xref: /kernel/linux/linux-6.6/arch/arm64/kvm/mmu.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7#include <linux/mman.h>
8#include <linux/kvm_host.h>
9#include <linux/io.h>
10#include <linux/hugetlb.h>
11#include <linux/sched/signal.h>
12#include <trace/events/kvm.h>
13#include <asm/pgalloc.h>
14#include <asm/cacheflush.h>
15#include <asm/kvm_arm.h>
16#include <asm/kvm_mmu.h>
17#include <asm/kvm_pgtable.h>
18#include <asm/kvm_ras.h>
19#include <asm/kvm_asm.h>
20#include <asm/kvm_emulate.h>
21#include <asm/virt.h>
22
23#include "trace.h"
24
25static struct kvm_pgtable *hyp_pgtable;
26static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27
28static unsigned long __ro_after_init hyp_idmap_start;
29static unsigned long __ro_after_init hyp_idmap_end;
30static phys_addr_t __ro_after_init hyp_idmap_vector;
31
32static unsigned long __ro_after_init io_map_base;
33
34static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
35					   phys_addr_t size)
36{
37	phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
38
39	return (boundary - 1 < end - 1) ? boundary : end;
40}
41
42static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
43{
44	phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
45
46	return __stage2_range_addr_end(addr, end, size);
47}
48
49/*
50 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
51 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
52 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
53 * long will also starve other vCPUs. We have to also make sure that the page
54 * tables are not freed while we released the lock.
55 */
56static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
57			      phys_addr_t end,
58			      int (*fn)(struct kvm_pgtable *, u64, u64),
59			      bool resched)
60{
61	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
62	int ret;
63	u64 next;
64
65	do {
66		struct kvm_pgtable *pgt = mmu->pgt;
67		if (!pgt)
68			return -EINVAL;
69
70		next = stage2_range_addr_end(addr, end);
71		ret = fn(pgt, addr, next - addr);
72		if (ret)
73			break;
74
75		if (resched && next != end)
76			cond_resched_rwlock_write(&kvm->mmu_lock);
77	} while (addr = next, addr != end);
78
79	return ret;
80}
81
82#define stage2_apply_range_resched(mmu, addr, end, fn)			\
83	stage2_apply_range(mmu, addr, end, fn, true)
84
85/*
86 * Get the maximum number of page-tables pages needed to split a range
87 * of blocks into PAGE_SIZE PTEs. It assumes the range is already
88 * mapped at level 2, or at level 1 if allowed.
89 */
90static int kvm_mmu_split_nr_page_tables(u64 range)
91{
92	int n = 0;
93
94	if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
95		n += DIV_ROUND_UP(range, PUD_SIZE);
96	n += DIV_ROUND_UP(range, PMD_SIZE);
97	return n;
98}
99
100static bool need_split_memcache_topup_or_resched(struct kvm *kvm)
101{
102	struct kvm_mmu_memory_cache *cache;
103	u64 chunk_size, min;
104
105	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
106		return true;
107
108	chunk_size = kvm->arch.mmu.split_page_chunk_size;
109	min = kvm_mmu_split_nr_page_tables(chunk_size);
110	cache = &kvm->arch.mmu.split_page_cache;
111	return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
112}
113
114static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
115				    phys_addr_t end)
116{
117	struct kvm_mmu_memory_cache *cache;
118	struct kvm_pgtable *pgt;
119	int ret, cache_capacity;
120	u64 next, chunk_size;
121
122	lockdep_assert_held_write(&kvm->mmu_lock);
123
124	chunk_size = kvm->arch.mmu.split_page_chunk_size;
125	cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size);
126
127	if (chunk_size == 0)
128		return 0;
129
130	cache = &kvm->arch.mmu.split_page_cache;
131
132	do {
133		if (need_split_memcache_topup_or_resched(kvm)) {
134			write_unlock(&kvm->mmu_lock);
135			cond_resched();
136			/* Eager page splitting is best-effort. */
137			ret = __kvm_mmu_topup_memory_cache(cache,
138							   cache_capacity,
139							   cache_capacity);
140			write_lock(&kvm->mmu_lock);
141			if (ret)
142				break;
143		}
144
145		pgt = kvm->arch.mmu.pgt;
146		if (!pgt)
147			return -EINVAL;
148
149		next = __stage2_range_addr_end(addr, end, chunk_size);
150		ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, cache);
151		if (ret)
152			break;
153	} while (addr = next, addr != end);
154
155	return ret;
156}
157
158static bool memslot_is_logging(struct kvm_memory_slot *memslot)
159{
160	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
161}
162
163/**
164 * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8
165 * @kvm:	pointer to kvm structure.
166 *
167 * Interface to HYP function to flush all VM TLB entries
168 */
169int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
170{
171	kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
172	return 0;
173}
174
175int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
176				      gfn_t gfn, u64 nr_pages)
177{
178	kvm_tlb_flush_vmid_range(&kvm->arch.mmu,
179				gfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT);
180	return 0;
181}
182
183static bool kvm_is_device_pfn(unsigned long pfn)
184{
185	return !pfn_is_map_memory(pfn);
186}
187
188static void *stage2_memcache_zalloc_page(void *arg)
189{
190	struct kvm_mmu_memory_cache *mc = arg;
191	void *virt;
192
193	/* Allocated with __GFP_ZERO, so no need to zero */
194	virt = kvm_mmu_memory_cache_alloc(mc);
195	if (virt)
196		kvm_account_pgtable_pages(virt, 1);
197	return virt;
198}
199
200static void *kvm_host_zalloc_pages_exact(size_t size)
201{
202	return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
203}
204
205static void *kvm_s2_zalloc_pages_exact(size_t size)
206{
207	void *virt = kvm_host_zalloc_pages_exact(size);
208
209	if (virt)
210		kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
211	return virt;
212}
213
214static void kvm_s2_free_pages_exact(void *virt, size_t size)
215{
216	kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
217	free_pages_exact(virt, size);
218}
219
220static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
221
222static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head)
223{
224	struct page *page = container_of(head, struct page, rcu_head);
225	void *pgtable = page_to_virt(page);
226	u32 level = page_private(page);
227
228	kvm_pgtable_stage2_free_unlinked(&kvm_s2_mm_ops, pgtable, level);
229}
230
231static void stage2_free_unlinked_table(void *addr, u32 level)
232{
233	struct page *page = virt_to_page(addr);
234
235	set_page_private(page, (unsigned long)level);
236	call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb);
237}
238
239static void kvm_host_get_page(void *addr)
240{
241	get_page(virt_to_page(addr));
242}
243
244static void kvm_host_put_page(void *addr)
245{
246	put_page(virt_to_page(addr));
247}
248
249static void kvm_s2_put_page(void *addr)
250{
251	struct page *p = virt_to_page(addr);
252	/* Dropping last refcount, the page will be freed */
253	if (page_count(p) == 1)
254		kvm_account_pgtable_pages(addr, -1);
255	put_page(p);
256}
257
258static int kvm_host_page_count(void *addr)
259{
260	return page_count(virt_to_page(addr));
261}
262
263static phys_addr_t kvm_host_pa(void *addr)
264{
265	return __pa(addr);
266}
267
268static void *kvm_host_va(phys_addr_t phys)
269{
270	return __va(phys);
271}
272
273static void clean_dcache_guest_page(void *va, size_t size)
274{
275	__clean_dcache_guest_page(va, size);
276}
277
278static void invalidate_icache_guest_page(void *va, size_t size)
279{
280	__invalidate_icache_guest_page(va, size);
281}
282
283/*
284 * Unmapping vs dcache management:
285 *
286 * If a guest maps certain memory pages as uncached, all writes will
287 * bypass the data cache and go directly to RAM.  However, the CPUs
288 * can still speculate reads (not writes) and fill cache lines with
289 * data.
290 *
291 * Those cache lines will be *clean* cache lines though, so a
292 * clean+invalidate operation is equivalent to an invalidate
293 * operation, because no cache lines are marked dirty.
294 *
295 * Those clean cache lines could be filled prior to an uncached write
296 * by the guest, and the cache coherent IO subsystem would therefore
297 * end up writing old data to disk.
