xref: /kernel/linux/linux-6.6/arch/arm64/kvm/pmu-emul.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2015 Linaro Ltd.
4 * Author: Shannon Zhao <shannon.zhao@linaro.org>
5 */
6
7#include <linux/cpu.h>
8#include <linux/kvm.h>
9#include <linux/kvm_host.h>
10#include <linux/list.h>
11#include <linux/perf_event.h>
12#include <linux/perf/arm_pmu.h>
13#include <linux/uaccess.h>
14#include <asm/kvm_emulate.h>
15#include <kvm/arm_pmu.h>
16#include <kvm/arm_vgic.h>
17#include <asm/arm_pmuv3.h>
18
19#define PERF_ATTR_CFG1_COUNTER_64BIT	BIT(0)
20
21DEFINE_STATIC_KEY_FALSE(kvm_arm_pmu_available);
22
23static LIST_HEAD(arm_pmus);
24static DEFINE_MUTEX(arm_pmus_lock);
25
26static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc);
27static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc);
28
29static struct kvm_vcpu *kvm_pmc_to_vcpu(const struct kvm_pmc *pmc)
30{
31	return container_of(pmc, struct kvm_vcpu, arch.pmu.pmc[pmc->idx]);
32}
33
34static struct kvm_pmc *kvm_vcpu_idx_to_pmc(struct kvm_vcpu *vcpu, int cnt_idx)
35{
36	return &vcpu->arch.pmu.pmc[cnt_idx];
37}
38
39static u32 __kvm_pmu_event_mask(unsigned int pmuver)
40{
41	switch (pmuver) {
42	case ID_AA64DFR0_EL1_PMUVer_IMP:
43		return GENMASK(9, 0);
44	case ID_AA64DFR0_EL1_PMUVer_V3P1:
45	case ID_AA64DFR0_EL1_PMUVer_V3P4:
46	case ID_AA64DFR0_EL1_PMUVer_V3P5:
47	case ID_AA64DFR0_EL1_PMUVer_V3P7:
48		return GENMASK(15, 0);
49	default:		/* Shouldn't be here, just for sanity */
50		WARN_ONCE(1, "Unknown PMU version %d\n", pmuver);
51		return 0;
52	}
53}
54
55static u32 kvm_pmu_event_mask(struct kvm *kvm)
56{
57	u64 dfr0 = IDREG(kvm, SYS_ID_AA64DFR0_EL1);
58	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, dfr0);
59
60	return __kvm_pmu_event_mask(pmuver);
61}
62
63/**
64 * kvm_pmc_is_64bit - determine if counter is 64bit
65 * @pmc: counter context
66 */
67static bool kvm_pmc_is_64bit(struct kvm_pmc *pmc)
68{
69	return (pmc->idx == ARMV8_PMU_CYCLE_IDX ||
70		kvm_pmu_is_3p5(kvm_pmc_to_vcpu(pmc)));
71}
72
73static bool kvm_pmc_has_64bit_overflow(struct kvm_pmc *pmc)
74{
75	u64 val = __vcpu_sys_reg(kvm_pmc_to_vcpu(pmc), PMCR_EL0);
76
77	return (pmc->idx < ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LP)) ||
78	       (pmc->idx == ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LC));
79}
80
81static bool kvm_pmu_counter_can_chain(struct kvm_pmc *pmc)
82{
83	return (!(pmc->idx & 1) && (pmc->idx + 1) < ARMV8_PMU_CYCLE_IDX &&
84		!kvm_pmc_has_64bit_overflow(pmc));
85}
86
87static u32 counter_index_to_reg(u64 idx)
88{
89	return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + idx;
90}
91
92static u32 counter_index_to_evtreg(u64 idx)
93{
94	return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + idx;
95}
96
97static u64 kvm_pmu_get_pmc_value(struct kvm_pmc *pmc)
98{
99	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
100	u64 counter, reg, enabled, running;
101
102	reg = counter_index_to_reg(pmc->idx);
103	counter = __vcpu_sys_reg(vcpu, reg);
104
105	/*
106	 * The real counter value is equal to the value of counter register plus
107	 * the value perf event counts.
