return false;
113962306a36Sopenharmony_ci}
114062306a36Sopenharmony_ci
114162306a36Sopenharmony_ci/* Macro to expand the AMU counter and type registers*/
114262306a36Sopenharmony_ci#define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
114362306a36Sopenharmony_ci#define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
114462306a36Sopenharmony_ci#define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
114562306a36Sopenharmony_ci#define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
114662306a36Sopenharmony_ci
114762306a36Sopenharmony_cistatic unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
114862306a36Sopenharmony_ci			const struct sys_reg_desc *rd)
114962306a36Sopenharmony_ci{
115062306a36Sopenharmony_ci	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
115162306a36Sopenharmony_ci}
115262306a36Sopenharmony_ci
115362306a36Sopenharmony_ci/*
115462306a36Sopenharmony_ci * If we land here on a PtrAuth access, that is because we didn't
115562306a36Sopenharmony_ci * fixup the access on exit by allowing the PtrAuth sysregs. The only
115662306a36Sopenharmony_ci * way this happens is when the guest does not have PtrAuth support
115762306a36Sopenharmony_ci * enabled.
115862306a36Sopenharmony_ci */
115962306a36Sopenharmony_ci#define __PTRAUTH_KEY(k)						\
116062306a36Sopenharmony_ci	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
116162306a36Sopenharmony_ci	.visibility = ptrauth_visibility}
116262306a36Sopenharmony_ci
116362306a36Sopenharmony_ci#define PTRAUTH_KEY(k)							\
116462306a36Sopenharmony_ci	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
116562306a36Sopenharmony_ci	__PTRAUTH_KEY(k ## KEYHI_EL1)
116662306a36Sopenharmony_ci
116762306a36Sopenharmony_cistatic bool access_arch_timer(struct kvm_vcpu *vcpu,
116862306a36Sopenharmony_ci			      struct sys_reg_params *p,
116962306a36Sopenharmony_ci			      const struct sys_reg_desc *r)
117062306a36Sopenharmony_ci{
117162306a36Sopenharmony_ci	enum kvm_arch_timers tmr;
117262306a36Sopenharmony_ci	enum kvm_arch_timer_regs treg;
117362306a36Sopenharmony_ci	u64 reg = reg_to_encoding(r);
117462306a36Sopenharmony_ci
117562306a36Sopenharmony_ci	switch (reg) {
117662306a36Sopenharmony_ci	case SYS_CNTP_TVAL_EL0:
117762306a36Sopenharmony_ci	case SYS_AARCH32_CNTP_TVAL:
117862306a36Sopenharmony_ci		tmr = TIMER_PTIMER;
117962306a36Sopenharmony_ci		treg = TIMER_REG_TVAL;
118062306a36Sopenharmony_ci		break;
118162306a36Sopenharmony_ci	case SYS_CNTP_CTL_EL0:
118262306a36Sopenharmony_ci	case SYS_AARCH32_CNTP_CTL:
118362306a36Sopenharmony_ci		tmr = TIMER_PTIMER;
118462306a36Sopenharmony_ci		treg = TIMER_REG_CTL;
118562306a36Sopenharmony_ci		break;
118662306a36Sopenharmony_ci	case SYS_CNTP_CVAL_EL0:
118762306a36Sopenharmony_ci	case SYS_AARCH32_CNTP_CVAL:
118862306a36Sopenharmony_ci		tmr = TIMER_PTIMER;
118962306a36Sopenharmony_ci		treg = TIMER_REG_CVAL;
119062306a36Sopenharmony_ci		break;
119162306a36Sopenharmony_ci	case SYS_CNTPCT_EL0:
119262306a36Sopenharmony_ci	case SYS_CNTPCTSS_EL0:
119362306a36Sopenharmony_ci	case SYS_AARCH32_CNTPCT:
119462306a36Sopenharmony_ci		tmr = TIMER_PTIMER;
119562306a36Sopenharmony_ci		treg = TIMER_REG_CNT;
119662306a36Sopenharmony_ci		break;
119762306a36Sopenharmony_ci	default:
119862306a36Sopenharmony_ci		print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
119962306a36Sopenharmony_ci		kvm_inject_undefined(vcpu);
120062306a36Sopenharmony_ci		return false;
120162306a36Sopenharmony_ci	}
120262306a36Sopenharmony_ci
120362306a36Sopenharmony_ci	if (p->is_write)
120462306a36Sopenharmony_ci		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
120562306a36Sopenharmony_ci	else
120662306a36Sopenharmony_ci		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
120762306a36Sopenharmony_ci
120862306a36Sopenharmony_ci	return true;
120962306a36Sopenharmony_ci}
121062306a36Sopenharmony_ci
121162306a36Sopenharmony_cistatic s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
121262306a36Sopenharmony_ci				    s64 new, s64 cur)
121362306a36Sopenharmony_ci{
121462306a36Sopenharmony_ci	struct arm64_ftr_bits kvm_ftr = *ftrp;
121562306a36Sopenharmony_ci
121662306a36Sopenharmony_ci	/* Some features have different safe value type in KVM than host features */
121762306a36Sopenharmony_ci	switch (id) {
121862306a36Sopenharmony_ci	case SYS_ID_AA64DFR0_EL1:
121962306a36Sopenharmony_ci		if (kvm_ftr.shift == ID_AA64DFR0_EL1_PMUVer_SHIFT)
122062306a36Sopenharmony_ci			kvm_ftr.type = FTR_LOWER_SAFE;
122162306a36Sopenharmony_ci		break;
122262306a36Sopenharmony_ci	case SYS_ID_DFR0_EL1:
122362306a36Sopenharmony_ci		if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
122462306a36Sopenharmony_ci			kvm_ftr.type = FTR_LOWER_SAFE;
122562306a36Sopenharmony_ci		break;
122662306a36Sopenharmony_ci	}
122762306a36Sopenharmony_ci
122862306a36Sopenharmony_ci	return arm64_ftr_safe_value(&kvm_ftr, new, cur);
122962306a36Sopenharmony_ci}
123062306a36Sopenharmony_ci
123162306a36Sopenharmony_ci/**
123262306a36Sopenharmony_ci * arm64_check_features() - Check if a feature register value constitutes
123362306a36Sopenharmony_ci * a subset of features indicated by the idreg's KVM sanitised limit.
123462306a36Sopenharmony_ci *
123562306a36Sopenharmony_ci * This function will check if each feature field of @val is the "safe" value
123662306a36Sopenharmony_ci * against idreg's KVM sanitised limit return from reset() callback.
123762306a36Sopenharmony_ci * If a field value in @val is the same as the one in limit, it is always
123862306a36Sopenharmony_ci * considered the safe value regardless For register fields that are not in
123962306a36Sopenharmony_ci * writable, only the value in limit is considered the safe value.
124062306a36Sopenharmony_ci *
124162306a36Sopenharmony_ci * Return: 0 if all the fields are safe. Otherwise, return negative errno.
124262306a36Sopenharmony_ci */
124362306a36Sopenharmony_cistatic int arm64_check_features(struct kvm_vcpu *vcpu,
124462306a36Sopenharmony_ci				const struct sys_reg_desc *rd,
124562306a36Sopenharmony_ci				u64 val)
124662306a36Sopenharmony_ci{
124762306a36Sopenharmony_ci	const struct arm64_ftr_reg *ftr_reg;
124862306a36Sopenharmony_ci	const struct arm64_ftr_bits *ftrp = NULL;
124962306a36Sopenharmony_ci	u32 id = reg_to_encoding(rd);
125062306a36Sopenharmony_ci	u64 writable_mask = rd->val;
125162306a36Sopenharmony_ci	u64 limit = rd->reset(vcpu, rd);
125262306a36Sopenharmony_ci	u64 mask = 0;
125362306a36Sopenharmony_ci
125462306a36Sopenharmony_ci	/*
125562306a36Sopenharmony_ci	 * Hidden and unallocated ID registers may not have a corresponding
125662306a36Sopenharmony_ci	 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
125762306a36Sopenharmony_ci	 * only safe value is 0.
125862306a36Sopenharmony_ci	 */
125962306a36Sopenharmony_ci	if (sysreg_visible_as_raz(vcpu, rd))
126062306a36Sopenharmony_ci		return val ? -E2BIG : 0;
126162306a36Sopenharmony_ci
126262306a36Sopenharmony_ci	ftr_reg = get_arm64_ftr_reg(id);
126362306a36Sopenharmony_ci	if (!ftr_reg)
126462306a36Sopenharmony_ci		return -EINVAL;
126562306a36Sopenharmony_ci
126662306a36Sopenharmony_ci	ftrp = ftr_reg->ftr_bits;
126762306a36Sopenharmony_ci
126862306a36Sopenharmony_ci	for (; ftrp && ftrp->width; ftrp++) {
126962306a36Sopenharmony_ci		s64 f_val, f_lim, safe_val;
127062306a36Sopenharmony_ci		u64 ftr_mask;
127162306a36Sopenharmony_ci
127262306a36Sopenharmony_ci		ftr_mask = arm64_ftr_mask(ftrp);
127362306a36Sopenharmony_ci		if ((ftr_mask & writable_mask) != ftr_mask)
127462306a36Sopenharmony_ci			continue;
127562306a36Sopenharmony_ci
127662306a36Sopenharmony_ci		f_val = arm64_ftr_value(ftrp, val);
127762306a36Sopenharmony_ci		f_lim = arm64_ftr_value(ftrp, limit);
127862306a36Sopenharmony_ci		mask |= ftr_mask;
127962306a36Sopenharmony_ci
128062306a36Sopenharmony_ci		if (f_val == f_lim)
128162306a36Sopenharmony_ci			safe_val = f_val;
128262306a36Sopenharmony_ci		else
128362306a36Sopenharmony_ci			safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
128462306a36Sopenharmony_ci
128562306a36Sopenharmony_ci		if (safe_val != f_val)
128662306a36Sopenharmony_ci			return -E2BIG;
128762306a36Sopenharmony_ci	}
128862306a36Sopenharmony_ci
128962306a36Sopenharmony_ci	/* For fields that are not writable, values in limit are the safe values. */
129062306a36Sopenharmony_ci	if ((val & ~mask) != (limit & ~mask))
129162306a36Sopenharmony_ci		return -E2BIG;
129262306a36Sopenharmony_ci
129362306a36Sopenharmony_ci	return 0;
129462306a36Sopenharmony_ci}
129562306a36Sopenharmony_ci
129662306a36Sopenharmony_cistatic u8 pmuver_to_perfmon(u8 pmuver)
129762306a36Sopenharmony_ci{
129862306a36Sopenharmony_ci	switch (pmuver) {
129962306a36Sopenharmony_ci	case ID_AA64DFR0_EL1_PMUVer_IMP:
130062306a36Sopenharmony_ci		return ID_DFR0_EL1_PerfMon_PMUv3;
130162306a36Sopenharmony_ci	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
130262306a36Sopenharmony_ci		return ID_DFR0_EL1_PerfMon_IMPDEF;
130362306a36Sopenharmony_ci	default:
130462306a36Sopenharmony_ci		/* Anything ARMv8.1+ and NI have the same value. For now. */
130562306a36Sopenharmony_ci		return pmuver;
130662306a36Sopenharmony_ci	}
130762306a36Sopenharmony_ci}
130862306a36Sopenharmony_ci
130962306a36Sopenharmony_ci/* Read a sanitised cpufeature ID register by sys_reg_desc */
131062306a36Sopenharmony_cistatic u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
131162306a36Sopenharmony_ci				       const struct sys_reg_desc *r)
131262306a36Sopenharmony_ci{
131362306a36Sopenharmony_ci	u32 id = reg_to_encoding(r);
131462306a36Sopenharmony_ci	u64 val;
131562306a36Sopenharmony_ci
131662306a36Sopenharmony_ci	if (sysreg_visible_as_raz(vcpu, r))
131762306a36Sopenharmony_ci		return 0;
131862306a36Sopenharmony_ci
131962306a36Sopenharmony_ci	val = read_sanitised_ftr_reg(id);
132062306a36Sopenharmony_ci
132162306a36Sopenharmony_ci	switch (id) {
132262306a36Sopenharmony_ci	case SYS_ID_AA64PFR1_EL1:
132362306a36Sopenharmony_ci		if (!kvm_has_mte(vcpu->kvm))
132462306a36Sopenharmony_ci			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
132562306a36Sopenharmony_ci
132662306a36Sopenharmony_ci		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
132762306a36Sopenharmony_ci		break;
132862306a36Sopenharmony_ci	case SYS_ID_AA64ISAR1_EL1:
132962306a36Sopenharmony_ci		if (!vcpu_has_ptrauth(vcpu))
133062306a36Sopenharmony_ci			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
133162306a36Sopenharmony_ci				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
133262306a36Sopenharmony_ci				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
133362306a36Sopenharmony_ci				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
133462306a36Sopenharmony_ci		break;
133562306a36Sopenharmony_ci	case SYS_ID_AA64ISAR2_EL1:
133662306a36Sopenharmony_ci		if (!vcpu_has_ptrauth(vcpu))
133762306a36Sopenharmony_ci			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
133862306a36Sopenharmony_ci				 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
133962306a36Sopenharmony_ci		if (!cpus_have_final_cap(ARM64_HAS_WFXT))
134062306a36Sopenharmony_ci			val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
134162306a36Sopenharmony_ci		val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_MOPS);
134262306a36Sopenharmony_ci		break;
134362306a36Sopenharmony_ci	case SYS_ID_AA64MMFR2_EL1:
134462306a36Sopenharmony_ci		val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
134562306a36Sopenharmony_ci		break;
134662306a36Sopenharmony_ci	case SYS_ID_MMFR4_EL1:
134762306a36Sopenharmony_ci		val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
134862306a36Sopenharmony_ci		break;
134962306a36Sopenharmony_ci	}
135062306a36Sopenharmony_ci
135162306a36Sopenharmony_ci	return val;
135262306a36Sopenharmony_ci}
135362306a36Sopenharmony_ci
135462306a36Sopenharmony_cistatic u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
135562306a36Sopenharmony_ci				     const struct sys_reg_desc *r)
135662306a36Sopenharmony_ci{
135762306a36Sopenharmony_ci	return __kvm_read_sanitised_id_reg(vcpu, r);
135862306a36Sopenharmony_ci}
135962306a36Sopenharmony_ci
136062306a36Sopenharmony_cistatic u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
136162306a36Sopenharmony_ci{
136262306a36Sopenharmony_ci	return IDREG(vcpu->kvm, reg_to_encoding(r));
136362306a36Sopenharmony_ci}
136462306a36Sopenharmony_ci
136562306a36Sopenharmony_ci/*
136662306a36Sopenharmony_ci * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
136762306a36Sopenharmony_ci * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
136862306a36Sopenharmony_ci */
136962306a36Sopenharmony_cistatic inline bool is_id_reg(u32 id)
137062306a36Sopenharmony_ci{
137162306a36Sopenharmony_ci	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
137262306a36Sopenharmony_ci		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
137362306a36Sopenharmony_ci		sys_reg_CRm(id) < 8);
137462306a36Sopenharmony_ci}
137562306a36Sopenharmony_ci
137662306a36Sopenharmony_cistatic unsigned int id_visibility(const struct kvm_vcpu *vcpu,
137762306a36Sopenharmony_ci				  const struct sys_reg_desc *r)
137862306a36Sopenharmony_ci{
137962306a36Sopenharmony_ci	u32 id = reg_to_encoding(r);
138062306a36Sopenharmony_ci
138162306a36Sopenharmony_ci	switch (id) {
138262306a36Sopenharmony_ci	case SYS_ID_AA64ZFR0_EL1:
138362306a36Sopenharmony_ci		if (!vcpu_has_sve(vcpu))
138462306a36Sopenharmony_ci			return REG_RAZ;
138562306a36Sopenharmony_ci		break;
138662306a36Sopenharmony_ci	}
138762306a36Sopenharmony_ci
138862306a36Sopenharmony_ci	return 0;
138962306a36Sopenharmony_ci}
139062306a36Sopenharmony_ci
139162306a36Sopenharmony_cistatic unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
139262306a36Sopenharmony_ci				       const struct sys_reg_desc *r)
139362306a36Sopenharmony_ci{
139462306a36Sopenharmony_ci	/*
139562306a36Sopenharmony_ci	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
139662306a36Sopenharmony_ci	 * EL. Promote to RAZ/WI in order to guarantee consistency between
139762306a36Sopenharmony_ci	 * systems.
139862306a36Sopenharmony_ci	 */
139962306a36Sopenharmony_ci	if (!kvm_supports_32bit_el0())
140062306a36Sopenharmony_ci		return REG_RAZ | REG_USER_WI;
140162306a36Sopenharmony_ci
140262306a36Sopenharmony_ci	return id_visibility(vcpu, r);
140362306a36Sopenharmony_ci}
140462306a36Sopenharmony_ci
140562306a36Sopenharmony_cistatic unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
140662306a36Sopenharmony_ci				   const struct sys_reg_desc *r)
140762306a36Sopenharmony_ci{
140862306a36Sopenharmony_ci	return REG_RAZ;
140962306a36Sopenharmony_ci}
141062306a36Sopenharmony_ci
141162306a36Sopenharmony_ci/* cpufeature ID register access trap handlers */
141262306a36Sopenharmony_ci
141362306a36Sopenharmony_cistatic bool access_id_reg(struct kvm_vcpu *vcpu,
141462306a36Sopenharmony_ci			  struct sys_reg_params *p,
141562306a36Sopenharmony_ci			  const struct sys_reg_desc *r)
141662306a36Sopenharmony_ci{
141762306a36Sopenharmony_ci	if (p->is_write)
141862306a36Sopenharmony_ci		return write_to_read_only(vcpu, p, r);
141962306a36Sopenharmony_ci
142062306a36Sopenharmony_ci	p->regval = read_id_reg(vcpu, r);
142162306a36Sopenharmony_ci	if (vcpu_has_nv(vcpu))
142262306a36Sopenharmony_ci		access_nested_id_reg(vcpu, p, r);
142362306a36Sopenharmony_ci
142462306a36Sopenharmony_ci	return true;
142562306a36Sopenharmony_ci}
142662306a36Sopenharmony_ci
142762306a36Sopenharmony_ci/* Visibility overrides for SVE-specific control registers */
142862306a36Sopenharmony_cistatic unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
142962306a36Sopenharmony_ci				   const struct sys_reg_desc *rd)
143062306a36Sopenharmony_ci{
143162306a36Sopenharmony_ci	if (vcpu_has_sve(vcpu))
143262306a36Sopenharmony_ci		return 0;
143362306a36Sopenharmony_ci
143462306a36Sopenharmony_ci	return REG_HIDDEN;
143562306a36Sopenharmony_ci}
143662306a36Sopenharmony_ci
143762306a36Sopenharmony_cistatic u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
143862306a36Sopenharmony_ci					  const struct sys_reg_desc *rd)
143962306a36Sopenharmony_ci{
144062306a36Sopenharmony_ci	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
144162306a36Sopenharmony_ci
144262306a36Sopenharmony_ci	if (!vcpu_has_sve(vcpu))
144362306a36Sopenharmony_ci		val &= ~ID_AA64PFR0_EL1_SVE_MASK;
144462306a36Sopenharmony_ci
144562306a36Sopenharmony_ci	/*
144662306a36Sopenharmony_ci	 * The default is to expose CSV2 == 1 if the HW isn't affected.
