162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
462306a36Sopenharmony_ci */
562306a36Sopenharmony_ci
662306a36Sopenharmony_ci#include <linux/elf.h>
762306a36Sopenharmony_ci#include <linux/ftrace.h>
862306a36Sopenharmony_ci#include <linux/kernel.h>
962306a36Sopenharmony_ci#include <linux/module.h>
1062306a36Sopenharmony_ci#include <linux/moduleloader.h>
1162306a36Sopenharmony_ci#include <linux/sort.h>
1262306a36Sopenharmony_ci
1362306a36Sopenharmony_cistatic struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc,
1462306a36Sopenharmony_ci					    enum aarch64_insn_register reg)
1562306a36Sopenharmony_ci{
1662306a36Sopenharmony_ci	u32 adrp, add;
1762306a36Sopenharmony_ci
1862306a36Sopenharmony_ci	adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP);
1962306a36Sopenharmony_ci	add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K,
2062306a36Sopenharmony_ci					   AARCH64_INSN_VARIANT_64BIT,
2162306a36Sopenharmony_ci					   AARCH64_INSN_ADSB_ADD);
2262306a36Sopenharmony_ci
2362306a36Sopenharmony_ci	return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) };
2462306a36Sopenharmony_ci}
2562306a36Sopenharmony_ci
2662306a36Sopenharmony_cistruct plt_entry get_plt_entry(u64 dst, void *pc)
2762306a36Sopenharmony_ci{
2862306a36Sopenharmony_ci	struct plt_entry plt;
2962306a36Sopenharmony_ci	static u32 br;
3062306a36Sopenharmony_ci
3162306a36Sopenharmony_ci	if (!br)
3262306a36Sopenharmony_ci		br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16,
3362306a36Sopenharmony_ci						 AARCH64_INSN_BRANCH_NOLINK);
3462306a36Sopenharmony_ci
3562306a36Sopenharmony_ci	plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16);
3662306a36Sopenharmony_ci	plt.br = cpu_to_le32(br);
3762306a36Sopenharmony_ci
3862306a36Sopenharmony_ci	return plt;
3962306a36Sopenharmony_ci}
4062306a36Sopenharmony_ci
4162306a36Sopenharmony_cistatic bool plt_entries_equal(const struct plt_entry *a,
4262306a36Sopenharmony_ci			      const struct plt_entry *b)
4362306a36Sopenharmony_ci{
4462306a36Sopenharmony_ci	u64 p, q;
4562306a36Sopenharmony_ci
4662306a36Sopenharmony_ci	/*
4762306a36Sopenharmony_ci	 * Check whether both entries refer to the same target:
4862306a36Sopenharmony_ci	 * do the cheapest checks first.
4962306a36Sopenharmony_ci	 * If the 'add' or 'br' opcodes are different, then the target
5062306a36Sopenharmony_ci	 * cannot be the same.
5162306a36Sopenharmony_ci	 */
5262306a36Sopenharmony_ci	if (a->add != b->add || a->br != b->br)
5362306a36Sopenharmony_ci		return false;
5462306a36Sopenharmony_ci
5562306a36Sopenharmony_ci	p = ALIGN_DOWN((u64)a, SZ_4K);
5662306a36Sopenharmony_ci	q = ALIGN_DOWN((u64)b, SZ_4K);
5762306a36Sopenharmony_ci
5862306a36Sopenharmony_ci	/*
5962306a36Sopenharmony_ci	 * If the 'adrp' opcodes are the same then we just need to check
6062306a36Sopenharmony_ci	 * that they refer to the same 4k region.
6162306a36Sopenharmony_ci	 */
6262306a36Sopenharmony_ci	if (a->adrp == b->adrp && p == q)
6362306a36Sopenharmony_ci		return true;
6462306a36Sopenharmony_ci
6562306a36Sopenharmony_ci	return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) ==
6662306a36Sopenharmony_ci	       (q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp)));
6762306a36Sopenharmony_ci}
6862306a36Sopenharmony_ci
6962306a36Sopenharmony_ciu64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs,
7062306a36Sopenharmony_ci			  void *loc, const Elf64_Rela *rela,
7162306a36Sopenharmony_ci			  Elf64_Sym *sym)
7262306a36Sopenharmony_ci{
7362306a36Sopenharmony_ci	struct mod_plt_sec *pltsec = !within_module_init((unsigned long)loc, mod) ?