108	 */
109	if (pmc->perf_event)
110		counter += perf_event_read_value(pmc->perf_event, &enabled,
111						 &running);
112
113	if (!kvm_pmc_is_64bit(pmc))
114		counter = lower_32_bits(counter);
115
116	return counter;
117}
118
119/**
120 * kvm_pmu_get_counter_value - get PMU counter value
121 * @vcpu: The vcpu pointer
122 * @select_idx: The counter index
123 */
124u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
125{
126	if (!kvm_vcpu_has_pmu(vcpu))
127		return 0;
128
129	return kvm_pmu_get_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx));
130}
131
132static void kvm_pmu_set_pmc_value(struct kvm_pmc *pmc, u64 val, bool force)
133{
134	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
135	u64 reg;
136
137	kvm_pmu_release_perf_event(pmc);
138
139	reg = counter_index_to_reg(pmc->idx);
140
141	if (vcpu_mode_is_32bit(vcpu) && pmc->idx != ARMV8_PMU_CYCLE_IDX &&
142	    !force) {
143		/*
144		 * Even with PMUv3p5, AArch32 cannot write to the top
145		 * 32bit of the counters. The only possible course of
146		 * action is to use PMCR.P, which will reset them to
147		 * 0 (the only use of the 'force' parameter).
148		 */
149		val  = __vcpu_sys_reg(vcpu, reg) & GENMASK(63, 32);
150		val |= lower_32_bits(val);
151	}
152
153	__vcpu_sys_reg(vcpu, reg) = val;
154
155	/* Recreate the perf event to reflect the updated sample_period */
156	kvm_pmu_create_perf_event(pmc);
157}
158
159/**
160 * kvm_pmu_set_counter_value - set PMU counter value
161 * @vcpu: The vcpu pointer
162 * @select_idx: The counter index
163 * @val: The counter value
164 */
165void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
166{
167	if (!kvm_vcpu_has_pmu(vcpu))
168		return;
169
170	kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx), val, false);
171}
172
173/**
174 * kvm_pmu_release_perf_event - remove the perf event
175 * @pmc: The PMU counter pointer
176 */
177static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
178{
179	if (pmc->perf_event) {
180		perf_event_disable(pmc->perf_event);
181		perf_event_release_kernel(pmc->perf_event);
182		pmc->perf_event = NULL;
183	}
184}
185
186/**
187 * kvm_pmu_stop_counter - stop PMU counter
188 * @pmc: The PMU counter pointer
189 *
190 * If this counter has been configured to monitor some event, release it here.
191 */
192static void kvm_pmu_stop_counter(struct kvm_pmc *pmc)
193{
194	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
195	u64 reg, val;
196
197	if (!pmc->perf_event)
198		return;
199
200	val = kvm_pmu_get_pmc_value(pmc);
201
202	reg = counter_index_to_reg(pmc->idx);
203
204	__vcpu_sys_reg(vcpu, reg) = val;
205
206	kvm_pmu_release_perf_event(pmc);
207}
208
209/**
210 * kvm_pmu_vcpu_init - assign pmu counter idx for cpu
211 * @vcpu: The vcpu pointer
212 *
213 */
214void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
215{
216	int i;
217	struct kvm_pmu *pmu = &vcpu->arch.pmu;
218
219	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
220		pmu->pmc[i].idx = i;
221}
222
223/**
224 * kvm_pmu_vcpu_reset - reset pmu state for cpu
225 * @vcpu: The vcpu pointer
226 *
227 */
228void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
229{
230	unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
231	int i;
232
233	for_each_set_bit(i, &mask, 32)
234		kvm_pmu_stop_counter(kvm_vcpu_idx_to_pmc(vcpu, i));
235}
236
237/**
238 * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
239 * @vcpu: The vcpu pointer
240 *
241 */
242void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
243{
244	int i;
245
246	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
247		kvm_pmu_release_perf_event(kvm_vcpu_idx_to_pmc(vcpu, i));
248	irq_work_sync(&vcpu->arch.pmu.overflow_work);
249}
250
251u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
252{
253	u64 val = __vcpu_sys_reg(vcpu, PMCR_EL0) >> ARMV8_PMU_PMCR_N_SHIFT;
254
255	val &= ARMV8_PMU_PMCR_N_MASK;
256	if (val == 0)
257		return BIT(ARMV8_PMU_CYCLE_IDX);
258	else
259		return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
260}
261
262/**
263 * kvm_pmu_enable_counter_mask - enable selected PMU counters
264 * @vcpu: The vcpu pointer
265 * @val: the value guest writes to PMCNTENSET register
266 *
267 * Call perf_event_enable to start counting the perf event