298 *
299 * This is why right after unmapping a page/section and invalidating
300 * the corresponding TLBs, we flush to make sure the IO subsystem will
301 * never hit in the cache.
302 *
303 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
304 * we then fully enforce cacheability of RAM, no matter what the guest
305 * does.
306 */
307/**
308 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
309 * @mmu:   The KVM stage-2 MMU pointer
310 * @start: The intermediate physical base address of the range to unmap
311 * @size:  The size of the area to unmap
312 * @may_block: Whether or not we are permitted to block
313 *
314 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
315 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
316 * destroying the VM), otherwise another faulting VCPU may come in and mess
317 * with things behind our backs.
318 */
319static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
320				 bool may_block)
321{
322	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
323	phys_addr_t end = start + size;
324
325	lockdep_assert_held_write(&kvm->mmu_lock);
326	WARN_ON(size & ~PAGE_MASK);
327	WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap,
328				   may_block));
329}
330
331static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
332{
333	__unmap_stage2_range(mmu, start, size, true);
334}
335
336static void stage2_flush_memslot(struct kvm *kvm,
337				 struct kvm_memory_slot *memslot)
338{
339	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
340	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
341
342	stage2_apply_range_resched(&kvm->arch.mmu, addr, end, kvm_pgtable_stage2_flush);
343}
344
345/**
346 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
347 * @kvm: The struct kvm pointer
348 *
349 * Go through the stage 2 page tables and invalidate any cache lines
350 * backing memory already mapped to the VM.
351 */
352static void stage2_flush_vm(struct kvm *kvm)
353{
354	struct kvm_memslots *slots;
355	struct kvm_memory_slot *memslot;
356	int idx, bkt;
357
358	idx = srcu_read_lock(&kvm->srcu);
359	write_lock(&kvm->mmu_lock);
360
361	slots = kvm_memslots(kvm);
362	kvm_for_each_memslot(memslot, bkt, slots)
363		stage2_flush_memslot(kvm, memslot);
364
365	write_unlock(&kvm->mmu_lock);
366	srcu_read_unlock(&kvm->srcu, idx);
367}
368
369/**
370 * free_hyp_pgds - free Hyp-mode page tables
371 */
372void __init free_hyp_pgds(void)
373{
374	mutex_lock(&kvm_hyp_pgd_mutex);
375	if (hyp_pgtable) {
376		kvm_pgtable_hyp_destroy(hyp_pgtable);
377		kfree(hyp_pgtable);
378		hyp_pgtable = NULL;
379	}
380	mutex_unlock(&kvm_hyp_pgd_mutex);
381}
382
383static bool kvm_host_owns_hyp_mappings(void)
384{
385	if (is_kernel_in_hyp_mode())
386		return false;
387
388	if (static_branch_likely(&kvm_protected_mode_initialized))
389		return false;
390
391	/*
392	 * This can happen at boot time when __create_hyp_mappings() is called
393	 * after the hyp protection has been enabled, but the static key has
394	 * not been flipped yet.
395	 */
396	if (!hyp_pgtable && is_protected_kvm_enabled())
397		return false;
398
399	WARN_ON(!hyp_pgtable);
400
401	return true;
402}
403
404int __create_hyp_mappings(unsigned long start, unsigned long size,
405			  unsigned long phys, enum kvm_pgtable_prot prot)
406{
407	int err;
408
409	if (WARN_ON(!kvm_host_owns_hyp_mappings()))
410		return -EINVAL;
411
412	mutex_lock(&kvm_hyp_pgd_mutex);
413	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
414	mutex_unlock(&kvm_hyp_pgd_mutex);
415
416	return err;
417}
418
419static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
420{
421	if (!is_vmalloc_addr(kaddr)) {
422		BUG_ON(!virt_addr_valid(kaddr));
423		return __pa(kaddr);
424	} else {
425		return page_to_phys(vmalloc_to_page(kaddr)) +
426		       offset_in_page(kaddr);
427	}
428}
429
430struct hyp_shared_pfn {
431	u64 pfn;
432	int count;
433	struct rb_node node;
434};
435
436static DEFINE_MUTEX(hyp_shared_pfns_lock);
437static struct rb_root hyp_shared_pfns = RB_ROOT;
438
439static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
440					      struct rb_node **parent)
441{
442	struct hyp_shared_pfn *this;
443
444	*node = &hyp_shared_pfns.rb_node;
445	*parent = NULL;
446	while (**node) {
447		this = container_of(**node, struct hyp_shared_pfn, node);
448		*parent = **node;
449		if (this->pfn < pfn)
450			*node = &((**node)->rb_left);
451		else if (this->pfn > pfn)
452			*node = &((**node)->rb_right);
453		else
454			return this;
455	}
456
457	return NULL;
458}
459
460static int share_pfn_hyp(u64 pfn)
461{
462	struct rb_node **node, *parent;
463	struct hyp_shared_pfn *this;
464	int ret = 0;
465
466	mutex_lock(&hyp_shared_pfns_lock);
467	this = find_shared_pfn(pfn, &node, &parent);
468	if (this) {
469		this->count++;
470		goto unlock;
471	}
472
473	this = kzalloc(sizeof(*this), GFP_KERNEL);
474	if (!this) {
475		ret = -ENOMEM;
476		goto unlock;
477	}
478
479	this->pfn = pfn;
480	this->count = 1;
481	rb_link_node(&this->node, parent, node);
482	rb_insert_color(&this->node, &hyp_shared_pfns);
483	ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
484unlock:
485	mutex_unlock(&hyp_shared_pfns_lock);
486
487	return ret;
488}
489
490static int unshare_pfn_hyp(u64 pfn)
491{
492	struct rb_node **node, *parent;
493	struct hyp_shared_pfn *this;
494	int ret = 0;
495
496	mutex_lock(&hyp_shared_pfns_lock);
497	this = find_shared_pfn(pfn, &node, &parent);
498	if (WARN_ON(!this)) {
499		ret = -ENOENT;
500		goto unlock;
501	}
502
503	this->count--;
504	if (this->count)
505		goto unlock;
506
507	rb_erase(&this->node, &hyp_shared_pfns);
508	kfree(this);
509	ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
510unlock:
511	mutex_unlock(&hyp_shared_pfns_lock);
512
513	return ret;
514}
515
516int kvm_share_hyp(void *from, void *to)
517{
518	phys_addr_t start, end, cur;
519	u64 pfn;
520	int ret;
521
522	if (is_kernel_in_hyp_mode())
523		return 0;
524
525	/*
526	 * The share hcall maps things in the 'fixed-offset' region of the hyp
527	 * VA space, so we can only share physically contiguous data-structures
528	 * for now.
529	 */
530	if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
531		return -EINVAL;
532
533	if (kvm_host_owns_hyp_mappings())
534		return create_hyp_mappings(from, to, PAGE_HYP);
535
536	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
537	end = PAGE_ALIGN(__pa(to));
538	for (cur = start; cur < end; cur += PAGE_SIZE) {
539		pfn = __phys_to_pfn(cur);
540		ret = share_pfn_hyp(pfn);
541		if (ret)
542			return ret;
543	}
544
545	return 0;
546}
547
548void kvm_unshare_hyp(void *from, void *to)
549{
550	phys_addr_t start, end, cur;
551	u64 pfn;
552
553	if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
554		return;
555
556	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
557	end = PAGE_ALIGN(__pa(to));
558	for (cur = start; cur < end; cur += PAGE_SIZE) {
559		pfn = __phys_to_pfn(cur);
560		WARN_ON(unshare_pfn_hyp(pfn));
561	}
562}
563
564/**
565 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
566 * @from:	The virtual kernel start address of the range
567 * @to:		The virtual kernel end address of the range (exclusive)
568 * @prot:	The protection to be applied to this range
569 *
570 * The same virtual address as the kernel virtual address is also used
571 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
572 * physical pages.