7462306a36Sopenharmony_ci						&mod->arch.core : &mod->arch.init;
7562306a36Sopenharmony_ci	struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
7662306a36Sopenharmony_ci	int i = pltsec->plt_num_entries;
7762306a36Sopenharmony_ci	int j = i - 1;
7862306a36Sopenharmony_ci	u64 val = sym->st_value + rela->r_addend;
7962306a36Sopenharmony_ci
8062306a36Sopenharmony_ci	if (is_forbidden_offset_for_adrp(&plt[i].adrp))
8162306a36Sopenharmony_ci		i++;
8262306a36Sopenharmony_ci
8362306a36Sopenharmony_ci	plt[i] = get_plt_entry(val, &plt[i]);
8462306a36Sopenharmony_ci
8562306a36Sopenharmony_ci	/*
8662306a36Sopenharmony_ci	 * Check if the entry we just created is a duplicate. Given that the
8762306a36Sopenharmony_ci	 * relocations are sorted, this will be the last entry we allocated.
8862306a36Sopenharmony_ci	 * (if one exists).
8962306a36Sopenharmony_ci	 */
9062306a36Sopenharmony_ci	if (j >= 0 && plt_entries_equal(plt + i, plt + j))
9162306a36Sopenharmony_ci		return (u64)&plt[j];
9262306a36Sopenharmony_ci
9362306a36Sopenharmony_ci	pltsec->plt_num_entries += i - j;
9462306a36Sopenharmony_ci	if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
9562306a36Sopenharmony_ci		return 0;
9662306a36Sopenharmony_ci
9762306a36Sopenharmony_ci	return (u64)&plt[i];
9862306a36Sopenharmony_ci}
9962306a36Sopenharmony_ci
10062306a36Sopenharmony_ci#ifdef CONFIG_ARM64_ERRATUM_843419
10162306a36Sopenharmony_ciu64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs,
10262306a36Sopenharmony_ci				void *loc, u64 val)
10362306a36Sopenharmony_ci{
10462306a36Sopenharmony_ci	struct mod_plt_sec *pltsec = !within_module_init((unsigned long)loc, mod) ?
10562306a36Sopenharmony_ci						&mod->arch.core : &mod->arch.init;
10662306a36Sopenharmony_ci	struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
10762306a36Sopenharmony_ci	int i = pltsec->plt_num_entries++;
10862306a36Sopenharmony_ci	u32 br;
10962306a36Sopenharmony_ci	int rd;
11062306a36Sopenharmony_ci
11162306a36Sopenharmony_ci	if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
11262306a36Sopenharmony_ci		return 0;
11362306a36Sopenharmony_ci
11462306a36Sopenharmony_ci	if (is_forbidden_offset_for_adrp(&plt[i].adrp))
11562306a36Sopenharmony_ci		i = pltsec->plt_num_entries++;
11662306a36Sopenharmony_ci
11762306a36Sopenharmony_ci	/* get the destination register of the ADRP instruction */
11862306a36Sopenharmony_ci	rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD,
11962306a36Sopenharmony_ci					  le32_to_cpup((__le32 *)loc));
12062306a36Sopenharmony_ci
12162306a36Sopenharmony_ci	br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4,
12262306a36Sopenharmony_ci					 AARCH64_INSN_BRANCH_NOLINK);
12362306a36Sopenharmony_ci
12462306a36Sopenharmony_ci	plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd);
12562306a36Sopenharmony_ci	plt[i].br = cpu_to_le32(br);
12662306a36Sopenharmony_ci
12762306a36Sopenharmony_ci	return (u64)&plt[i];
12862306a36Sopenharmony_ci}
12962306a36Sopenharmony_ci#endif
13062306a36Sopenharmony_ci
13162306a36Sopenharmony_ci#define cmp_3way(a, b)	((a) < (b) ? -1 : (a) > (b))
13262306a36Sopenharmony_ci
13362306a36Sopenharmony_cistatic int cmp_rela(const void *a, const void *b)
13462306a36Sopenharmony_ci{
13562306a36Sopenharmony_ci	const Elf64_Rela *x = a, *y = b;
13662306a36Sopenharmony_ci	int i;
13762306a36Sopenharmony_ci
13862306a36Sopenharmony_ci	/* sort by type, symbol index and addend */