144762306a36Sopenharmony_ci	 * Although this is a per-CPU feature, we make it global because
144862306a36Sopenharmony_ci	 * asymmetric systems are just a nuisance.
144962306a36Sopenharmony_ci	 *
145062306a36Sopenharmony_ci	 * Userspace can override this as long as it doesn't promise
145162306a36Sopenharmony_ci	 * the impossible.
145262306a36Sopenharmony_ci	 */
145362306a36Sopenharmony_ci	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
145462306a36Sopenharmony_ci		val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
145562306a36Sopenharmony_ci		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
145662306a36Sopenharmony_ci	}
145762306a36Sopenharmony_ci	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
145862306a36Sopenharmony_ci		val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
145962306a36Sopenharmony_ci		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
146062306a36Sopenharmony_ci	}
146162306a36Sopenharmony_ci
146262306a36Sopenharmony_ci	if (kvm_vgic_global_state.type == VGIC_V3) {
146362306a36Sopenharmony_ci		val &= ~ID_AA64PFR0_EL1_GIC_MASK;
146462306a36Sopenharmony_ci		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
146562306a36Sopenharmony_ci	}
146662306a36Sopenharmony_ci
146762306a36Sopenharmony_ci	val &= ~ID_AA64PFR0_EL1_AMU_MASK;
146862306a36Sopenharmony_ci
146962306a36Sopenharmony_ci	return val;
147062306a36Sopenharmony_ci}
147162306a36Sopenharmony_ci
147262306a36Sopenharmony_cistatic u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
147362306a36Sopenharmony_ci					  const struct sys_reg_desc *rd)
147462306a36Sopenharmony_ci{
147562306a36Sopenharmony_ci	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
147662306a36Sopenharmony_ci
147762306a36Sopenharmony_ci	/* Limit debug to ARMv8.0 */
147862306a36Sopenharmony_ci	val &= ~ID_AA64DFR0_EL1_DebugVer_MASK;
147962306a36Sopenharmony_ci	val |= SYS_FIELD_PREP_ENUM(ID_AA64DFR0_EL1, DebugVer, IMP);
148062306a36Sopenharmony_ci
148162306a36Sopenharmony_ci	/*
148262306a36Sopenharmony_ci	 * Only initialize the PMU version if the vCPU was configured with one.
148362306a36Sopenharmony_ci	 */
148462306a36Sopenharmony_ci	val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
148562306a36Sopenharmony_ci	if (kvm_vcpu_has_pmu(vcpu))
148662306a36Sopenharmony_ci		val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
148762306a36Sopenharmony_ci				      kvm_arm_pmu_get_pmuver_limit());
148862306a36Sopenharmony_ci
148962306a36Sopenharmony_ci	/* Hide SPE from guests */
149062306a36Sopenharmony_ci	val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
149162306a36Sopenharmony_ci
149262306a36Sopenharmony_ci	return val;
149362306a36Sopenharmony_ci}
149462306a36Sopenharmony_ci
149562306a36Sopenharmony_cistatic int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
149662306a36Sopenharmony_ci			       const struct sys_reg_desc *rd,
149762306a36Sopenharmony_ci			       u64 val)
149862306a36Sopenharmony_ci{
149962306a36Sopenharmony_ci	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
150062306a36Sopenharmony_ci
150162306a36Sopenharmony_ci	/*
150262306a36Sopenharmony_ci	 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
150362306a36Sopenharmony_ci	 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
150462306a36Sopenharmony_ci	 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
150562306a36Sopenharmony_ci	 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
150662306a36Sopenharmony_ci	 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
150762306a36Sopenharmony_ci	 *
150862306a36Sopenharmony_ci	 * At minimum, we're on the hook to allow values that were given to
150962306a36Sopenharmony_ci	 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
151062306a36Sopenharmony_ci	 * with a more sensible NI. The value of an ID register changing under
151162306a36Sopenharmony_ci	 * the nose of the guest is unfortunate, but is certainly no more
151262306a36Sopenharmony_ci	 * surprising than an ill-guided PMU driver poking at impdef system
151362306a36Sopenharmony_ci	 * registers that end in an UNDEF...
151462306a36Sopenharmony_ci	 */
151562306a36Sopenharmony_ci	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
151662306a36Sopenharmony_ci		val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
151762306a36Sopenharmony_ci
151862306a36Sopenharmony_ci	return set_id_reg(vcpu, rd, val);
151962306a36Sopenharmony_ci}
152062306a36Sopenharmony_ci
152162306a36Sopenharmony_cistatic u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
152262306a36Sopenharmony_ci				      const struct sys_reg_desc *rd)
152362306a36Sopenharmony_ci{
152462306a36Sopenharmony_ci	u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
152562306a36Sopenharmony_ci	u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
152662306a36Sopenharmony_ci
152762306a36Sopenharmony_ci	val &= ~ID_DFR0_EL1_PerfMon_MASK;
152862306a36Sopenharmony_ci	if (kvm_vcpu_has_pmu(vcpu))
152962306a36Sopenharmony_ci		val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
153062306a36Sopenharmony_ci
153162306a36Sopenharmony_ci	return val;
153262306a36Sopenharmony_ci}
153362306a36Sopenharmony_ci
153462306a36Sopenharmony_cistatic int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
153562306a36Sopenharmony_ci			   const struct sys_reg_desc *rd,
153662306a36Sopenharmony_ci			   u64 val)
153762306a36Sopenharmony_ci{
153862306a36Sopenharmony_ci	u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
153962306a36Sopenharmony_ci
154062306a36Sopenharmony_ci	if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
154162306a36Sopenharmony_ci		val &= ~ID_DFR0_EL1_PerfMon_MASK;
154262306a36Sopenharmony_ci		perfmon = 0;
154362306a36Sopenharmony_ci	}
154462306a36Sopenharmony_ci
154562306a36Sopenharmony_ci	/*
154662306a36Sopenharmony_ci	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
154762306a36Sopenharmony_ci	 * it doesn't promise more than what the HW gives us on the
154862306a36Sopenharmony_ci	 * AArch64 side (as everything is emulated with that), and
154962306a36Sopenharmony_ci	 * that this is a PMUv3.
155062306a36Sopenharmony_ci	 */
155162306a36Sopenharmony_ci	if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
155262306a36Sopenharmony_ci		return -EINVAL;
155362306a36Sopenharmony_ci
155462306a36Sopenharmony_ci	return set_id_reg(vcpu, rd, val);
155562306a36Sopenharmony_ci}
155662306a36Sopenharmony_ci
155762306a36Sopenharmony_ci/*
155862306a36Sopenharmony_ci * cpufeature ID register user accessors
155962306a36Sopenharmony_ci *
156062306a36Sopenharmony_ci * For now, these registers are immutable for userspace, so no values
156162306a36Sopenharmony_ci * are stored, and for set_id_reg() we don't allow the effective value
156262306a36Sopenharmony_ci * to be changed.
156362306a36Sopenharmony_ci */
156462306a36Sopenharmony_cistatic int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
156562306a36Sopenharmony_ci		      u64 *val)
156662306a36Sopenharmony_ci{
156762306a36Sopenharmony_ci	/*
156862306a36Sopenharmony_ci	 * Avoid locking if the VM has already started, as the ID registers are
156962306a36Sopenharmony_ci	 * guaranteed to be invariant at that point.
157062306a36Sopenharmony_ci	 */
157162306a36Sopenharmony_ci	if (kvm_vm_has_ran_once(vcpu->kvm)) {
157262306a36Sopenharmony_ci		*val = read_id_reg(vcpu, rd);
157362306a36Sopenharmony_ci		return 0;
157462306a36Sopenharmony_ci	}
157562306a36Sopenharmony_ci
157662306a36Sopenharmony_ci	mutex_lock(&vcpu->kvm->arch.config_lock);
157762306a36Sopenharmony_ci	*val = read_id_reg(vcpu, rd);
157862306a36Sopenharmony_ci	mutex_unlock(&vcpu->kvm->arch.config_lock);
157962306a36Sopenharmony_ci
158062306a36Sopenharmony_ci	return 0;
158162306a36Sopenharmony_ci}
158262306a36Sopenharmony_ci
158362306a36Sopenharmony_cistatic int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
158462306a36Sopenharmony_ci		      u64 val)
158562306a36Sopenharmony_ci{
158662306a36Sopenharmony_ci	u32 id = reg_to_encoding(rd);
158762306a36Sopenharmony_ci	int ret;
158862306a36Sopenharmony_ci
158962306a36Sopenharmony_ci	mutex_lock(&vcpu->kvm->arch.config_lock);
159062306a36Sopenharmony_ci
159162306a36Sopenharmony_ci	/*
159262306a36Sopenharmony_ci	 * Once the VM has started the ID registers are immutable. Reject any
159362306a36Sopenharmony_ci	 * write that does not match the final register value.
159462306a36Sopenharmony_ci	 */
159562306a36Sopenharmony_ci	if (kvm_vm_has_ran_once(vcpu->kvm)) {
159662306a36Sopenharmony_ci		if (val != read_id_reg(vcpu, rd))
159762306a36Sopenharmony_ci			ret = -EBUSY;
159862306a36Sopenharmony_ci		else
159962306a36Sopenharmony_ci			ret = 0;
160062306a36Sopenharmony_ci
160162306a36Sopenharmony_ci		mutex_unlock(&vcpu->kvm->arch.config_lock);
160262306a36Sopenharmony_ci		return ret;
160362306a36Sopenharmony_ci	}
160462306a36Sopenharmony_ci
160562306a36Sopenharmony_ci	ret = arm64_check_features(vcpu, rd, val);
160662306a36Sopenharmony_ci	if (!ret)
160762306a36Sopenharmony_ci		IDREG(vcpu->kvm, id) = val;
160862306a36Sopenharmony_ci
160962306a36Sopenharmony_ci	mutex_unlock(&vcpu->kvm->arch.config_lock);
161062306a36Sopenharmony_ci
161162306a36Sopenharmony_ci	/*
161262306a36Sopenharmony_ci	 * arm64_check_features() returns -E2BIG to indicate the register's
161362306a36Sopenharmony_ci	 * feature set is a superset of the maximally-allowed register value.
161462306a36Sopenharmony_ci	 * While it would be nice to precisely describe this to userspace, the
161562306a36Sopenharmony_ci	 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
161662306a36Sopenharmony_ci	 * writes return -EINVAL.
161762306a36Sopenharmony_ci	 */
161862306a36Sopenharmony_ci	if (ret == -E2BIG)
161962306a36Sopenharmony_ci		ret = -EINVAL;
162062306a36Sopenharmony_ci	return ret;
162162306a36Sopenharmony_ci}
162262306a36Sopenharmony_ci
162362306a36Sopenharmony_cistatic int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
162462306a36Sopenharmony_ci		       u64 *val)
162562306a36Sopenharmony_ci{
162662306a36Sopenharmony_ci	*val = 0;
162762306a36Sopenharmony_ci	return 0;
162862306a36Sopenharmony_ci}
162962306a36Sopenharmony_ci
163062306a36Sopenharmony_cistatic int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
163162306a36Sopenharmony_ci		      u64 val)
163262306a36Sopenharmony_ci{
163362306a36Sopenharmony_ci	return 0;
163462306a36Sopenharmony_ci}
163562306a36Sopenharmony_ci
163662306a36Sopenharmony_cistatic bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
163762306a36Sopenharmony_ci		       const struct sys_reg_desc *r)
163862306a36Sopenharmony_ci{
163962306a36Sopenharmony_ci	if (p->is_write)
164062306a36Sopenharmony_ci		return write_to_read_only(vcpu, p, r);
164162306a36Sopenharmony_ci
164262306a36Sopenharmony_ci	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
164362306a36Sopenharmony_ci	return true;
164462306a36Sopenharmony_ci}
164562306a36Sopenharmony_ci
164662306a36Sopenharmony_cistatic bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
164762306a36Sopenharmony_ci			 const struct sys_reg_desc *r)
164862306a36Sopenharmony_ci{
164962306a36Sopenharmony_ci	if (p->is_write)
165062306a36Sopenharmony_ci		return write_to_read_only(vcpu, p, r);
165162306a36Sopenharmony_ci
165262306a36Sopenharmony_ci	p->regval = __vcpu_sys_reg(vcpu, r->reg);
165362306a36Sopenharmony_ci	return true;
165462306a36Sopenharmony_ci}
165562306a36Sopenharmony_ci
165662306a36Sopenharmony_ci/*
165762306a36Sopenharmony_ci * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
165862306a36Sopenharmony_ci * by the physical CPU which the vcpu currently resides in.
165962306a36Sopenharmony_ci */
166062306a36Sopenharmony_cistatic u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
166162306a36Sopenharmony_ci{
166262306a36Sopenharmony_ci	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
166362306a36Sopenharmony_ci	u64 clidr;
166462306a36Sopenharmony_ci	u8 loc;
166562306a36Sopenharmony_ci
166662306a36Sopenharmony_ci	if ((ctr_el0 & CTR_EL0_IDC)) {
166762306a36Sopenharmony_ci		/*
166862306a36Sopenharmony_ci		 * Data cache clean to the PoU is not required so LoUU and LoUIS
166962306a36Sopenharmony_ci		 * will not be set and a unified cache, which will be marked as
167062306a36Sopenharmony_ci		 * LoC, will be added.
167162306a36Sopenharmony_ci		 *
167262306a36Sopenharmony_ci		 * If not DIC, let the unified cache L2 so that an instruction
167362306a36Sopenharmony_ci		 * cache can be added as L1 later.
167462306a36Sopenharmony_ci		 */
167562306a36Sopenharmony_ci		loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
167662306a36Sopenharmony_ci		clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
167762306a36Sopenharmony_ci	} else {
167862306a36Sopenharmony_ci		/*
167962306a36Sopenharmony_ci		 * Data cache clean to the PoU is required so let L1 have a data
168062306a36Sopenharmony_ci		 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
168162306a36Sopenharmony_ci		 * it can be marked as LoC too.
168262306a36Sopenharmony_ci		 */
168362306a36Sopenharmony_ci		loc = 1;
168462306a36Sopenharmony_ci		clidr = 1 << CLIDR_LOUU_SHIFT;
168562306a36Sopenharmony_ci		clidr |= 1 << CLIDR_LOUIS_SHIFT;
168662306a36Sopenharmony_ci		clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
168762306a36Sopenharmony_ci	}
168862306a36Sopenharmony_ci
168962306a36Sopenharmony_ci	/*
169062306a36Sopenharmony_ci	 * Instruction cache invalidation to the PoU is required so let L1 have
169162306a36Sopenharmony_ci	 * an instruction cache. If L1 already has a data cache, it will be
169262306a36Sopenharmony_ci	 * CACHE_TYPE_SEPARATE.
169362306a36Sopenharmony_ci	 */
169462306a36Sopenharmony_ci	if (!(ctr_el0 & CTR_EL0_DIC))
169562306a36Sopenharmony_ci		clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
169662306a36Sopenharmony_ci
169762306a36Sopenharmony_ci	clidr |= loc << CLIDR_LOC_SHIFT;
169862306a36Sopenharmony_ci
169962306a36Sopenharmony_ci	/*
170062306a36Sopenharmony_ci	 * Add tag cache unified to data cache. Allocation tags and data are
170162306a36Sopenharmony_ci	 * unified in a cache line so that it looks valid even if there is only
170262306a36Sopenharmony_ci	 * one cache line.