573 */
574int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
575{
576	phys_addr_t phys_addr;
577	unsigned long virt_addr;
578	unsigned long start = kern_hyp_va((unsigned long)from);
579	unsigned long end = kern_hyp_va((unsigned long)to);
580
581	if (is_kernel_in_hyp_mode())
582		return 0;
583
584	if (!kvm_host_owns_hyp_mappings())
585		return -EPERM;
586
587	start = start & PAGE_MASK;
588	end = PAGE_ALIGN(end);
589
590	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
591		int err;
592
593		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
594		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
595					    prot);
596		if (err)
597			return err;
598	}
599
600	return 0;
601}
602
603static int __hyp_alloc_private_va_range(unsigned long base)
604{
605	lockdep_assert_held(&kvm_hyp_pgd_mutex);
606
607	if (!PAGE_ALIGNED(base))
608		return -EINVAL;
609
610	/*
611	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
612	 * allocating the new area, as it would indicate we've
613	 * overflowed the idmap/IO address range.
614	 */
615	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
616		return -ENOMEM;
617
618	io_map_base = base;
619
620	return 0;
621}
622
623/**
624 * hyp_alloc_private_va_range - Allocates a private VA range.
625 * @size:	The size of the VA range to reserve.
626 * @haddr:	The hypervisor virtual start address of the allocation.
627 *
628 * The private virtual address (VA) range is allocated below io_map_base
629 * and aligned based on the order of @size.
630 *
631 * Return: 0 on success or negative error code on failure.
632 */
633int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
634{
635	unsigned long base;
636	int ret = 0;
637
638	mutex_lock(&kvm_hyp_pgd_mutex);
639
640	/*
641	 * This assumes that we have enough space below the idmap
642	 * page to allocate our VAs. If not, the check in
643	 * __hyp_alloc_private_va_range() will kick. A potential
644	 * alternative would be to detect that overflow and switch
645	 * to an allocation above the idmap.
646	 *
647	 * The allocated size is always a multiple of PAGE_SIZE.
648	 */
649	size = PAGE_ALIGN(size);
650	base = io_map_base - size;
651	ret = __hyp_alloc_private_va_range(base);
652
653	mutex_unlock(&kvm_hyp_pgd_mutex);
654
655	if (!ret)
656		*haddr = base;
657
658	return ret;
659}
660
661static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
662					unsigned long *haddr,
663					enum kvm_pgtable_prot prot)
664{
665	unsigned long addr;
666	int ret = 0;
667
668	if (!kvm_host_owns_hyp_mappings()) {
669		addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
670					 phys_addr, size, prot);
671		if (IS_ERR_VALUE(addr))
672			return addr;
673		*haddr = addr;
674
675		return 0;
676	}
677
678	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
679	ret = hyp_alloc_private_va_range(size, &addr);
680	if (ret)
681		return ret;
682
683	ret = __create_hyp_mappings(addr, size, phys_addr, prot);
684	if (ret)
685		return ret;
686
687	*haddr = addr + offset_in_page(phys_addr);
688	return ret;
689}
690
691int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr)
692{
693	unsigned long base;
694	size_t size;
695	int ret;
696
697	mutex_lock(&kvm_hyp_pgd_mutex);
698	/*
699	 * Efficient stack verification using the PAGE_SHIFT bit implies
700	 * an alignment of our allocation on the order of the size.
701	 */
702	size = PAGE_SIZE * 2;
703	base = ALIGN_DOWN(io_map_base - size, size);
704
705	ret = __hyp_alloc_private_va_range(base);
706
707	mutex_unlock(&kvm_hyp_pgd_mutex);
708
709	if (ret) {
710		kvm_err("Cannot allocate hyp stack guard page\n");
711		return ret;
712	}
713
714	/*
715	 * Since the stack grows downwards, map the stack to the page
716	 * at the higher address and leave the lower guard page
717	 * unbacked.
718	 *
719	 * Any valid stack address now has the PAGE_SHIFT bit as 1
720	 * and addresses corresponding to the guard page have the
721	 * PAGE_SHIFT bit as 0 - this is used for overflow detection.
722	 */
723	ret = __create_hyp_mappings(base + PAGE_SIZE, PAGE_SIZE, phys_addr,
724				    PAGE_HYP);
725	if (ret)
726		kvm_err("Cannot map hyp stack\n");
727
728	*haddr = base + size;
729
730	return ret;
731}
732
733/**
734 * create_hyp_io_mappings - Map IO into both kernel and HYP
735 * @phys_addr:	The physical start address which gets mapped
736 * @size:	Size of the region being mapped
737 * @kaddr:	Kernel VA for this mapping
738 * @haddr:	HYP VA for this mapping
739 */
740int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
741			   void __iomem **kaddr,
742			   void __iomem **haddr)
743{
744	unsigned long addr;
745	int ret;
746
747	if (is_protected_kvm_enabled())
748		return -EPERM;
749
750	*kaddr = ioremap(phys_addr, size);
751	if (!*kaddr)
752		return -ENOMEM;
753
754	if (is_kernel_in_hyp_mode()) {
755		*haddr = *kaddr;
756		return 0;
757	}
758
759	ret = __create_hyp_private_mapping(phys_addr, size,
760					   &addr, PAGE_HYP_DEVICE);
761	if (ret) {
762		iounmap(*kaddr);
763		*kaddr = NULL;
764		*haddr = NULL;
765		return ret;
766	}
767
768	*haddr = (void __iomem *)addr;
769	return 0;
770}
771
772/**
773 * create_hyp_exec_mappings - Map an executable range into HYP
774 * @phys_addr:	The physical start address which gets mapped
775 * @size:	Size of the region being mapped
776 * @haddr:	HYP VA for this mapping
777 */
778int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
779			     void **haddr)
780{
781	unsigned long addr;
782	int ret;
783
784	BUG_ON(is_kernel_in_hyp_mode());
785
786	ret = __create_hyp_private_mapping(phys_addr, size,
787					   &addr, PAGE_HYP_EXEC);
788	if (ret) {
789		*haddr = NULL;
790		return ret;
791	}
792
793	*haddr = (void *)addr;
794	return 0;
795}
796
797static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
798	/* We shouldn't need any other callback to walk the PT */
799	.phys_to_virt		= kvm_host_va,
800};
801
802static int get_user_mapping_size(struct kvm *kvm, u64 addr)
803{
804	struct kvm_pgtable pgt = {
805		.pgd		= (kvm_pteref_t)kvm->mm->pgd,
806		.ia_bits	= vabits_actual,
807		.start_level	= (KVM_PGTABLE_MAX_LEVELS -
808				   CONFIG_PGTABLE_LEVELS),
809		.mm_ops		= &kvm_user_mm_ops,
810	};
811	unsigned long flags;
812	kvm_pte_t pte = 0;	/* Keep GCC quiet... */
813	u32 level = ~0;
814	int ret;
815
816	/*
817	 * Disable IRQs so that we hazard against a concurrent
818	 * teardown of the userspace page tables (which relies on
819	 * IPI-ing threads).
820	 */
821	local_irq_save(flags);
822	ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
823	local_irq_restore(flags);
824
825	if (ret)
826		return ret;
827
828	/*
829	 * Not seeing an error, but not updating level? Something went
830	 * deeply wrong...
831	 */
832	if (WARN_ON(level >= KVM_PGTABLE_MAX_LEVELS))
833		return -EFAULT;
834
835	/* Oops, the userspace PTs are gone... Replay the fault */
836	if (!kvm_pte_valid(pte))
837		return -EAGAIN;
838
839	return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
840}
841
842static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
843	.zalloc_page		= stage2_memcache_zalloc_page,
844	.zalloc_pages_exact	= kvm_s2_zalloc_pages_exact,
845	.free_pages_exact	= kvm_s2_free_pages_exact,
846	.free_unlinked_table	= stage2_free_unlinked_table,
847	.get_page		= kvm_host_get_page,
848	.put_page		= kvm_s2_put_page,
849	.page_count		= kvm_host_page_count,
850	.phys_to_virt		= kvm_host_va,
851	.virt_to_phys		= kvm_host_pa,
852	.dcache_clean_inval_poc	= clean_dcache_guest_page,
853	.icache_inval_pou	= invalidate_icache_guest_page,
854};
855
856/**
857 * kvm_init_stage2_mmu - Initialise a S2 MMU structure
858 * @kvm:	The pointer to the KVM structure
859 * @mmu:	The pointer to the s2 MMU structure
860 * @type:	The machine type of the virtual machine
861 *
862 * Allocates only the stage-2 HW PGD level table(s).