13962306a36Sopenharmony_ci	i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
14062306a36Sopenharmony_ci	if (i == 0)
14162306a36Sopenharmony_ci		i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
14262306a36Sopenharmony_ci	if (i == 0)
14362306a36Sopenharmony_ci		i = cmp_3way(x->r_addend, y->r_addend);
14462306a36Sopenharmony_ci	return i;
14562306a36Sopenharmony_ci}
14662306a36Sopenharmony_ci
14762306a36Sopenharmony_cistatic bool duplicate_rel(const Elf64_Rela *rela, int num)
14862306a36Sopenharmony_ci{
14962306a36Sopenharmony_ci	/*
15062306a36Sopenharmony_ci	 * Entries are sorted by type, symbol index and addend. That means
15162306a36Sopenharmony_ci	 * that, if a duplicate entry exists, it must be in the preceding
15262306a36Sopenharmony_ci	 * slot.
15362306a36Sopenharmony_ci	 */
15462306a36Sopenharmony_ci	return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
15562306a36Sopenharmony_ci}
15662306a36Sopenharmony_ci
15762306a36Sopenharmony_cistatic unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
15862306a36Sopenharmony_ci			       Elf64_Word dstidx, Elf_Shdr *dstsec)
15962306a36Sopenharmony_ci{
16062306a36Sopenharmony_ci	unsigned int ret = 0;
16162306a36Sopenharmony_ci	Elf64_Sym *s;
16262306a36Sopenharmony_ci	int i;
16362306a36Sopenharmony_ci
16462306a36Sopenharmony_ci	for (i = 0; i < num; i++) {
16562306a36Sopenharmony_ci		u64 min_align;
16662306a36Sopenharmony_ci
16762306a36Sopenharmony_ci		switch (ELF64_R_TYPE(rela[i].r_info)) {
16862306a36Sopenharmony_ci		case R_AARCH64_JUMP26:
16962306a36Sopenharmony_ci		case R_AARCH64_CALL26:
17062306a36Sopenharmony_ci			/*
17162306a36Sopenharmony_ci			 * We only have to consider branch targets that resolve
17262306a36Sopenharmony_ci			 * to symbols that are defined in a different section.
17362306a36Sopenharmony_ci			 * This is not simply a heuristic, it is a fundamental
17462306a36Sopenharmony_ci			 * limitation, since there is no guaranteed way to emit
17562306a36Sopenharmony_ci			 * PLT entries sufficiently close to the branch if the
17662306a36Sopenharmony_ci			 * section size exceeds the range of a branch
17762306a36Sopenharmony_ci			 * instruction. So ignore relocations against defined
17862306a36Sopenharmony_ci			 * symbols if they live in the same section as the
17962306a36Sopenharmony_ci			 * relocation target.
18062306a36Sopenharmony_ci			 */
18162306a36Sopenharmony_ci			s = syms + ELF64_R_SYM(rela[i].r_info);
18262306a36Sopenharmony_ci			if (s->st_shndx == dstidx)
18362306a36Sopenharmony_ci				break;
18462306a36Sopenharmony_ci
18562306a36Sopenharmony_ci			/*
18662306a36Sopenharmony_ci			 * Jump relocations with non-zero addends against
18762306a36Sopenharmony_ci			 * undefined symbols are supported by the ELF spec, but
18862306a36Sopenharmony_ci			 * do not occur in practice (e.g., 'jump n bytes past
18962306a36Sopenharmony_ci			 * the entry point of undefined function symbol f').
19062306a36Sopenharmony_ci			 * So we need to support them, but there is no need to
19162306a36Sopenharmony_ci			 * take them into consideration when trying to optimize
19262306a36Sopenharmony_ci			 * this code. So let's only check for duplicates when
19362306a36Sopenharmony_ci			 * the addend is zero: this allows us to record the PLT
19462306a36Sopenharmony_ci			 * entry address in the symbol table itself, rather than
19562306a36Sopenharmony_ci			 * having to search the list for duplicates each time we
19662306a36Sopenharmony_ci			 * emit one.