170362306a36Sopenharmony_ci	 */
170462306a36Sopenharmony_ci	if (kvm_has_mte(vcpu->kvm))
170562306a36Sopenharmony_ci		clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
170662306a36Sopenharmony_ci
170762306a36Sopenharmony_ci	__vcpu_sys_reg(vcpu, r->reg) = clidr;
170862306a36Sopenharmony_ci
170962306a36Sopenharmony_ci	return __vcpu_sys_reg(vcpu, r->reg);
171062306a36Sopenharmony_ci}
171162306a36Sopenharmony_ci
171262306a36Sopenharmony_cistatic int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
171362306a36Sopenharmony_ci		      u64 val)
171462306a36Sopenharmony_ci{
171562306a36Sopenharmony_ci	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
171662306a36Sopenharmony_ci	u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
171762306a36Sopenharmony_ci
171862306a36Sopenharmony_ci	if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
171962306a36Sopenharmony_ci		return -EINVAL;
172062306a36Sopenharmony_ci
172162306a36Sopenharmony_ci	__vcpu_sys_reg(vcpu, rd->reg) = val;
172262306a36Sopenharmony_ci
172362306a36Sopenharmony_ci	return 0;
172462306a36Sopenharmony_ci}
172562306a36Sopenharmony_ci
172662306a36Sopenharmony_cistatic bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
172762306a36Sopenharmony_ci			  const struct sys_reg_desc *r)
172862306a36Sopenharmony_ci{
172962306a36Sopenharmony_ci	int reg = r->reg;
173062306a36Sopenharmony_ci
173162306a36Sopenharmony_ci	if (p->is_write)
173262306a36Sopenharmony_ci		vcpu_write_sys_reg(vcpu, p->regval, reg);
173362306a36Sopenharmony_ci	else
173462306a36Sopenharmony_ci		p->regval = vcpu_read_sys_reg(vcpu, reg);
173562306a36Sopenharmony_ci	return true;
173662306a36Sopenharmony_ci}
173762306a36Sopenharmony_ci
173862306a36Sopenharmony_cistatic bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
173962306a36Sopenharmony_ci			  const struct sys_reg_desc *r)
174062306a36Sopenharmony_ci{
174162306a36Sopenharmony_ci	u32 csselr;
174262306a36Sopenharmony_ci
174362306a36Sopenharmony_ci	if (p->is_write)
174462306a36Sopenharmony_ci		return write_to_read_only(vcpu, p, r);
174562306a36Sopenharmony_ci
174662306a36Sopenharmony_ci	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
174762306a36Sopenharmony_ci	csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
174862306a36Sopenharmony_ci	if (csselr < CSSELR_MAX)
174962306a36Sopenharmony_ci		p->regval = get_ccsidr(vcpu, csselr);
175062306a36Sopenharmony_ci
175162306a36Sopenharmony_ci	return true;
175262306a36Sopenharmony_ci}
175362306a36Sopenharmony_ci
175462306a36Sopenharmony_cistatic unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
175562306a36Sopenharmony_ci				   const struct sys_reg_desc *rd)
175662306a36Sopenharmony_ci{
175762306a36Sopenharmony_ci	if (kvm_has_mte(vcpu->kvm))
175862306a36Sopenharmony_ci		return 0;
175962306a36Sopenharmony_ci
176062306a36Sopenharmony_ci	return REG_HIDDEN;
176162306a36Sopenharmony_ci}
176262306a36Sopenharmony_ci
176362306a36Sopenharmony_ci#define MTE_REG(name) {				\
176462306a36Sopenharmony_ci	SYS_DESC(SYS_##name),			\
176562306a36Sopenharmony_ci	.access = undef_access,			\
176662306a36Sopenharmony_ci	.reset = reset_unknown,			\
176762306a36Sopenharmony_ci	.reg = name,				\
176862306a36Sopenharmony_ci	.visibility = mte_visibility,		\
176962306a36Sopenharmony_ci}
177062306a36Sopenharmony_ci
177162306a36Sopenharmony_cistatic unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
177262306a36Sopenharmony_ci				   const struct sys_reg_desc *rd)
177362306a36Sopenharmony_ci{
177462306a36Sopenharmony_ci	if (vcpu_has_nv(vcpu))
177562306a36Sopenharmony_ci		return 0;
177662306a36Sopenharmony_ci
177762306a36Sopenharmony_ci	return REG_HIDDEN;
177862306a36Sopenharmony_ci}
177962306a36Sopenharmony_ci
178062306a36Sopenharmony_ci#define EL2_REG(name, acc, rst, v) {		\
178162306a36Sopenharmony_ci	SYS_DESC(SYS_##name),			\
178262306a36Sopenharmony_ci	.access = acc,				\
178362306a36Sopenharmony_ci	.reset = rst,				\
178462306a36Sopenharmony_ci	.reg = name,				\
178562306a36Sopenharmony_ci	.visibility = el2_visibility,		\
178662306a36Sopenharmony_ci	.val = v,				\
178762306a36Sopenharmony_ci}
178862306a36Sopenharmony_ci
178962306a36Sopenharmony_ci/*
179062306a36Sopenharmony_ci * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
179162306a36Sopenharmony_ci * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
179262306a36Sopenharmony_ci * handling traps. Given that, they are always hidden from userspace.
179362306a36Sopenharmony_ci */
179462306a36Sopenharmony_cistatic unsigned int elx2_visibility(const struct kvm_vcpu *vcpu,
179562306a36Sopenharmony_ci				    const struct sys_reg_desc *rd)
179662306a36Sopenharmony_ci{
179762306a36Sopenharmony_ci	return REG_HIDDEN_USER;
179862306a36Sopenharmony_ci}
179962306a36Sopenharmony_ci
180062306a36Sopenharmony_ci#define EL12_REG(name, acc, rst, v) {		\
180162306a36Sopenharmony_ci	SYS_DESC(SYS_##name##_EL12),		\
180262306a36Sopenharmony_ci	.access = acc,				\
180362306a36Sopenharmony_ci	.reset = rst,				\
180462306a36Sopenharmony_ci	.reg = name##_EL1,			\
180562306a36Sopenharmony_ci	.val = v,				\
180662306a36Sopenharmony_ci	.visibility = elx2_visibility,		\
180762306a36Sopenharmony_ci}
180862306a36Sopenharmony_ci
180962306a36Sopenharmony_ci/*
181062306a36Sopenharmony_ci * Since reset() callback and field val are not used for idregs, they will be
181162306a36Sopenharmony_ci * used for specific purposes for idregs.
181262306a36Sopenharmony_ci * The reset() would return KVM sanitised register value. The value would be the
181362306a36Sopenharmony_ci * same as the host kernel sanitised value if there is no KVM sanitisation.
181462306a36Sopenharmony_ci * The val would be used as a mask indicating writable fields for the idreg.
181562306a36Sopenharmony_ci * Only bits with 1 are writable from userspace. This mask might not be
181662306a36Sopenharmony_ci * necessary in the future whenever all ID registers are enabled as writable
181762306a36Sopenharmony_ci * from userspace.
181862306a36Sopenharmony_ci */
181962306a36Sopenharmony_ci
182062306a36Sopenharmony_ci/* sys_reg_desc initialiser for known cpufeature ID registers */
182162306a36Sopenharmony_ci#define ID_SANITISED(name) {			\
182262306a36Sopenharmony_ci	SYS_DESC(SYS_##name),			\
182362306a36Sopenharmony_ci	.access	= access_id_reg,		\
182462306a36Sopenharmony_ci	.get_user = get_id_reg,			\
182562306a36Sopenharmony_ci	.set_user = set_id_reg,			\
182662306a36Sopenharmony_ci	.visibility = id_visibility,		\
182762306a36Sopenharmony_ci	.reset = kvm_read_sanitised_id_reg,	\
182862306a36Sopenharmony_ci	.val = 0,				\
182962306a36Sopenharmony_ci}
183062306a36Sopenharmony_ci
183162306a36Sopenharmony_ci/* sys_reg_desc initialiser for known cpufeature ID registers */
183262306a36Sopenharmony_ci#define AA32_ID_SANITISED(name) {		\
183362306a36Sopenharmony_ci	SYS_DESC(SYS_##name),			\
183462306a36Sopenharmony_ci	.access	= access_id_reg,		\
183562306a36Sopenharmony_ci	.get_user = get_id_reg,			\
183662306a36Sopenharmony_ci	.set_user = set_id_reg,			\
183762306a36Sopenharmony_ci	.visibility = aa32_id_visibility,	\
183862306a36Sopenharmony_ci	.reset = kvm_read_sanitised_id_reg,	\
183962306a36Sopenharmony_ci	.val = 0,				\
184062306a36Sopenharmony_ci}
184162306a36Sopenharmony_ci
184262306a36Sopenharmony_ci/*
184362306a36Sopenharmony_ci * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
184462306a36Sopenharmony_ci * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
184562306a36Sopenharmony_ci * (1 <= crm < 8, 0 <= Op2 < 8).
184662306a36Sopenharmony_ci */
184762306a36Sopenharmony_ci#define ID_UNALLOCATED(crm, op2) {			\
184862306a36Sopenharmony_ci	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
184962306a36Sopenharmony_ci	.access = access_id_reg,			\
185062306a36Sopenharmony_ci	.get_user = get_id_reg,				\
185162306a36Sopenharmony_ci	.set_user = set_id_reg,				\
185262306a36Sopenharmony_ci	.visibility = raz_visibility,			\
185362306a36Sopenharmony_ci	.reset = kvm_read_sanitised_id_reg,		\
185462306a36Sopenharmony_ci	.val = 0,					\
185562306a36Sopenharmony_ci}
185662306a36Sopenharmony_ci
185762306a36Sopenharmony_ci/*
185862306a36Sopenharmony_ci * sys_reg_desc initialiser for known ID registers that we hide from guests.
185962306a36Sopenharmony_ci * For now, these are exposed just like unallocated ID regs: they appear
186062306a36Sopenharmony_ci * RAZ for the guest.
186162306a36Sopenharmony_ci */
186262306a36Sopenharmony_ci#define ID_HIDDEN(name) {			\
186362306a36Sopenharmony_ci	SYS_DESC(SYS_##name),			\
186462306a36Sopenharmony_ci	.access = access_id_reg,		\
186562306a36Sopenharmony_ci	.get_user = get_id_reg,			\
186662306a36Sopenharmony_ci	.set_user = set_id_reg,			\
186762306a36Sopenharmony_ci	.visibility = raz_visibility,		\
186862306a36Sopenharmony_ci	.reset = kvm_read_sanitised_id_reg,	\
186962306a36Sopenharmony_ci	.val = 0,				\
187062306a36Sopenharmony_ci}
187162306a36Sopenharmony_ci
187262306a36Sopenharmony_cistatic bool access_sp_el1(struct kvm_vcpu *vcpu,
187362306a36Sopenharmony_ci			  struct sys_reg_params *p,
187462306a36Sopenharmony_ci			  const struct sys_reg_desc *r)
187562306a36Sopenharmony_ci{
187662306a36Sopenharmony_ci	if (p->is_write)
187762306a36Sopenharmony_ci		__vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
187862306a36Sopenharmony_ci	else
187962306a36Sopenharmony_ci		p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
188062306a36Sopenharmony_ci
188162306a36Sopenharmony_ci	return true;
188262306a36Sopenharmony_ci}
188362306a36Sopenharmony_ci
188462306a36Sopenharmony_cistatic bool access_elr(struct kvm_vcpu *vcpu,
188562306a36Sopenharmony_ci		       struct sys_reg_params *p,
188662306a36Sopenharmony_ci		       const struct sys_reg_desc *r)
188762306a36Sopenharmony_ci{
188862306a36Sopenharmony_ci	if (p->is_write)
188962306a36Sopenharmony_ci		vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
189062306a36Sopenharmony_ci	else
189162306a36Sopenharmony_ci		p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
189262306a36Sopenharmony_ci
189362306a36Sopenharmony_ci	return true;
189462306a36Sopenharmony_ci}
189562306a36Sopenharmony_ci
189662306a36Sopenharmony_cistatic bool access_spsr(struct kvm_vcpu *vcpu,
189762306a36Sopenharmony_ci			struct sys_reg_params *p,
189862306a36Sopenharmony_ci			const struct sys_reg_desc *r)
189962306a36Sopenharmony_ci{
190062306a36Sopenharmony_ci	if (p->is_write)
190162306a36Sopenharmony_ci		__vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
190262306a36Sopenharmony_ci	else
190362306a36Sopenharmony_ci		p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
190462306a36Sopenharmony_ci
190562306a36Sopenharmony_ci	return true;
190662306a36Sopenharmony_ci}
190762306a36Sopenharmony_ci
190862306a36Sopenharmony_ci/*
190962306a36Sopenharmony_ci * Architected system registers.
191062306a36Sopenharmony_ci * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
191162306a36Sopenharmony_ci *
191262306a36Sopenharmony_ci * Debug handling: We do trap most, if not all debug related system
191362306a36Sopenharmony_ci * registers. The implementation is good enough to ensure that a guest
191462306a36Sopenharmony_ci * can use these with minimal performance degradation. The drawback is
191562306a36Sopenharmony_ci * that we don't implement any of the external debug architecture.
191662306a36Sopenharmony_ci * This should be revisited if we ever encounter a more demanding
191762306a36Sopenharmony_ci * guest...
191862306a36Sopenharmony_ci */
191962306a36Sopenharmony_cistatic const struct sys_reg_desc sys_reg_descs[] = {
192062306a36Sopenharmony_ci	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
192162306a36Sopenharmony_ci	{ SYS_DESC(SYS_DC_IGSW), access_dcgsw },
192262306a36Sopenharmony_ci	{ SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
192362306a36Sopenharmony_ci	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
192462306a36Sopenharmony_ci	{ SYS_DESC(SYS_DC_CGSW), access_dcgsw },
192562306a36Sopenharmony_ci	{ SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
192662306a36Sopenharmony_ci	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
192762306a36Sopenharmony_ci	{ SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
192862306a36Sopenharmony_ci	{ SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
192962306a36Sopenharmony_ci
193062306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR_EL1(0),
193162306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR_EL1(1),
193262306a36Sopenharmony_ci	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
193362306a36Sopenharmony_ci	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
193462306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR_EL1(2),
193562306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR_EL1(3),
193662306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR_EL1(4),
193762306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR_EL1(5),
193862306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR_EL1(6),
193962306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR_EL1(7),
194062306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR_EL1(8),
194162306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR_EL1(9),
194262306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR_EL1(10),
194362306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR_EL1(11),
194462306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR_EL1(12),
194562306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR_EL1(13),
194662306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR_EL1(14),
194762306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR_EL1(15),
194862306a36Sopenharmony_ci
194962306a36Sopenharmony_ci	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
195062306a36Sopenharmony_ci	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
195162306a36Sopenharmony_ci	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
195262306a36Sopenharmony_ci		OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
195362306a36Sopenharmony_ci	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
195462306a36Sopenharmony_ci	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
195562306a36Sopenharmony_ci	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
195662306a36Sopenharmony_ci	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
195762306a36Sopenharmony_ci	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
195862306a36Sopenharmony_ci
195962306a36Sopenharmony_ci	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
196062306a36Sopenharmony_ci	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
196162306a36Sopenharmony_ci	// DBGDTR[TR]X_EL0 share the same encoding
196262306a36Sopenharmony_ci	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
196362306a36Sopenharmony_ci
196462306a36Sopenharmony_ci	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
196562306a36Sopenharmony_ci
196662306a36Sopenharmony_ci	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
196762306a36Sopenharmony_ci
196862306a36Sopenharmony_ci	/*
196962306a36Sopenharmony_ci	 * ID regs: all ID_SANITISED() entries here must have corresponding
197062306a36Sopenharmony_ci	 * entries in arm64_ftr_regs[].