863 * Note we don't need locking here as this is only called when the VM is
864 * created, which can only be done once.
865 */
866int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
867{
868	u32 kvm_ipa_limit = get_kvm_ipa_limit();
869	int cpu, err;
870	struct kvm_pgtable *pgt;
871	u64 mmfr0, mmfr1;
872	u32 phys_shift;
873
874	if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
875		return -EINVAL;
876
877	phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
878	if (is_protected_kvm_enabled()) {
879		phys_shift = kvm_ipa_limit;
880	} else if (phys_shift) {
881		if (phys_shift > kvm_ipa_limit ||
882		    phys_shift < ARM64_MIN_PARANGE_BITS)
883			return -EINVAL;
884	} else {
885		phys_shift = KVM_PHYS_SHIFT;
886		if (phys_shift > kvm_ipa_limit) {
887			pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
888				     current->comm);
889			return -EINVAL;
890		}
891	}
892
893	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
894	mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
895	kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
896
897	if (mmu->pgt != NULL) {
898		kvm_err("kvm_arch already initialized?\n");
899		return -EINVAL;
900	}
901
902	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
903	if (!pgt)
904		return -ENOMEM;
905
906	mmu->arch = &kvm->arch;
907	err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
908	if (err)
909		goto out_free_pgtable;
910
911	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
912	if (!mmu->last_vcpu_ran) {
913		err = -ENOMEM;
914		goto out_destroy_pgtable;
915	}
916
917	for_each_possible_cpu(cpu)
918		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
919
920	 /* The eager page splitting is disabled by default */
921	mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
922	mmu->split_page_cache.gfp_zero = __GFP_ZERO;
923
924	mmu->pgt = pgt;
925	mmu->pgd_phys = __pa(pgt->pgd);
926	return 0;
927
928out_destroy_pgtable:
929	kvm_pgtable_stage2_destroy(pgt);
930out_free_pgtable:
931	kfree(pgt);
932	return err;
933}
934
935void kvm_uninit_stage2_mmu(struct kvm *kvm)
936{
937	kvm_free_stage2_pgd(&kvm->arch.mmu);
938	kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
939}
940
941static void stage2_unmap_memslot(struct kvm *kvm,
942				 struct kvm_memory_slot *memslot)
943{
944	hva_t hva = memslot->userspace_addr;
945	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
946	phys_addr_t size = PAGE_SIZE * memslot->npages;
947	hva_t reg_end = hva + size;
948
949	/*
950	 * A memory region could potentially cover multiple VMAs, and any holes
951	 * between them, so iterate over all of them to find out if we should
952	 * unmap any of them.
953	 *
954	 *     +--------------------------------------------+
955	 * +---------------+----------------+   +----------------+
956	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
957	 * +---------------+----------------+   +----------------+
958	 *     |               memory region                |
959	 *     +--------------------------------------------+
960	 */
961	do {
962		struct vm_area_struct *vma;
963		hva_t vm_start, vm_end;
964
965		vma = find_vma_intersection(current->mm, hva, reg_end);
966		if (!vma)
967			break;
968
969		/*
970		 * Take the intersection of this VMA with the memory region
971		 */
972		vm_start = max(hva, vma->vm_start);
973		vm_end = min(reg_end, vma->vm_end);
974
975		if (!(vma->vm_flags & VM_PFNMAP)) {
976			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
977			unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
978		}
979		hva = vm_end;
980	} while (hva < reg_end);
981}
982
983/**
984 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
985 * @kvm: The struct kvm pointer
986 *
987 * Go through the memregions and unmap any regular RAM
988 * backing memory already mapped to the VM.
989 */
990void stage2_unmap_vm(struct kvm *kvm)
991{
992	struct kvm_memslots *slots;
993	struct kvm_memory_slot *memslot;
994	int idx, bkt;
995
996	idx = srcu_read_lock(&kvm->srcu);
997	mmap_read_lock(current->mm);
998	write_lock(&kvm->mmu_lock);
999
1000	slots = kvm_memslots(kvm);
1001	kvm_for_each_memslot(memslot, bkt, slots)
1002		stage2_unmap_memslot(kvm, memslot);
1003
1004	write_unlock(&kvm->mmu_lock);
1005	mmap_read_unlock(current->mm);
1006	srcu_read_unlock(&kvm->srcu, idx);
1007}
1008
1009void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
1010{
1011	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
1012	struct kvm_pgtable *pgt = NULL;
1013
1014	write_lock(&kvm->mmu_lock);
1015	pgt = mmu->pgt;
1016	if (pgt) {
1017		mmu->pgd_phys = 0;
1018		mmu->pgt = NULL;
1019		free_percpu(mmu->last_vcpu_ran);
1020	}
1021	write_unlock(&kvm->mmu_lock);
1022
1023	if (pgt) {
1024		kvm_pgtable_stage2_destroy(pgt);
1025		kfree(pgt);
1026	}
1027}
1028
1029static void hyp_mc_free_fn(void *addr, void *unused)
1030{
1031	free_page((unsigned long)addr);
1032}
1033
1034static void *hyp_mc_alloc_fn(void *unused)
1035{
1036	return (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1037}
1038
1039void free_hyp_memcache(struct kvm_hyp_memcache *mc)
1040{
1041	if (is_protected_kvm_enabled())
1042		__free_hyp_memcache(mc, hyp_mc_free_fn,
1043				    kvm_host_va, NULL);
1044}
1045
1046int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages)
1047{
1048	if (!is_protected_kvm_enabled())
1049		return 0;
1050
1051	return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
1052				    kvm_host_pa, NULL);
1053}
1054
1055/**
1056 * kvm_phys_addr_ioremap - map a device range to guest IPA
1057 *
1058 * @kvm:	The KVM pointer
1059 * @guest_ipa:	The IPA at which to insert the mapping
1060 * @pa:		The physical address of the device
1061 * @size:	The size of the mapping
1062 * @writable:   Whether or not to create a writable mapping
1063 */
1064int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1065			  phys_addr_t pa, unsigned long size, bool writable)
1066{
1067	phys_addr_t addr;
1068	int ret = 0;
1069	struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
1070	struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
1071	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
1072				     KVM_PGTABLE_PROT_R |
1073				     (writable ? KVM_PGTABLE_PROT_W : 0);
1074
1075	if (is_protected_kvm_enabled())
1076		return -EPERM;
1077
1078	size += offset_in_page(guest_ipa);
1079	guest_ipa &= PAGE_MASK;
1080
1081	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
1082		ret = kvm_mmu_topup_memory_cache(&cache,
1083						 kvm_mmu_cache_min_pages(kvm));
1084		if (ret)
1085			break;
1086
1087		write_lock(&kvm->mmu_lock);
1088		ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
1089					     &cache, 0);
1090		write_unlock(&kvm->mmu_lock);
1091		if (ret)
1092			break;
1093
1094		pa += PAGE_SIZE;
1095	}
1096
1097	kvm_mmu_free_memory_cache(&cache);
1098	return ret;
1099}
1100
1101/**
1102 * stage2_wp_range() - write protect stage2 memory region range
1103 * @mmu:        The KVM stage-2 MMU pointer
1104 * @addr:	Start address of range
1105 * @end:	End address of range
1106 */
1107static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1108{
1109	stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect);
1110}
1111
1112/**
1113 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1114 * @kvm:	The KVM pointer
1115 * @slot:	The memory slot to write protect
1116 *
1117 * Called to start logging dirty pages after memory region
1118 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1119 * all present PUD, PMD and PTEs are write protected in the memory region.
1120 * Afterwards read of dirty page log can be called.
1121 *
1122 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1123 * serializing operations for VM memory regions.
1124 */
1125static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1126{
1127	struct kvm_memslots *slots = kvm_memslots(kvm);
1128	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1129	phys_addr_t start, end;
1130
1131	if (WARN_ON_ONCE(!memslot))
1132		return;
1133
1134	start = memslot->base_gfn << PAGE_SHIFT;
1135	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1136
1137	write_lock(&kvm->mmu_lock);
1138	stage2_wp_range(&kvm->arch.mmu, start, end);
1139	write_unlock(&kvm->mmu_lock);
1140	kvm_flush_remote_tlbs_memslot(kvm, memslot);
1141}
1142
1143/**
1144 * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
1145 *				   pages for memory slot
1146 * @kvm:	The KVM pointer
1147 * @slot:	The memory slot to split
1148 *
1149 * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
1150 * serializing operations for VM memory regions.
