xref: /kernel/linux/linux-6.6/arch/arm64/kvm/arm.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7#include <linux/bug.h>
8#include <linux/cpu_pm.h>
9#include <linux/entry-kvm.h>
10#include <linux/errno.h>
11#include <linux/err.h>
12#include <linux/kvm_host.h>
13#include <linux/list.h>
14#include <linux/module.h>
15#include <linux/vmalloc.h>
16#include <linux/fs.h>
17#include <linux/mman.h>
18#include <linux/sched.h>
19#include <linux/kvm.h>
20#include <linux/kvm_irqfd.h>
21#include <linux/irqbypass.h>
22#include <linux/sched/stat.h>
23#include <linux/psci.h>
24#include <trace/events/kvm.h>
25
26#define CREATE_TRACE_POINTS
27#include "trace_arm.h"
28
29#include <linux/uaccess.h>
30#include <asm/ptrace.h>
31#include <asm/mman.h>
32#include <asm/tlbflush.h>
33#include <asm/cacheflush.h>
34#include <asm/cpufeature.h>
35#include <asm/virt.h>
36#include <asm/kvm_arm.h>
37#include <asm/kvm_asm.h>
38#include <asm/kvm_mmu.h>
39#include <asm/kvm_nested.h>
40#include <asm/kvm_pkvm.h>
41#include <asm/kvm_emulate.h>
42#include <asm/sections.h>
43
44#include <kvm/arm_hypercalls.h>
45#include <kvm/arm_pmu.h>
46#include <kvm/arm_psci.h>
47
48static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
49
50DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51
52DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
54
55DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
56
57static bool vgic_present, kvm_arm_initialised;
58
59static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
60DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
61
62bool is_kvm_arm_initialised(void)
63{
64	return kvm_arm_initialised;
65}
66
67int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
68{
69	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
70}
71
72int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
73			    struct kvm_enable_cap *cap)
74{
75	int r;
76	u64 new_cap;
77
78	if (cap->flags)
79		return -EINVAL;
80
81	switch (cap->cap) {
82	case KVM_CAP_ARM_NISV_TO_USER:
83		r = 0;
84		set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
85			&kvm->arch.flags);
86		break;
87	case KVM_CAP_ARM_MTE:
88		mutex_lock(&kvm->lock);
89		if (!system_supports_mte() || kvm->created_vcpus) {
90			r = -EINVAL;
91		} else {
92			r = 0;
93			set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
94		}
95		mutex_unlock(&kvm->lock);
96		break;
97	case KVM_CAP_ARM_SYSTEM_SUSPEND:
98		r = 0;
99		set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
100		break;
101	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
102		new_cap = cap->args[0];
103
104		mutex_lock(&kvm->slots_lock);
105		/*
106		 * To keep things simple, allow changing the chunk
107		 * size only when no memory slots have been created.
108		 */
109		if (!kvm_are_all_memslots_empty(kvm)) {
110			r = -EINVAL;
111		} else if (new_cap && !kvm_is_block_size_supported(new_cap)) {
112			r = -EINVAL;
113		} else {
114			r = 0;
115			kvm->arch.mmu.split_page_chunk_size = new_cap;
116		}
117		mutex_unlock(&kvm->slots_lock);
118		break;
119	default:
120		r = -EINVAL;
121		break;
122	}
123
124	return r;
125}
126
127static int kvm_arm_default_max_vcpus(void)
128{
129	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
130}
131
132/**
133 * kvm_arch_init_vm - initializes a VM data structure
134 * @kvm:	pointer to the KVM struct
135 */
136int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
137{
138	int ret;
139
140	mutex_init(&kvm->arch.config_lock);
141
142#ifdef CONFIG_LOCKDEP
143	/* Clue in lockdep that the config_lock must be taken inside kvm->lock */
144	mutex_lock(&kvm->lock);
145	mutex_lock(&kvm->arch.config_lock);
146	mutex_unlock(&kvm->arch.config_lock);
147	mutex_unlock(&kvm->lock);
148#endif
149
150	ret = kvm_share_hyp(kvm, kvm + 1);
151	if (ret)
152		return ret;
153
154	ret = pkvm_init_host_vm(kvm);
155	if (ret)
156		goto err_unshare_kvm;
157
158	if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
159		ret = -ENOMEM;
160		goto err_unshare_kvm;
161	}
162	cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
163
164	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
165	if (ret)
166		goto err_free_cpumask;
167
168	kvm_vgic_early_init(kvm);
169
170	kvm_timer_init_vm(kvm);
171
172	/* The maximum number of VCPUs is limited by the host's GIC model */
173	kvm->max_vcpus = kvm_arm_default_max_vcpus();
174
175	kvm_arm_init_hypercalls(kvm);
176
177	bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
178
179	return 0;
180
181err_free_cpumask:
182	free_cpumask_var(kvm->arch.supported_cpus);
183err_unshare_kvm:
184	kvm_unshare_hyp(kvm, kvm + 1);
185	return ret;
186}
187
188vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
189{
190	return VM_FAULT_SIGBUS;
191}
192
193
194/**
195 * kvm_arch_destroy_vm - destroy the VM data structure
196 * @kvm:	pointer to the KVM struct
197 */
198void kvm_arch_destroy_vm(struct kvm *kvm)
199{
200	bitmap_free(kvm->arch.pmu_filter);
201	free_cpumask_var(kvm->arch.supported_cpus);
202
203	kvm_vgic_destroy(kvm);
204
205	if (is_protected_kvm_enabled())
206		pkvm_destroy_hyp_vm(kvm);
207
208	kvm_destroy_vcpus(kvm);
209
210	kvm_unshare_hyp(kvm, kvm + 1);
211
212	kvm_arm_teardown_hypercalls(kvm);
213}
214
215int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
216{
217	int r;
218	switch (ext) {
219	case KVM_CAP_IRQCHIP:
220		r = vgic_present;
221		break;
222	case KVM_CAP_IOEVENTFD:
223	case KVM_CAP_DEVICE_CTRL:
224	case KVM_CAP_USER_MEMORY:
225	case KVM_CAP_SYNC_MMU:
226	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
227	case KVM_CAP_ONE_REG:
228	case KVM_CAP_ARM_PSCI:
229	case KVM_CAP_ARM_PSCI_0_2:
230	case KVM_CAP_READONLY_MEM:
231	case KVM_CAP_MP_STATE:
232	case KVM_CAP_IMMEDIATE_EXIT:
233	case KVM_CAP_VCPU_EVENTS:
234	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
235	case KVM_CAP_ARM_NISV_TO_USER:
236	case KVM_CAP_ARM_INJECT_EXT_DABT:
237	case KVM_CAP_SET_GUEST_DEBUG:
238	case KVM_CAP_VCPU_ATTRIBUTES:
239	case KVM_CAP_PTP_KVM:
240	case KVM_CAP_ARM_SYSTEM_SUSPEND:
241	case KVM_CAP_IRQFD_RESAMPLE:
242	case KVM_CAP_COUNTER_OFFSET:
243		r = 1;
244		break;
245	case KVM_CAP_SET_GUEST_DEBUG2:
246		return KVM_GUESTDBG_VALID_MASK;
247	case KVM_CAP_ARM_SET_DEVICE_ADDR:
248		r = 1;
249		break;
250	case KVM_CAP_NR_VCPUS:
251		/*
252		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
253		 * architectures, as it does not always bound it to
254		 * KVM_CAP_MAX_VCPUS. It should not matter much because
255		 * this is just an advisory value.