19762306a36Sopenharmony_ci			 */
19862306a36Sopenharmony_ci			if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
19962306a36Sopenharmony_ci				ret++;
20062306a36Sopenharmony_ci			break;
20162306a36Sopenharmony_ci		case R_AARCH64_ADR_PREL_PG_HI21_NC:
20262306a36Sopenharmony_ci		case R_AARCH64_ADR_PREL_PG_HI21:
20362306a36Sopenharmony_ci			if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) ||
20462306a36Sopenharmony_ci			    !cpus_have_const_cap(ARM64_WORKAROUND_843419))
20562306a36Sopenharmony_ci				break;
20662306a36Sopenharmony_ci
20762306a36Sopenharmony_ci			/*
20862306a36Sopenharmony_ci			 * Determine the minimal safe alignment for this ADRP
20962306a36Sopenharmony_ci			 * instruction: the section alignment at which it is
21062306a36Sopenharmony_ci			 * guaranteed not to appear at a vulnerable offset.
21162306a36Sopenharmony_ci			 *
21262306a36Sopenharmony_ci			 * This comes down to finding the least significant zero
21362306a36Sopenharmony_ci			 * bit in bits [11:3] of the section offset, and
21462306a36Sopenharmony_ci			 * increasing the section's alignment so that the
21562306a36Sopenharmony_ci			 * resulting address of this instruction is guaranteed
21662306a36Sopenharmony_ci			 * to equal the offset in that particular bit (as well
21762306a36Sopenharmony_ci			 * as all less significant bits). This ensures that the
21862306a36Sopenharmony_ci			 * address modulo 4 KB != 0xfff8 or 0xfffc (which would
21962306a36Sopenharmony_ci			 * have all ones in bits [11:3])
22062306a36Sopenharmony_ci			 */
22162306a36Sopenharmony_ci			min_align = 2ULL << ffz(rela[i].r_offset | 0x7);
22262306a36Sopenharmony_ci
22362306a36Sopenharmony_ci			/*
22462306a36Sopenharmony_ci			 * Allocate veneer space for each ADRP that may appear
22562306a36Sopenharmony_ci			 * at a vulnerable offset nonetheless. At relocation
22662306a36Sopenharmony_ci			 * time, some of these will remain unused since some
22762306a36Sopenharmony_ci			 * ADRP instructions can be patched to ADR instructions
22862306a36Sopenharmony_ci			 * instead.
22962306a36Sopenharmony_ci			 */
23062306a36Sopenharmony_ci			if (min_align > SZ_4K)
23162306a36Sopenharmony_ci				ret++;
23262306a36Sopenharmony_ci			else
23362306a36Sopenharmony_ci				dstsec->sh_addralign = max(dstsec->sh_addralign,
23462306a36Sopenharmony_ci							   min_align);
23562306a36Sopenharmony_ci			break;
23662306a36Sopenharmony_ci		}
23762306a36Sopenharmony_ci	}
23862306a36Sopenharmony_ci
23962306a36Sopenharmony_ci	if (IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) &&
24062306a36Sopenharmony_ci	    cpus_have_const_cap(ARM64_WORKAROUND_843419))
24162306a36Sopenharmony_ci		/*
24262306a36Sopenharmony_ci		 * Add some slack so we can skip PLT slots that may trigger
24362306a36Sopenharmony_ci		 * the erratum due to the placement of the ADRP instruction.