1151 */
1152static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
1153{
1154	struct kvm_memslots *slots;
1155	struct kvm_memory_slot *memslot;
1156	phys_addr_t start, end;
1157
1158	lockdep_assert_held(&kvm->slots_lock);
1159
1160	slots = kvm_memslots(kvm);
1161	memslot = id_to_memslot(slots, slot);
1162
1163	start = memslot->base_gfn << PAGE_SHIFT;
1164	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1165
1166	write_lock(&kvm->mmu_lock);
1167	kvm_mmu_split_huge_pages(kvm, start, end);
1168	write_unlock(&kvm->mmu_lock);
1169}
1170
1171/*
1172 * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages.
1173 * @kvm:	The KVM pointer
1174 * @slot:	The memory slot associated with mask
1175 * @gfn_offset:	The gfn offset in memory slot
1176 * @mask:	The mask of pages at offset 'gfn_offset' in this memory
1177 *		slot to enable dirty logging on
1178 *
1179 * Writes protect selected pages to enable dirty logging, and then
1180 * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock.
1181 */
1182void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1183		struct kvm_memory_slot *slot,
1184		gfn_t gfn_offset, unsigned long mask)
1185{
1186	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1187	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1188	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1189
1190	lockdep_assert_held_write(&kvm->mmu_lock);
1191
1192	stage2_wp_range(&kvm->arch.mmu, start, end);
1193
1194	/*
1195	 * Eager-splitting is done when manual-protect is set.  We
1196	 * also check for initially-all-set because we can avoid
1197	 * eager-splitting if initially-all-set is false.
1198	 * Initially-all-set equal false implies that huge-pages were
1199	 * already split when enabling dirty logging: no need to do it
1200	 * again.
1201	 */
1202	if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1203		kvm_mmu_split_huge_pages(kvm, start, end);
1204}
1205
1206static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1207{
1208	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1209}
1210
1211static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1212					       unsigned long hva,
1213					       unsigned long map_size)
1214{
1215	gpa_t gpa_start;
1216	hva_t uaddr_start, uaddr_end;
1217	size_t size;
1218
1219	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1220	if (map_size == PAGE_SIZE)
1221		return true;
1222
1223	size = memslot->npages * PAGE_SIZE;
1224
1225	gpa_start = memslot->base_gfn << PAGE_SHIFT;
1226
1227	uaddr_start = memslot->userspace_addr;
1228	uaddr_end = uaddr_start + size;
1229
1230	/*
1231	 * Pages belonging to memslots that don't have the same alignment
1232	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1233	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1234	 *
1235	 * Consider a layout like the following:
1236	 *
1237	 *    memslot->userspace_addr:
1238	 *    +-----+--------------------+--------------------+---+
1239	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1240	 *    +-----+--------------------+--------------------+---+
1241	 *
1242	 *    memslot->base_gfn << PAGE_SHIFT:
1243	 *      +---+--------------------+--------------------+-----+
1244	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1245	 *      +---+--------------------+--------------------+-----+
1246	 *
1247	 * If we create those stage-2 blocks, we'll end up with this incorrect
1248	 * mapping:
1249	 *   d -> f
1250	 *   e -> g
1251	 *   f -> h
1252	 */
1253	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1254		return false;
1255
1256	/*
1257	 * Next, let's make sure we're not trying to map anything not covered
1258	 * by the memslot. This means we have to prohibit block size mappings
1259	 * for the beginning and end of a non-block aligned and non-block sized
1260	 * memory slot (illustrated by the head and tail parts of the
1261	 * userspace view above containing pages 'abcde' and 'xyz',
1262	 * respectively).
1263	 *
1264	 * Note that it doesn't matter if we do the check using the
1265	 * userspace_addr or the base_gfn, as both are equally aligned (per
1266	 * the check above) and equally sized.
1267	 */
1268	return (hva & ~(map_size - 1)) >= uaddr_start &&
1269	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1270}
1271
1272/*
1273 * Check if the given hva is backed by a transparent huge page (THP) and
1274 * whether it can be mapped using block mapping in stage2. If so, adjust
1275 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1276 * supported. This will need to be updated to support other THP sizes.
1277 *
1278 * Returns the size of the mapping.
1279 */
1280static long
1281transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1282			    unsigned long hva, kvm_pfn_t *pfnp,
1283			    phys_addr_t *ipap)
1284{
1285	kvm_pfn_t pfn = *pfnp;
1286
1287	/*
1288	 * Make sure the adjustment is done only for THP pages. Also make
1289	 * sure that the HVA and IPA are sufficiently aligned and that the
1290	 * block map is contained within the memslot.
1291	 */
1292	if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1293		int sz = get_user_mapping_size(kvm, hva);
1294
1295		if (sz < 0)
1296			return sz;
1297
1298		if (sz < PMD_SIZE)
1299			return PAGE_SIZE;
1300
1301		/*
1302		 * The address we faulted on is backed by a transparent huge
1303		 * page.  However, because we map the compound huge page and
1304		 * not the individual tail page, we need to transfer the
1305		 * refcount to the head page.  We have to be careful that the
1306		 * THP doesn't start to split while we are adjusting the
1307		 * refcounts.
1308		 *
1309		 * We are sure this doesn't happen, because mmu_invalidate_retry
1310		 * was successful and we are holding the mmu_lock, so if this
1311		 * THP is trying to split, it will be blocked in the mmu
1312		 * notifier before touching any of the pages, specifically
1313		 * before being able to call __split_huge_page_refcount().
1314		 *
1315		 * We can therefore safely transfer the refcount from PG_tail
1316		 * to PG_head and switch the pfn from a tail page to the head
1317		 * page accordingly.
1318		 */
1319		*ipap &= PMD_MASK;
1320		kvm_release_pfn_clean(pfn);
1321		pfn &= ~(PTRS_PER_PMD - 1);
1322		get_page(pfn_to_page(pfn));
1323		*pfnp = pfn;
1324
1325		return PMD_SIZE;
1326	}
1327
1328	/* Use page mapping if we cannot use block mapping. */
1329	return PAGE_SIZE;
1330}
1331
1332static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1333{
1334	unsigned long pa;
1335
1336	if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1337		return huge_page_shift(hstate_vma(vma));
1338
1339	if (!(vma->vm_flags & VM_PFNMAP))
1340		return PAGE_SHIFT;
1341
1342	VM_BUG_ON(is_vm_hugetlb_page(vma));
1343
1344	pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1345
1346#ifndef __PAGETABLE_PMD_FOLDED
1347	if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1348	    ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1349	    ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1350		return PUD_SHIFT;
1351#endif
1352
1353	if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1354	    ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1355	    ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1356		return PMD_SHIFT;
1357
1358	return PAGE_SHIFT;
1359}
1360
1361/*
1362 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1363 * able to see the page's tags and therefore they must be initialised first. If
1364 * PG_mte_tagged is set, tags have already been initialised.