256		 */
257		r = min_t(unsigned int, num_online_cpus(),
258			  kvm_arm_default_max_vcpus());
259		break;
260	case KVM_CAP_MAX_VCPUS:
261	case KVM_CAP_MAX_VCPU_ID:
262		if (kvm)
263			r = kvm->max_vcpus;
264		else
265			r = kvm_arm_default_max_vcpus();
266		break;
267	case KVM_CAP_MSI_DEVID:
268		if (!kvm)
269			r = -EINVAL;
270		else
271			r = kvm->arch.vgic.msis_require_devid;
272		break;
273	case KVM_CAP_ARM_USER_IRQ:
274		/*
275		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
276		 * (bump this number if adding more devices)
277		 */
278		r = 1;
279		break;
280	case KVM_CAP_ARM_MTE:
281		r = system_supports_mte();
282		break;
283	case KVM_CAP_STEAL_TIME:
284		r = kvm_arm_pvtime_supported();
285		break;
286	case KVM_CAP_ARM_EL1_32BIT:
287		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
288		break;
289	case KVM_CAP_GUEST_DEBUG_HW_BPS:
290		r = get_num_brps();
291		break;
292	case KVM_CAP_GUEST_DEBUG_HW_WPS:
293		r = get_num_wrps();
294		break;
295	case KVM_CAP_ARM_PMU_V3:
296		r = kvm_arm_support_pmu_v3();
297		break;
298	case KVM_CAP_ARM_INJECT_SERROR_ESR:
299		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
300		break;
301	case KVM_CAP_ARM_VM_IPA_SIZE:
302		r = get_kvm_ipa_limit();
303		break;
304	case KVM_CAP_ARM_SVE:
305		r = system_supports_sve();
306		break;
307	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
308	case KVM_CAP_ARM_PTRAUTH_GENERIC:
309		r = system_has_full_ptr_auth();
310		break;
311	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
312		if (kvm)
313			r = kvm->arch.mmu.split_page_chunk_size;
314		else
315			r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
316		break;
317	case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
318		r = kvm_supported_block_sizes();
319		break;
320	default:
321		r = 0;
322	}
323
324	return r;
325}
326
327long kvm_arch_dev_ioctl(struct file *filp,
328			unsigned int ioctl, unsigned long arg)
329{
330	return -EINVAL;
331}
332
333struct kvm *kvm_arch_alloc_vm(void)
334{
335	size_t sz = sizeof(struct kvm);
336
337	if (!has_vhe())
338		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
339
340	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
341}
342
343int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
344{
345	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
346		return -EBUSY;
347
348	if (id >= kvm->max_vcpus)
349		return -EINVAL;
350
351	return 0;
352}
353
354int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
355{
356	int err;
357
358	spin_lock_init(&vcpu->arch.mp_state_lock);
359
360#ifdef CONFIG_LOCKDEP
361	/* Inform lockdep that the config_lock is acquired after vcpu->mutex */
362	mutex_lock(&vcpu->mutex);
363	mutex_lock(&vcpu->kvm->arch.config_lock);
364	mutex_unlock(&vcpu->kvm->arch.config_lock);
365	mutex_unlock(&vcpu->mutex);
366#endif
367
368	/* Force users to call KVM_ARM_VCPU_INIT */
369	vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
370	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
371
372	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
373
374	/*
375	 * Default value for the FP state, will be overloaded at load
376	 * time if we support FP (pretty likely)
377	 */
378	vcpu->arch.fp_state = FP_STATE_FREE;
379
380	/* Set up the timer */
381	kvm_timer_vcpu_init(vcpu);
382
383	kvm_pmu_vcpu_init(vcpu);
384
385	kvm_arm_reset_debug_ptr(vcpu);
386
387	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
388
389	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
390
391	err = kvm_vgic_vcpu_init(vcpu);
392	if (err)
393		return err;
394
395	return kvm_share_hyp(vcpu, vcpu + 1);
396}
397
398void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
399{
400}
401
402void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
403{
404	if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
405		static_branch_dec(&userspace_irqchip_in_use);
406
407	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
408	kvm_timer_vcpu_terminate(vcpu);
409	kvm_pmu_vcpu_destroy(vcpu);
410	kvm_vgic_vcpu_destroy(vcpu);
411	kvm_arm_vcpu_destroy(vcpu);
412}
413
414void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
415{
416
417}
418
419void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
420{
421
422}
423
424void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
425{
426	struct kvm_s2_mmu *mmu;
427	int *last_ran;
428
429	mmu = vcpu->arch.hw_mmu;
430	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
431
432	/*
433	 * We guarantee that both TLBs and I-cache are private to each
434	 * vcpu. If detecting that a vcpu from the same VM has
435	 * previously run on the same physical CPU, call into the
436	 * hypervisor code to nuke the relevant contexts.
437	 *
438	 * We might get preempted before the vCPU actually runs, but
439	 * over-invalidation doesn't affect correctness.
440	 */
441	if (*last_ran != vcpu->vcpu_id) {
442		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
443		*last_ran = vcpu->vcpu_id;
444	}
445
446	vcpu->cpu = cpu;
447
448	kvm_vgic_load(vcpu);
449	kvm_timer_vcpu_load(vcpu);
450	if (has_vhe())
451		kvm_vcpu_load_sysregs_vhe(vcpu);
452	kvm_arch_vcpu_load_fp(vcpu);
453	kvm_vcpu_pmu_restore_guest(vcpu);
454	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
455		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
456
457	if (single_task_running())
458		vcpu_clear_wfx_traps(vcpu);
459	else
460		vcpu_set_wfx_traps(vcpu);
461
462	if (vcpu_has_ptrauth(vcpu))
463		vcpu_ptrauth_disable(vcpu);
464	kvm_arch_vcpu_load_debug_state_flags(vcpu);
465
466	if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
467		vcpu_set_on_unsupported_cpu(vcpu);
468}
469
470void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
471{
472	kvm_arch_vcpu_put_debug_state_flags(vcpu);
473	kvm_arch_vcpu_put_fp(vcpu);
474	if (has_vhe())
475		kvm_vcpu_put_sysregs_vhe(vcpu);
476	kvm_timer_vcpu_put(vcpu);
477	kvm_vgic_put(vcpu);
478	kvm_vcpu_pmu_restore_host(vcpu);
479	kvm_arm_vmid_clear_active();
480
481	vcpu_clear_on_unsupported_cpu(vcpu);
482	vcpu->cpu = -1;
483}
484
485static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
486{
487	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
488	kvm_make_request(KVM_REQ_SLEEP, vcpu);
489	kvm_vcpu_kick(vcpu);
490}
491
492void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
493{
494	spin_lock(&vcpu->arch.mp_state_lock);
495	__kvm_arm_vcpu_power_off(vcpu);
496	spin_unlock(&vcpu->arch.mp_state_lock);
497}
498
499bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
500{
501	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
502}
503
504static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
505{
506	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
507	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
508	kvm_vcpu_kick(vcpu);
509}
510
511static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
512{
513	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
514}
515
516int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
517				    struct kvm_mp_state *mp_state)
518{
519	*mp_state = READ_ONCE(vcpu->arch.mp_state);
520
521	return 0;
522}
523
524int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
525				    struct kvm_mp_state *mp_state)
526{
527	int ret = 0;
528
529	spin_lock(&vcpu->arch.mp_state_lock);
530
531	switch (mp_state->mp_state) {
532	case KVM_MP_STATE_RUNNABLE:
533		WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
534		break;
535	case KVM_MP_STATE_STOPPED:
536		__kvm_arm_vcpu_power_off(vcpu);
537		break;
538	case KVM_MP_STATE_SUSPENDED:
539		kvm_arm_vcpu_suspend(vcpu);
540		break;
541	default:
542		ret = -EINVAL;
543	}
544
545	spin_unlock(&vcpu->arch.mp_state_lock);
546
547	return ret;
548}
549
550/**
551 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
552 * @v:		The VCPU pointer
553 *
554 * If the guest CPU is not waiting for interrupts or an interrupt line is
555 * asserted, the CPU is by definition runnable.
556 */
557int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
558{
559	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
560	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
561		&& !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
562}
563
564bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
565{
566	return vcpu_mode_priv(vcpu);
567}
568
569#ifdef CONFIG_GUEST_PERF_EVENTS
570unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
571{
572	return *vcpu_pc(vcpu);
573}
574#endif
575
576static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
577{
578	return vcpu_get_flag(vcpu, VCPU_INITIALIZED);
579}
580
581/*
582 * Handle both the initialisation that is being done when the vcpu is
583 * run for the first time, as well as the updates that must be
584 * performed each time we get a new thread dealing with this vcpu.
585 */
586int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
587{
588	struct kvm *kvm = vcpu->kvm;
589	int ret;
590
591	if (!kvm_vcpu_initialized(vcpu))
592		return -ENOEXEC;
593
594	if (!kvm_arm_vcpu_is_finalized(vcpu))
595		return -EPERM;
596
597	ret = kvm_arch_vcpu_run_map_fp(vcpu);
598	if (ret)
599		return ret;
600
601	if (likely(vcpu_has_run_once(vcpu)))
602		return 0;
603
604	kvm_arm_vcpu_init_debug(vcpu);
605
606	if (likely(irqchip_in_kernel(kvm))) {
607		/*
608		 * Map the VGIC hardware resources before running a vcpu the
609		 * first time on this VM.
610		 */
611		ret = kvm_vgic_map_resources(kvm);
612		if (ret)
613			return ret;
614	}
615
616	ret = kvm_timer_enable(vcpu);
617	if (ret)
618		return ret;
619
620	ret = kvm_arm_pmu_v3_enable(vcpu);
621	if (ret)
622		return ret;
623
624	if (is_protected_kvm_enabled()) {
625		ret = pkvm_create_hyp_vm(kvm);
626		if (ret)
627			return ret;
628	}
629
630	if (!irqchip_in_kernel(kvm)) {
631		/*
632		 * Tell the rest of the code that there are userspace irqchip
633		 * VMs in the wild.