24462306a36Sopenharmony_ci		 */
24562306a36Sopenharmony_ci		ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry)));
24662306a36Sopenharmony_ci
24762306a36Sopenharmony_ci	return ret;
24862306a36Sopenharmony_ci}
24962306a36Sopenharmony_ci
25062306a36Sopenharmony_cistatic bool branch_rela_needs_plt(Elf64_Sym *syms, Elf64_Rela *rela,
25162306a36Sopenharmony_ci				  Elf64_Word dstidx)
25262306a36Sopenharmony_ci{
25362306a36Sopenharmony_ci
25462306a36Sopenharmony_ci	Elf64_Sym *s = syms + ELF64_R_SYM(rela->r_info);
25562306a36Sopenharmony_ci
25662306a36Sopenharmony_ci	if (s->st_shndx == dstidx)
25762306a36Sopenharmony_ci		return false;
25862306a36Sopenharmony_ci
25962306a36Sopenharmony_ci	return ELF64_R_TYPE(rela->r_info) == R_AARCH64_JUMP26 ||
26062306a36Sopenharmony_ci	       ELF64_R_TYPE(rela->r_info) == R_AARCH64_CALL26;
26162306a36Sopenharmony_ci}
26262306a36Sopenharmony_ci
26362306a36Sopenharmony_ci/* Group branch PLT relas at the front end of the array. */
26462306a36Sopenharmony_cistatic int partition_branch_plt_relas(Elf64_Sym *syms, Elf64_Rela *rela,
26562306a36Sopenharmony_ci				      int numrels, Elf64_Word dstidx)
26662306a36Sopenharmony_ci{
26762306a36Sopenharmony_ci	int i = 0, j = numrels - 1;
26862306a36Sopenharmony_ci
26962306a36Sopenharmony_ci	while (i < j) {
27062306a36Sopenharmony_ci		if (branch_rela_needs_plt(syms, &rela[i], dstidx))
27162306a36Sopenharmony_ci			i++;
27262306a36Sopenharmony_ci		else if (branch_rela_needs_plt(syms, &rela[j], dstidx))
27362306a36Sopenharmony_ci			swap(rela[i], rela[j]);
27462306a36Sopenharmony_ci		else
27562306a36Sopenharmony_ci			j--;
27662306a36Sopenharmony_ci	}
27762306a36Sopenharmony_ci
27862306a36Sopenharmony_ci	return i;
27962306a36Sopenharmony_ci}
28062306a36Sopenharmony_ci
28162306a36Sopenharmony_ciint module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
28262306a36Sopenharmony_ci			      char *secstrings, struct module *mod)
28362306a36Sopenharmony_ci{
28462306a36Sopenharmony_ci	unsigned long core_plts = 0;
28562306a36Sopenharmony_ci	unsigned long init_plts = 0;
28662306a36Sopenharmony_ci	Elf64_Sym *syms = NULL;
28762306a36Sopenharmony_ci	Elf_Shdr *pltsec, *tramp = NULL;
28862306a36Sopenharmony_ci	int i;
28962306a36Sopenharmony_ci
29062306a36Sopenharmony_ci	/*
29162306a36Sopenharmony_ci	 * Find the empty .plt section so we can expand it to store the PLT
29262306a36Sopenharmony_ci	 * entries. Record the symtab address as well.
29362306a36Sopenharmony_ci	 */
29462306a36Sopenharmony_ci	for (i = 0; i < ehdr->e_shnum; i++) {
29562306a36Sopenharmony_ci		if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
29662306a36Sopenharmony_ci			mod->arch.core.plt_shndx = i;
29762306a36Sopenharmony_ci		else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
29862306a36Sopenharmony_ci			mod->arch.init.plt_shndx = i;
29962306a36Sopenharmony_ci		else if (!strcmp(secstrings + sechdrs[i].sh_name,
30062306a36Sopenharmony_ci				 ".text.ftrace_trampoline"))
30162306a36Sopenharmony_ci			tramp = sechdrs + i;
30262306a36Sopenharmony_ci		else if (sechdrs[i].sh_type == SHT_SYMTAB)
30362306a36Sopenharmony_ci			syms = (Elf64_Sym *)sechdrs[i].sh_addr;
30462306a36Sopenharmony_ci	}
30562306a36Sopenharmony_ci
30662306a36Sopenharmony_ci	if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) {
30762306a36Sopenharmony_ci		pr_err("%s: module PLT section(s) missing\n", mod->name);
30862306a36Sopenharmony_ci		return -ENOEXEC;