268 */
269void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
270{
271	int i;
272	if (!kvm_vcpu_has_pmu(vcpu))
273		return;
274
275	if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) || !val)
276		return;
277
278	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
279		struct kvm_pmc *pmc;
280
281		if (!(val & BIT(i)))
282			continue;
283
284		pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
285
286		if (!pmc->perf_event) {
287			kvm_pmu_create_perf_event(pmc);
288		} else {
289			perf_event_enable(pmc->perf_event);
290			if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
291				kvm_debug("fail to enable perf event\n");
292		}
293	}
294}
295
296/**
297 * kvm_pmu_disable_counter_mask - disable selected PMU counters
298 * @vcpu: The vcpu pointer
299 * @val: the value guest writes to PMCNTENCLR register
300 *
301 * Call perf_event_disable to stop counting the perf event
302 */
303void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
304{
305	int i;
306
307	if (!kvm_vcpu_has_pmu(vcpu) || !val)
308		return;
309
310	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
311		struct kvm_pmc *pmc;
312
313		if (!(val & BIT(i)))
314			continue;
315
316		pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
317
318		if (pmc->perf_event)
319			perf_event_disable(pmc->perf_event);
320	}
321}
322
323static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
324{
325	u64 reg = 0;
326
327	if ((__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) {
328		reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
329		reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
330		reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
331	}
332
333	return reg;
334}
335
336static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
337{
338	struct kvm_pmu *pmu = &vcpu->arch.pmu;
339	bool overflow;
340
341	if (!kvm_vcpu_has_pmu(vcpu))
342		return;
343
344	overflow = !!kvm_pmu_overflow_status(vcpu);
345	if (pmu->irq_level == overflow)
346		return;
347
348	pmu->irq_level = overflow;
349
350	if (likely(irqchip_in_kernel(vcpu->kvm))) {
351		int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
352					      pmu->irq_num, overflow, pmu);
353		WARN_ON(ret);
354	}
355}
356
357bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
358{
359	struct kvm_pmu *pmu = &vcpu->arch.pmu;
360	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
361	bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
362
363	if (likely(irqchip_in_kernel(vcpu->kvm)))
364		return false;
365
366	return pmu->irq_level != run_level;
367}
368
369/*
370 * Reflect the PMU overflow interrupt output level into the kvm_run structure
371 */
372void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
373{
374	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
375
376	/* Populate the timer bitmap for user space */
377	regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
378	if (vcpu->arch.pmu.irq_level)
379		regs->device_irq_level |= KVM_ARM_DEV_PMU;
380}
381
382/**
383 * kvm_pmu_flush_hwstate - flush pmu state to cpu
384 * @vcpu: The vcpu pointer
385 *
386 * Check if the PMU has overflowed while we were running in the host, and inject
387 * an interrupt if that was the case.
388 */
389void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
390{
391	kvm_pmu_update_state(vcpu);
392}
393
394/**
395 * kvm_pmu_sync_hwstate - sync pmu state from cpu
396 * @vcpu: The vcpu pointer
397 *
398 * Check if the PMU has overflowed while we were running in the guest, and
399 * inject an interrupt if that was the case.
400 */
401void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
402{
403	kvm_pmu_update_state(vcpu);
404}
405
406/**
407 * When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding
408 * to the event.
409 * This is why we need a callback to do it once outside of the NMI context.
410 */
411static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
412{
413	struct kvm_vcpu *vcpu;
414
415	vcpu = container_of(work, struct kvm_vcpu, arch.pmu.overflow_work);
416	kvm_vcpu_kick(vcpu);
417}
418
419/*
420 * Perform an increment on any of the counters described in @mask,
421 * generating the overflow if required, and propagate it as a chained
422 * event if possible.