634		 */
635		static_branch_inc(&userspace_irqchip_in_use);
636	}
637
638	/*
639	 * Initialize traps for protected VMs.
640	 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
641	 * the code is in place for first run initialization at EL2.
642	 */
643	if (kvm_vm_is_protected(kvm))
644		kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
645
646	mutex_lock(&kvm->arch.config_lock);
647	set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
648	mutex_unlock(&kvm->arch.config_lock);
649
650	return ret;
651}
652
653bool kvm_arch_intc_initialized(struct kvm *kvm)
654{
655	return vgic_initialized(kvm);
656}
657
658void kvm_arm_halt_guest(struct kvm *kvm)
659{
660	unsigned long i;
661	struct kvm_vcpu *vcpu;
662
663	kvm_for_each_vcpu(i, vcpu, kvm)
664		vcpu->arch.pause = true;
665	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
666}
667
668void kvm_arm_resume_guest(struct kvm *kvm)
669{
670	unsigned long i;
671	struct kvm_vcpu *vcpu;
672
673	kvm_for_each_vcpu(i, vcpu, kvm) {
674		vcpu->arch.pause = false;
675		__kvm_vcpu_wake_up(vcpu);
676	}
677}
678
679static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
680{
681	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
682
683	rcuwait_wait_event(wait,
684			   (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
685			   TASK_INTERRUPTIBLE);
686
687	if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
688		/* Awaken to handle a signal, request we sleep again later. */
689		kvm_make_request(KVM_REQ_SLEEP, vcpu);
690	}
691
692	/*
693	 * Make sure we will observe a potential reset request if we've
694	 * observed a change to the power state. Pairs with the smp_wmb() in
695	 * kvm_psci_vcpu_on().
696	 */
697	smp_rmb();
698}
699
700/**
701 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
702 * @vcpu:	The VCPU pointer
703 *
704 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
705 * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
706 * on when a wake event arrives, e.g. there may already be a pending wake event.
707 */
708void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
709{
710	/*
711	 * Sync back the state of the GIC CPU interface so that we have
712	 * the latest PMR and group enables. This ensures that
713	 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
714	 * we have pending interrupts, e.g. when determining if the
715	 * vCPU should block.
716	 *
717	 * For the same reason, we want to tell GICv4 that we need
718	 * doorbells to be signalled, should an interrupt become pending.
719	 */
720	preempt_disable();
721	kvm_vgic_vmcr_sync(vcpu);
722	vcpu_set_flag(vcpu, IN_WFI);
723	vgic_v4_put(vcpu);
724	preempt_enable();
725
726	kvm_vcpu_halt(vcpu);
727	vcpu_clear_flag(vcpu, IN_WFIT);
728
729	preempt_disable();
730	vcpu_clear_flag(vcpu, IN_WFI);
731	vgic_v4_load(vcpu);
732	preempt_enable();
733}
734
735static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
736{
737	if (!kvm_arm_vcpu_suspended(vcpu))
738		return 1;
739
740	kvm_vcpu_wfi(vcpu);
741
742	/*
743	 * The suspend state is sticky; we do not leave it until userspace
744	 * explicitly marks the vCPU as runnable. Request that we suspend again
745	 * later.
746	 */
747	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
748
749	/*
750	 * Check to make sure the vCPU is actually runnable. If so, exit to
751	 * userspace informing it of the wakeup condition.
752	 */
753	if (kvm_arch_vcpu_runnable(vcpu)) {
754		memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
755		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
756		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
757		return 0;
758	}
759
760	/*
761	 * Otherwise, we were unblocked to process a different event, such as a
762	 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
763	 * process the event.
764	 */
765	return 1;
766}
767
768/**
769 * check_vcpu_requests - check and handle pending vCPU requests
770 * @vcpu:	the VCPU pointer
771 *
772 * Return: 1 if we should enter the guest
773 *	   0 if we should exit to userspace
774 *	   < 0 if we should exit to userspace, where the return value indicates
775 *	   an error
776 */
777static int check_vcpu_requests(struct kvm_vcpu *vcpu)
778{
779	if (kvm_request_pending(vcpu)) {
780		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
781			kvm_vcpu_sleep(vcpu);
782
783		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
784			kvm_reset_vcpu(vcpu);
785
786		/*
787		 * Clear IRQ_PENDING requests that were made to guarantee
788		 * that a VCPU sees new virtual interrupts.
789		 */
790		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
791
792		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
793			kvm_update_stolen_time(vcpu);
794
795		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
796			/* The distributor enable bits were changed */
797			preempt_disable();
798			vgic_v4_put(vcpu);
799			vgic_v4_load(vcpu);
800			preempt_enable();
801		}
802
803		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
804			kvm_pmu_handle_pmcr(vcpu,
805					    __vcpu_sys_reg(vcpu, PMCR_EL0));
806
807		if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
808			kvm_vcpu_pmu_restore_guest(vcpu);
809
810		if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
811			return kvm_vcpu_suspend(vcpu);
812
813		if (kvm_dirty_ring_check_request(vcpu))
814			return 0;
815	}
816
817	return 1;
818}
819
820static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
821{
822	if (likely(!vcpu_mode_is_32bit(vcpu)))
823		return false;
824
825	if (vcpu_has_nv(vcpu))
826		return true;
827
828	return !kvm_supports_32bit_el0();
829}
830
831/**
832 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
833 * @vcpu:	The VCPU pointer
834 * @ret:	Pointer to write optional return code
835 *
836 * Returns: true if the VCPU needs to return to a preemptible + interruptible
837 *	    and skip guest entry.
838 *
839 * This function disambiguates between two different types of exits: exits to a
840 * preemptible + interruptible kernel context and exits to userspace. For an
841 * exit to userspace, this function will write the return code to ret and return
842 * true. For an exit to preemptible + interruptible kernel context (i.e. check
843 * for pending work and re-enter), return true without writing to ret.
844 */
845static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
846{
847	struct kvm_run *run = vcpu->run;
848
849	/*
850	 * If we're using a userspace irqchip, then check if we need
851	 * to tell a userspace irqchip about timer or PMU level
852	 * changes and if so, exit to userspace (the actual level
853	 * state gets updated in kvm_timer_update_run and
854	 * kvm_pmu_update_run below).
855	 */
856	if (static_branch_unlikely(&userspace_irqchip_in_use)) {
857		if (kvm_timer_should_notify_user(vcpu) ||
858		    kvm_pmu_should_notify_user(vcpu)) {
859			*ret = -EINTR;
860			run->exit_reason = KVM_EXIT_INTR;
861			return true;
862		}
863	}
864
865	if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
866		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
867		run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
868		run->fail_entry.cpu = smp_processor_id();
869		*ret = 0;
870		return true;
871	}
872
873	return kvm_request_pending(vcpu) ||
874			xfer_to_guest_mode_work_pending();
875}
876
877/*
878 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
879 * the vCPU is running.
880 *
881 * This must be noinstr as instrumentation may make use of RCU, and this is not
882 * safe during the EQS.
883 */
884static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
885{
886	int ret;
887
888	guest_state_enter_irqoff();
889	ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
890	guest_state_exit_irqoff();
891
892	return ret;
893}
894
895/**
896 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
897 * @vcpu:	The VCPU pointer
898 *
899 * This function is called through the VCPU_RUN ioctl called from user space. It
900 * will execute VM code in a loop until the time slice for the process is used
901 * or some emulation is needed from user space in which case the function will
902 * return with return value 0 and with the kvm_run structure filled in with the
903 * required data for the requested emulation.
904 */
905int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
906{
907	struct kvm_run *run = vcpu->run;
908	int ret;
909
910	if (run->exit_reason == KVM_EXIT_MMIO) {
911		ret = kvm_handle_mmio_return(vcpu);
912		if (ret)
913			return ret;
914	}
915
916	vcpu_load(vcpu);
917
918	if (run->immediate_exit) {
919		ret = -EINTR;
920		goto out;
921	}
922
923	kvm_sigset_activate(vcpu);
924
925	ret = 1;
926	run->exit_reason = KVM_EXIT_UNKNOWN;
927	run->flags = 0;
928	while (ret > 0) {
929		/*
930		 * Check conditions before entering the guest
931		 */
932		ret = xfer_to_guest_mode_handle_work(vcpu);
933		if (!ret)
934			ret = 1;
935
936		if (ret > 0)
937			ret = check_vcpu_requests(vcpu);
938
939		/*
940		 * Preparing the interrupts to be injected also
941		 * involves poking the GIC, which must be done in a
942		 * non-preemptible context.
943		 */
944		preempt_disable();
945
946		/*
947		 * The VMID allocator only tracks active VMIDs per
948		 * physical CPU, and therefore the VMID allocated may not be
949		 * preserved on VMID roll-over if the task was preempted,
950		 * making a thread's VMID inactive. So we need to call
951		 * kvm_arm_vmid_update() in non-premptible context.