197162306a36Sopenharmony_ci	 */
197262306a36Sopenharmony_ci
197362306a36Sopenharmony_ci	/* AArch64 mappings of the AArch32 ID registers */
197462306a36Sopenharmony_ci	/* CRm=1 */
197562306a36Sopenharmony_ci	AA32_ID_SANITISED(ID_PFR0_EL1),
197662306a36Sopenharmony_ci	AA32_ID_SANITISED(ID_PFR1_EL1),
197762306a36Sopenharmony_ci	{ SYS_DESC(SYS_ID_DFR0_EL1),
197862306a36Sopenharmony_ci	  .access = access_id_reg,
197962306a36Sopenharmony_ci	  .get_user = get_id_reg,
198062306a36Sopenharmony_ci	  .set_user = set_id_dfr0_el1,
198162306a36Sopenharmony_ci	  .visibility = aa32_id_visibility,
198262306a36Sopenharmony_ci	  .reset = read_sanitised_id_dfr0_el1,
198362306a36Sopenharmony_ci	  .val = ID_DFR0_EL1_PerfMon_MASK, },
198462306a36Sopenharmony_ci	ID_HIDDEN(ID_AFR0_EL1),
198562306a36Sopenharmony_ci	AA32_ID_SANITISED(ID_MMFR0_EL1),
198662306a36Sopenharmony_ci	AA32_ID_SANITISED(ID_MMFR1_EL1),
198762306a36Sopenharmony_ci	AA32_ID_SANITISED(ID_MMFR2_EL1),
198862306a36Sopenharmony_ci	AA32_ID_SANITISED(ID_MMFR3_EL1),
198962306a36Sopenharmony_ci
199062306a36Sopenharmony_ci	/* CRm=2 */
199162306a36Sopenharmony_ci	AA32_ID_SANITISED(ID_ISAR0_EL1),
199262306a36Sopenharmony_ci	AA32_ID_SANITISED(ID_ISAR1_EL1),
199362306a36Sopenharmony_ci	AA32_ID_SANITISED(ID_ISAR2_EL1),
199462306a36Sopenharmony_ci	AA32_ID_SANITISED(ID_ISAR3_EL1),
199562306a36Sopenharmony_ci	AA32_ID_SANITISED(ID_ISAR4_EL1),
199662306a36Sopenharmony_ci	AA32_ID_SANITISED(ID_ISAR5_EL1),
199762306a36Sopenharmony_ci	AA32_ID_SANITISED(ID_MMFR4_EL1),
199862306a36Sopenharmony_ci	AA32_ID_SANITISED(ID_ISAR6_EL1),
199962306a36Sopenharmony_ci
200062306a36Sopenharmony_ci	/* CRm=3 */
200162306a36Sopenharmony_ci	AA32_ID_SANITISED(MVFR0_EL1),
200262306a36Sopenharmony_ci	AA32_ID_SANITISED(MVFR1_EL1),
200362306a36Sopenharmony_ci	AA32_ID_SANITISED(MVFR2_EL1),
200462306a36Sopenharmony_ci	ID_UNALLOCATED(3,3),
200562306a36Sopenharmony_ci	AA32_ID_SANITISED(ID_PFR2_EL1),
200662306a36Sopenharmony_ci	ID_HIDDEN(ID_DFR1_EL1),
200762306a36Sopenharmony_ci	AA32_ID_SANITISED(ID_MMFR5_EL1),
200862306a36Sopenharmony_ci	ID_UNALLOCATED(3,7),
200962306a36Sopenharmony_ci
201062306a36Sopenharmony_ci	/* AArch64 ID registers */
201162306a36Sopenharmony_ci	/* CRm=4 */
201262306a36Sopenharmony_ci	{ SYS_DESC(SYS_ID_AA64PFR0_EL1),
201362306a36Sopenharmony_ci	  .access = access_id_reg,
201462306a36Sopenharmony_ci	  .get_user = get_id_reg,
201562306a36Sopenharmony_ci	  .set_user = set_id_reg,
201662306a36Sopenharmony_ci	  .reset = read_sanitised_id_aa64pfr0_el1,
201762306a36Sopenharmony_ci	  .val = ID_AA64PFR0_EL1_CSV2_MASK | ID_AA64PFR0_EL1_CSV3_MASK, },
201862306a36Sopenharmony_ci	ID_SANITISED(ID_AA64PFR1_EL1),
201962306a36Sopenharmony_ci	ID_UNALLOCATED(4,2),
202062306a36Sopenharmony_ci	ID_UNALLOCATED(4,3),
202162306a36Sopenharmony_ci	ID_SANITISED(ID_AA64ZFR0_EL1),
202262306a36Sopenharmony_ci	ID_HIDDEN(ID_AA64SMFR0_EL1),
202362306a36Sopenharmony_ci	ID_UNALLOCATED(4,6),
202462306a36Sopenharmony_ci	ID_UNALLOCATED(4,7),
202562306a36Sopenharmony_ci
202662306a36Sopenharmony_ci	/* CRm=5 */
202762306a36Sopenharmony_ci	{ SYS_DESC(SYS_ID_AA64DFR0_EL1),
202862306a36Sopenharmony_ci	  .access = access_id_reg,
202962306a36Sopenharmony_ci	  .get_user = get_id_reg,
203062306a36Sopenharmony_ci	  .set_user = set_id_aa64dfr0_el1,
203162306a36Sopenharmony_ci	  .reset = read_sanitised_id_aa64dfr0_el1,
203262306a36Sopenharmony_ci	  .val = ID_AA64DFR0_EL1_PMUVer_MASK, },
203362306a36Sopenharmony_ci	ID_SANITISED(ID_AA64DFR1_EL1),
203462306a36Sopenharmony_ci	ID_UNALLOCATED(5,2),
203562306a36Sopenharmony_ci	ID_UNALLOCATED(5,3),
203662306a36Sopenharmony_ci	ID_HIDDEN(ID_AA64AFR0_EL1),
203762306a36Sopenharmony_ci	ID_HIDDEN(ID_AA64AFR1_EL1),
203862306a36Sopenharmony_ci	ID_UNALLOCATED(5,6),
203962306a36Sopenharmony_ci	ID_UNALLOCATED(5,7),
204062306a36Sopenharmony_ci
204162306a36Sopenharmony_ci	/* CRm=6 */
204262306a36Sopenharmony_ci	ID_SANITISED(ID_AA64ISAR0_EL1),
204362306a36Sopenharmony_ci	ID_SANITISED(ID_AA64ISAR1_EL1),
204462306a36Sopenharmony_ci	ID_SANITISED(ID_AA64ISAR2_EL1),
204562306a36Sopenharmony_ci	ID_UNALLOCATED(6,3),
204662306a36Sopenharmony_ci	ID_UNALLOCATED(6,4),
204762306a36Sopenharmony_ci	ID_UNALLOCATED(6,5),
204862306a36Sopenharmony_ci	ID_UNALLOCATED(6,6),
204962306a36Sopenharmony_ci	ID_UNALLOCATED(6,7),
205062306a36Sopenharmony_ci
205162306a36Sopenharmony_ci	/* CRm=7 */
205262306a36Sopenharmony_ci	ID_SANITISED(ID_AA64MMFR0_EL1),
205362306a36Sopenharmony_ci	ID_SANITISED(ID_AA64MMFR1_EL1),
205462306a36Sopenharmony_ci	ID_SANITISED(ID_AA64MMFR2_EL1),
205562306a36Sopenharmony_ci	ID_SANITISED(ID_AA64MMFR3_EL1),
205662306a36Sopenharmony_ci	ID_UNALLOCATED(7,4),
205762306a36Sopenharmony_ci	ID_UNALLOCATED(7,5),
205862306a36Sopenharmony_ci	ID_UNALLOCATED(7,6),
205962306a36Sopenharmony_ci	ID_UNALLOCATED(7,7),
206062306a36Sopenharmony_ci
206162306a36Sopenharmony_ci	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
206262306a36Sopenharmony_ci	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
206362306a36Sopenharmony_ci	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
206462306a36Sopenharmony_ci
206562306a36Sopenharmony_ci	MTE_REG(RGSR_EL1),
206662306a36Sopenharmony_ci	MTE_REG(GCR_EL1),
206762306a36Sopenharmony_ci
206862306a36Sopenharmony_ci	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
206962306a36Sopenharmony_ci	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
207062306a36Sopenharmony_ci	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
207162306a36Sopenharmony_ci	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
207262306a36Sopenharmony_ci	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
207362306a36Sopenharmony_ci	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
207462306a36Sopenharmony_ci	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
207562306a36Sopenharmony_ci	{ SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },
207662306a36Sopenharmony_ci
207762306a36Sopenharmony_ci	PTRAUTH_KEY(APIA),
207862306a36Sopenharmony_ci	PTRAUTH_KEY(APIB),
207962306a36Sopenharmony_ci	PTRAUTH_KEY(APDA),
208062306a36Sopenharmony_ci	PTRAUTH_KEY(APDB),
208162306a36Sopenharmony_ci	PTRAUTH_KEY(APGA),
208262306a36Sopenharmony_ci
208362306a36Sopenharmony_ci	{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
208462306a36Sopenharmony_ci	{ SYS_DESC(SYS_ELR_EL1), access_elr},
208562306a36Sopenharmony_ci
208662306a36Sopenharmony_ci	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
208762306a36Sopenharmony_ci	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
208862306a36Sopenharmony_ci	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
208962306a36Sopenharmony_ci
209062306a36Sopenharmony_ci	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
209162306a36Sopenharmony_ci	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
209262306a36Sopenharmony_ci	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
209362306a36Sopenharmony_ci	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
209462306a36Sopenharmony_ci	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
209562306a36Sopenharmony_ci	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
209662306a36Sopenharmony_ci	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
209762306a36Sopenharmony_ci	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
209862306a36Sopenharmony_ci
209962306a36Sopenharmony_ci	MTE_REG(TFSR_EL1),
210062306a36Sopenharmony_ci	MTE_REG(TFSRE0_EL1),
210162306a36Sopenharmony_ci
210262306a36Sopenharmony_ci	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
210362306a36Sopenharmony_ci	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
210462306a36Sopenharmony_ci
210562306a36Sopenharmony_ci	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
210662306a36Sopenharmony_ci	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
210762306a36Sopenharmony_ci	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
210862306a36Sopenharmony_ci	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
210962306a36Sopenharmony_ci	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
211062306a36Sopenharmony_ci	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
211162306a36Sopenharmony_ci	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
211262306a36Sopenharmony_ci	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
211362306a36Sopenharmony_ci	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
211462306a36Sopenharmony_ci	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
211562306a36Sopenharmony_ci	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
211662306a36Sopenharmony_ci	/* PMBIDR_EL1 is not trapped */
211762306a36Sopenharmony_ci
211862306a36Sopenharmony_ci	{ PMU_SYS_REG(PMINTENSET_EL1),
211962306a36Sopenharmony_ci	  .access = access_pminten, .reg = PMINTENSET_EL1 },
212062306a36Sopenharmony_ci	{ PMU_SYS_REG(PMINTENCLR_EL1),
212162306a36Sopenharmony_ci	  .access = access_pminten, .reg = PMINTENSET_EL1 },
212262306a36Sopenharmony_ci	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
212362306a36Sopenharmony_ci
212462306a36Sopenharmony_ci	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
212562306a36Sopenharmony_ci	{ SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 },
212662306a36Sopenharmony_ci	{ SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 },
212762306a36Sopenharmony_ci	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
212862306a36Sopenharmony_ci
212962306a36Sopenharmony_ci	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
213062306a36Sopenharmony_ci	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
213162306a36Sopenharmony_ci	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
213262306a36Sopenharmony_ci	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
213362306a36Sopenharmony_ci	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
213462306a36Sopenharmony_ci
213562306a36Sopenharmony_ci	{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
213662306a36Sopenharmony_ci	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
213762306a36Sopenharmony_ci
213862306a36Sopenharmony_ci	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
213962306a36Sopenharmony_ci	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
214062306a36Sopenharmony_ci	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
214162306a36Sopenharmony_ci	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
214262306a36Sopenharmony_ci	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
214362306a36Sopenharmony_ci	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
214462306a36Sopenharmony_ci	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
214562306a36Sopenharmony_ci	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
214662306a36Sopenharmony_ci	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
214762306a36Sopenharmony_ci	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
214862306a36Sopenharmony_ci	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
214962306a36Sopenharmony_ci	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
215062306a36Sopenharmony_ci
215162306a36Sopenharmony_ci	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
215262306a36Sopenharmony_ci	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
215362306a36Sopenharmony_ci
215462306a36Sopenharmony_ci	{ SYS_DESC(SYS_ACCDATA_EL1), undef_access },
215562306a36Sopenharmony_ci
215662306a36Sopenharmony_ci	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
215762306a36Sopenharmony_ci
215862306a36Sopenharmony_ci	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
215962306a36Sopenharmony_ci
216062306a36Sopenharmony_ci	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
216162306a36Sopenharmony_ci	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
216262306a36Sopenharmony_ci	  .set_user = set_clidr },
216362306a36Sopenharmony_ci	{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
216462306a36Sopenharmony_ci	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
216562306a36Sopenharmony_ci	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
216662306a36Sopenharmony_ci	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
216762306a36Sopenharmony_ci	{ SYS_DESC(SYS_SVCR), undef_access },
216862306a36Sopenharmony_ci
216962306a36Sopenharmony_ci	{ PMU_SYS_REG(PMCR_EL0), .access = access_pmcr,
217062306a36Sopenharmony_ci	  .reset = reset_pmcr, .reg = PMCR_EL0 },
217162306a36Sopenharmony_ci	{ PMU_SYS_REG(PMCNTENSET_EL0),
217262306a36Sopenharmony_ci	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
217362306a36Sopenharmony_ci	{ PMU_SYS_REG(PMCNTENCLR_EL0),
217462306a36Sopenharmony_ci	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
217562306a36Sopenharmony_ci	{ PMU_SYS_REG(PMOVSCLR_EL0),
217662306a36Sopenharmony_ci	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
217762306a36Sopenharmony_ci	/*
217862306a36Sopenharmony_ci	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
217962306a36Sopenharmony_ci	 * previously (and pointlessly) advertised in the past...
218062306a36Sopenharmony_ci	 */
218162306a36Sopenharmony_ci	{ PMU_SYS_REG(PMSWINC_EL0),
218262306a36Sopenharmony_ci	  .get_user = get_raz_reg, .set_user = set_wi_reg,
218362306a36Sopenharmony_ci	  .access = access_pmswinc, .reset = NULL },
218462306a36Sopenharmony_ci	{ PMU_SYS_REG(PMSELR_EL0),
218562306a36Sopenharmony_ci	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
218662306a36Sopenharmony_ci	{ PMU_SYS_REG(PMCEID0_EL0),
218762306a36Sopenharmony_ci	  .access = access_pmceid, .reset = NULL },
218862306a36Sopenharmony_ci	{ PMU_SYS_REG(PMCEID1_EL0),
218962306a36Sopenharmony_ci	  .access = access_pmceid, .reset = NULL },
219062306a36Sopenharmony_ci	{ PMU_SYS_REG(PMCCNTR_EL0),
219162306a36Sopenharmony_ci	  .access = access_pmu_evcntr, .reset = reset_unknown,
219262306a36Sopenharmony_ci	  .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
219362306a36Sopenharmony_ci	{ PMU_SYS_REG(PMXEVTYPER_EL0),
219462306a36Sopenharmony_ci	  .access = access_pmu_evtyper, .reset = NULL },
219562306a36Sopenharmony_ci	{ PMU_SYS_REG(PMXEVCNTR_EL0),
219662306a36Sopenharmony_ci	  .access = access_pmu_evcntr, .reset = NULL },
219762306a36Sopenharmony_ci	/*
219862306a36Sopenharmony_ci	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
219962306a36Sopenharmony_ci	 * in 32bit mode. Here we choose to reset it as zero for consistency.
220062306a36Sopenharmony_ci	 */
220162306a36Sopenharmony_ci	{ PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
220262306a36Sopenharmony_ci	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
220362306a36Sopenharmony_ci	{ PMU_SYS_REG(PMOVSSET_EL0),
220462306a36Sopenharmony_ci	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
220562306a36Sopenharmony_ci
220662306a36Sopenharmony_ci	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
220762306a36Sopenharmony_ci	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
220862306a36Sopenharmony_ci	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
220962306a36Sopenharmony_ci
221062306a36Sopenharmony_ci	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
221162306a36Sopenharmony_ci
221262306a36Sopenharmony_ci	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
221362306a36Sopenharmony_ci	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
221462306a36Sopenharmony_ci	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
221562306a36Sopenharmony_ci	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
221662306a36Sopenharmony_ci	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
221762306a36Sopenharmony_ci	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
221862306a36Sopenharmony_ci	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
221962306a36Sopenharmony_ci	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
222062306a36Sopenharmony_ci	AMU_AMEVCNTR0_EL0(0),
222162306a36Sopenharmony_ci	AMU_AMEVCNTR0_EL0(1),
222262306a36Sopenharmony_ci	AMU_AMEVCNTR0_EL0(2),
222362306a36Sopenharmony_ci	AMU_AMEVCNTR0_EL0(3),
222462306a36Sopenharmony_ci	AMU_AMEVCNTR0_EL0(4),
222562306a36Sopenharmony_ci	AMU_AMEVCNTR0_EL0(5),
222662306a36Sopenharmony_ci	AMU_AMEVCNTR0_EL0(6),
222762306a36Sopenharmony_ci	AMU_AMEVCNTR0_EL0(7),
222862306a36Sopenharmony_ci	AMU_AMEVCNTR0_EL0(8),
222962306a36Sopenharmony_ci	AMU_AMEVCNTR0_EL0(9),
223062306a36Sopenharmony_ci	AMU_AMEVCNTR0_EL0(10),
223162306a36Sopenharmony_ci	AMU_AMEVCNTR0_EL0(11),
223262306a36Sopenharmony_ci	AMU_AMEVCNTR0_EL0(12),
223362306a36Sopenharmony_ci	AMU_AMEVCNTR0_EL0(13),
223462306a36Sopenharmony_ci	AMU_AMEVCNTR0_EL0(14),
223562306a36Sopenharmony_ci	AMU_AMEVCNTR0_EL0(15),
223662306a36Sopenharmony_ci	AMU_AMEVTYPER0_EL0(0),
223762306a36Sopenharmony_ci	AMU_AMEVTYPER0_EL0(1),
223862306a36Sopenharmony_ci	AMU_AMEVTYPER0_EL0(2),
223962306a36Sopenharmony_ci	AMU_AMEVTYPER0_EL0(3),
224062306a36Sopenharmony_ci	AMU_AMEVTYPER0_EL0(4),
224162306a36Sopenharmony_ci	AMU_AMEVTYPER0_EL0(5),
224262306a36Sopenharmony_ci	AMU_AMEVTYPER0_EL0(6),
224362306a36Sopenharmony_ci	AMU_AMEVTYPER0_EL0(7),
224462306a36Sopenharmony_ci	AMU_AMEVTYPER0_EL0(8),
224562306a36Sopenharmony_ci	AMU_AMEVTYPER0_EL0(9),
224662306a36Sopenharmony_ci	AMU_AMEVTYPER0_EL0(10),
224762306a36Sopenharmony_ci	AMU_AMEVTYPER0_EL0(11),
224862306a36Sopenharmony_ci	AMU_AMEVTYPER0_EL0(12),
224962306a36Sopenharmony_ci	AMU_AMEVTYPER0_EL0(13),
225062306a36Sopenharmony_ci	AMU_AMEVTYPER0_EL0(14),
225162306a36Sopenharmony_ci	AMU_AMEVTYPER0_EL0(15),
225262306a36Sopenharmony_ci	AMU_AMEVCNTR1_EL0(0),
225362306a36Sopenharmony_ci	AMU_AMEVCNTR1_EL0(1),
225462306a36Sopenharmony_ci	AMU_AMEVCNTR1_EL0(2),
225562306a36Sopenharmony_ci	AMU_AMEVCNTR1_EL0(3),
225662306a36Sopenharmony_ci	AMU_AMEVCNTR1_EL0(4),
225762306a36Sopenharmony_ci	AMU_AMEVCNTR1_EL0(5),
225862306a36Sopenharmony_ci	AMU_AMEVCNTR1_EL0(6),
225962306a36Sopenharmony_ci	AMU_AMEVCNTR1_EL0(7),
226062306a36Sopenharmony_ci	AMU_AMEVCNTR1_EL0(8),
226162306a36Sopenharmony_ci	AMU_AMEVCNTR1_EL0(9),
226262306a36Sopenharmony_ci	AMU_AMEVCNTR1_EL0(10),
226362306a36Sopenharmony_ci	AMU_AMEVCNTR1_EL0(11),
226462306a36Sopenharmony_ci	AMU_AMEVCNTR1_EL0(12),
226562306a36Sopenharmony_ci	AMU_AMEVCNTR1_EL0(13),
226662306a36Sopenharmony_ci	AMU_AMEVCNTR1_EL0(14),
226762306a36Sopenharmony_ci	AMU_AMEVCNTR1_EL0(15),
226862306a36Sopenharmony_ci	AMU_AMEVTYPER1_EL0(0),
226962306a36Sopenharmony_ci	AMU_AMEVTYPER1_EL0(1),
227062306a36Sopenharmony_ci	AMU_AMEVTYPER1_EL0(2),
227162306a36Sopenharmony_ci	AMU_AMEVTYPER1_EL0(3),
227262306a36Sopenharmony_ci	AMU_AMEVTYPER1_EL0(4),
227362306a36Sopenharmony_ci	AMU_AMEVTYPER1_EL0(5),
227462306a36Sopenharmony_ci	AMU_AMEVTYPER1_EL0(6),
227562306a36Sopenharmony_ci	AMU_AMEVTYPER1_EL0(7),
227662306a36Sopenharmony_ci	AMU_AMEVTYPER1_EL0(8),
227762306a36Sopenharmony_ci	AMU_AMEVTYPER1_EL0(9),
227862306a36Sopenharmony_ci	AMU_AMEVTYPER1_EL0(10),
227962306a36Sopenharmony_ci	AMU_AMEVTYPER1_EL0(11),
228062306a36Sopenharmony_ci	AMU_AMEVTYPER1_EL0(12),
228162306a36Sopenharmony_ci	AMU_AMEVTYPER1_EL0(13),
228262306a36Sopenharmony_ci	AMU_AMEVTYPER1_EL0(14),
228362306a36Sopenharmony_ci	AMU_AMEVTYPER1_EL0(15),
228462306a36Sopenharmony_ci
228562306a36Sopenharmony_ci	{ SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
228662306a36Sopenharmony_ci	{ SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
228762306a36Sopenharmony_ci	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
228862306a36Sopenharmony_ci	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
228962306a36Sopenharmony_ci	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
229062306a36Sopenharmony_ci
229162306a36Sopenharmony_ci	/* PMEVCNTRn_EL0 */
229262306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(0),
229362306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(1),
229462306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(2),
229562306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(3),
229662306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(4),
229762306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(5),
229862306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(6),
229962306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(7),
230062306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(8),
230162306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(9),
230262306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(10),
230362306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(11),
230462306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(12),
230562306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(13),
230662306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(14),
230762306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(15),
230862306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(16),
230962306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(17),
231062306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(18),
231162306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(19),
231262306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(20),
231362306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(21),
231462306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(22),
231562306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(23),
231662306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(24),
231762306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(25),
231862306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(26),
231962306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(27),
232062306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(28),
232162306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(29),
232262306a36Sopenharmony_ci	PMU_PMEVCNTR_EL0(30),
232362306a36Sopenharmony_ci	/* PMEVTYPERn_EL0 */
232462306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(0),
232562306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(1),
232662306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(2),
232762306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(3),
232862306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(4),
232962306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(5),
233062306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(6),
233162306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(7),
233262306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(8),
233362306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(9),
233462306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(10),
233562306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(11),
233662306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(12),
233762306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(13),
233862306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(14),
233962306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(15),
234062306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(16),
234162306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(17),
234262306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(18),
234362306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(19),
234462306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(20),
234562306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(21),
234662306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(22),
234762306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(23),
234862306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(24),
234962306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(25),
235062306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(26),
235162306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(27),
235262306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(28),
235362306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(29),
235462306a36Sopenharmony_ci	PMU_PMEVTYPER_EL0(30),
235562306a36Sopenharmony_ci	/*
235662306a36Sopenharmony_ci	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
235762306a36Sopenharmony_ci	 * in 32bit mode. Here we choose to reset it as zero for consistency.