423 */
424static void kvm_pmu_counter_increment(struct kvm_vcpu *vcpu,
425				      unsigned long mask, u32 event)
426{
427	int i;
428
429	if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E))
430		return;
431
432	/* Weed out disabled counters */
433	mask &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
434
435	for_each_set_bit(i, &mask, ARMV8_PMU_CYCLE_IDX) {
436		struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
437		u64 type, reg;
438
439		/* Filter on event type */
440		type = __vcpu_sys_reg(vcpu, counter_index_to_evtreg(i));
441		type &= kvm_pmu_event_mask(vcpu->kvm);
442		if (type != event)
443			continue;
444
445		/* Increment this counter */
446		reg = __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) + 1;
447		if (!kvm_pmc_is_64bit(pmc))
448			reg = lower_32_bits(reg);
449		__vcpu_sys_reg(vcpu, counter_index_to_reg(i)) = reg;
450
451		/* No overflow? move on */
452		if (kvm_pmc_has_64bit_overflow(pmc) ? reg : lower_32_bits(reg))
453			continue;
454
455		/* Mark overflow */
456		__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
457
458		if (kvm_pmu_counter_can_chain(pmc))
459			kvm_pmu_counter_increment(vcpu, BIT(i + 1),
460						  ARMV8_PMUV3_PERFCTR_CHAIN);
461	}
462}
463
464/* Compute the sample period for a given counter value */
465static u64 compute_period(struct kvm_pmc *pmc, u64 counter)
466{
467	u64 val;
468
469	if (kvm_pmc_is_64bit(pmc) && kvm_pmc_has_64bit_overflow(pmc))
470		val = (-counter) & GENMASK(63, 0);
471	else
472		val = (-counter) & GENMASK(31, 0);
473
474	return val;
475}
476
477/**
478 * When the perf event overflows, set the overflow status and inform the vcpu.
479 */
480static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
481				  struct perf_sample_data *data,
482				  struct pt_regs *regs)
483{
484	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
485	struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
486	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
487	int idx = pmc->idx;
488	u64 period;
489
490	cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
491
492	/*
493	 * Reset the sample period to the architectural limit,
494	 * i.e. the point where the counter overflows.
495	 */
496	period = compute_period(pmc, local64_read(&perf_event->count));
497
498	local64_set(&perf_event->hw.period_left, 0);
499	perf_event->attr.sample_period = period;
500	perf_event->hw.sample_period = period;
501
502	__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
503
504	if (kvm_pmu_counter_can_chain(pmc))
505		kvm_pmu_counter_increment(vcpu, BIT(idx + 1),
506					  ARMV8_PMUV3_PERFCTR_CHAIN);
507
508	if (kvm_pmu_overflow_status(vcpu)) {
509		kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
510
511		if (!in_nmi())
512			kvm_vcpu_kick(vcpu);
513		else
514			irq_work_queue(&vcpu->arch.pmu.overflow_work);
515	}
516
517	cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
518}
519
520/**
521 * kvm_pmu_software_increment - do software increment
522 * @vcpu: The vcpu pointer
523 * @val: the value guest writes to PMSWINC register
524 */
525void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
526{
527	kvm_pmu_counter_increment(vcpu, val, ARMV8_PMUV3_PERFCTR_SW_INCR);
528}
529
530/**
531 * kvm_pmu_handle_pmcr - handle PMCR register
532 * @vcpu: The vcpu pointer
533 * @val: the value guest writes to PMCR register
534 */
535void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
536{
537	int i;
538
539	if (!kvm_vcpu_has_pmu(vcpu))
540		return;
541
542	/* Fixup PMCR_EL0 to reconcile the PMU version and the LP bit */
543	if (!kvm_pmu_is_3p5(vcpu))
544		val &= ~ARMV8_PMU_PMCR_LP;
545
546	/* The reset bits don't indicate any state, and shouldn't be saved. */
547	__vcpu_sys_reg(vcpu, PMCR_EL0) = val & ~(ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_P);
548
549	if (val & ARMV8_PMU_PMCR_E) {
550		kvm_pmu_enable_counter_mask(vcpu,
551		       __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
552	} else {
553		kvm_pmu_disable_counter_mask(vcpu,
554		       __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
555	}
556
557	if (val & ARMV8_PMU_PMCR_C)
558		kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
559
560	if (val & ARMV8_PMU_PMCR_P) {
561		unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
562		mask &= ~BIT(ARMV8_PMU_CYCLE_IDX);
563		for_each_set_bit(i, &mask, 32)
564			kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, i), 0, true);
565	}
566	kvm_vcpu_pmu_restore_guest(vcpu);
567}
568
569static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc)
570{
571	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
572	return (__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) &&
573	       (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(pmc->idx));
574}
575
576/**
577 * kvm_pmu_create_perf_event - create a perf event for a counter
578 * @pmc: Counter context
579 */
580static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc)
581{
582	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
583	struct arm_pmu *arm_pmu = vcpu->kvm->arch.arm_pmu;
584	struct perf_event *event;
585	struct perf_event_attr attr;
586	u64 eventsel, reg, data;
587
588	reg = counter_index_to_evtreg(pmc->idx);
589	data = __vcpu_sys_reg(vcpu, reg);
590
591	kvm_pmu_stop_counter(pmc);
592	if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
593		eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
594	else
595		eventsel = data & kvm_pmu_event_mask(vcpu->kvm);
596
597	/*
598	 * Neither SW increment nor chained events need to be backed
599	 * by a perf event.