952		 */
953		kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid);
954
955		kvm_pmu_flush_hwstate(vcpu);
956
957		local_irq_disable();
958
959		kvm_vgic_flush_hwstate(vcpu);
960
961		kvm_pmu_update_vcpu_events(vcpu);
962
963		/*
964		 * Ensure we set mode to IN_GUEST_MODE after we disable
965		 * interrupts and before the final VCPU requests check.
966		 * See the comment in kvm_vcpu_exiting_guest_mode() and
967		 * Documentation/virt/kvm/vcpu-requests.rst
968		 */
969		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
970
971		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
972			vcpu->mode = OUTSIDE_GUEST_MODE;
973			isb(); /* Ensure work in x_flush_hwstate is committed */
974			kvm_pmu_sync_hwstate(vcpu);
975			if (static_branch_unlikely(&userspace_irqchip_in_use))
976				kvm_timer_sync_user(vcpu);
977			kvm_vgic_sync_hwstate(vcpu);
978			local_irq_enable();
979			preempt_enable();
980			continue;
981		}
982
983		kvm_arm_setup_debug(vcpu);
984		kvm_arch_vcpu_ctxflush_fp(vcpu);
985
986		/**************************************************************
987		 * Enter the guest
988		 */
989		trace_kvm_entry(*vcpu_pc(vcpu));
990		guest_timing_enter_irqoff();
991
992		ret = kvm_arm_vcpu_enter_exit(vcpu);
993
994		vcpu->mode = OUTSIDE_GUEST_MODE;
995		vcpu->stat.exits++;
996		/*
997		 * Back from guest
998		 *************************************************************/
999
1000		kvm_arm_clear_debug(vcpu);
1001
1002		/*
1003		 * We must sync the PMU state before the vgic state so
1004		 * that the vgic can properly sample the updated state of the
1005		 * interrupt line.
1006		 */
1007		kvm_pmu_sync_hwstate(vcpu);
1008
1009		/*
1010		 * Sync the vgic state before syncing the timer state because
1011		 * the timer code needs to know if the virtual timer
1012		 * interrupts are active.
1013		 */
1014		kvm_vgic_sync_hwstate(vcpu);
1015
1016		/*
1017		 * Sync the timer hardware state before enabling interrupts as
1018		 * we don't want vtimer interrupts to race with syncing the
1019		 * timer virtual interrupt state.
1020		 */
1021		if (static_branch_unlikely(&userspace_irqchip_in_use))
1022			kvm_timer_sync_user(vcpu);
1023
1024		kvm_arch_vcpu_ctxsync_fp(vcpu);
1025
1026		/*
1027		 * We must ensure that any pending interrupts are taken before
1028		 * we exit guest timing so that timer ticks are accounted as
1029		 * guest time. Transiently unmask interrupts so that any
1030		 * pending interrupts are taken.
1031		 *
1032		 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1033		 * context synchronization event) is necessary to ensure that
1034		 * pending interrupts are taken.
1035		 */
1036		if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1037			local_irq_enable();
1038			isb();
1039			local_irq_disable();
1040		}
1041
1042		guest_timing_exit_irqoff();
1043
1044		local_irq_enable();
1045
1046		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1047
1048		/* Exit types that need handling before we can be preempted */
1049		handle_exit_early(vcpu, ret);
1050
1051		preempt_enable();
1052
1053		/*
1054		 * The ARMv8 architecture doesn't give the hypervisor
1055		 * a mechanism to prevent a guest from dropping to AArch32 EL0
1056		 * if implemented by the CPU. If we spot the guest in such
1057		 * state and that we decided it wasn't supposed to do so (like
1058		 * with the asymmetric AArch32 case), return to userspace with
1059		 * a fatal error.
1060		 */
1061		if (vcpu_mode_is_bad_32bit(vcpu)) {
1062			/*
1063			 * As we have caught the guest red-handed, decide that
1064			 * it isn't fit for purpose anymore by making the vcpu
1065			 * invalid. The VMM can try and fix it by issuing  a
1066			 * KVM_ARM_VCPU_INIT if it really wants to.
1067			 */
1068			vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1069			ret = ARM_EXCEPTION_IL;
1070		}
1071
1072		ret = handle_exit(vcpu, ret);
1073	}
1074
1075	/* Tell userspace about in-kernel device output levels */
1076	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1077		kvm_timer_update_run(vcpu);
1078		kvm_pmu_update_run(vcpu);
1079	}
1080
1081	kvm_sigset_deactivate(vcpu);
1082
1083out:
1084	/*
1085	 * In the unlikely event that we are returning to userspace
1086	 * with pending exceptions or PC adjustment, commit these
1087	 * adjustments in order to give userspace a consistent view of
1088	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1089	 * being preempt-safe on VHE.
1090	 */
1091	if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1092		     vcpu_get_flag(vcpu, INCREMENT_PC)))
1093		kvm_call_hyp(__kvm_adjust_pc, vcpu);
1094
1095	vcpu_put(vcpu);
1096	return ret;
1097}
1098
1099static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1100{
1101	int bit_index;
1102	bool set;
1103	unsigned long *hcr;
1104
1105	if (number == KVM_ARM_IRQ_CPU_IRQ)
1106		bit_index = __ffs(HCR_VI);
1107	else /* KVM_ARM_IRQ_CPU_FIQ */
1108		bit_index = __ffs(HCR_VF);
1109
1110	hcr = vcpu_hcr(vcpu);
1111	if (level)
1112		set = test_and_set_bit(bit_index, hcr);
1113	else
1114		set = test_and_clear_bit(bit_index, hcr);
1115
1116	/*
1117	 * If we didn't change anything, no need to wake up or kick other CPUs
1118	 */
1119	if (set == level)
1120		return 0;
1121
1122	/*
1123	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1124	 * trigger a world-switch round on the running physical CPU to set the
1125	 * virtual IRQ/FIQ fields in the HCR appropriately.
1126	 */
1127	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1128	kvm_vcpu_kick(vcpu);
1129
1130	return 0;
1131}
1132
1133int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1134			  bool line_status)
1135{
1136	u32 irq = irq_level->irq;
1137	unsigned int irq_type, vcpu_idx, irq_num;
1138	int nrcpus = atomic_read(&kvm->online_vcpus);
1139	struct kvm_vcpu *vcpu = NULL;
1140	bool level = irq_level->level;
1141
1142	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1143	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1144	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1145	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1146
1147	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1148
1149	switch (irq_type) {
1150	case KVM_ARM_IRQ_TYPE_CPU:
1151		if (irqchip_in_kernel(kvm))
1152			return -ENXIO;
1153
1154		if (vcpu_idx >= nrcpus)
1155			return -EINVAL;
1156
1157		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1158		if (!vcpu)
1159			return -EINVAL;
1160
1161		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1162			return -EINVAL;
1163
1164		return vcpu_interrupt_line(vcpu, irq_num, level);
1165	case KVM_ARM_IRQ_TYPE_PPI:
1166		if (!irqchip_in_kernel(kvm))
1167			return -ENXIO;
1168
1169		if (vcpu_idx >= nrcpus)
1170			return -EINVAL;
1171
1172		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1173		if (!vcpu)
1174			return -EINVAL;
1175
1176		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1177			return -EINVAL;
1178
1179		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1180	case KVM_ARM_IRQ_TYPE_SPI:
1181		if (!irqchip_in_kernel(kvm))
1182			return -ENXIO;
1183
1184		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1185			return -EINVAL;
1186
1187		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1188	}
1189
1190	return -EINVAL;
1191}
1192
1193static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1194					const struct kvm_vcpu_init *init)
1195{
1196	unsigned long features = init->features[0];
1197	int i;
1198
1199	if (features & ~KVM_VCPU_VALID_FEATURES)
1200		return -ENOENT;
1201
1202	for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1203		if (init->features[i])
1204			return -ENOENT;
1205	}
1206
1207	if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1208		return 0;
1209
1210	if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1))
1211		return -EINVAL;
1212
1213	/* MTE is incompatible with AArch32 */
1214	if (kvm_has_mte(vcpu->kvm))
1215		return -EINVAL;
1216
1217	/* NV is incompatible with AArch32 */
1218	if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1219		return -EINVAL;
1220
1221	return 0;
1222}
1223
1224static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1225				  const struct kvm_vcpu_init *init)
1226{
1227	unsigned long features = init->features[0];
1228
1229	return !bitmap_equal(vcpu->arch.features, &features, KVM_VCPU_MAX_FEATURES);
1230}
1231
1232static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1233				 const struct kvm_vcpu_init *init)
1234{
1235	unsigned long features = init->features[0];
1236	struct kvm *kvm = vcpu->kvm;
1237	int ret = -EINVAL;
1238
1239	mutex_lock(&kvm->arch.config_lock);
1240
1241	if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1242	    !bitmap_equal(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES))
1243		goto out_unlock;
1244
1245	bitmap_copy(vcpu->arch.features, &features, KVM_VCPU_MAX_FEATURES);
1246
1247	/* Now we know what it is, we can reset it. */
1248	ret = kvm_reset_vcpu(vcpu);
1249	if (ret) {
1250		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1251		goto out_unlock;
1252	}
1253
1254	bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1255	set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1256	vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1257out_unlock:
1258	mutex_unlock(&kvm->arch.config_lock);
1259	return ret;
1260}
1261
1262static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1263			       const struct kvm_vcpu_init *init)
1264{
1265	int ret;
1266
1267	if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1268	    init->target != kvm_target_cpu())
1269		return -EINVAL;
1270
1271	ret = kvm_vcpu_init_check_features(vcpu, init);
1272	if (ret)
1273		return ret;
1274
1275	if (!kvm_vcpu_initialized(vcpu))
1276		return __kvm_vcpu_set_target(vcpu, init);
1277
1278	if (kvm_vcpu_init_changed(vcpu, init))
1279		return -EINVAL;
1280
1281	return kvm_reset_vcpu(vcpu);
1282}
1283
1284static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1285					 struct kvm_vcpu_init *init)
1286{
1287	bool power_off = false;
1288	int ret;
1289
1290	/*
1291	 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1292	 * reflecting it in the finalized feature set, thus limiting its scope
1293	 * to a single KVM_ARM_VCPU_INIT call.