235862306a36Sopenharmony_ci	 */
235962306a36Sopenharmony_ci	{ PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
236062306a36Sopenharmony_ci	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
236162306a36Sopenharmony_ci
236262306a36Sopenharmony_ci	EL2_REG(VPIDR_EL2, access_rw, reset_unknown, 0),
236362306a36Sopenharmony_ci	EL2_REG(VMPIDR_EL2, access_rw, reset_unknown, 0),
236462306a36Sopenharmony_ci	EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
236562306a36Sopenharmony_ci	EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
236662306a36Sopenharmony_ci	EL2_REG(HCR_EL2, access_rw, reset_val, 0),
236762306a36Sopenharmony_ci	EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
236862306a36Sopenharmony_ci	EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
236962306a36Sopenharmony_ci	EL2_REG(HSTR_EL2, access_rw, reset_val, 0),
237062306a36Sopenharmony_ci	EL2_REG(HFGRTR_EL2, access_rw, reset_val, 0),
237162306a36Sopenharmony_ci	EL2_REG(HFGWTR_EL2, access_rw, reset_val, 0),
237262306a36Sopenharmony_ci	EL2_REG(HFGITR_EL2, access_rw, reset_val, 0),
237362306a36Sopenharmony_ci	EL2_REG(HACR_EL2, access_rw, reset_val, 0),
237462306a36Sopenharmony_ci
237562306a36Sopenharmony_ci	EL2_REG(HCRX_EL2, access_rw, reset_val, 0),
237662306a36Sopenharmony_ci
237762306a36Sopenharmony_ci	EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
237862306a36Sopenharmony_ci	EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
237962306a36Sopenharmony_ci	EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
238062306a36Sopenharmony_ci	EL2_REG(VTTBR_EL2, access_rw, reset_val, 0),
238162306a36Sopenharmony_ci	EL2_REG(VTCR_EL2, access_rw, reset_val, 0),
238262306a36Sopenharmony_ci
238362306a36Sopenharmony_ci	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
238462306a36Sopenharmony_ci	EL2_REG(HDFGRTR_EL2, access_rw, reset_val, 0),
238562306a36Sopenharmony_ci	EL2_REG(HDFGWTR_EL2, access_rw, reset_val, 0),
238662306a36Sopenharmony_ci	EL2_REG(SPSR_EL2, access_rw, reset_val, 0),
238762306a36Sopenharmony_ci	EL2_REG(ELR_EL2, access_rw, reset_val, 0),
238862306a36Sopenharmony_ci	{ SYS_DESC(SYS_SP_EL1), access_sp_el1},
238962306a36Sopenharmony_ci
239062306a36Sopenharmony_ci	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
239162306a36Sopenharmony_ci	EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
239262306a36Sopenharmony_ci	EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
239362306a36Sopenharmony_ci	EL2_REG(ESR_EL2, access_rw, reset_val, 0),
239462306a36Sopenharmony_ci	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
239562306a36Sopenharmony_ci
239662306a36Sopenharmony_ci	EL2_REG(FAR_EL2, access_rw, reset_val, 0),
239762306a36Sopenharmony_ci	EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
239862306a36Sopenharmony_ci
239962306a36Sopenharmony_ci	EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
240062306a36Sopenharmony_ci	EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
240162306a36Sopenharmony_ci
240262306a36Sopenharmony_ci	EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
240362306a36Sopenharmony_ci	EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
240462306a36Sopenharmony_ci	{ SYS_DESC(SYS_RMR_EL2), trap_undef },
240562306a36Sopenharmony_ci
240662306a36Sopenharmony_ci	EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
240762306a36Sopenharmony_ci	EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
240862306a36Sopenharmony_ci
240962306a36Sopenharmony_ci	EL2_REG(CNTVOFF_EL2, access_rw, reset_val, 0),
241062306a36Sopenharmony_ci	EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
241162306a36Sopenharmony_ci
241262306a36Sopenharmony_ci	EL12_REG(SCTLR, access_vm_reg, reset_val, 0x00C50078),
241362306a36Sopenharmony_ci	EL12_REG(CPACR, access_rw, reset_val, 0),
241462306a36Sopenharmony_ci	EL12_REG(TTBR0, access_vm_reg, reset_unknown, 0),
241562306a36Sopenharmony_ci	EL12_REG(TTBR1, access_vm_reg, reset_unknown, 0),
241662306a36Sopenharmony_ci	EL12_REG(TCR, access_vm_reg, reset_val, 0),
241762306a36Sopenharmony_ci	{ SYS_DESC(SYS_SPSR_EL12), access_spsr},
241862306a36Sopenharmony_ci	{ SYS_DESC(SYS_ELR_EL12), access_elr},
241962306a36Sopenharmony_ci	EL12_REG(AFSR0, access_vm_reg, reset_unknown, 0),
242062306a36Sopenharmony_ci	EL12_REG(AFSR1, access_vm_reg, reset_unknown, 0),
242162306a36Sopenharmony_ci	EL12_REG(ESR, access_vm_reg, reset_unknown, 0),
242262306a36Sopenharmony_ci	EL12_REG(FAR, access_vm_reg, reset_unknown, 0),
242362306a36Sopenharmony_ci	EL12_REG(MAIR, access_vm_reg, reset_unknown, 0),
242462306a36Sopenharmony_ci	EL12_REG(AMAIR, access_vm_reg, reset_amair_el1, 0),
242562306a36Sopenharmony_ci	EL12_REG(VBAR, access_rw, reset_val, 0),
242662306a36Sopenharmony_ci	EL12_REG(CONTEXTIDR, access_vm_reg, reset_val, 0),
242762306a36Sopenharmony_ci	EL12_REG(CNTKCTL, access_rw, reset_val, 0),
242862306a36Sopenharmony_ci
242962306a36Sopenharmony_ci	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
243062306a36Sopenharmony_ci};
243162306a36Sopenharmony_ci
243262306a36Sopenharmony_cistatic const struct sys_reg_desc *first_idreg;
243362306a36Sopenharmony_ci
243462306a36Sopenharmony_cistatic bool trap_dbgdidr(struct kvm_vcpu *vcpu,
243562306a36Sopenharmony_ci			struct sys_reg_params *p,
243662306a36Sopenharmony_ci			const struct sys_reg_desc *r)
243762306a36Sopenharmony_ci{
243862306a36Sopenharmony_ci	if (p->is_write) {
243962306a36Sopenharmony_ci		return ignore_write(vcpu, p);
244062306a36Sopenharmony_ci	} else {
244162306a36Sopenharmony_ci		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
244262306a36Sopenharmony_ci		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
244362306a36Sopenharmony_ci		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL1_EL3_SHIFT);
244462306a36Sopenharmony_ci
244562306a36Sopenharmony_ci		p->regval = ((((dfr >> ID_AA64DFR0_EL1_WRPs_SHIFT) & 0xf) << 28) |
244662306a36Sopenharmony_ci			     (((dfr >> ID_AA64DFR0_EL1_BRPs_SHIFT) & 0xf) << 24) |
244762306a36Sopenharmony_ci			     (((dfr >> ID_AA64DFR0_EL1_CTX_CMPs_SHIFT) & 0xf) << 20)
244862306a36Sopenharmony_ci			     | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
244962306a36Sopenharmony_ci		return true;
245062306a36Sopenharmony_ci	}
245162306a36Sopenharmony_ci}
245262306a36Sopenharmony_ci
245362306a36Sopenharmony_ci/*
245462306a36Sopenharmony_ci * AArch32 debug register mappings
245562306a36Sopenharmony_ci *
245662306a36Sopenharmony_ci * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
245762306a36Sopenharmony_ci * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
245862306a36Sopenharmony_ci *
245962306a36Sopenharmony_ci * None of the other registers share their location, so treat them as
246062306a36Sopenharmony_ci * if they were 64bit.
246162306a36Sopenharmony_ci */
246262306a36Sopenharmony_ci#define DBG_BCR_BVR_WCR_WVR(n)						      \
246362306a36Sopenharmony_ci	/* DBGBVRn */							      \
246462306a36Sopenharmony_ci	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
246562306a36Sopenharmony_ci	/* DBGBCRn */							      \
246662306a36Sopenharmony_ci	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
246762306a36Sopenharmony_ci	/* DBGWVRn */							      \
246862306a36Sopenharmony_ci	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
246962306a36Sopenharmony_ci	/* DBGWCRn */							      \
247062306a36Sopenharmony_ci	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
247162306a36Sopenharmony_ci
247262306a36Sopenharmony_ci#define DBGBXVR(n)							      \
247362306a36Sopenharmony_ci	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
247462306a36Sopenharmony_ci
247562306a36Sopenharmony_ci/*
247662306a36Sopenharmony_ci * Trapped cp14 registers. We generally ignore most of the external
247762306a36Sopenharmony_ci * debug, on the principle that they don't really make sense to a
247862306a36Sopenharmony_ci * guest. Revisit this one day, would this principle change.
247962306a36Sopenharmony_ci */
248062306a36Sopenharmony_cistatic const struct sys_reg_desc cp14_regs[] = {
248162306a36Sopenharmony_ci	/* DBGDIDR */
248262306a36Sopenharmony_ci	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
248362306a36Sopenharmony_ci	/* DBGDTRRXext */
248462306a36Sopenharmony_ci	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
248562306a36Sopenharmony_ci
248662306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR(0),
248762306a36Sopenharmony_ci	/* DBGDSCRint */
248862306a36Sopenharmony_ci	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
248962306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR(1),
249062306a36Sopenharmony_ci	/* DBGDCCINT */
249162306a36Sopenharmony_ci	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
249262306a36Sopenharmony_ci	/* DBGDSCRext */
249362306a36Sopenharmony_ci	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
249462306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR(2),
249562306a36Sopenharmony_ci	/* DBGDTR[RT]Xint */
249662306a36Sopenharmony_ci	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
249762306a36Sopenharmony_ci	/* DBGDTR[RT]Xext */
249862306a36Sopenharmony_ci	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
249962306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR(3),
250062306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR(4),
250162306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR(5),
250262306a36Sopenharmony_ci	/* DBGWFAR */
250362306a36Sopenharmony_ci	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
250462306a36Sopenharmony_ci	/* DBGOSECCR */
250562306a36Sopenharmony_ci	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
250662306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR(6),
250762306a36Sopenharmony_ci	/* DBGVCR */
250862306a36Sopenharmony_ci	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
250962306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR(7),
251062306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR(8),
251162306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR(9),
251262306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR(10),
251362306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR(11),
251462306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR(12),
251562306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR(13),
251662306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR(14),
251762306a36Sopenharmony_ci	DBG_BCR_BVR_WCR_WVR(15),
251862306a36Sopenharmony_ci
251962306a36Sopenharmony_ci	/* DBGDRAR (32bit) */
252062306a36Sopenharmony_ci	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
252162306a36Sopenharmony_ci
252262306a36Sopenharmony_ci	DBGBXVR(0),
252362306a36Sopenharmony_ci	/* DBGOSLAR */
252462306a36Sopenharmony_ci	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
252562306a36Sopenharmony_ci	DBGBXVR(1),
252662306a36Sopenharmony_ci	/* DBGOSLSR */
252762306a36Sopenharmony_ci	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
252862306a36Sopenharmony_ci	DBGBXVR(2),
252962306a36Sopenharmony_ci	DBGBXVR(3),
253062306a36Sopenharmony_ci	/* DBGOSDLR */
253162306a36Sopenharmony_ci	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
253262306a36Sopenharmony_ci	DBGBXVR(4),
253362306a36Sopenharmony_ci	/* DBGPRCR */
253462306a36Sopenharmony_ci	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
253562306a36Sopenharmony_ci	DBGBXVR(5),
253662306a36Sopenharmony_ci	DBGBXVR(6),
253762306a36Sopenharmony_ci	DBGBXVR(7),
253862306a36Sopenharmony_ci	DBGBXVR(8),
253962306a36Sopenharmony_ci	DBGBXVR(9),
254062306a36Sopenharmony_ci	DBGBXVR(10),
254162306a36Sopenharmony_ci	DBGBXVR(11),
254262306a36Sopenharmony_ci	DBGBXVR(12),
254362306a36Sopenharmony_ci	DBGBXVR(13),
254462306a36Sopenharmony_ci	DBGBXVR(14),
254562306a36Sopenharmony_ci	DBGBXVR(15),
254662306a36Sopenharmony_ci
254762306a36Sopenharmony_ci	/* DBGDSAR (32bit) */
254862306a36Sopenharmony_ci	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
254962306a36Sopenharmony_ci
255062306a36Sopenharmony_ci	/* DBGDEVID2 */
255162306a36Sopenharmony_ci	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
255262306a36Sopenharmony_ci	/* DBGDEVID1 */
255362306a36Sopenharmony_ci	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
255462306a36Sopenharmony_ci	/* DBGDEVID */
255562306a36Sopenharmony_ci	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
255662306a36Sopenharmony_ci	/* DBGCLAIMSET */
255762306a36Sopenharmony_ci	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
255862306a36Sopenharmony_ci	/* DBGCLAIMCLR */
255962306a36Sopenharmony_ci	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
256062306a36Sopenharmony_ci	/* DBGAUTHSTATUS */
256162306a36Sopenharmony_ci	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
256262306a36Sopenharmony_ci};
256362306a36Sopenharmony_ci
256462306a36Sopenharmony_ci/* Trapped cp14 64bit registers */
256562306a36Sopenharmony_cistatic const struct sys_reg_desc cp14_64_regs[] = {
256662306a36Sopenharmony_ci	/* DBGDRAR (64bit) */
256762306a36Sopenharmony_ci	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
256862306a36Sopenharmony_ci
256962306a36Sopenharmony_ci	/* DBGDSAR (64bit) */
257062306a36Sopenharmony_ci	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
257162306a36Sopenharmony_ci};
257262306a36Sopenharmony_ci
257362306a36Sopenharmony_ci#define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
257462306a36Sopenharmony_ci	AA32(_map),							\
257562306a36Sopenharmony_ci	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
257662306a36Sopenharmony_ci	.visibility = pmu_visibility
257762306a36Sopenharmony_ci
257862306a36Sopenharmony_ci/* Macro to expand the PMEVCNTRn register */
257962306a36Sopenharmony_ci#define PMU_PMEVCNTR(n)							\
258062306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
258162306a36Sopenharmony_ci	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
258262306a36Sopenharmony_ci	  .access = access_pmu_evcntr }
258362306a36Sopenharmony_ci
258462306a36Sopenharmony_ci/* Macro to expand the PMEVTYPERn register */
258562306a36Sopenharmony_ci#define PMU_PMEVTYPER(n)						\
258662306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
258762306a36Sopenharmony_ci	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
258862306a36Sopenharmony_ci	  .access = access_pmu_evtyper }
258962306a36Sopenharmony_ci/*
259062306a36Sopenharmony_ci * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
259162306a36Sopenharmony_ci * depending on the way they are accessed (as a 32bit or a 64bit
259262306a36Sopenharmony_ci * register).