600	 */
601	if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR ||
602	    eventsel == ARMV8_PMUV3_PERFCTR_CHAIN)
603		return;
604
605	/*
606	 * If we have a filter in place and that the event isn't allowed, do
607	 * not install a perf event either.
608	 */
609	if (vcpu->kvm->arch.pmu_filter &&
610	    !test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
611		return;
612
613	memset(&attr, 0, sizeof(struct perf_event_attr));
614	attr.type = arm_pmu->pmu.type;
615	attr.size = sizeof(attr);
616	attr.pinned = 1;
617	attr.disabled = !kvm_pmu_counter_is_enabled(pmc);
618	attr.exclude_user = data & ARMV8_PMU_EXCLUDE_EL0 ? 1 : 0;
619	attr.exclude_kernel = data & ARMV8_PMU_EXCLUDE_EL1 ? 1 : 0;
620	attr.exclude_hv = 1; /* Don't count EL2 events */
621	attr.exclude_host = 1; /* Don't count host events */
622	attr.config = eventsel;
623
624	/*
625	 * If counting with a 64bit counter, advertise it to the perf
626	 * code, carefully dealing with the initial sample period
627	 * which also depends on the overflow.
628	 */
629	if (kvm_pmc_is_64bit(pmc))
630		attr.config1 |= PERF_ATTR_CFG1_COUNTER_64BIT;
631
632	attr.sample_period = compute_period(pmc, kvm_pmu_get_pmc_value(pmc));
633
634	event = perf_event_create_kernel_counter(&attr, -1, current,
635						 kvm_pmu_perf_overflow, pmc);
636
637	if (IS_ERR(event)) {
638		pr_err_once("kvm: pmu event creation failed %ld\n",
639			    PTR_ERR(event));
640		return;
641	}
642
643	pmc->perf_event = event;
644}
645
646/**
647 * kvm_pmu_set_counter_event_type - set selected counter to monitor some event
648 * @vcpu: The vcpu pointer
649 * @data: The data guest writes to PMXEVTYPER_EL0
650 * @select_idx: The number of selected counter
651 *
652 * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
653 * event with given hardware event number. Here we call perf_event API to
654 * emulate this action and create a kernel perf event for it.
655 */
656void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
657				    u64 select_idx)
658{
659	struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, select_idx);
660	u64 reg, mask;
661
662	if (!kvm_vcpu_has_pmu(vcpu))
663		return;
664
665	mask  =  ARMV8_PMU_EVTYPE_MASK;
666	mask &= ~ARMV8_PMU_EVTYPE_EVENT;
667	mask |= kvm_pmu_event_mask(vcpu->kvm);
668
669	reg = counter_index_to_evtreg(pmc->idx);
670
671	__vcpu_sys_reg(vcpu, reg) = data & mask;
672
673	kvm_pmu_create_perf_event(pmc);
674}
675
676void kvm_host_pmu_init(struct arm_pmu *pmu)
677{
678	struct arm_pmu_entry *entry;
679
680	/*
681	 * Check the sanitised PMU version for the system, as KVM does not
682	 * support implementations where PMUv3 exists on a subset of CPUs.