1294	 */
1295	if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1296		init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1297		power_off = true;
1298	}
1299
1300	ret = kvm_vcpu_set_target(vcpu, init);
1301	if (ret)
1302		return ret;
1303
1304	/*
1305	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1306	 * guest MMU is turned off and flush the caches as needed.
1307	 *
1308	 * S2FWB enforces all memory accesses to RAM being cacheable,
1309	 * ensuring that the data side is always coherent. We still
1310	 * need to invalidate the I-cache though, as FWB does *not*
1311	 * imply CTR_EL0.DIC.
1312	 */
1313	if (vcpu_has_run_once(vcpu)) {
1314		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1315			stage2_unmap_vm(vcpu->kvm);
1316		else
1317			icache_inval_all_pou();
1318	}
1319
1320	vcpu_reset_hcr(vcpu);
1321	vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu);
1322
1323	/*
1324	 * Handle the "start in power-off" case.
1325	 */
1326	spin_lock(&vcpu->arch.mp_state_lock);
1327
1328	if (power_off)
1329		__kvm_arm_vcpu_power_off(vcpu);
1330	else
1331		WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1332
1333	spin_unlock(&vcpu->arch.mp_state_lock);
1334
1335	return 0;
1336}
1337
1338static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1339				 struct kvm_device_attr *attr)
1340{
1341	int ret = -ENXIO;
1342
1343	switch (attr->group) {
1344	default:
1345		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1346		break;
1347	}
1348
1349	return ret;
1350}
1351
1352static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1353				 struct kvm_device_attr *attr)
1354{
1355	int ret = -ENXIO;
1356
1357	switch (attr->group) {
1358	default:
1359		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1360		break;
1361	}
1362
1363	return ret;
1364}
1365
1366static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1367				 struct kvm_device_attr *attr)
1368{
1369	int ret = -ENXIO;
1370
1371	switch (attr->group) {
1372	default:
1373		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1374		break;
1375	}
1376
1377	return ret;
1378}
1379
1380static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1381				   struct kvm_vcpu_events *events)
1382{
1383	memset(events, 0, sizeof(*events));
1384
1385	return __kvm_arm_vcpu_get_events(vcpu, events);
1386}
1387
1388static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1389				   struct kvm_vcpu_events *events)
1390{
1391	int i;
1392
1393	/* check whether the reserved field is zero */
1394	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1395		if (events->reserved[i])
1396			return -EINVAL;
1397
1398	/* check whether the pad field is zero */
1399	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1400		if (events->exception.pad[i])
1401			return -EINVAL;
1402
1403	return __kvm_arm_vcpu_set_events(vcpu, events);
1404}
1405
1406long kvm_arch_vcpu_ioctl(struct file *filp,
1407			 unsigned int ioctl, unsigned long arg)
1408{
1409	struct kvm_vcpu *vcpu = filp->private_data;
1410	void __user *argp = (void __user *)arg;
1411	struct kvm_device_attr attr;
1412	long r;
1413
1414	switch (ioctl) {
1415	case KVM_ARM_VCPU_INIT: {
1416		struct kvm_vcpu_init init;
1417
1418		r = -EFAULT;
1419		if (copy_from_user(&init, argp, sizeof(init)))
1420			break;
1421
1422		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1423		break;
1424	}
1425	case KVM_SET_ONE_REG:
1426	case KVM_GET_ONE_REG: {
1427		struct kvm_one_reg reg;
1428
1429		r = -ENOEXEC;
1430		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1431			break;
1432
1433		r = -EFAULT;
1434		if (copy_from_user(&reg, argp, sizeof(reg)))
1435			break;
1436
1437		/*
1438		 * We could owe a reset due to PSCI. Handle the pending reset
1439		 * here to ensure userspace register accesses are ordered after
1440		 * the reset.
1441		 */
1442		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1443			kvm_reset_vcpu(vcpu);
1444
1445		if (ioctl == KVM_SET_ONE_REG)
1446			r = kvm_arm_set_reg(vcpu, &reg);
1447		else
1448			r = kvm_arm_get_reg(vcpu, &reg);
1449		break;
1450	}
1451	case KVM_GET_REG_LIST: {
1452		struct kvm_reg_list __user *user_list = argp;
1453		struct kvm_reg_list reg_list;
1454		unsigned n;
1455
1456		r = -ENOEXEC;
1457		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1458			break;
1459
1460		r = -EPERM;
1461		if (!kvm_arm_vcpu_is_finalized(vcpu))
1462			break;
1463
1464		r = -EFAULT;
1465		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1466			break;
1467		n = reg_list.n;
1468		reg_list.n = kvm_arm_num_regs(vcpu);
1469		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1470			break;
1471		r = -E2BIG;
1472		if (n < reg_list.n)
1473			break;
1474		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1475		break;
1476	}
1477	case KVM_SET_DEVICE_ATTR: {
1478		r = -EFAULT;
1479		if (copy_from_user(&attr, argp, sizeof(attr)))
1480			break;
1481		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1482		break;
1483	}
1484	case KVM_GET_DEVICE_ATTR: {
1485		r = -EFAULT;
1486		if (copy_from_user(&attr, argp, sizeof(attr)))
1487			break;
1488		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1489		break;
1490	}
1491	case KVM_HAS_DEVICE_ATTR: {
1492		r = -EFAULT;
1493		if (copy_from_user(&attr, argp, sizeof(attr)))
1494			break;
1495		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1496		break;
1497	}
1498	case KVM_GET_VCPU_EVENTS: {
1499		struct kvm_vcpu_events events;
1500
1501		if (kvm_arm_vcpu_get_events(vcpu, &events))
1502			return -EINVAL;
1503
1504		if (copy_to_user(argp, &events, sizeof(events)))
1505			return -EFAULT;
1506
1507		return 0;
1508	}
1509	case KVM_SET_VCPU_EVENTS: {
1510		struct kvm_vcpu_events events;
1511
1512		if (copy_from_user(&events, argp, sizeof(events)))
1513			return -EFAULT;
1514
1515		return kvm_arm_vcpu_set_events(vcpu, &events);
1516	}
1517	case KVM_ARM_VCPU_FINALIZE: {
1518		int what;
1519
1520		if (!kvm_vcpu_initialized(vcpu))
1521			return -ENOEXEC;
1522
1523		if (get_user(what, (const int __user *)argp))
1524			return -EFAULT;
1525
1526		return kvm_arm_vcpu_finalize(vcpu, what);
1527	}
1528	default:
1529		r = -EINVAL;
1530	}
1531
1532	return r;
1533}
1534
1535void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1536{
1537
1538}
1539
1540static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1541					struct kvm_arm_device_addr *dev_addr)
1542{
1543	switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1544	case KVM_ARM_DEVICE_VGIC_V2:
1545		if (!vgic_present)
1546			return -ENXIO;
1547		return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1548	default:
1549		return -ENODEV;
1550	}
1551}
1552
1553static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1554{
1555	switch (attr->group) {
1556	case KVM_ARM_VM_SMCCC_CTRL:
1557		return kvm_vm_smccc_has_attr(kvm, attr);
1558	default:
1559		return -ENXIO;
1560	}
1561}
1562
1563static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1564{
1565	switch (attr->group) {
1566	case KVM_ARM_VM_SMCCC_CTRL:
1567		return kvm_vm_smccc_set_attr(kvm, attr);
1568	default:
1569		return -ENXIO;
1570	}
1571}
1572
1573int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1574{
1575	struct kvm *kvm = filp->private_data;
1576	void __user *argp = (void __user *)arg;
1577	struct kvm_device_attr attr;
1578
1579	switch (ioctl) {
1580	case KVM_CREATE_IRQCHIP: {
1581		int ret;
1582		if (!vgic_present)
1583			return -ENXIO;
1584		mutex_lock(&kvm->lock);
1585		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1586		mutex_unlock(&kvm->lock);
1587		return ret;
1588	}
1589	case KVM_ARM_SET_DEVICE_ADDR: {
1590		struct kvm_arm_device_addr dev_addr;
1591
1592		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1593			return -EFAULT;
1594		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1595	}
1596	case KVM_ARM_PREFERRED_TARGET: {
1597		struct kvm_vcpu_init init = {
1598			.target = KVM_ARM_TARGET_GENERIC_V8,
1599		};
1600
1601		if (copy_to_user(argp, &init, sizeof(init)))
1602			return -EFAULT;
1603
1604		return 0;
1605	}
1606	case KVM_ARM_MTE_COPY_TAGS: {
1607		struct kvm_arm_copy_mte_tags copy_tags;
1608
1609		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1610			return -EFAULT;
1611		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1612	}
1613	case KVM_ARM_SET_COUNTER_OFFSET: {