1365 *
1366 * The race in the test/set of the PG_mte_tagged flag is handled by:
1367 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1368 *   racing to santise the same page
1369 * - mmap_lock protects between a VM faulting a page in and the VMM performing
1370 *   an mprotect() to add VM_MTE
1371 */
1372static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1373			      unsigned long size)
1374{
1375	unsigned long i, nr_pages = size >> PAGE_SHIFT;
1376	struct page *page = pfn_to_page(pfn);
1377
1378	if (!kvm_has_mte(kvm))
1379		return;
1380
1381	for (i = 0; i < nr_pages; i++, page++) {
1382		if (try_page_mte_tagging(page)) {
1383			mte_clear_page_tags(page_address(page));
1384			set_page_mte_tagged(page);
1385		}
1386	}
1387}
1388
1389static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
1390{
1391	return vma->vm_flags & VM_MTE_ALLOWED;
1392}
1393
1394static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1395			  struct kvm_memory_slot *memslot, unsigned long hva,
1396			  unsigned long fault_status)
1397{
1398	int ret = 0;
1399	bool write_fault, writable, force_pte = false;
1400	bool exec_fault, mte_allowed;
1401	bool device = false;
1402	unsigned long mmu_seq;
1403	struct kvm *kvm = vcpu->kvm;
1404	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1405	struct vm_area_struct *vma;
1406	short vma_shift;
1407	gfn_t gfn;
1408	kvm_pfn_t pfn;
1409	bool logging_active = memslot_is_logging(memslot);
1410	unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
1411	long vma_pagesize, fault_granule;
1412	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1413	struct kvm_pgtable *pgt;
1414
1415	fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
1416	write_fault = kvm_is_write_fault(vcpu);
1417	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1418	VM_BUG_ON(write_fault && exec_fault);
1419
1420	if (fault_status == ESR_ELx_FSC_PERM && !write_fault && !exec_fault) {
1421		kvm_err("Unexpected L2 read permission error\n");
1422		return -EFAULT;
1423	}
1424
1425	/*
1426	 * Permission faults just need to update the existing leaf entry,
1427	 * and so normally don't require allocations from the memcache. The
1428	 * only exception to this is when dirty logging is enabled at runtime
1429	 * and a write fault needs to collapse a block entry into a table.
1430	 */
1431	if (fault_status != ESR_ELx_FSC_PERM ||
1432	    (logging_active && write_fault)) {
1433		ret = kvm_mmu_topup_memory_cache(memcache,
1434						 kvm_mmu_cache_min_pages(kvm));
1435		if (ret)
1436			return ret;
1437	}
1438
1439	/*
1440	 * Let's check if we will get back a huge page backed by hugetlbfs, or
1441	 * get block mapping for device MMIO region.
1442	 */
1443	mmap_read_lock(current->mm);
1444	vma = vma_lookup(current->mm, hva);
1445	if (unlikely(!vma)) {
1446		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1447		mmap_read_unlock(current->mm);
1448		return -EFAULT;
1449	}
1450
1451	/*
1452	 * logging_active is guaranteed to never be true for VM_PFNMAP
1453	 * memslots.
1454	 */
1455	if (logging_active) {
1456		force_pte = true;
1457		vma_shift = PAGE_SHIFT;
1458	} else {
1459		vma_shift = get_vma_page_shift(vma, hva);
1460	}
1461
1462	switch (vma_shift) {
1463#ifndef __PAGETABLE_PMD_FOLDED
1464	case PUD_SHIFT:
1465		if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1466			break;
1467		fallthrough;
1468#endif
1469	case CONT_PMD_SHIFT:
1470		vma_shift = PMD_SHIFT;
1471		fallthrough;
1472	case PMD_SHIFT:
1473		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1474			break;
1475		fallthrough;
1476	case CONT_PTE_SHIFT:
1477		vma_shift = PAGE_SHIFT;
1478		force_pte = true;
1479		fallthrough;
1480	case PAGE_SHIFT:
1481		break;
1482	default:
1483		WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1484	}
1485
1486	vma_pagesize = 1UL << vma_shift;
1487	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
1488		fault_ipa &= ~(vma_pagesize - 1);
1489
1490	gfn = fault_ipa >> PAGE_SHIFT;
1491	mte_allowed = kvm_vma_mte_allowed(vma);
1492
1493	/* Don't use the VMA after the unlock -- it may have vanished */
1494	vma = NULL;
1495
1496	/*
1497	 * Read mmu_invalidate_seq so that KVM can detect if the results of
1498	 * vma_lookup() or __gfn_to_pfn_memslot() become stale prior to
1499	 * acquiring kvm->mmu_lock.
1500	 *
1501	 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
1502	 * with the smp_wmb() in kvm_mmu_invalidate_end().
1503	 */
1504	mmu_seq = vcpu->kvm->mmu_invalidate_seq;
1505	mmap_read_unlock(current->mm);
1506
1507	pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
1508				   write_fault, &writable, NULL);
1509	if (pfn == KVM_PFN_ERR_HWPOISON) {
1510		kvm_send_hwpoison_signal(hva, vma_shift);
1511		return 0;
1512	}
1513	if (is_error_noslot_pfn(pfn))
1514		return -EFAULT;
1515
1516	if (kvm_is_device_pfn(pfn)) {
1517		/*
1518		 * If the page was identified as device early by looking at
1519		 * the VMA flags, vma_pagesize is already representing the
1520		 * largest quantity we can map.  If instead it was mapped
1521		 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1522		 * and must not be upgraded.
1523		 *
1524		 * In both cases, we don't let transparent_hugepage_adjust()
1525		 * change things at the last minute.
1526		 */
1527		device = true;
1528	} else if (logging_active && !write_fault) {
1529		/*
1530		 * Only actually map the page as writable if this was a write
1531		 * fault.
1532		 */
1533		writable = false;
1534	}
1535
1536	if (exec_fault && device)
1537		return -ENOEXEC;
1538
1539	read_lock(&kvm->mmu_lock);
1540	pgt = vcpu->arch.hw_mmu->pgt;
1541	if (mmu_invalidate_retry(kvm, mmu_seq))
1542		goto out_unlock;
1543
1544	/*
1545	 * If we are not forced to use page mapping, check if we are
1546	 * backed by a THP and thus use block mapping if possible.
1547	 */
1548	if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1549		if (fault_status ==  ESR_ELx_FSC_PERM &&
1550		    fault_granule > PAGE_SIZE)
1551			vma_pagesize = fault_granule;
1552		else
1553			vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1554								   hva, &pfn,
1555								   &fault_ipa);
1556
1557		if (vma_pagesize < 0) {
1558			ret = vma_pagesize;
1559			goto out_unlock;
1560		}
1561	}
1562
1563	if (fault_status != ESR_ELx_FSC_PERM && !device && kvm_has_mte(kvm)) {
1564		/* Check the VMM hasn't introduced a new disallowed VMA */
1565		if (mte_allowed) {
1566			sanitise_mte_tags(kvm, pfn, vma_pagesize);
1567		} else {
1568			ret = -EFAULT;
1569			goto out_unlock;
1570		}
1571	}
1572
1573	if (writable)
1574		prot |= KVM_PGTABLE_PROT_W;
1575
1576	if (exec_fault)
1577		prot |= KVM_PGTABLE_PROT_X;
1578
1579	if (device)
1580		prot |= KVM_PGTABLE_PROT_DEVICE;
1581	else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
1582		prot |= KVM_PGTABLE_PROT_X;
1583
1584	/*
1585	 * Under the premise of getting a FSC_PERM fault, we just need to relax
1586	 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1587	 * kvm_pgtable_stage2_map() should be called to change block size.
1588	 */
1589	if (fault_status == ESR_ELx_FSC_PERM && vma_pagesize == fault_granule)
1590		ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1591	else
1592		ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1593					     __pfn_to_phys(pfn), prot,
1594					     memcache,
1595					     KVM_PGTABLE_WALK_HANDLE_FAULT |
1596					     KVM_PGTABLE_WALK_SHARED);
1597
1598	/* Mark the page dirty only if the fault is handled successfully */
1599	if (writable && !ret) {
1600		kvm_set_pfn_dirty(pfn);
1601		mark_page_dirty_in_slot(kvm, memslot, gfn);
1602	}
1603
1604out_unlock:
1605	read_unlock(&kvm->mmu_lock);
1606	kvm_release_pfn_clean(pfn);
1607	return ret != -EAGAIN ? ret : 0;
1608}
1609
1610/* Resolve the access fault by making the page young again. */
1611static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1612{
1613	kvm_pte_t pte;
1614	struct kvm_s2_mmu *mmu;
1615
1616	trace_kvm_access_fault(fault_ipa);
1617
1618	read_lock(&vcpu->kvm->mmu_lock);
1619	mmu = vcpu->arch.hw_mmu;
1620	pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1621	read_unlock(&vcpu->kvm->mmu_lock);
1622
1623	if (kvm_pte_valid(pte))
1624		kvm_set_pfn_accessed(kvm_pte_to_pfn(pte));
1625}
1626
1627/**
1628 * kvm_handle_guest_abort - handles all 2nd stage aborts
1629 * @vcpu:	the VCPU pointer
1630 *
1631 * Any abort that gets to the host is almost guaranteed to be caused by a
1632 * missing second stage translation table entry, which can mean that either the
1633 * guest simply needs more memory and we must allocate an appropriate page or it
1634 * can mean that the guest tried to access I/O memory, which is emulated by user
1635 * space. The distinction is based on the IPA causing the fault and whether this
1636 * memory region has been registered as standard RAM by user space.