259362306a36Sopenharmony_ci */
259462306a36Sopenharmony_cistatic const struct sys_reg_desc cp15_regs[] = {
259562306a36Sopenharmony_ci	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
259662306a36Sopenharmony_ci	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
259762306a36Sopenharmony_ci	/* ACTLR */
259862306a36Sopenharmony_ci	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
259962306a36Sopenharmony_ci	/* ACTLR2 */
260062306a36Sopenharmony_ci	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
260162306a36Sopenharmony_ci	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
260262306a36Sopenharmony_ci	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
260362306a36Sopenharmony_ci	/* TTBCR */
260462306a36Sopenharmony_ci	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
260562306a36Sopenharmony_ci	/* TTBCR2 */
260662306a36Sopenharmony_ci	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
260762306a36Sopenharmony_ci	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
260862306a36Sopenharmony_ci	/* DFSR */
260962306a36Sopenharmony_ci	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
261062306a36Sopenharmony_ci	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
261162306a36Sopenharmony_ci	/* ADFSR */
261262306a36Sopenharmony_ci	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
261362306a36Sopenharmony_ci	/* AIFSR */
261462306a36Sopenharmony_ci	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
261562306a36Sopenharmony_ci	/* DFAR */
261662306a36Sopenharmony_ci	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
261762306a36Sopenharmony_ci	/* IFAR */
261862306a36Sopenharmony_ci	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
261962306a36Sopenharmony_ci
262062306a36Sopenharmony_ci	/*
262162306a36Sopenharmony_ci	 * DC{C,I,CI}SW operations:
262262306a36Sopenharmony_ci	 */
262362306a36Sopenharmony_ci	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
262462306a36Sopenharmony_ci	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
262562306a36Sopenharmony_ci	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
262662306a36Sopenharmony_ci
262762306a36Sopenharmony_ci	/* PMU */
262862306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
262962306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
263062306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
263162306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
263262306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
263362306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
263462306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
263562306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
263662306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
263762306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
263862306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
263962306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
264062306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
264162306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
264262306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
264362306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
264462306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
264562306a36Sopenharmony_ci	/* PMMIR */
264662306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
264762306a36Sopenharmony_ci
264862306a36Sopenharmony_ci	/* PRRR/MAIR0 */
264962306a36Sopenharmony_ci	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
265062306a36Sopenharmony_ci	/* NMRR/MAIR1 */
265162306a36Sopenharmony_ci	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
265262306a36Sopenharmony_ci	/* AMAIR0 */
265362306a36Sopenharmony_ci	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
265462306a36Sopenharmony_ci	/* AMAIR1 */
265562306a36Sopenharmony_ci	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
265662306a36Sopenharmony_ci
265762306a36Sopenharmony_ci	/* ICC_SRE */
265862306a36Sopenharmony_ci	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
265962306a36Sopenharmony_ci
266062306a36Sopenharmony_ci	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
266162306a36Sopenharmony_ci
266262306a36Sopenharmony_ci	/* Arch Tmers */
266362306a36Sopenharmony_ci	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
266462306a36Sopenharmony_ci	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
266562306a36Sopenharmony_ci
266662306a36Sopenharmony_ci	/* PMEVCNTRn */
266762306a36Sopenharmony_ci	PMU_PMEVCNTR(0),
266862306a36Sopenharmony_ci	PMU_PMEVCNTR(1),
266962306a36Sopenharmony_ci	PMU_PMEVCNTR(2),
267062306a36Sopenharmony_ci	PMU_PMEVCNTR(3),
267162306a36Sopenharmony_ci	PMU_PMEVCNTR(4),
267262306a36Sopenharmony_ci	PMU_PMEVCNTR(5),
267362306a36Sopenharmony_ci	PMU_PMEVCNTR(6),
267462306a36Sopenharmony_ci	PMU_PMEVCNTR(7),
267562306a36Sopenharmony_ci	PMU_PMEVCNTR(8),
267662306a36Sopenharmony_ci	PMU_PMEVCNTR(9),
267762306a36Sopenharmony_ci	PMU_PMEVCNTR(10),
267862306a36Sopenharmony_ci	PMU_PMEVCNTR(11),
267962306a36Sopenharmony_ci	PMU_PMEVCNTR(12),
268062306a36Sopenharmony_ci	PMU_PMEVCNTR(13),
268162306a36Sopenharmony_ci	PMU_PMEVCNTR(14),
268262306a36Sopenharmony_ci	PMU_PMEVCNTR(15),
268362306a36Sopenharmony_ci	PMU_PMEVCNTR(16),
268462306a36Sopenharmony_ci	PMU_PMEVCNTR(17),
268562306a36Sopenharmony_ci	PMU_PMEVCNTR(18),
268662306a36Sopenharmony_ci	PMU_PMEVCNTR(19),
268762306a36Sopenharmony_ci	PMU_PMEVCNTR(20),
268862306a36Sopenharmony_ci	PMU_PMEVCNTR(21),
268962306a36Sopenharmony_ci	PMU_PMEVCNTR(22),
269062306a36Sopenharmony_ci	PMU_PMEVCNTR(23),
269162306a36Sopenharmony_ci	PMU_PMEVCNTR(24),
269262306a36Sopenharmony_ci	PMU_PMEVCNTR(25),
269362306a36Sopenharmony_ci	PMU_PMEVCNTR(26),
269462306a36Sopenharmony_ci	PMU_PMEVCNTR(27),
269562306a36Sopenharmony_ci	PMU_PMEVCNTR(28),
269662306a36Sopenharmony_ci	PMU_PMEVCNTR(29),
269762306a36Sopenharmony_ci	PMU_PMEVCNTR(30),
269862306a36Sopenharmony_ci	/* PMEVTYPERn */
269962306a36Sopenharmony_ci	PMU_PMEVTYPER(0),
270062306a36Sopenharmony_ci	PMU_PMEVTYPER(1),
270162306a36Sopenharmony_ci	PMU_PMEVTYPER(2),
270262306a36Sopenharmony_ci	PMU_PMEVTYPER(3),
270362306a36Sopenharmony_ci	PMU_PMEVTYPER(4),
270462306a36Sopenharmony_ci	PMU_PMEVTYPER(5),
270562306a36Sopenharmony_ci	PMU_PMEVTYPER(6),
270662306a36Sopenharmony_ci	PMU_PMEVTYPER(7),
270762306a36Sopenharmony_ci	PMU_PMEVTYPER(8),
270862306a36Sopenharmony_ci	PMU_PMEVTYPER(9),
270962306a36Sopenharmony_ci	PMU_PMEVTYPER(10),
271062306a36Sopenharmony_ci	PMU_PMEVTYPER(11),
271162306a36Sopenharmony_ci	PMU_PMEVTYPER(12),
271262306a36Sopenharmony_ci	PMU_PMEVTYPER(13),
271362306a36Sopenharmony_ci	PMU_PMEVTYPER(14),
271462306a36Sopenharmony_ci	PMU_PMEVTYPER(15),
271562306a36Sopenharmony_ci	PMU_PMEVTYPER(16),
271662306a36Sopenharmony_ci	PMU_PMEVTYPER(17),
271762306a36Sopenharmony_ci	PMU_PMEVTYPER(18),
271862306a36Sopenharmony_ci	PMU_PMEVTYPER(19),
271962306a36Sopenharmony_ci	PMU_PMEVTYPER(20),
272062306a36Sopenharmony_ci	PMU_PMEVTYPER(21),
272162306a36Sopenharmony_ci	PMU_PMEVTYPER(22),
272262306a36Sopenharmony_ci	PMU_PMEVTYPER(23),
272362306a36Sopenharmony_ci	PMU_PMEVTYPER(24),
272462306a36Sopenharmony_ci	PMU_PMEVTYPER(25),
272562306a36Sopenharmony_ci	PMU_PMEVTYPER(26),
272662306a36Sopenharmony_ci	PMU_PMEVTYPER(27),
272762306a36Sopenharmony_ci	PMU_PMEVTYPER(28),
272862306a36Sopenharmony_ci	PMU_PMEVTYPER(29),
272962306a36Sopenharmony_ci	PMU_PMEVTYPER(30),
273062306a36Sopenharmony_ci	/* PMCCFILTR */
273162306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
273262306a36Sopenharmony_ci
273362306a36Sopenharmony_ci	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
273462306a36Sopenharmony_ci	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
273562306a36Sopenharmony_ci
273662306a36Sopenharmony_ci	/* CCSIDR2 */
273762306a36Sopenharmony_ci	{ Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
273862306a36Sopenharmony_ci
273962306a36Sopenharmony_ci	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
274062306a36Sopenharmony_ci};
274162306a36Sopenharmony_ci
274262306a36Sopenharmony_cistatic const struct sys_reg_desc cp15_64_regs[] = {
274362306a36Sopenharmony_ci	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
274462306a36Sopenharmony_ci	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
274562306a36Sopenharmony_ci	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
274662306a36Sopenharmony_ci	{ SYS_DESC(SYS_AARCH32_CNTPCT),	      access_arch_timer },
274762306a36Sopenharmony_ci	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
274862306a36Sopenharmony_ci	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
274962306a36Sopenharmony_ci	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
275062306a36Sopenharmony_ci	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
275162306a36Sopenharmony_ci	{ SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
275262306a36Sopenharmony_ci};
275362306a36Sopenharmony_ci
275462306a36Sopenharmony_cistatic bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
275562306a36Sopenharmony_ci			       bool is_32)
275662306a36Sopenharmony_ci{
275762306a36Sopenharmony_ci	unsigned int i;
275862306a36Sopenharmony_ci
275962306a36Sopenharmony_ci	for (i = 0; i < n; i++) {
276062306a36Sopenharmony_ci		if (!is_32 && table[i].reg && !table[i].reset) {
276162306a36Sopenharmony_ci			kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
276262306a36Sopenharmony_ci			return false;
276362306a36Sopenharmony_ci		}
276462306a36Sopenharmony_ci
276562306a36Sopenharmony_ci		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
276662306a36Sopenharmony_ci			kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
276762306a36Sopenharmony_ci			return false;
276862306a36Sopenharmony_ci		}
276962306a36Sopenharmony_ci	}
277062306a36Sopenharmony_ci
277162306a36Sopenharmony_ci	return true;
277262306a36Sopenharmony_ci}
277362306a36Sopenharmony_ci
277462306a36Sopenharmony_ciint kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
277562306a36Sopenharmony_ci{
277662306a36Sopenharmony_ci	kvm_inject_undefined(vcpu);
277762306a36Sopenharmony_ci	return 1;
277862306a36Sopenharmony_ci}
277962306a36Sopenharmony_ci
278062306a36Sopenharmony_cistatic void perform_access(struct kvm_vcpu *vcpu,
278162306a36Sopenharmony_ci			   struct sys_reg_params *params,
278262306a36Sopenharmony_ci			   const struct sys_reg_desc *r)
278362306a36Sopenharmony_ci{
278462306a36Sopenharmony_ci	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
278562306a36Sopenharmony_ci
278662306a36Sopenharmony_ci	/* Check for regs disabled by runtime config */
278762306a36Sopenharmony_ci	if (sysreg_hidden(vcpu, r)) {
278862306a36Sopenharmony_ci		kvm_inject_undefined(vcpu);
278962306a36Sopenharmony_ci		return;
279062306a36Sopenharmony_ci	}
279162306a36Sopenharmony_ci
279262306a36Sopenharmony_ci	/*
279362306a36Sopenharmony_ci	 * Not having an accessor means that we have configured a trap
279462306a36Sopenharmony_ci	 * that we don't know how to handle. This certainly qualifies
279562306a36Sopenharmony_ci	 * as a gross bug that should be fixed right away.
279662306a36Sopenharmony_ci	 */
279762306a36Sopenharmony_ci	BUG_ON(!r->access);
279862306a36Sopenharmony_ci
279962306a36Sopenharmony_ci	/* Skip instruction if instructed so */
280062306a36Sopenharmony_ci	if (likely(r->access(vcpu, params, r)))
280162306a36Sopenharmony_ci		kvm_incr_pc(vcpu);
280262306a36Sopenharmony_ci}
280362306a36Sopenharmony_ci
280462306a36Sopenharmony_ci/*
280562306a36Sopenharmony_ci * emulate_cp --  tries to match a sys_reg access in a handling table, and
280662306a36Sopenharmony_ci *                call the corresponding trap handler.
280762306a36Sopenharmony_ci *
280862306a36Sopenharmony_ci * @params: pointer to the descriptor of the access
280962306a36Sopenharmony_ci * @table: array of trap descriptors
281062306a36Sopenharmony_ci * @num: size of the trap descriptor array
281162306a36Sopenharmony_ci *
281262306a36Sopenharmony_ci * Return true if the access has been handled, false if not.
281362306a36Sopenharmony_ci */
281462306a36Sopenharmony_cistatic bool emulate_cp(struct kvm_vcpu *vcpu,
281562306a36Sopenharmony_ci		       struct sys_reg_params *params,
281662306a36Sopenharmony_ci		       const struct sys_reg_desc *table,
281762306a36Sopenharmony_ci		       size_t num)
281862306a36Sopenharmony_ci{
281962306a36Sopenharmony_ci	const struct sys_reg_desc *r;
282062306a36Sopenharmony_ci
282162306a36Sopenharmony_ci	if (!table)
282262306a36Sopenharmony_ci		return false;	/* Not handled */
282362306a36Sopenharmony_ci
282462306a36Sopenharmony_ci	r = find_reg(params, table, num);
282562306a36Sopenharmony_ci
282662306a36Sopenharmony_ci	if (r) {
282762306a36Sopenharmony_ci		perform_access(vcpu, params, r);
282862306a36Sopenharmony_ci		return true;
282962306a36Sopenharmony_ci	}
283062306a36Sopenharmony_ci
283162306a36Sopenharmony_ci	/* Not handled */
283262306a36Sopenharmony_ci	return false;
283362306a36Sopenharmony_ci}
283462306a36Sopenharmony_ci
283562306a36Sopenharmony_cistatic void unhandled_cp_access(struct kvm_vcpu *vcpu,
283662306a36Sopenharmony_ci				struct sys_reg_params *params)
283762306a36Sopenharmony_ci{
283862306a36Sopenharmony_ci	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
283962306a36Sopenharmony_ci	int cp = -1;
284062306a36Sopenharmony_ci
284162306a36Sopenharmony_ci	switch (esr_ec) {
284262306a36Sopenharmony_ci	case ESR_ELx_EC_CP15_32:
284362306a36Sopenharmony_ci	case ESR_ELx_EC_CP15_64:
284462306a36Sopenharmony_ci		cp = 15;
284562306a36Sopenharmony_ci		break;
284662306a36Sopenharmony_ci	case ESR_ELx_EC_CP14_MR:
284762306a36Sopenharmony_ci	case ESR_ELx_EC_CP14_64:
284862306a36Sopenharmony_ci		cp = 14;
284962306a36Sopenharmony_ci		break;
285062306a36Sopenharmony_ci	default:
285162306a36Sopenharmony_ci		WARN_ON(1);
285262306a36Sopenharmony_ci	}
285362306a36Sopenharmony_ci
285462306a36Sopenharmony_ci	print_sys_reg_msg(params,
285562306a36Sopenharmony_ci			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
285662306a36Sopenharmony_ci			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
285762306a36Sopenharmony_ci	kvm_inject_undefined(vcpu);
285862306a36Sopenharmony_ci}
285962306a36Sopenharmony_ci
286062306a36Sopenharmony_ci/**
286162306a36Sopenharmony_ci * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
286262306a36Sopenharmony_ci * @vcpu: The VCPU pointer
286362306a36Sopenharmony_ci * @run:  The kvm_run struct
286462306a36Sopenharmony_ci */
286562306a36Sopenharmony_cistatic int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
286662306a36Sopenharmony_ci			    const struct sys_reg_desc *global,
286762306a36Sopenharmony_ci			    size_t nr_global)
286862306a36Sopenharmony_ci{
286962306a36Sopenharmony_ci	struct sys_reg_params params;
287062306a36Sopenharmony_ci	u64 esr = kvm_vcpu_get_esr(vcpu);
287162306a36Sopenharmony_ci	int Rt = kvm_vcpu_sys_get_rt(vcpu);
287262306a36Sopenharmony_ci	int Rt2 = (esr >> 10) & 0x1f;
287362306a36Sopenharmony_ci
287462306a36Sopenharmony_ci	params.CRm = (esr >> 1) & 0xf;
287562306a36Sopenharmony_ci	params.is_write = ((esr & 1) == 0);
287662306a36Sopenharmony_ci
287762306a36Sopenharmony_ci	params.Op0 = 0;
287862306a36Sopenharmony_ci	params.Op1 = (esr >> 16) & 0xf;
287962306a36Sopenharmony_ci	params.Op2 = 0;
288062306a36Sopenharmony_ci	params.CRn = 0;
288162306a36Sopenharmony_ci
288262306a36Sopenharmony_ci	/*
288362306a36Sopenharmony_ci	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
288462306a36Sopenharmony_ci	 * backends between AArch32 and AArch64, we get away with it.
288562306a36Sopenharmony_ci	 */
288662306a36Sopenharmony_ci	if (params.is_write) {
288762306a36Sopenharmony_ci		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
288862306a36Sopenharmony_ci		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
288962306a36Sopenharmony_ci	}
289062306a36Sopenharmony_ci
289162306a36Sopenharmony_ci	/*
289262306a36Sopenharmony_ci	 * If the table contains a handler, handle the
289362306a36Sopenharmony_ci	 * potential register operation in the case of a read and return
289462306a36Sopenharmony_ci	 * with success.
289562306a36Sopenharmony_ci	 */
289662306a36Sopenharmony_ci	if (emulate_cp(vcpu, &params, global, nr_global)) {
289762306a36Sopenharmony_ci		/* Split up the value between registers for the read side */
289862306a36Sopenharmony_ci		if (!params.is_write) {
289962306a36Sopenharmony_ci			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
290062306a36Sopenharmony_ci			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
290162306a36Sopenharmony_ci		}
290262306a36Sopenharmony_ci
290362306a36Sopenharmony_ci		return 1;
290462306a36Sopenharmony_ci	}
290562306a36Sopenharmony_ci
290662306a36Sopenharmony_ci	unhandled_cp_access(vcpu, &params);
290762306a36Sopenharmony_ci	return 1;
290862306a36Sopenharmony_ci}
290962306a36Sopenharmony_ci
291062306a36Sopenharmony_cistatic bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
291162306a36Sopenharmony_ci
291262306a36Sopenharmony_ci/*
291362306a36Sopenharmony_ci * The CP10 ID registers are architecturally mapped to AArch64 feature
291462306a36Sopenharmony_ci * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
291562306a36Sopenharmony_ci * from AArch32.
291662306a36Sopenharmony_ci */
291762306a36Sopenharmony_cistatic bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
291862306a36Sopenharmony_ci{
291962306a36Sopenharmony_ci	u8 reg_id = (esr >> 10) & 0xf;
292062306a36Sopenharmony_ci	bool valid;
292162306a36Sopenharmony_ci
292262306a36Sopenharmony_ci	params->is_write = ((esr & 1) == 0);
292362306a36Sopenharmony_ci	params->Op0 = 3;
292462306a36Sopenharmony_ci	params->Op1 = 0;
292562306a36Sopenharmony_ci	params->CRn = 0;
292662306a36Sopenharmony_ci	params->CRm = 3;
292762306a36Sopenharmony_ci
292862306a36Sopenharmony_ci	/* CP10 ID registers are read-only */
292962306a36Sopenharmony_ci	valid = !params->is_write;
293062306a36Sopenharmony_ci
293162306a36Sopenharmony_ci	switch (reg_id) {
293262306a36Sopenharmony_ci	/* MVFR0 */
293362306a36Sopenharmony_ci	case 0b0111:
293462306a36Sopenharmony_ci		params->Op2 = 0;
293562306a36Sopenharmony_ci		break;
293662306a36Sopenharmony_ci	/* MVFR1 */
293762306a36Sopenharmony_ci	case 0b0110:
293862306a36Sopenharmony_ci		params->Op2 = 1;
293962306a36Sopenharmony_ci		break;
294062306a36Sopenharmony_ci	/* MVFR2 */
294162306a36Sopenharmony_ci	case 0b0101:
294262306a36Sopenharmony_ci		params->Op2 = 2;
294362306a36Sopenharmony_ci		break;
294462306a36Sopenharmony_ci	default:
294562306a36Sopenharmony_ci		valid = false;
294662306a36Sopenharmony_ci	}
294762306a36Sopenharmony_ci
294862306a36Sopenharmony_ci	if (valid)
294962306a36Sopenharmony_ci		return true;
295062306a36Sopenharmony_ci
295162306a36Sopenharmony_ci	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
295262306a36Sopenharmony_ci		      params->is_write ? "write" : "read", reg_id);
295362306a36Sopenharmony_ci	return false;
295462306a36Sopenharmony_ci}
295562306a36Sopenharmony_ci
295662306a36Sopenharmony_ci/**
295762306a36Sopenharmony_ci * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
295862306a36Sopenharmony_ci *			  VFP Register' from AArch32.
295962306a36Sopenharmony_ci * @vcpu: The vCPU pointer
296062306a36Sopenharmony_ci *
296162306a36Sopenharmony_ci * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
296262306a36Sopenharmony_ci * Work out the correct AArch64 system register encoding and reroute to the
296362306a36Sopenharmony_ci * AArch64 system register emulation.