683	 */
684	if (!pmuv3_implemented(kvm_arm_pmu_get_pmuver_limit()))
685		return;
686
687	mutex_lock(&arm_pmus_lock);
688
689	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
690	if (!entry)
691		goto out_unlock;
692
693	entry->arm_pmu = pmu;
694	list_add_tail(&entry->entry, &arm_pmus);
695
696	if (list_is_singular(&arm_pmus))
697		static_branch_enable(&kvm_arm_pmu_available);
698
699out_unlock:
700	mutex_unlock(&arm_pmus_lock);
701}
702
703static struct arm_pmu *kvm_pmu_probe_armpmu(void)
704{
705	struct arm_pmu *tmp, *pmu = NULL;
706	struct arm_pmu_entry *entry;
707	int cpu;
708
709	mutex_lock(&arm_pmus_lock);
710
711	/*
712	 * It is safe to use a stale cpu to iterate the list of PMUs so long as
713	 * the same value is used for the entirety of the loop. Given this, and
714	 * the fact that no percpu data is used for the lookup there is no need
715	 * to disable preemption.
716	 *
717	 * It is still necessary to get a valid cpu, though, to probe for the
718	 * default PMU instance as userspace is not required to specify a PMU
719	 * type. In order to uphold the preexisting behavior KVM selects the
720	 * PMU instance for the core where the first call to the
721	 * KVM_ARM_VCPU_PMU_V3_CTRL attribute group occurs. A dependent use case
722	 * would be a user with disdain of all things big.LITTLE that affines
723	 * the VMM to a particular cluster of cores.
724	 *
725	 * In any case, userspace should just do the sane thing and use the UAPI
726	 * to select a PMU type directly. But, be wary of the baggage being
727	 * carried here.
728	 */
729	cpu = raw_smp_processor_id();
730	list_for_each_entry(entry, &arm_pmus, entry) {
731		tmp = entry->arm_pmu;
732
733		if (cpumask_test_cpu(cpu, &tmp->supported_cpus)) {
734			pmu = tmp;
735			break;
736		}
737	}
738
739	mutex_unlock(&arm_pmus_lock);
740
741	return pmu;
742}
743
744u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
745{
746	unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
747	u64 val, mask = 0;
748	int base, i, nr_events;
749
750	if (!kvm_vcpu_has_pmu(vcpu))
751		return 0;
752
753	if (!pmceid1) {
754		val = read_sysreg(pmceid0_el0);
755		/* always support CHAIN */
756		val |= BIT(ARMV8_PMUV3_PERFCTR_CHAIN);
757		base = 0;
758	} else {
759		val = read_sysreg(pmceid1_el0);
760		/*
761		 * Don't advertise STALL_SLOT*, as PMMIR_EL0 is handled
762		 * as RAZ
763		 */
764		val &= ~(BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32) |
765			 BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND - 32) |
766			 BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND - 32));
767		base = 32;
768	}
769
770	if (!bmap)
771		return val;
772
773	nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
774
775	for (i = 0; i < 32; i += 8) {
776		u64 byte;
777
778		byte = bitmap_get_value8(bmap, base + i);
779		mask |= byte << i;
780		if (nr_events >= (0x4000 + base + 32)) {
781			byte = bitmap_get_value8(bmap, 0x4000 + base + i);
782			mask |= byte << (32 + i);
783		}
784	}
785
786	return val & mask;
787}
788
789int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
790{
791	if (!kvm_vcpu_has_pmu(vcpu))
792		return 0;
793
794	if (!vcpu->arch.pmu.created)
795		return -EINVAL;
796
797	/*
798	 * A valid interrupt configuration for the PMU is either to have a
799	 * properly configured interrupt number and using an in-kernel
800	 * irqchip, or to not have an in-kernel GIC and not set an IRQ.
801	 */
802	if (irqchip_in_kernel(vcpu->kvm)) {
803		int irq = vcpu->arch.pmu.irq_num;
804		/*
805		 * If we are using an in-kernel vgic, at this point we know
806		 * the vgic will be initialized, so we can check the PMU irq
807		 * number against the dimensions of the vgic and make sure
808		 * it's valid.