30962306a36Sopenharmony_ci	}
31062306a36Sopenharmony_ci	if (!syms) {
31162306a36Sopenharmony_ci		pr_err("%s: module symtab section missing\n", mod->name);
31262306a36Sopenharmony_ci		return -ENOEXEC;
31362306a36Sopenharmony_ci	}
31462306a36Sopenharmony_ci
31562306a36Sopenharmony_ci	for (i = 0; i < ehdr->e_shnum; i++) {
31662306a36Sopenharmony_ci		Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
31762306a36Sopenharmony_ci		int nents, numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
31862306a36Sopenharmony_ci		Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
31962306a36Sopenharmony_ci
32062306a36Sopenharmony_ci		if (sechdrs[i].sh_type != SHT_RELA)
32162306a36Sopenharmony_ci			continue;
32262306a36Sopenharmony_ci
32362306a36Sopenharmony_ci		/* ignore relocations that operate on non-exec sections */
32462306a36Sopenharmony_ci		if (!(dstsec->sh_flags & SHF_EXECINSTR))
32562306a36Sopenharmony_ci			continue;
32662306a36Sopenharmony_ci
32762306a36Sopenharmony_ci		/*
32862306a36Sopenharmony_ci		 * sort branch relocations requiring a PLT by type, symbol index
32962306a36Sopenharmony_ci		 * and addend
33062306a36Sopenharmony_ci		 */
33162306a36Sopenharmony_ci		nents = partition_branch_plt_relas(syms, rels, numrels,
33262306a36Sopenharmony_ci						   sechdrs[i].sh_info);
33362306a36Sopenharmony_ci		if (nents)
33462306a36Sopenharmony_ci			sort(rels, nents, sizeof(Elf64_Rela), cmp_rela, NULL);
33562306a36Sopenharmony_ci
33662306a36Sopenharmony_ci		if (!module_init_layout_section(secstrings + dstsec->sh_name))
33762306a36Sopenharmony_ci			core_plts += count_plts(syms, rels, numrels,
33862306a36Sopenharmony_ci						sechdrs[i].sh_info, dstsec);
33962306a36Sopenharmony_ci		else
34062306a36Sopenharmony_ci			init_plts += count_plts(syms, rels, numrels,
34162306a36Sopenharmony_ci						sechdrs[i].sh_info, dstsec);
34262306a36Sopenharmony_ci	}
34362306a36Sopenharmony_ci
34462306a36Sopenharmony_ci	pltsec = sechdrs + mod->arch.core.plt_shndx;
34562306a36Sopenharmony_ci	pltsec->sh_type = SHT_NOBITS;
34662306a36Sopenharmony_ci	pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
34762306a36Sopenharmony_ci	pltsec->sh_addralign = L1_CACHE_BYTES;
34862306a36Sopenharmony_ci	pltsec->sh_size = (core_plts  + 1) * sizeof(struct plt_entry);
34962306a36Sopenharmony_ci	mod->arch.core.plt_num_entries = 0;
35062306a36Sopenharmony_ci	mod->arch.core.plt_max_entries = core_plts;
35162306a36Sopenharmony_ci
35262306a36Sopenharmony_ci	pltsec = sechdrs + mod->arch.init.plt_shndx;
35362306a36Sopenharmony_ci	pltsec->sh_type = SHT_NOBITS;
35462306a36Sopenharmony_ci	pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
35562306a36Sopenharmony_ci	pltsec->sh_addralign = L1_CACHE_BYTES;
35662306a36Sopenharmony_ci	pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
35762306a36Sopenharmony_ci	mod->arch.init.plt_num_entries = 0;
35862306a36Sopenharmony_ci	mod->arch.init.plt_max_entries = init_plts;
35962306a36Sopenharmony_ci
36062306a36Sopenharmony_ci	if (tramp) {
36162306a36Sopenharmony_ci		tramp->sh_type = SHT_NOBITS;
36262306a36Sopenharmony_ci		tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
36362306a36Sopenharmony_ci		tramp->sh_addralign = __alignof__(struct plt_entry);
36462306a36Sopenharmony_ci		tramp->sh_size = NR_FTRACE_PLTS * sizeof(struct plt_entry);
36562306a36Sopenharmony_ci	}
36662306a36Sopenharmony_ci
36762306a36Sopenharmony_ci	return 0;
36862306a36Sopenharmony_ci}
369