296462306a36Sopenharmony_ci */
296562306a36Sopenharmony_ciint kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
296662306a36Sopenharmony_ci{
296762306a36Sopenharmony_ci	int Rt = kvm_vcpu_sys_get_rt(vcpu);
296862306a36Sopenharmony_ci	u64 esr = kvm_vcpu_get_esr(vcpu);
296962306a36Sopenharmony_ci	struct sys_reg_params params;
297062306a36Sopenharmony_ci
297162306a36Sopenharmony_ci	/* UNDEF on any unhandled register access */
297262306a36Sopenharmony_ci	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
297362306a36Sopenharmony_ci		kvm_inject_undefined(vcpu);
297462306a36Sopenharmony_ci		return 1;
297562306a36Sopenharmony_ci	}
297662306a36Sopenharmony_ci
297762306a36Sopenharmony_ci	if (emulate_sys_reg(vcpu, &params))
297862306a36Sopenharmony_ci		vcpu_set_reg(vcpu, Rt, params.regval);
297962306a36Sopenharmony_ci
298062306a36Sopenharmony_ci	return 1;
298162306a36Sopenharmony_ci}
298262306a36Sopenharmony_ci
298362306a36Sopenharmony_ci/**
298462306a36Sopenharmony_ci * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
298562306a36Sopenharmony_ci *			       CRn=0, which corresponds to the AArch32 feature
298662306a36Sopenharmony_ci *			       registers.
298762306a36Sopenharmony_ci * @vcpu: the vCPU pointer
298862306a36Sopenharmony_ci * @params: the system register access parameters.
298962306a36Sopenharmony_ci *
299062306a36Sopenharmony_ci * Our cp15 system register tables do not enumerate the AArch32 feature
299162306a36Sopenharmony_ci * registers. Conveniently, our AArch64 table does, and the AArch32 system
299262306a36Sopenharmony_ci * register encoding can be trivially remapped into the AArch64 for the feature
299362306a36Sopenharmony_ci * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
299462306a36Sopenharmony_ci *
299562306a36Sopenharmony_ci * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
299662306a36Sopenharmony_ci * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
299762306a36Sopenharmony_ci * range are either UNKNOWN or RES0. Rerouting remains architectural as we
299862306a36Sopenharmony_ci * treat undefined registers in this range as RAZ.
299962306a36Sopenharmony_ci */
300062306a36Sopenharmony_cistatic int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
300162306a36Sopenharmony_ci				   struct sys_reg_params *params)
300262306a36Sopenharmony_ci{
300362306a36Sopenharmony_ci	int Rt = kvm_vcpu_sys_get_rt(vcpu);
300462306a36Sopenharmony_ci
300562306a36Sopenharmony_ci	/* Treat impossible writes to RO registers as UNDEFINED */
300662306a36Sopenharmony_ci	if (params->is_write) {
300762306a36Sopenharmony_ci		unhandled_cp_access(vcpu, params);
300862306a36Sopenharmony_ci		return 1;
300962306a36Sopenharmony_ci	}
301062306a36Sopenharmony_ci
301162306a36Sopenharmony_ci	params->Op0 = 3;
301262306a36Sopenharmony_ci
301362306a36Sopenharmony_ci	/*
301462306a36Sopenharmony_ci	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
301562306a36Sopenharmony_ci	 * Avoid conflicting with future expansion of AArch64 feature registers
301662306a36Sopenharmony_ci	 * and simply treat them as RAZ here.
301762306a36Sopenharmony_ci	 */
301862306a36Sopenharmony_ci	if (params->CRm > 3)
301962306a36Sopenharmony_ci		params->regval = 0;
302062306a36Sopenharmony_ci	else if (!emulate_sys_reg(vcpu, params))
302162306a36Sopenharmony_ci		return 1;
302262306a36Sopenharmony_ci
302362306a36Sopenharmony_ci	vcpu_set_reg(vcpu, Rt, params->regval);
302462306a36Sopenharmony_ci	return 1;
302562306a36Sopenharmony_ci}
302662306a36Sopenharmony_ci
302762306a36Sopenharmony_ci/**
302862306a36Sopenharmony_ci * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
302962306a36Sopenharmony_ci * @vcpu: The VCPU pointer
303062306a36Sopenharmony_ci * @run:  The kvm_run struct
303162306a36Sopenharmony_ci */
303262306a36Sopenharmony_cistatic int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
303362306a36Sopenharmony_ci			    struct sys_reg_params *params,
303462306a36Sopenharmony_ci			    const struct sys_reg_desc *global,
303562306a36Sopenharmony_ci			    size_t nr_global)
303662306a36Sopenharmony_ci{
303762306a36Sopenharmony_ci	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
303862306a36Sopenharmony_ci
303962306a36Sopenharmony_ci	params->regval = vcpu_get_reg(vcpu, Rt);
304062306a36Sopenharmony_ci
304162306a36Sopenharmony_ci	if (emulate_cp(vcpu, params, global, nr_global)) {
304262306a36Sopenharmony_ci		if (!params->is_write)
304362306a36Sopenharmony_ci			vcpu_set_reg(vcpu, Rt, params->regval);
304462306a36Sopenharmony_ci		return 1;
304562306a36Sopenharmony_ci	}
304662306a36Sopenharmony_ci
304762306a36Sopenharmony_ci	unhandled_cp_access(vcpu, params);
304862306a36Sopenharmony_ci	return 1;
304962306a36Sopenharmony_ci}
305062306a36Sopenharmony_ci
305162306a36Sopenharmony_ciint kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
305262306a36Sopenharmony_ci{
305362306a36Sopenharmony_ci	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
305462306a36Sopenharmony_ci}
305562306a36Sopenharmony_ci
305662306a36Sopenharmony_ciint kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
305762306a36Sopenharmony_ci{
305862306a36Sopenharmony_ci	struct sys_reg_params params;
305962306a36Sopenharmony_ci
306062306a36Sopenharmony_ci	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
306162306a36Sopenharmony_ci
306262306a36Sopenharmony_ci	/*
306362306a36Sopenharmony_ci	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
306462306a36Sopenharmony_ci	 * system register table. Registers in the ID range where CRm=0 are
306562306a36Sopenharmony_ci	 * excluded from this scheme as they do not trivially map into AArch64
306662306a36Sopenharmony_ci	 * system register encodings.
306762306a36Sopenharmony_ci	 */
306862306a36Sopenharmony_ci	if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
306962306a36Sopenharmony_ci		return kvm_emulate_cp15_id_reg(vcpu, &params);
307062306a36Sopenharmony_ci
307162306a36Sopenharmony_ci	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
307262306a36Sopenharmony_ci}
307362306a36Sopenharmony_ci
307462306a36Sopenharmony_ciint kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
307562306a36Sopenharmony_ci{
307662306a36Sopenharmony_ci	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
307762306a36Sopenharmony_ci}
307862306a36Sopenharmony_ci
307962306a36Sopenharmony_ciint kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
308062306a36Sopenharmony_ci{
308162306a36Sopenharmony_ci	struct sys_reg_params params;
308262306a36Sopenharmony_ci
308362306a36Sopenharmony_ci	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
308462306a36Sopenharmony_ci
308562306a36Sopenharmony_ci	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
308662306a36Sopenharmony_ci}
308762306a36Sopenharmony_ci
308862306a36Sopenharmony_cistatic bool is_imp_def_sys_reg(struct sys_reg_params *params)
308962306a36Sopenharmony_ci{
309062306a36Sopenharmony_ci	// See ARM DDI 0487E.a, section D12.3.2
309162306a36Sopenharmony_ci	return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
309262306a36Sopenharmony_ci}
309362306a36Sopenharmony_ci
309462306a36Sopenharmony_ci/**
309562306a36Sopenharmony_ci * emulate_sys_reg - Emulate a guest access to an AArch64 system register
309662306a36Sopenharmony_ci * @vcpu: The VCPU pointer
309762306a36Sopenharmony_ci * @params: Decoded system register parameters
309862306a36Sopenharmony_ci *
309962306a36Sopenharmony_ci * Return: true if the system register access was successful, false otherwise.
310062306a36Sopenharmony_ci */
310162306a36Sopenharmony_cistatic bool emulate_sys_reg(struct kvm_vcpu *vcpu,
310262306a36Sopenharmony_ci			   struct sys_reg_params *params)
310362306a36Sopenharmony_ci{
310462306a36Sopenharmony_ci	const struct sys_reg_desc *r;
310562306a36Sopenharmony_ci
310662306a36Sopenharmony_ci	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
310762306a36Sopenharmony_ci
310862306a36Sopenharmony_ci	if (likely(r)) {
310962306a36Sopenharmony_ci		perform_access(vcpu, params, r);
311062306a36Sopenharmony_ci		return true;
311162306a36Sopenharmony_ci	}
311262306a36Sopenharmony_ci
311362306a36Sopenharmony_ci	if (is_imp_def_sys_reg(params)) {
311462306a36Sopenharmony_ci		kvm_inject_undefined(vcpu);
311562306a36Sopenharmony_ci	} else {
311662306a36Sopenharmony_ci		print_sys_reg_msg(params,
311762306a36Sopenharmony_ci				  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
311862306a36Sopenharmony_ci				  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
311962306a36Sopenharmony_ci		kvm_inject_undefined(vcpu);
312062306a36Sopenharmony_ci	}
312162306a36Sopenharmony_ci	return false;
312262306a36Sopenharmony_ci}
312362306a36Sopenharmony_ci
312462306a36Sopenharmony_cistatic void kvm_reset_id_regs(struct kvm_vcpu *vcpu)
312562306a36Sopenharmony_ci{
312662306a36Sopenharmony_ci	const struct sys_reg_desc *idreg = first_idreg;
312762306a36Sopenharmony_ci	u32 id = reg_to_encoding(idreg);
312862306a36Sopenharmony_ci	struct kvm *kvm = vcpu->kvm;
312962306a36Sopenharmony_ci
313062306a36Sopenharmony_ci	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
313162306a36Sopenharmony_ci		return;
313262306a36Sopenharmony_ci
313362306a36Sopenharmony_ci	lockdep_assert_held(&kvm->arch.config_lock);
313462306a36Sopenharmony_ci
313562306a36Sopenharmony_ci	/* Initialize all idregs */
313662306a36Sopenharmony_ci	while (is_id_reg(id)) {
313762306a36Sopenharmony_ci		IDREG(kvm, id) = idreg->reset(vcpu, idreg);
313862306a36Sopenharmony_ci
313962306a36Sopenharmony_ci		idreg++;
314062306a36Sopenharmony_ci		id = reg_to_encoding(idreg);
314162306a36Sopenharmony_ci	}
314262306a36Sopenharmony_ci
314362306a36Sopenharmony_ci	set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
314462306a36Sopenharmony_ci}
314562306a36Sopenharmony_ci
314662306a36Sopenharmony_ci/**
314762306a36Sopenharmony_ci * kvm_reset_sys_regs - sets system registers to reset value
314862306a36Sopenharmony_ci * @vcpu: The VCPU pointer
314962306a36Sopenharmony_ci *
315062306a36Sopenharmony_ci * This function finds the right table above and sets the registers on the
315162306a36Sopenharmony_ci * virtual CPU struct to their architecturally defined reset values.
315262306a36Sopenharmony_ci */
315362306a36Sopenharmony_civoid kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
315462306a36Sopenharmony_ci{
315562306a36Sopenharmony_ci	unsigned long i;
315662306a36Sopenharmony_ci
315762306a36Sopenharmony_ci	kvm_reset_id_regs(vcpu);
315862306a36Sopenharmony_ci
315962306a36Sopenharmony_ci	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
316062306a36Sopenharmony_ci		const struct sys_reg_desc *r = &sys_reg_descs[i];
316162306a36Sopenharmony_ci
316262306a36Sopenharmony_ci		if (is_id_reg(reg_to_encoding(r)))
316362306a36Sopenharmony_ci			continue;
316462306a36Sopenharmony_ci
316562306a36Sopenharmony_ci		if (r->reset)
316662306a36Sopenharmony_ci			r->reset(vcpu, r);
316762306a36Sopenharmony_ci	}
316862306a36Sopenharmony_ci}
316962306a36Sopenharmony_ci
317062306a36Sopenharmony_ci/**
317162306a36Sopenharmony_ci * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
317262306a36Sopenharmony_ci * @vcpu: The VCPU pointer
317362306a36Sopenharmony_ci */
317462306a36Sopenharmony_ciint kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
317562306a36Sopenharmony_ci{
317662306a36Sopenharmony_ci	struct sys_reg_params params;
317762306a36Sopenharmony_ci	unsigned long esr = kvm_vcpu_get_esr(vcpu);
317862306a36Sopenharmony_ci	int Rt = kvm_vcpu_sys_get_rt(vcpu);
317962306a36Sopenharmony_ci
318062306a36Sopenharmony_ci	trace_kvm_handle_sys_reg(esr);
318162306a36Sopenharmony_ci
318262306a36Sopenharmony_ci	if (__check_nv_sr_forward(vcpu))
318362306a36Sopenharmony_ci		return 1;
318462306a36Sopenharmony_ci
318562306a36Sopenharmony_ci	params = esr_sys64_to_params(esr);
318662306a36Sopenharmony_ci	params.regval = vcpu_get_reg(vcpu, Rt);
318762306a36Sopenharmony_ci
318862306a36Sopenharmony_ci	if (!emulate_sys_reg(vcpu, &params))
318962306a36Sopenharmony_ci		return 1;
319062306a36Sopenharmony_ci
319162306a36Sopenharmony_ci	if (!params.is_write)
319262306a36Sopenharmony_ci		vcpu_set_reg(vcpu, Rt, params.regval);
319362306a36Sopenharmony_ci	return 1;
319462306a36Sopenharmony_ci}
319562306a36Sopenharmony_ci
319662306a36Sopenharmony_ci/******************************************************************************
319762306a36Sopenharmony_ci * Userspace API
319862306a36Sopenharmony_ci *****************************************************************************/
319962306a36Sopenharmony_ci
320062306a36Sopenharmony_cistatic bool index_to_params(u64 id, struct sys_reg_params *params)
320162306a36Sopenharmony_ci{
320262306a36Sopenharmony_ci	switch (id & KVM_REG_SIZE_MASK) {
320362306a36Sopenharmony_ci	case KVM_REG_SIZE_U64:
320462306a36Sopenharmony_ci		/* Any unused index bits means it's not valid. */
320562306a36Sopenharmony_ci		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
320662306a36Sopenharmony_ci			      | KVM_REG_ARM_COPROC_MASK
320762306a36Sopenharmony_ci			      | KVM_REG_ARM64_SYSREG_OP0_MASK
320862306a36Sopenharmony_ci			      | KVM_REG_ARM64_SYSREG_OP1_MASK
320962306a36Sopenharmony_ci			      | KVM_REG_ARM64_SYSREG_CRN_MASK
321062306a36Sopenharmony_ci			      | KVM_REG_ARM64_SYSREG_CRM_MASK
321162306a36Sopenharmony_ci			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
321262306a36Sopenharmony_ci			return false;
321362306a36Sopenharmony_ci		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
321462306a36Sopenharmony_ci			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
321562306a36Sopenharmony_ci		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
321662306a36Sopenharmony_ci			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
321762306a36Sopenharmony_ci		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
321862306a36Sopenharmony_ci			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
321962306a36Sopenharmony_ci		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
322062306a36Sopenharmony_ci			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
322162306a36Sopenharmony_ci		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
322262306a36Sopenharmony_ci			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
322362306a36Sopenharmony_ci		return true;
322462306a36Sopenharmony_ci	default:
322562306a36Sopenharmony_ci		return false;
322662306a36Sopenharmony_ci	}
322762306a36Sopenharmony_ci}
322862306a36Sopenharmony_ci
322962306a36Sopenharmony_ciconst struct sys_reg_desc *get_reg_by_id(u64 id,
323062306a36Sopenharmony_ci					 const struct sys_reg_desc table[],
323162306a36Sopenharmony_ci					 unsigned int num)
323262306a36Sopenharmony_ci{
323362306a36Sopenharmony_ci	struct sys_reg_params params;
323462306a36Sopenharmony_ci
323562306a36Sopenharmony_ci	if (!index_to_params(id, &params))
323662306a36Sopenharmony_ci		return NULL;
323762306a36Sopenharmony_ci
323862306a36Sopenharmony_ci	return find_reg(&params, table, num);
323962306a36Sopenharmony_ci}
324062306a36Sopenharmony_ci
324162306a36Sopenharmony_ci/* Decode an index value, and find the sys_reg_desc entry. */
324262306a36Sopenharmony_cistatic const struct sys_reg_desc *
324362306a36Sopenharmony_ciid_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
324462306a36Sopenharmony_ci		   const struct sys_reg_desc table[], unsigned int num)
324562306a36Sopenharmony_ci
324662306a36Sopenharmony_ci{
324762306a36Sopenharmony_ci	const struct sys_reg_desc *r;
324862306a36Sopenharmony_ci
324962306a36Sopenharmony_ci	/* We only do sys_reg for now. */
325062306a36Sopenharmony_ci	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
325162306a36Sopenharmony_ci		return NULL;
325262306a36Sopenharmony_ci
325362306a36Sopenharmony_ci	r = get_reg_by_id(id, table, num);
325462306a36Sopenharmony_ci
325562306a36Sopenharmony_ci	/* Not saved in the sys_reg array and not otherwise accessible? */
325662306a36Sopenharmony_ci	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
325762306a36Sopenharmony_ci		r = NULL;
325862306a36Sopenharmony_ci
325962306a36Sopenharmony_ci	return r;
326062306a36Sopenharmony_ci}
326162306a36Sopenharmony_ci
326262306a36Sopenharmony_ci/*
326362306a36Sopenharmony_ci * These are the invariant sys_reg registers: we let the guest see the
326462306a36Sopenharmony_ci * host versions of these, so they're part of the guest state.
326562306a36Sopenharmony_ci *
326662306a36Sopenharmony_ci * A future CPU may provide a mechanism to present different values to
326762306a36Sopenharmony_ci * the guest, or a future kvm may trap them.