809		 */
810		if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
811			return -EINVAL;
812	} else if (kvm_arm_pmu_irq_initialized(vcpu)) {
813		   return -EINVAL;
814	}
815
816	/* One-off reload of the PMU on first run */
817	kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
818
819	return 0;
820}
821
822static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
823{
824	if (irqchip_in_kernel(vcpu->kvm)) {
825		int ret;
826
827		/*
828		 * If using the PMU with an in-kernel virtual GIC
829		 * implementation, we require the GIC to be already
830		 * initialized when initializing the PMU.
831		 */
832		if (!vgic_initialized(vcpu->kvm))
833			return -ENODEV;
834
835		if (!kvm_arm_pmu_irq_initialized(vcpu))
836			return -ENXIO;
837
838		ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
839					 &vcpu->arch.pmu);
840		if (ret)
841			return ret;
842	}
843
844	init_irq_work(&vcpu->arch.pmu.overflow_work,
845		      kvm_pmu_perf_overflow_notify_vcpu);
846
847	vcpu->arch.pmu.created = true;
848	return 0;
849}
850
851/*
852 * For one VM the interrupt type must be same for each vcpu.
853 * As a PPI, the interrupt number is the same for all vcpus,
854 * while as an SPI it must be a separate number per vcpu.
855 */
856static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
857{
858	unsigned long i;
859	struct kvm_vcpu *vcpu;
860
861	kvm_for_each_vcpu(i, vcpu, kvm) {
862		if (!kvm_arm_pmu_irq_initialized(vcpu))
863			continue;
864
865		if (irq_is_ppi(irq)) {
866			if (vcpu->arch.pmu.irq_num != irq)
867				return false;
868		} else {
869			if (vcpu->arch.pmu.irq_num == irq)
870				return false;
871		}
872	}
873
874	return true;
875}
876
877static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id)
878{
879	struct kvm *kvm = vcpu->kvm;
880	struct arm_pmu_entry *entry;
881	struct arm_pmu *arm_pmu;
882	int ret = -ENXIO;
883
884	lockdep_assert_held(&kvm->arch.config_lock);
885	mutex_lock(&arm_pmus_lock);
886
887	list_for_each_entry(entry, &arm_pmus, entry) {
888		arm_pmu = entry->arm_pmu;
889		if (arm_pmu->pmu.type == pmu_id) {
890			if (kvm_vm_has_ran_once(kvm) ||
891			    (kvm->arch.pmu_filter && kvm->arch.arm_pmu != arm_pmu)) {
892				ret = -EBUSY;
893				break;
894			}
895
896			kvm->arch.arm_pmu = arm_pmu;
897			cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus);
898			ret = 0;
899			break;
900		}
901	}
902
903	mutex_unlock(&arm_pmus_lock);
904	return ret;
905}
906
907int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
908{
909	struct kvm *kvm = vcpu->kvm;
910
911	lockdep_assert_held(&kvm->arch.config_lock);
912
913	if (!kvm_vcpu_has_pmu(vcpu))
914		return -ENODEV;
915
916	if (vcpu->arch.pmu.created)
917		return -EBUSY;
918
919	if (!kvm->arch.arm_pmu) {
920		/*
921		 * No PMU set, get the default one.
922		 *
923		 * The observant among you will notice that the supported_cpus
924		 * mask does not get updated for the default PMU even though it
925		 * is quite possible the selected instance supports only a
926		 * subset of cores in the system. This is intentional, and
927		 * upholds the preexisting behavior on heterogeneous systems
928		 * where vCPUs can be scheduled on any core but the guest
929		 * counters could stop working.
930		 */
931		kvm->arch.arm_pmu = kvm_pmu_probe_armpmu();
932		if (!kvm->arch.arm_pmu)
933			return -ENODEV;
934	}
935
936	switch (attr->attr) {
937	case KVM_ARM_VCPU_PMU_V3_IRQ: {
938		int __user *uaddr = (int __user *)(long)attr->addr;
939		int irq;
940
941		if (!irqchip_in_kernel(kvm))
942			return -EINVAL;
943
944		if (get_user(irq, uaddr))
945			return -EFAULT;
946
947		/* The PMU overflow interrupt can be a PPI or a valid SPI. */
948		if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
949			return -EINVAL;
950
951		if (!pmu_irq_is_valid(kvm, irq))
952			return -EINVAL;
953
954		if (kvm_arm_pmu_irq_initialized(vcpu))
955			return -EBUSY;
956
957		kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
958		vcpu->arch.pmu.irq_num = irq;
959		return 0;
960	}
961	case KVM_ARM_VCPU_PMU_V3_FILTER: {
962		u8 pmuver = kvm_arm_pmu_get_pmuver_limit();
963		struct kvm_pmu_event_filter __user *uaddr;
964		struct kvm_pmu_event_filter filter;
965		int nr_events;
966
967		/*
968		 * Allow userspace to specify an event filter for the entire
969		 * event range supported by PMUVer of the hardware, rather
970		 * than the guest's PMUVer for KVM backward compatibility.