1614		struct kvm_arm_counter_offset offset;
1615
1616		if (copy_from_user(&offset, argp, sizeof(offset)))
1617			return -EFAULT;
1618		return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1619	}
1620	case KVM_HAS_DEVICE_ATTR: {
1621		if (copy_from_user(&attr, argp, sizeof(attr)))
1622			return -EFAULT;
1623
1624		return kvm_vm_has_attr(kvm, &attr);
1625	}
1626	case KVM_SET_DEVICE_ATTR: {
1627		if (copy_from_user(&attr, argp, sizeof(attr)))
1628			return -EFAULT;
1629
1630		return kvm_vm_set_attr(kvm, &attr);
1631	}
1632	default:
1633		return -EINVAL;
1634	}
1635}
1636
1637/* unlocks vcpus from @vcpu_lock_idx and smaller */
1638static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1639{
1640	struct kvm_vcpu *tmp_vcpu;
1641
1642	for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1643		tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1644		mutex_unlock(&tmp_vcpu->mutex);
1645	}
1646}
1647
1648void unlock_all_vcpus(struct kvm *kvm)
1649{
1650	lockdep_assert_held(&kvm->lock);
1651
1652	unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1653}
1654
1655/* Returns true if all vcpus were locked, false otherwise */
1656bool lock_all_vcpus(struct kvm *kvm)
1657{
1658	struct kvm_vcpu *tmp_vcpu;
1659	unsigned long c;
1660
1661	lockdep_assert_held(&kvm->lock);
1662
1663	/*
1664	 * Any time a vcpu is in an ioctl (including running), the
1665	 * core KVM code tries to grab the vcpu->mutex.
1666	 *
1667	 * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1668	 * other VCPUs can fiddle with the state while we access it.
1669	 */
1670	kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1671		if (!mutex_trylock(&tmp_vcpu->mutex)) {
1672			unlock_vcpus(kvm, c - 1);
1673			return false;
1674		}
1675	}
1676
1677	return true;
1678}
1679
1680static unsigned long nvhe_percpu_size(void)
1681{
1682	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1683		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1684}
1685
1686static unsigned long nvhe_percpu_order(void)
1687{
1688	unsigned long size = nvhe_percpu_size();
1689
1690	return size ? get_order(size) : 0;
1691}
1692
1693/* A lookup table holding the hypervisor VA for each vector slot */
1694static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1695
1696static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1697{
1698	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1699}
1700
1701static int kvm_init_vector_slots(void)
1702{
1703	int err;
1704	void *base;
1705
1706	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1707	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1708
1709	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1710	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1711
1712	if (kvm_system_needs_idmapped_vectors() &&
1713	    !is_protected_kvm_enabled()) {
1714		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1715					       __BP_HARDEN_HYP_VECS_SZ, &base);
1716		if (err)
1717			return err;
1718	}
1719
1720	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1721	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1722	return 0;
1723}
1724
1725static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1726{
1727	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1728	unsigned long tcr;
1729
1730	/*
1731	 * Calculate the raw per-cpu offset without a translation from the
1732	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1733	 * so that we can use adr_l to access per-cpu variables in EL2.
1734	 * Also drop the KASAN tag which gets in the way...
1735	 */
1736	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1737			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1738
1739	params->mair_el2 = read_sysreg(mair_el1);
1740
1741	tcr = read_sysreg(tcr_el1);
1742	if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
1743		tcr |= TCR_EPD1_MASK;
1744	} else {
1745		tcr &= TCR_EL2_MASK;
1746		tcr |= TCR_EL2_RES1;
1747	}
1748	tcr &= ~TCR_T0SZ_MASK;
1749	tcr |= TCR_T0SZ(hyp_va_bits);
1750	params->tcr_el2 = tcr;
1751
1752	params->pgd_pa = kvm_mmu_get_httbr();
1753	if (is_protected_kvm_enabled())
1754		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1755	else
1756		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1757	if (cpus_have_final_cap(ARM64_KVM_HVHE))
1758		params->hcr_el2 |= HCR_E2H;
1759	params->vttbr = params->vtcr = 0;
1760
1761	/*
1762	 * Flush the init params from the data cache because the struct will
1763	 * be read while the MMU is off.
1764	 */
1765	kvm_flush_dcache_to_poc(params, sizeof(*params));
1766}
1767
1768static void hyp_install_host_vector(void)
1769{
1770	struct kvm_nvhe_init_params *params;
1771	struct arm_smccc_res res;
1772
1773	/* Switch from the HYP stub to our own HYP init vector */
1774	__hyp_set_vectors(kvm_get_idmap_vector());
1775
1776	/*
1777	 * Call initialization code, and switch to the full blown HYP code.
1778	 * If the cpucaps haven't been finalized yet, something has gone very
1779	 * wrong, and hyp will crash and burn when it uses any
1780	 * cpus_have_const_cap() wrapper.
1781	 */
1782	BUG_ON(!system_capabilities_finalized());
1783	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1784	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1785	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1786}
1787
1788static void cpu_init_hyp_mode(void)
1789{
1790	hyp_install_host_vector();
1791
1792	/*
1793	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1794	 * at EL2.
1795	 */
1796	if (this_cpu_has_cap(ARM64_SSBS) &&
1797	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1798		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1799	}
1800}
1801
1802static void cpu_hyp_reset(void)
1803{
1804	if (!is_kernel_in_hyp_mode())
1805		__hyp_reset_vectors();
1806}
1807
1808/*
1809 * EL2 vectors can be mapped and rerouted in a number of ways,
1810 * depending on the kernel configuration and CPU present:
1811 *
1812 * - If the CPU is affected by Spectre-v2, the hardening sequence is
1813 *   placed in one of the vector slots, which is executed before jumping
1814 *   to the real vectors.
1815 *
1816 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1817 *   containing the hardening sequence is mapped next to the idmap page,
1818 *   and executed before jumping to the real vectors.
1819 *
1820 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1821 *   empty slot is selected, mapped next to the idmap page, and
1822 *   executed before jumping to the real vectors.
1823 *
1824 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1825 * VHE, as we don't have hypervisor-specific mappings. If the system
1826 * is VHE and yet selects this capability, it will be ignored.
1827 */
1828static void cpu_set_hyp_vector(void)
1829{
1830	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1831	void *vector = hyp_spectre_vector_selector[data->slot];
1832
1833	if (!is_protected_kvm_enabled())
1834		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1835	else
1836		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1837}
1838
1839static void cpu_hyp_init_context(void)
1840{
1841	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1842
1843	if (!is_kernel_in_hyp_mode())
1844		cpu_init_hyp_mode();
1845}
1846
1847static void cpu_hyp_init_features(void)
1848{
1849	cpu_set_hyp_vector();
1850	kvm_arm_init_debug();
1851
1852	if (is_kernel_in_hyp_mode())
1853		kvm_timer_init_vhe();
1854
1855	if (vgic_present)
1856		kvm_vgic_init_cpu_hardware();
1857}
1858
1859static void cpu_hyp_reinit(void)
1860{
1861	cpu_hyp_reset();
1862	cpu_hyp_init_context();
1863	cpu_hyp_init_features();
1864}
1865
1866static void cpu_hyp_init(void *discard)
1867{
1868	if (!__this_cpu_read(kvm_hyp_initialized)) {
1869		cpu_hyp_reinit();
1870		__this_cpu_write(kvm_hyp_initialized, 1);
1871	}
1872}
1873
1874static void cpu_hyp_uninit(void *discard)
1875{
1876	if (__this_cpu_read(kvm_hyp_initialized)) {
1877		cpu_hyp_reset();
1878		__this_cpu_write(kvm_hyp_initialized, 0);
1879	}
1880}
1881
1882int kvm_arch_hardware_enable(void)
1883{
1884	/*
1885	 * Most calls to this function are made with migration
1886	 * disabled, but not with preemption disabled. The former is
1887	 * enough to ensure correctness, but most of the helpers
1888	 * expect the later and will throw a tantrum otherwise.