326862306a36Sopenharmony_ci */
326962306a36Sopenharmony_ci
327062306a36Sopenharmony_ci#define FUNCTION_INVARIANT(reg)						\
327162306a36Sopenharmony_ci	static u64 get_##reg(struct kvm_vcpu *v,			\
327262306a36Sopenharmony_ci			      const struct sys_reg_desc *r)		\
327362306a36Sopenharmony_ci	{								\
327462306a36Sopenharmony_ci		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
327562306a36Sopenharmony_ci		return ((struct sys_reg_desc *)r)->val;			\
327662306a36Sopenharmony_ci	}
327762306a36Sopenharmony_ci
327862306a36Sopenharmony_ciFUNCTION_INVARIANT(midr_el1)
327962306a36Sopenharmony_ciFUNCTION_INVARIANT(revidr_el1)
328062306a36Sopenharmony_ciFUNCTION_INVARIANT(aidr_el1)
328162306a36Sopenharmony_ci
328262306a36Sopenharmony_cistatic u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
328362306a36Sopenharmony_ci{
328462306a36Sopenharmony_ci	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
328562306a36Sopenharmony_ci	return ((struct sys_reg_desc *)r)->val;
328662306a36Sopenharmony_ci}
328762306a36Sopenharmony_ci
328862306a36Sopenharmony_ci/* ->val is filled in by kvm_sys_reg_table_init() */
328962306a36Sopenharmony_cistatic struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
329062306a36Sopenharmony_ci	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
329162306a36Sopenharmony_ci	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
329262306a36Sopenharmony_ci	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
329362306a36Sopenharmony_ci	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
329462306a36Sopenharmony_ci};
329562306a36Sopenharmony_ci
329662306a36Sopenharmony_cistatic int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
329762306a36Sopenharmony_ci{
329862306a36Sopenharmony_ci	const struct sys_reg_desc *r;
329962306a36Sopenharmony_ci
330062306a36Sopenharmony_ci	r = get_reg_by_id(id, invariant_sys_regs,
330162306a36Sopenharmony_ci			  ARRAY_SIZE(invariant_sys_regs));
330262306a36Sopenharmony_ci	if (!r)
330362306a36Sopenharmony_ci		return -ENOENT;
330462306a36Sopenharmony_ci
330562306a36Sopenharmony_ci	return put_user(r->val, uaddr);
330662306a36Sopenharmony_ci}
330762306a36Sopenharmony_ci
330862306a36Sopenharmony_cistatic int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
330962306a36Sopenharmony_ci{
331062306a36Sopenharmony_ci	const struct sys_reg_desc *r;
331162306a36Sopenharmony_ci	u64 val;
331262306a36Sopenharmony_ci
331362306a36Sopenharmony_ci	r = get_reg_by_id(id, invariant_sys_regs,
331462306a36Sopenharmony_ci			  ARRAY_SIZE(invariant_sys_regs));
331562306a36Sopenharmony_ci	if (!r)
331662306a36Sopenharmony_ci		return -ENOENT;
331762306a36Sopenharmony_ci
331862306a36Sopenharmony_ci	if (get_user(val, uaddr))
331962306a36Sopenharmony_ci		return -EFAULT;
332062306a36Sopenharmony_ci
332162306a36Sopenharmony_ci	/* This is what we mean by invariant: you can't change it. */
332262306a36Sopenharmony_ci	if (r->val != val)
332362306a36Sopenharmony_ci		return -EINVAL;
332462306a36Sopenharmony_ci
332562306a36Sopenharmony_ci	return 0;
332662306a36Sopenharmony_ci}
332762306a36Sopenharmony_ci
332862306a36Sopenharmony_cistatic int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
332962306a36Sopenharmony_ci{
333062306a36Sopenharmony_ci	u32 val;
333162306a36Sopenharmony_ci	u32 __user *uval = uaddr;
333262306a36Sopenharmony_ci
333362306a36Sopenharmony_ci	/* Fail if we have unknown bits set. */
333462306a36Sopenharmony_ci	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
333562306a36Sopenharmony_ci		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
333662306a36Sopenharmony_ci		return -ENOENT;
333762306a36Sopenharmony_ci
333862306a36Sopenharmony_ci	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
333962306a36Sopenharmony_ci	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
334062306a36Sopenharmony_ci		if (KVM_REG_SIZE(id) != 4)
334162306a36Sopenharmony_ci			return -ENOENT;
334262306a36Sopenharmony_ci		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
334362306a36Sopenharmony_ci			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
334462306a36Sopenharmony_ci		if (val >= CSSELR_MAX)
334562306a36Sopenharmony_ci			return -ENOENT;
334662306a36Sopenharmony_ci
334762306a36Sopenharmony_ci		return put_user(get_ccsidr(vcpu, val), uval);
334862306a36Sopenharmony_ci	default:
334962306a36Sopenharmony_ci		return -ENOENT;
335062306a36Sopenharmony_ci	}
335162306a36Sopenharmony_ci}
335262306a36Sopenharmony_ci
335362306a36Sopenharmony_cistatic int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
335462306a36Sopenharmony_ci{
335562306a36Sopenharmony_ci	u32 val, newval;
335662306a36Sopenharmony_ci	u32 __user *uval = uaddr;
335762306a36Sopenharmony_ci
335862306a36Sopenharmony_ci	/* Fail if we have unknown bits set. */
335962306a36Sopenharmony_ci	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
336062306a36Sopenharmony_ci		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
336162306a36Sopenharmony_ci		return -ENOENT;
336262306a36Sopenharmony_ci
336362306a36Sopenharmony_ci	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
336462306a36Sopenharmony_ci	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
336562306a36Sopenharmony_ci		if (KVM_REG_SIZE(id) != 4)
336662306a36Sopenharmony_ci			return -ENOENT;
336762306a36Sopenharmony_ci		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
336862306a36Sopenharmony_ci			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
336962306a36Sopenharmony_ci		if (val >= CSSELR_MAX)
337062306a36Sopenharmony_ci			return -ENOENT;
337162306a36Sopenharmony_ci
337262306a36Sopenharmony_ci		if (get_user(newval, uval))
337362306a36Sopenharmony_ci			return -EFAULT;
337462306a36Sopenharmony_ci
337562306a36Sopenharmony_ci		return set_ccsidr(vcpu, val, newval);
337662306a36Sopenharmony_ci	default:
337762306a36Sopenharmony_ci		return -ENOENT;
337862306a36Sopenharmony_ci	}
337962306a36Sopenharmony_ci}
338062306a36Sopenharmony_ci
338162306a36Sopenharmony_ciint kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
338262306a36Sopenharmony_ci			 const struct sys_reg_desc table[], unsigned int num)
338362306a36Sopenharmony_ci{
338462306a36Sopenharmony_ci	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
338562306a36Sopenharmony_ci	const struct sys_reg_desc *r;
338662306a36Sopenharmony_ci	u64 val;
338762306a36Sopenharmony_ci	int ret;
338862306a36Sopenharmony_ci
338962306a36Sopenharmony_ci	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
339062306a36Sopenharmony_ci	if (!r || sysreg_hidden_user(vcpu, r))
339162306a36Sopenharmony_ci		return -ENOENT;
339262306a36Sopenharmony_ci
339362306a36Sopenharmony_ci	if (r->get_user) {
339462306a36Sopenharmony_ci		ret = (r->get_user)(vcpu, r, &val);
339562306a36Sopenharmony_ci	} else {
339662306a36Sopenharmony_ci		val = __vcpu_sys_reg(vcpu, r->reg);
339762306a36Sopenharmony_ci		ret = 0;
339862306a36Sopenharmony_ci	}
339962306a36Sopenharmony_ci
340062306a36Sopenharmony_ci	if (!ret)
340162306a36Sopenharmony_ci		ret = put_user(val, uaddr);
340262306a36Sopenharmony_ci
340362306a36Sopenharmony_ci	return ret;
340462306a36Sopenharmony_ci}
340562306a36Sopenharmony_ci
340662306a36Sopenharmony_ciint kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
340762306a36Sopenharmony_ci{
340862306a36Sopenharmony_ci	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
340962306a36Sopenharmony_ci	int err;
341062306a36Sopenharmony_ci
341162306a36Sopenharmony_ci	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
341262306a36Sopenharmony_ci		return demux_c15_get(vcpu, reg->id, uaddr);
341362306a36Sopenharmony_ci
341462306a36Sopenharmony_ci	err = get_invariant_sys_reg(reg->id, uaddr);
341562306a36Sopenharmony_ci	if (err != -ENOENT)
341662306a36Sopenharmony_ci		return err;
341762306a36Sopenharmony_ci
341862306a36Sopenharmony_ci	return kvm_sys_reg_get_user(vcpu, reg,
341962306a36Sopenharmony_ci				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
342062306a36Sopenharmony_ci}
342162306a36Sopenharmony_ci
342262306a36Sopenharmony_ciint kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
342362306a36Sopenharmony_ci			 const struct sys_reg_desc table[], unsigned int num)
342462306a36Sopenharmony_ci{
342562306a36Sopenharmony_ci	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
342662306a36Sopenharmony_ci	const struct sys_reg_desc *r;
342762306a36Sopenharmony_ci	u64 val;
342862306a36Sopenharmony_ci	int ret;
342962306a36Sopenharmony_ci
343062306a36Sopenharmony_ci	if (get_user(val, uaddr))
343162306a36Sopenharmony_ci		return -EFAULT;
343262306a36Sopenharmony_ci
343362306a36Sopenharmony_ci	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
343462306a36Sopenharmony_ci	if (!r || sysreg_hidden_user(vcpu, r))
343562306a36Sopenharmony_ci		return -ENOENT;
343662306a36Sopenharmony_ci
343762306a36Sopenharmony_ci	if (sysreg_user_write_ignore(vcpu, r))
343862306a36Sopenharmony_ci		return 0;
343962306a36Sopenharmony_ci
344062306a36Sopenharmony_ci	if (r->set_user) {
344162306a36Sopenharmony_ci		ret = (r->set_user)(vcpu, r, val);
344262306a36Sopenharmony_ci	} else {
344362306a36Sopenharmony_ci		__vcpu_sys_reg(vcpu, r->reg) = val;
344462306a36Sopenharmony_ci		ret = 0;
344562306a36Sopenharmony_ci	}
344662306a36Sopenharmony_ci
344762306a36Sopenharmony_ci	return ret;
344862306a36Sopenharmony_ci}
344962306a36Sopenharmony_ci
345062306a36Sopenharmony_ciint kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
345162306a36Sopenharmony_ci{
345262306a36Sopenharmony_ci	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
345362306a36Sopenharmony_ci	int err;
345462306a36Sopenharmony_ci
345562306a36Sopenharmony_ci	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
345662306a36Sopenharmony_ci		return demux_c15_set(vcpu, reg->id, uaddr);
345762306a36Sopenharmony_ci
345862306a36Sopenharmony_ci	err = set_invariant_sys_reg(reg->id, uaddr);
345962306a36Sopenharmony_ci	if (err != -ENOENT)
346062306a36Sopenharmony_ci		return err;
346162306a36Sopenharmony_ci
346262306a36Sopenharmony_ci	return kvm_sys_reg_set_user(vcpu, reg,
346362306a36Sopenharmony_ci				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
346462306a36Sopenharmony_ci}
346562306a36Sopenharmony_ci
346662306a36Sopenharmony_cistatic unsigned int num_demux_regs(void)
346762306a36Sopenharmony_ci{
346862306a36Sopenharmony_ci	return CSSELR_MAX;
346962306a36Sopenharmony_ci}
347062306a36Sopenharmony_ci
347162306a36Sopenharmony_cistatic int write_demux_regids(u64 __user *uindices)
347262306a36Sopenharmony_ci{
347362306a36Sopenharmony_ci	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
347462306a36Sopenharmony_ci	unsigned int i;
347562306a36Sopenharmony_ci
347662306a36Sopenharmony_ci	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
347762306a36Sopenharmony_ci	for (i = 0; i < CSSELR_MAX; i++) {
347862306a36Sopenharmony_ci		if (put_user(val | i, uindices))
347962306a36Sopenharmony_ci			return -EFAULT;
348062306a36Sopenharmony_ci		uindices++;
348162306a36Sopenharmony_ci	}
348262306a36Sopenharmony_ci	return 0;
348362306a36Sopenharmony_ci}
348462306a36Sopenharmony_ci
348562306a36Sopenharmony_cistatic u64 sys_reg_to_index(const struct sys_reg_desc *reg)
348662306a36Sopenharmony_ci{
348762306a36Sopenharmony_ci	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
348862306a36Sopenharmony_ci		KVM_REG_ARM64_SYSREG |
348962306a36Sopenharmony_ci		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
349062306a36Sopenharmony_ci		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
349162306a36Sopenharmony_ci		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
349262306a36Sopenharmony_ci		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
349362306a36Sopenharmony_ci		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
349462306a36Sopenharmony_ci}
349562306a36Sopenharmony_ci
349662306a36Sopenharmony_cistatic bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
349762306a36Sopenharmony_ci{
349862306a36Sopenharmony_ci	if (!*uind)
349962306a36Sopenharmony_ci		return true;
350062306a36Sopenharmony_ci
350162306a36Sopenharmony_ci	if (put_user(sys_reg_to_index(reg), *uind))
350262306a36Sopenharmony_ci		return false;
350362306a36Sopenharmony_ci
350462306a36Sopenharmony_ci	(*uind)++;
350562306a36Sopenharmony_ci	return true;
350662306a36Sopenharmony_ci}
350762306a36Sopenharmony_ci
350862306a36Sopenharmony_cistatic int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
350962306a36Sopenharmony_ci			    const struct sys_reg_desc *rd,
351062306a36Sopenharmony_ci			    u64 __user **uind,
351162306a36Sopenharmony_ci			    unsigned int *total)
351262306a36Sopenharmony_ci{
351362306a36Sopenharmony_ci	/*
351462306a36Sopenharmony_ci	 * Ignore registers we trap but don't save,
351562306a36Sopenharmony_ci	 * and for which no custom user accessor is provided.
351662306a36Sopenharmony_ci	 */
351762306a36Sopenharmony_ci	if (!(rd->reg || rd->get_user))
351862306a36Sopenharmony_ci		return 0;
351962306a36Sopenharmony_ci
352062306a36Sopenharmony_ci	if (sysreg_hidden_user(vcpu, rd))
352162306a36Sopenharmony_ci		return 0;
352262306a36Sopenharmony_ci
352362306a36Sopenharmony_ci	if (!copy_reg_to_user(rd, uind))
352462306a36Sopenharmony_ci		return -EFAULT;
352562306a36Sopenharmony_ci
352662306a36Sopenharmony_ci	(*total)++;
352762306a36Sopenharmony_ci	return 0;
352862306a36Sopenharmony_ci}
352962306a36Sopenharmony_ci
353062306a36Sopenharmony_ci/* Assumed ordered tables, see kvm_sys_reg_table_init. */
353162306a36Sopenharmony_cistatic int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
353262306a36Sopenharmony_ci{
353362306a36Sopenharmony_ci	const struct sys_reg_desc *i2, *end2;
353462306a36Sopenharmony_ci	unsigned int total = 0;
353562306a36Sopenharmony_ci	int err;
353662306a36Sopenharmony_ci
353762306a36Sopenharmony_ci	i2 = sys_reg_descs;
353862306a36Sopenharmony_ci	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
353962306a36Sopenharmony_ci
354062306a36Sopenharmony_ci	while (i2 != end2) {
354162306a36Sopenharmony_ci		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
354262306a36Sopenharmony_ci		if (err)
354362306a36Sopenharmony_ci			return err;
354462306a36Sopenharmony_ci	}
354562306a36Sopenharmony_ci	return total;
354662306a36Sopenharmony_ci}
354762306a36Sopenharmony_ci
354862306a36Sopenharmony_ciunsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
354962306a36Sopenharmony_ci{
355062306a36Sopenharmony_ci	return ARRAY_SIZE(invariant_sys_regs)
355162306a36Sopenharmony_ci		+ num_demux_regs()
355262306a36Sopenharmony_ci		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
355362306a36Sopenharmony_ci}
355462306a36Sopenharmony_ci
355562306a36Sopenharmony_ciint kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
355662306a36Sopenharmony_ci{
355762306a36Sopenharmony_ci	unsigned int i;
355862306a36Sopenharmony_ci	int err;
355962306a36Sopenharmony_ci
356062306a36Sopenharmony_ci	/* Then give them all the invariant registers' indices. */
356162306a36Sopenharmony_ci	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
356262306a36Sopenharmony_ci		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
356362306a36Sopenharmony_ci			return -EFAULT;
356462306a36Sopenharmony_ci		uindices++;
356562306a36Sopenharmony_ci	}
356662306a36Sopenharmony_ci
356762306a36Sopenharmony_ci	err = walk_sys_regs(vcpu, uindices);
356862306a36Sopenharmony_ci	if (err < 0)
356962306a36Sopenharmony_ci		return err;
357062306a36Sopenharmony_ci	uindices += err;
357162306a36Sopenharmony_ci
357262306a36Sopenharmony_ci	return write_demux_regids(uindices);
357362306a36Sopenharmony_ci}
357462306a36Sopenharmony_ci
357562306a36Sopenharmony_ciint __init kvm_sys_reg_table_init(void)
357662306a36Sopenharmony_ci{
357762306a36Sopenharmony_ci	struct sys_reg_params params;
357862306a36Sopenharmony_ci	bool valid = true;
357962306a36Sopenharmony_ci	unsigned int i;
358062306a36Sopenharmony_ci
358162306a36Sopenharmony_ci	/* Make sure tables are unique and in order. */
358262306a36Sopenharmony_ci	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
358362306a36Sopenharmony_ci	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
358462306a36Sopenharmony_ci	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
358562306a36Sopenharmony_ci	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
358662306a36Sopenharmony_ci	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
358762306a36Sopenharmony_ci	valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
358862306a36Sopenharmony_ci
358962306a36Sopenharmony_ci	if (!valid)
359062306a36Sopenharmony_ci		return -EINVAL;
359162306a36Sopenharmony_ci
359262306a36Sopenharmony_ci	/* We abuse the reset function to overwrite the table itself. */
359362306a36Sopenharmony_ci	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
359462306a36Sopenharmony_ci		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
359562306a36Sopenharmony_ci
359662306a36Sopenharmony_ci	/* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */
359762306a36Sopenharmony_ci	params = encoding_to_params(SYS_ID_PFR0_EL1);
359862306a36Sopenharmony_ci	first_idreg = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
359962306a36Sopenharmony_ci	if (!first_idreg)
360062306a36Sopenharmony_ci		return -EINVAL;
360162306a36Sopenharmony_ci
360262306a36Sopenharmony_ci	if (kvm_get_mode() == KVM_MODE_NV)
360362306a36Sopenharmony_ci		return populate_nv_trap_config();
360462306a36Sopenharmony_ci
360562306a36Sopenharmony_ci	return 0;
360662306a36Sopenharmony_ci}
3607