971		 */
972		nr_events = __kvm_pmu_event_mask(pmuver) + 1;
973
974		uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;
975
976		if (copy_from_user(&filter, uaddr, sizeof(filter)))
977			return -EFAULT;
978
979		if (((u32)filter.base_event + filter.nevents) > nr_events ||
980		    (filter.action != KVM_PMU_EVENT_ALLOW &&
981		     filter.action != KVM_PMU_EVENT_DENY))
982			return -EINVAL;
983
984		if (kvm_vm_has_ran_once(kvm))
985			return -EBUSY;
986
987		if (!kvm->arch.pmu_filter) {
988			kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL_ACCOUNT);
989			if (!kvm->arch.pmu_filter)
990				return -ENOMEM;
991
992			/*
993			 * The default depends on the first applied filter.
994			 * If it allows events, the default is to deny.
995			 * Conversely, if the first filter denies a set of
996			 * events, the default is to allow.
997			 */
998			if (filter.action == KVM_PMU_EVENT_ALLOW)
999				bitmap_zero(kvm->arch.pmu_filter, nr_events);
1000			else
1001				bitmap_fill(kvm->arch.pmu_filter, nr_events);
1002		}
1003
1004		if (filter.action == KVM_PMU_EVENT_ALLOW)
1005			bitmap_set(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1006		else
1007			bitmap_clear(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1008
1009		return 0;
1010	}
1011	case KVM_ARM_VCPU_PMU_V3_SET_PMU: {
1012		int __user *uaddr = (int __user *)(long)attr->addr;
1013		int pmu_id;
1014
1015		if (get_user(pmu_id, uaddr))
1016			return -EFAULT;
1017
1018		return kvm_arm_pmu_v3_set_pmu(vcpu, pmu_id);
1019	}
1020	case KVM_ARM_VCPU_PMU_V3_INIT:
1021		return kvm_arm_pmu_v3_init(vcpu);
1022	}
1023
1024	return -ENXIO;
1025}
1026
1027int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1028{
1029	switch (attr->attr) {
1030	case KVM_ARM_VCPU_PMU_V3_IRQ: {
1031		int __user *uaddr = (int __user *)(long)attr->addr;
1032		int irq;
1033
1034		if (!irqchip_in_kernel(vcpu->kvm))
1035			return -EINVAL;
1036
1037		if (!kvm_vcpu_has_pmu(vcpu))
1038			return -ENODEV;
1039
1040		if (!kvm_arm_pmu_irq_initialized(vcpu))
1041			return -ENXIO;
1042
1043		irq = vcpu->arch.pmu.irq_num;
1044		return put_user(irq, uaddr);
1045	}
1046	}
1047
1048	return -ENXIO;
1049}
1050
1051int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1052{
1053	switch (attr->attr) {
1054	case KVM_ARM_VCPU_PMU_V3_IRQ:
1055	case KVM_ARM_VCPU_PMU_V3_INIT:
1056	case KVM_ARM_VCPU_PMU_V3_FILTER:
1057	case KVM_ARM_VCPU_PMU_V3_SET_PMU:
1058		if (kvm_vcpu_has_pmu(vcpu))
1059			return 0;
1060	}
1061
1062	return -ENXIO;
1063}
1064
1065u8 kvm_arm_pmu_get_pmuver_limit(void)
1066{
1067	u64 tmp;
1068
1069	tmp = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1070	tmp = cpuid_feature_cap_perfmon_field(tmp,
1071					      ID_AA64DFR0_EL1_PMUVer_SHIFT,
1072					      ID_AA64DFR0_EL1_PMUVer_V3P5);
1073	return FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), tmp);
1074}
1075