1889	 */
1890	preempt_disable();
1891
1892	cpu_hyp_init(NULL);
1893
1894	kvm_vgic_cpu_up();
1895	kvm_timer_cpu_up();
1896
1897	preempt_enable();
1898
1899	return 0;
1900}
1901
1902void kvm_arch_hardware_disable(void)
1903{
1904	kvm_timer_cpu_down();
1905	kvm_vgic_cpu_down();
1906
1907	if (!is_protected_kvm_enabled())
1908		cpu_hyp_uninit(NULL);
1909}
1910
1911#ifdef CONFIG_CPU_PM
1912static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1913				    unsigned long cmd,
1914				    void *v)
1915{
1916	/*
1917	 * kvm_hyp_initialized is left with its old value over
1918	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1919	 * re-enable hyp.
1920	 */
1921	switch (cmd) {
1922	case CPU_PM_ENTER:
1923		if (__this_cpu_read(kvm_hyp_initialized))
1924			/*
1925			 * don't update kvm_hyp_initialized here
1926			 * so that the hyp will be re-enabled
1927			 * when we resume. See below.
1928			 */
1929			cpu_hyp_reset();
1930
1931		return NOTIFY_OK;
1932	case CPU_PM_ENTER_FAILED:
1933	case CPU_PM_EXIT:
1934		if (__this_cpu_read(kvm_hyp_initialized))
1935			/* The hyp was enabled before suspend. */
1936			cpu_hyp_reinit();
1937
1938		return NOTIFY_OK;
1939
1940	default:
1941		return NOTIFY_DONE;
1942	}
1943}
1944
1945static struct notifier_block hyp_init_cpu_pm_nb = {
1946	.notifier_call = hyp_init_cpu_pm_notifier,
1947};
1948
1949static void __init hyp_cpu_pm_init(void)
1950{
1951	if (!is_protected_kvm_enabled())
1952		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1953}
1954static void __init hyp_cpu_pm_exit(void)
1955{
1956	if (!is_protected_kvm_enabled())
1957		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1958}
1959#else
1960static inline void __init hyp_cpu_pm_init(void)
1961{
1962}
1963static inline void __init hyp_cpu_pm_exit(void)
1964{
1965}
1966#endif
1967
1968static void __init init_cpu_logical_map(void)
1969{
1970	unsigned int cpu;
1971
1972	/*
1973	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1974	 * Only copy the set of online CPUs whose features have been checked
1975	 * against the finalized system capabilities. The hypervisor will not
1976	 * allow any other CPUs from the `possible` set to boot.
1977	 */
1978	for_each_online_cpu(cpu)
1979		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1980}
1981
1982#define init_psci_0_1_impl_state(config, what)	\
1983	config.psci_0_1_ ## what ## _implemented = psci_ops.what
1984
1985static bool __init init_psci_relay(void)
1986{
1987	/*
1988	 * If PSCI has not been initialized, protected KVM cannot install
1989	 * itself on newly booted CPUs.
1990	 */
1991	if (!psci_ops.get_version) {
1992		kvm_err("Cannot initialize protected mode without PSCI\n");
1993		return false;
1994	}
1995
1996	kvm_host_psci_config.version = psci_ops.get_version();
1997	kvm_host_psci_config.smccc_version = arm_smccc_get_version();
1998
1999	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2000		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2001		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2002		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2003		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2004		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2005	}
2006	return true;
2007}
2008
2009static int __init init_subsystems(void)
2010{
2011	int err = 0;
2012
2013	/*
2014	 * Enable hardware so that subsystem initialisation can access EL2.
2015	 */
2016	on_each_cpu(cpu_hyp_init, NULL, 1);
2017
2018	/*
2019	 * Register CPU lower-power notifier
2020	 */
2021	hyp_cpu_pm_init();
2022
2023	/*
2024	 * Init HYP view of VGIC
2025	 */
2026	err = kvm_vgic_hyp_init();
2027	switch (err) {
2028	case 0:
2029		vgic_present = true;
2030		break;
2031	case -ENODEV:
2032	case -ENXIO:
2033		vgic_present = false;
2034		err = 0;
2035		break;
2036	default:
2037		goto out;
2038	}
2039
2040	/*
2041	 * Init HYP architected timer support
2042	 */
2043	err = kvm_timer_hyp_init(vgic_present);
2044	if (err)
2045		goto out;
2046
2047	kvm_register_perf_callbacks(NULL);
2048
2049out:
2050	if (err)
2051		hyp_cpu_pm_exit();
2052
2053	if (err || !is_protected_kvm_enabled())
2054		on_each_cpu(cpu_hyp_uninit, NULL, 1);
2055
2056	return err;
2057}
2058
2059static void __init teardown_subsystems(void)
2060{
2061	kvm_unregister_perf_callbacks();
2062	hyp_cpu_pm_exit();
2063}
2064
2065static void __init teardown_hyp_mode(void)
2066{
2067	int cpu;
2068
2069	free_hyp_pgds();
2070	for_each_possible_cpu(cpu) {
2071		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
2072		free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2073	}
2074}
2075
2076static int __init do_pkvm_init(u32 hyp_va_bits)
2077{
2078	void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2079	int ret;
2080
2081	preempt_disable();
2082	cpu_hyp_init_context();
2083	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2084				num_possible_cpus(), kern_hyp_va(per_cpu_base),
2085				hyp_va_bits);
2086	cpu_hyp_init_features();
2087
2088	/*
2089	 * The stub hypercalls are now disabled, so set our local flag to
2090	 * prevent a later re-init attempt in kvm_arch_hardware_enable().
2091	 */
2092	__this_cpu_write(kvm_hyp_initialized, 1);
2093	preempt_enable();
2094
2095	return ret;
2096}
2097
2098static u64 get_hyp_id_aa64pfr0_el1(void)
2099{
2100	/*
2101	 * Track whether the system isn't affected by spectre/meltdown in the
2102	 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2103	 * Although this is per-CPU, we make it global for simplicity, e.g., not
2104	 * to have to worry about vcpu migration.
2105	 *
2106	 * Unlike for non-protected VMs, userspace cannot override this for
2107	 * protected VMs.
2108	 */
2109	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2110
2111	val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2112		 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2113
2114	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2115			  arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2116	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2117			  arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2118
2119	return val;
2120}
2121
2122static void kvm_hyp_init_symbols(void)
2123{
2124	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2125	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2126	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2127	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2128	kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2129	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2130	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2131	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2132	kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2133	kvm_nvhe_sym(__icache_flags) = __icache_flags;
2134	kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2135}
2136
2137static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2138{
2139	void *addr = phys_to_virt(hyp_mem_base);
2140	int ret;
2141
2142	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2143	if (ret)
2144		return ret;
2145
2146	ret = do_pkvm_init(hyp_va_bits);
2147	if (ret)
2148		return ret;
2149
2150	free_hyp_pgds();
2151
2152	return 0;
2153}
2154
2155static void pkvm_hyp_init_ptrauth(void)
2156{
2157	struct kvm_cpu_context *hyp_ctxt;
2158	int cpu;
2159
2160	for_each_possible_cpu(cpu) {
2161		hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2162		hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2163		hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2164		hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2165		hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2166		hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2167		hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2168		hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2169		hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2170		hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2171		hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2172	}
2173}
2174
2175/* Inits Hyp-mode on all online CPUs */
2176static int __init init_hyp_mode(void)
2177{
2178	u32 hyp_va_bits;
2179	int cpu;
2180	int err = -ENOMEM;
2181
2182	/*
2183	 * The protected Hyp-mode cannot be initialized if the memory pool
2184	 * allocation has failed.