1637 */
1638int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1639{
1640	unsigned long fault_status;
1641	phys_addr_t fault_ipa;
1642	struct kvm_memory_slot *memslot;
1643	unsigned long hva;
1644	bool is_iabt, write_fault, writable;
1645	gfn_t gfn;
1646	int ret, idx;
1647
1648	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1649
1650	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1651	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1652
1653	if (fault_status == ESR_ELx_FSC_FAULT) {
1654		/* Beyond sanitised PARange (which is the IPA limit) */
1655		if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1656			kvm_inject_size_fault(vcpu);
1657			return 1;
1658		}
1659
1660		/* Falls between the IPA range and the PARange? */
1661		if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) {
1662			fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1663
1664			if (is_iabt)
1665				kvm_inject_pabt(vcpu, fault_ipa);
1666			else
1667				kvm_inject_dabt(vcpu, fault_ipa);
1668			return 1;
1669		}
1670	}
1671
1672	/* Synchronous External Abort? */
1673	if (kvm_vcpu_abt_issea(vcpu)) {
1674		/*
1675		 * For RAS the host kernel may handle this abort.
1676		 * There is no need to pass the error into the guest.
1677		 */
1678		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1679			kvm_inject_vabt(vcpu);
1680
1681		return 1;
1682	}
1683
1684	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1685			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1686
1687	/* Check the stage-2 fault is trans. fault or write fault */
1688	if (fault_status != ESR_ELx_FSC_FAULT &&
1689	    fault_status != ESR_ELx_FSC_PERM &&
1690	    fault_status != ESR_ELx_FSC_ACCESS) {
1691		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1692			kvm_vcpu_trap_get_class(vcpu),
1693			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1694			(unsigned long)kvm_vcpu_get_esr(vcpu));
1695		return -EFAULT;
1696	}
1697
1698	idx = srcu_read_lock(&vcpu->kvm->srcu);
1699
1700	gfn = fault_ipa >> PAGE_SHIFT;
1701	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1702	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1703	write_fault = kvm_is_write_fault(vcpu);
1704	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1705		/*
1706		 * The guest has put either its instructions or its page-tables
1707		 * somewhere it shouldn't have. Userspace won't be able to do
1708		 * anything about this (there's no syndrome for a start), so
1709		 * re-inject the abort back into the guest.
1710		 */
1711		if (is_iabt) {
1712			ret = -ENOEXEC;
1713			goto out;
1714		}
1715
1716		if (kvm_vcpu_abt_iss1tw(vcpu)) {
1717			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1718			ret = 1;
1719			goto out_unlock;
1720		}
1721
1722		/*
1723		 * Check for a cache maintenance operation. Since we
1724		 * ended-up here, we know it is outside of any memory
1725		 * slot. But we can't find out if that is for a device,
1726		 * or if the guest is just being stupid. The only thing
1727		 * we know for sure is that this range cannot be cached.
1728		 *
1729		 * So let's assume that the guest is just being
1730		 * cautious, and skip the instruction.
1731		 */
1732		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1733			kvm_incr_pc(vcpu);
1734			ret = 1;
1735			goto out_unlock;
1736		}
1737
1738		/*
1739		 * The IPA is reported as [MAX:12], so we need to
1740		 * complement it with the bottom 12 bits from the
1741		 * faulting VA. This is always 12 bits, irrespective
1742		 * of the page size.
1743		 */
1744		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1745		ret = io_mem_abort(vcpu, fault_ipa);
1746		goto out_unlock;
1747	}
1748
1749	/* Userspace should not be able to register out-of-bounds IPAs */
1750	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1751
1752	if (fault_status == ESR_ELx_FSC_ACCESS) {
1753		handle_access_fault(vcpu, fault_ipa);
1754		ret = 1;
1755		goto out_unlock;
1756	}
1757
1758	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1759	if (ret == 0)
1760		ret = 1;
1761out:
1762	if (ret == -ENOEXEC) {
1763		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1764		ret = 1;
1765	}
1766out_unlock:
1767	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1768	return ret;
1769}
1770
1771bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1772{
1773	if (!kvm->arch.mmu.pgt)
1774		return false;
1775
1776	__unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1777			     (range->end - range->start) << PAGE_SHIFT,
1778			     range->may_block);
1779
1780	return false;
1781}
1782
1783bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1784{
1785	kvm_pfn_t pfn = pte_pfn(range->arg.pte);
1786
1787	if (!kvm->arch.mmu.pgt)
1788		return false;
1789
1790	WARN_ON(range->end - range->start != 1);
1791
1792	/*
1793	 * If the page isn't tagged, defer to user_mem_abort() for sanitising
1794	 * the MTE tags. The S2 pte should have been unmapped by
1795	 * mmu_notifier_invalidate_range_end().
1796	 */
1797	if (kvm_has_mte(kvm) && !page_mte_tagged(pfn_to_page(pfn)))
1798		return false;
1799
1800	/*
1801	 * We've moved a page around, probably through CoW, so let's treat
1802	 * it just like a translation fault and the map handler will clean
1803	 * the cache to the PoC.
1804	 *
1805	 * The MMU notifiers will have unmapped a huge PMD before calling
1806	 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1807	 * therefore we never need to clear out a huge PMD through this
1808	 * calling path and a memcache is not required.
1809	 */
1810	kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
1811			       PAGE_SIZE, __pfn_to_phys(pfn),
1812			       KVM_PGTABLE_PROT_R, NULL, 0);
1813
1814	return false;
1815}
1816
1817bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1818{
1819	u64 size = (range->end - range->start) << PAGE_SHIFT;
1820
1821	if (!kvm->arch.mmu.pgt)
1822		return false;
1823
1824	return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
1825						   range->start << PAGE_SHIFT,
1826						   size, true);
1827}
1828
1829bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1830{
1831	u64 size = (range->end - range->start) << PAGE_SHIFT;
1832
1833	if (!kvm->arch.mmu.pgt)
1834		return false;
1835
1836	return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
1837						   range->start << PAGE_SHIFT,
1838						   size, false);
1839}
1840
1841phys_addr_t kvm_mmu_get_httbr(void)
1842{
1843	return __pa(hyp_pgtable->pgd);
1844}
1845
1846phys_addr_t kvm_get_idmap_vector(void)
1847{
1848	return hyp_idmap_vector;
1849}
1850
1851static int kvm_map_idmap_text(void)
1852{
1853	unsigned long size = hyp_idmap_end - hyp_idmap_start;
1854	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1855					PAGE_HYP_EXEC);
1856	if (err)
1857		kvm_err("Failed to idmap %lx-%lx\n",
1858			hyp_idmap_start, hyp_idmap_end);
1859
1860	return err;
1861}
1862
1863static void *kvm_hyp_zalloc_page(void *arg)
1864{
1865	return (void *)get_zeroed_page(GFP_KERNEL);
1866}
1867
1868static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1869	.zalloc_page		= kvm_hyp_zalloc_page,
1870	.get_page		= kvm_host_get_page,
1871	.put_page		= kvm_host_put_page,
1872	.phys_to_virt		= kvm_host_va,
1873	.virt_to_phys		= kvm_host_pa,
1874};
1875
1876int __init kvm_mmu_init(u32 *hyp_va_bits)
1877{
1878	int err;
1879	u32 idmap_bits;
1880	u32 kernel_bits;
1881
1882	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1883	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1884	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1885	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1886	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1887
1888	/*
1889	 * We rely on the linker script to ensure at build time that the HYP
1890	 * init code does not cross a page boundary.
1891	 */
1892	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1893
1894	/*
1895	 * The ID map may be configured to use an extended virtual address
1896	 * range. This is only the case if system RAM is out of range for the
1897	 * currently configured page size and VA_BITS_MIN, in which case we will
1898	 * also need the extended virtual range for the HYP ID map, or we won't
1899	 * be able to enable the EL2 MMU.
1900	 *
1901	 * However, in some cases the ID map may be configured for fewer than
1902	 * the number of VA bits used by the regular kernel stage 1. This
1903	 * happens when VA_BITS=52 and the kernel image is placed in PA space
1904	 * below 48 bits.
1905	 *
1906	 * At EL2, there is only one TTBR register, and we can't switch between
1907	 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
1908	 * line: we need to use the extended range with *both* our translation
1909	 * tables.
1910	 *
1911	 * So use the maximum of the idmap VA bits and the regular kernel stage
1912	 * 1 VA bits to assure that the hypervisor can both ID map its code page
1913	 * and map any kernel memory.
1914	 */
1915	idmap_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1916	kernel_bits = vabits_actual;
1917	*hyp_va_bits = max(idmap_bits, kernel_bits);
1918
1919	kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1920	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1921	kvm_debug("HYP VA range: %lx:%lx\n",
1922		  kern_hyp_va(PAGE_OFFSET),
1923		  kern_hyp_va((unsigned long)high_memory - 1));
1924
1925	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1926	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1927	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1928		/*
1929		 * The idmap page is intersecting with the VA space,
1930		 * it is not safe to continue further.
1931		 */
1932		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1933		err = -EINVAL;
1934		goto out;
1935	}
1936
1937	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1938	if (!hyp_pgtable) {
1939		kvm_err("Hyp mode page-table not allocated\n");
1940		err = -ENOMEM;
1941		goto out;
1942	}
1943
1944	err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1945	if (err)
1946		goto out_free_pgtable;
1947
1948	err = kvm_map_idmap_text();
1949	if (err)
1950		goto out_destroy_pgtable;
1951
1952	io_map_base = hyp_idmap_start;
1953	return 0;
1954
1955out_destroy_pgtable:
1956	kvm_pgtable_hyp_destroy(hyp_pgtable);
1957out_free_pgtable:
1958	kfree(hyp_pgtable);
1959	hyp_pgtable = NULL;
1960out:
1961	return err;
1962}
1963
1964void kvm_arch_commit_memory_region(struct kvm *kvm,
1965				   struct kvm_memory_slot *old,
1966				   const struct kvm_memory_slot *new,
1967				   enum kvm_mr_change change)
1968{
1969	bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES;
1970
1971	/*
1972	 * At this point memslot has been committed and there is an
1973	 * allocated dirty_bitmap[], dirty pages will be tracked while the
1974	 * memory slot is write protected.
1975	 */
1976	if (log_dirty_pages) {
1977
1978		if (change == KVM_MR_DELETE)
1979			return;
1980
1981		/*
1982		 * Huge and normal pages are write-protected and split
1983		 * on either of these two cases:
1984		 *
1985		 * 1. with initial-all-set: gradually with CLEAR ioctls,
1986		 */
1987		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1988			return;
1989		/*
1990		 * or
1991		 * 2. without initial-all-set: all in one shot when
1992		 *    enabling dirty logging.
1993		 */
1994		kvm_mmu_wp_memory_region(kvm, new->id);
1995		kvm_mmu_split_memory_region(kvm, new->id);
1996	} else {
1997		/*
1998		 * Free any leftovers from the eager page splitting cache. Do
1999		 * this when deleting, moving, disabling dirty logging, or
2000		 * creating the memslot (a nop). Doing it for deletes makes
2001		 * sure we don't leak memory, and there's no need to keep the
2002		 * cache around for any of the other cases.
2003		 */
2004		kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
2005	}
2006}
2007
2008int kvm_arch_prepare_memory_region(struct kvm *kvm,
2009				   const struct kvm_memory_slot *old,
2010				   struct kvm_memory_slot *new,
2011				   enum kvm_mr_change change)
2012{
2013	hva_t hva, reg_end;
2014	int ret = 0;
2015
2016	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2017			change != KVM_MR_FLAGS_ONLY)
2018		return 0;
2019
2020	/*
2021	 * Prevent userspace from creating a memory region outside of the IPA
2022	 * space addressable by the KVM guest IPA space.
2023	 */
2024	if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
2025		return -EFAULT;
2026
2027	hva = new->userspace_addr;
2028	reg_end = hva + (new->npages << PAGE_SHIFT);
2029
2030	mmap_read_lock(current->mm);
2031	/*
2032	 * A memory region could potentially cover multiple VMAs, and any holes
2033	 * between them, so iterate over all of them.
2034	 *
2035	 *     +--------------------------------------------+
2036	 * +---------------+----------------+   +----------------+
2037	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2038	 * +---------------+----------------+   +----------------+
2039	 *     |               memory region                |
2040	 *     +--------------------------------------------+
2041	 */
2042	do {
2043		struct vm_area_struct *vma;
2044
2045		vma = find_vma_intersection(current->mm, hva, reg_end);
2046		if (!vma)
2047			break;
2048
2049		if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
2050			ret = -EINVAL;
2051			break;
2052		}
2053
2054		if (vma->vm_flags & VM_PFNMAP) {
2055			/* IO region dirty page logging not allowed */
2056			if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2057				ret = -EINVAL;
2058				break;
2059			}
2060		}
2061		hva = min(reg_end, vma->vm_end);
2062	} while (hva < reg_end);
2063
2064	mmap_read_unlock(current->mm);
2065	return ret;
2066}
2067
2068void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2069{
2070}
2071
2072void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2073{
2074}
2075
2076void kvm_arch_flush_shadow_all(struct kvm *kvm)
2077{
2078	kvm_uninit_stage2_mmu(kvm);
2079}
2080
2081void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2082				   struct kvm_memory_slot *slot)
2083{
2084	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2085	phys_addr_t size = slot->npages << PAGE_SHIFT;
2086
2087	write_lock(&kvm->mmu_lock);
2088	unmap_stage2_range(&kvm->arch.mmu, gpa, size);
2089	write_unlock(&kvm->mmu_lock);
2090}
2091
2092/*
2093 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2094 *
2095 * Main problems:
2096 * - S/W ops are local to a CPU (not broadcast)
2097 * - We have line migration behind our back (speculation)
2098 * - System caches don't support S/W at all (damn!)
2099 *
2100 * In the face of the above, the best we can do is to try and convert
2101 * S/W ops to VA ops. Because the guest is not allowed to infer the
2102 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2103 * which is a rather good thing for us.
2104 *
2105 * Also, it is only used when turning caches on/off ("The expected
2106 * usage of the cache maintenance instructions that operate by set/way
2107 * is associated with the cache maintenance instructions associated
2108 * with the powerdown and powerup of caches, if this is required by
2109 * the implementation.").
2110 *
2111 * We use the following policy:
2112 *
2113 * - If we trap a S/W operation, we enable VM trapping to detect
2114 *   caches being turned on/off, and do a full clean.
2115 *
2116 * - We flush the caches on both caches being turned on and off.
2117 *
2118 * - Once the caches are enabled, we stop trapping VM ops.
2119 */
2120void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2121{
2122	unsigned long hcr = *vcpu_hcr(vcpu);
2123
2124	/*
2125	 * If this is the first time we do a S/W operation
2126	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2127	 * VM trapping.
2128	 *
2129	 * Otherwise, rely on the VM trapping to wait for the MMU +
2130	 * Caches to be turned off. At that point, we'll be able to
2131	 * clean the caches again.
2132	 */
2133	if (!(hcr & HCR_TVM)) {
2134		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2135					vcpu_has_cache_enabled(vcpu));
2136		stage2_flush_vm(vcpu->kvm);
2137		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2138	}
2139}
2140
2141void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2142{
2143	bool now_enabled = vcpu_has_cache_enabled(vcpu);
2144
2145	/*
2146	 * If switching the MMU+caches on, need to invalidate the caches.
2147	 * If switching it off, need to clean the caches.
2148	 * Clean + invalidate does the trick always.
2149	 */
2150	if (now_enabled != was_enabled)
2151		stage2_flush_vm(vcpu->kvm);
2152
2153	/* Caches are now on, stop trapping VM ops (until a S/W op) */
2154	if (now_enabled)
2155		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2156
2157	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2158}
2159