2185	 */
2186	if (is_protected_kvm_enabled() && !hyp_mem_base)
2187		goto out_err;
2188
2189	/*
2190	 * Allocate Hyp PGD and setup Hyp identity mapping
2191	 */
2192	err = kvm_mmu_init(&hyp_va_bits);
2193	if (err)
2194		goto out_err;
2195
2196	/*
2197	 * Allocate stack pages for Hypervisor-mode
2198	 */
2199	for_each_possible_cpu(cpu) {
2200		unsigned long stack_page;
2201
2202		stack_page = __get_free_page(GFP_KERNEL);
2203		if (!stack_page) {
2204			err = -ENOMEM;
2205			goto out_err;
2206		}
2207
2208		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
2209	}
2210
2211	/*
2212	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2213	 */
2214	for_each_possible_cpu(cpu) {
2215		struct page *page;
2216		void *page_addr;
2217
2218		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2219		if (!page) {
2220			err = -ENOMEM;
2221			goto out_err;
2222		}
2223
2224		page_addr = page_address(page);
2225		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2226		kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2227	}
2228
2229	/*
2230	 * Map the Hyp-code called directly from the host
2231	 */
2232	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2233				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2234	if (err) {
2235		kvm_err("Cannot map world-switch code\n");
2236		goto out_err;
2237	}
2238
2239	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2240				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2241	if (err) {
2242		kvm_err("Cannot map .hyp.rodata section\n");
2243		goto out_err;
2244	}
2245
2246	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2247				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2248	if (err) {
2249		kvm_err("Cannot map rodata section\n");
2250		goto out_err;
2251	}
2252
2253	/*
2254	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2255	 * section thanks to an assertion in the linker script. Map it RW and
2256	 * the rest of .bss RO.
2257	 */
2258	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2259				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2260	if (err) {
2261		kvm_err("Cannot map hyp bss section: %d\n", err);
2262		goto out_err;
2263	}
2264
2265	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2266				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2267	if (err) {
2268		kvm_err("Cannot map bss section\n");
2269		goto out_err;
2270	}
2271
2272	/*
2273	 * Map the Hyp stack pages
2274	 */
2275	for_each_possible_cpu(cpu) {
2276		struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2277		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2278
2279		err = create_hyp_stack(__pa(stack_page), &params->stack_hyp_va);
2280		if (err) {
2281			kvm_err("Cannot map hyp stack\n");
2282			goto out_err;
2283		}
2284
2285		/*
2286		 * Save the stack PA in nvhe_init_params. This will be needed
2287		 * to recreate the stack mapping in protected nVHE mode.
2288		 * __hyp_pa() won't do the right thing there, since the stack
2289		 * has been mapped in the flexible private VA space.
2290		 */
2291		params->stack_pa = __pa(stack_page);
2292	}
2293
2294	for_each_possible_cpu(cpu) {
2295		char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2296		char *percpu_end = percpu_begin + nvhe_percpu_size();
2297
2298		/* Map Hyp percpu pages */
2299		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2300		if (err) {
2301			kvm_err("Cannot map hyp percpu region\n");
2302			goto out_err;
2303		}
2304
2305		/* Prepare the CPU initialization parameters */
2306		cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2307	}
2308
2309	kvm_hyp_init_symbols();
2310
2311	if (is_protected_kvm_enabled()) {
2312		if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2313		    cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH))
2314			pkvm_hyp_init_ptrauth();
2315
2316		init_cpu_logical_map();
2317
2318		if (!init_psci_relay()) {
2319			err = -ENODEV;
2320			goto out_err;
2321		}
2322
2323		err = kvm_hyp_init_protection(hyp_va_bits);
2324		if (err) {
2325			kvm_err("Failed to init hyp memory protection\n");
2326			goto out_err;
2327		}
2328	}
2329
2330	return 0;
2331
2332out_err:
2333	teardown_hyp_mode();
2334	kvm_err("error initializing Hyp mode: %d\n", err);
2335	return err;
2336}
2337
2338struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2339{
2340	struct kvm_vcpu *vcpu;
2341	unsigned long i;
2342
2343	mpidr &= MPIDR_HWID_BITMASK;
2344	kvm_for_each_vcpu(i, vcpu, kvm) {
2345		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2346			return vcpu;
2347	}
2348	return NULL;
2349}
2350
2351bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2352{
2353	return irqchip_in_kernel(kvm);
2354}
2355
2356bool kvm_arch_has_irq_bypass(void)
2357{
2358	return true;
2359}
2360
2361int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2362				      struct irq_bypass_producer *prod)
2363{
2364	struct kvm_kernel_irqfd *irqfd =
2365		container_of(cons, struct kvm_kernel_irqfd, consumer);
2366
2367	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2368					  &irqfd->irq_entry);
2369}
2370void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2371				      struct irq_bypass_producer *prod)
2372{
2373	struct kvm_kernel_irqfd *irqfd =
2374		container_of(cons, struct kvm_kernel_irqfd, consumer);
2375
2376	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2377				     &irqfd->irq_entry);
2378}
2379
2380void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2381{
2382	struct kvm_kernel_irqfd *irqfd =
2383		container_of(cons, struct kvm_kernel_irqfd, consumer);
2384
2385	kvm_arm_halt_guest(irqfd->kvm);
2386}
2387
2388void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2389{
2390	struct kvm_kernel_irqfd *irqfd =
2391		container_of(cons, struct kvm_kernel_irqfd, consumer);
2392
2393	kvm_arm_resume_guest(irqfd->kvm);
2394}
2395
2396/* Initialize Hyp-mode and memory mappings on all CPUs */
2397static __init int kvm_arm_init(void)
2398{
2399	int err;
2400	bool in_hyp_mode;
2401
2402	if (!is_hyp_mode_available()) {
2403		kvm_info("HYP mode not available\n");
2404		return -ENODEV;
2405	}
2406
2407	if (kvm_get_mode() == KVM_MODE_NONE) {
2408		kvm_info("KVM disabled from command line\n");
2409		return -ENODEV;
2410	}
2411
2412	err = kvm_sys_reg_table_init();
2413	if (err) {
2414		kvm_info("Error initializing system register tables");
2415		return err;
2416	}
2417
2418	in_hyp_mode = is_kernel_in_hyp_mode();
2419
2420	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2421	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2422		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2423			 "Only trusted guests should be used on this system.\n");
2424
2425	err = kvm_set_ipa_limit();
2426	if (err)
2427		return err;
2428
2429	err = kvm_arm_init_sve();
2430	if (err)
2431		return err;
2432
2433	err = kvm_arm_vmid_alloc_init();
2434	if (err) {
2435		kvm_err("Failed to initialize VMID allocator.\n");
2436		return err;
2437	}
2438
2439	if (!in_hyp_mode) {
2440		err = init_hyp_mode();
2441		if (err)
2442			goto out_err;
2443	}
2444
2445	err = kvm_init_vector_slots();
2446	if (err) {
2447		kvm_err("Cannot initialise vector slots\n");
2448		goto out_hyp;
2449	}
2450
2451	err = init_subsystems();
2452	if (err)
2453		goto out_hyp;
2454
2455	if (is_protected_kvm_enabled()) {
2456		kvm_info("Protected nVHE mode initialized successfully\n");
2457	} else if (in_hyp_mode) {
2458		kvm_info("VHE mode initialized successfully\n");
2459	} else {
2460		kvm_info("Hyp mode initialized successfully\n");
2461	}
2462
2463	/*
2464	 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2465	 * hypervisor protection is finalized.
2466	 */
2467	err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2468	if (err)
2469		goto out_subs;
2470
2471	kvm_arm_initialised = true;
2472
2473	return 0;
2474
2475out_subs:
2476	teardown_subsystems();
2477out_hyp:
2478	if (!in_hyp_mode)
2479		teardown_hyp_mode();
2480out_err:
2481	kvm_arm_vmid_alloc_free();
2482	return err;
2483}
2484
2485static int __init early_kvm_mode_cfg(char *arg)
2486{
2487	if (!arg)
2488		return -EINVAL;
2489
2490	if (strcmp(arg, "none") == 0) {
2491		kvm_mode = KVM_MODE_NONE;
2492		return 0;
2493	}
2494
2495	if (!is_hyp_mode_available()) {
2496		pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2497		return 0;
2498	}
2499
2500	if (strcmp(arg, "protected") == 0) {
2501		if (!is_kernel_in_hyp_mode())
2502			kvm_mode = KVM_MODE_PROTECTED;
2503		else
2504			pr_warn_once("Protected KVM not available with VHE\n");
2505
2506		return 0;
2507	}
2508
2509	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2510		kvm_mode = KVM_MODE_DEFAULT;
2511		return 0;
2512	}
2513
2514	if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2515		kvm_mode = KVM_MODE_NV;
2516		return 0;
2517	}
2518
2519	return -EINVAL;
2520}
2521early_param("kvm-arm.mode", early_kvm_mode_cfg);
2522
2523enum kvm_mode kvm_get_mode(void)
2524{
2525	return kvm_mode;
2526}
2527
2528module_init(kvm_arm_init);
2529