1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2012 ARM Ltd.
4 */
5#ifndef __ASM_PGTABLE_H
6#define __ASM_PGTABLE_H
7
8#include <asm/bug.h>
9#include <asm/proc-fns.h>
10
11#include <asm/memory.h>
12#include <asm/mte.h>
13#include <asm/pgtable-hwdef.h>
14#include <asm/pgtable-prot.h>
15#include <asm/tlbflush.h>
16
17/*
18 * VMALLOC range.
19 *
20 * VMALLOC_START: beginning of the kernel vmalloc space
21 * VMALLOC_END: extends to the available space below vmemmap, PCI I/O space
22 *	and fixed mappings
23 */
24#define VMALLOC_START		(MODULES_END)
25#define VMALLOC_END		(VMEMMAP_START - SZ_256M)
26
27#define vmemmap			((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
28
29#ifndef __ASSEMBLY__
30
31#include <asm/cmpxchg.h>
32#include <asm/fixmap.h>
33#include <linux/mmdebug.h>
34#include <linux/mm_types.h>
35#include <linux/sched.h>
36#include <linux/page_table_check.h>
37
38#ifdef CONFIG_TRANSPARENT_HUGEPAGE
39#define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
40
41/* Set stride and tlb_level in flush_*_tlb_range */
42#define flush_pmd_tlb_range(vma, addr, end)	\
43	__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
44#define flush_pud_tlb_range(vma, addr, end)	\
45	__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
46#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
47
48static inline bool arch_thp_swp_supported(void)
49{
50	return !system_supports_mte();
51}
52#define arch_thp_swp_supported arch_thp_swp_supported
53
54/*
55 * Outside of a few very special situations (e.g. hibernation), we always
56 * use broadcast TLB invalidation instructions, therefore a spurious page
57 * fault on one CPU which has been handled concurrently by another CPU
58 * does not need to perform additional invalidation.
59 */
60#define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
61
62/*
63 * ZERO_PAGE is a global shared page that is always zero: used
64 * for zero-mapped memory areas etc..
65 */
66extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
67#define ZERO_PAGE(vaddr)	phys_to_page(__pa_symbol(empty_zero_page))
68
69#define pte_ERROR(e)	\
70	pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
71
72/*
73 * Macros to convert between a physical address and its placement in a
74 * page table entry, taking care of 52-bit addresses.
75 */
76#ifdef CONFIG_ARM64_PA_BITS_52
77static inline phys_addr_t __pte_to_phys(pte_t pte)
78{
79	return (pte_val(pte) & PTE_ADDR_LOW) |
80		((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
81}
82static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
83{
84	return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PTE_ADDR_MASK;
85}
86#else
87#define __pte_to_phys(pte)	(pte_val(pte) & PTE_ADDR_MASK)
88#define __phys_to_pte_val(phys)	(phys)
89#endif
90
91#define pte_pfn(pte)		(__pte_to_phys(pte) >> PAGE_SHIFT)
92#define pfn_pte(pfn,prot)	\
93	__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
94
95#define pte_none(pte)		(!pte_val(pte))
96#define pte_clear(mm,addr,ptep)	set_pte(ptep, __pte(0))
97#define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
98
99/*
100 * The following only work if pte_present(). Undefined behaviour otherwise.
101 */
102#define pte_present(pte)	(!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
103#define pte_young(pte)		(!!(pte_val(pte) & PTE_AF))
104#define pte_special(pte)	(!!(pte_val(pte) & PTE_SPECIAL))
105#define pte_write(pte)		(!!(pte_val(pte) & PTE_WRITE))
106#define pte_rdonly(pte)		(!!(pte_val(pte) & PTE_RDONLY))
107#define pte_user(pte)		(!!(pte_val(pte) & PTE_USER))
108#define pte_user_exec(pte)	(!(pte_val(pte) & PTE_UXN))
109#define pte_cont(pte)		(!!(pte_val(pte) & PTE_CONT))
110#define pte_devmap(pte)		(!!(pte_val(pte) & PTE_DEVMAP))
111#define pte_tagged(pte)		((pte_val(pte) & PTE_ATTRINDX_MASK) == \
112				 PTE_ATTRINDX(MT_NORMAL_TAGGED))
113
114#define pte_cont_addr_end(addr, end)						\
115({	unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK;	\
116	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
117})
118
119#define pmd_cont_addr_end(addr, end)						\
120({	unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK;	\
121	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
122})
123
124#define pte_hw_dirty(pte)	(pte_write(pte) && !pte_rdonly(pte))
125#define pte_sw_dirty(pte)	(!!(pte_val(pte) & PTE_DIRTY))
126#define pte_dirty(pte)		(pte_sw_dirty(pte) || pte_hw_dirty(pte))
127
128#define pte_valid(pte)		(!!(pte_val(pte) & PTE_VALID))
129/*
130 * Execute-only user mappings do not have the PTE_USER bit set. All valid
131 * kernel mappings have the PTE_UXN bit set.
132 */
133#define pte_valid_not_user(pte) \
134	((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
135/*
136 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
137 * so that we don't erroneously return false for pages that have been
138 * remapped as PROT_NONE but are yet to be flushed from the TLB.
139 * Note that we can't make any assumptions based on the state of the access
140 * flag, since ptep_clear_flush_young() elides a DSB when invalidating the
141 * TLB.
142 */
143#define pte_accessible(mm, pte)	\
144	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
145
146/*
147 * p??_access_permitted() is true for valid user mappings (PTE_USER
148 * bit set, subject to the write permission check). For execute-only
149 * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
150 * not set) must return false. PROT_NONE mappings do not have the
151 * PTE_VALID bit set.
152 */
153#define pte_access_permitted(pte, write) \
154	(((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
155#define pmd_access_permitted(pmd, write) \
156	(pte_access_permitted(pmd_pte(pmd), (write)))
157#define pud_access_permitted(pud, write) \
158	(pte_access_permitted(pud_pte(pud), (write)))
159
160static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
161{
162	pte_val(pte) &= ~pgprot_val(prot);
163	return pte;
164}
165
166static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
167{
168	pte_val(pte) |= pgprot_val(prot);
169	return pte;
170}
171
172static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
173{
174	pmd_val(pmd) &= ~pgprot_val(prot);
175	return pmd;
176}
177
178static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
179{
180	pmd_val(pmd) |= pgprot_val(prot);
181	return pmd;
182}
183
184static inline pte_t pte_mkwrite_novma(pte_t pte)
185{
186	pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
187	pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
188	return pte;
189}
190
191static inline pte_t pte_mkclean(pte_t pte)
192{
193	pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
194	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
195
196	return pte;
197}
198
199static inline pte_t pte_mkdirty(pte_t pte)
200{
201	pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
202
203	if (pte_write(pte))
204		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
205
206	return pte;
207}
208
209static inline pte_t pte_wrprotect(pte_t pte)
210{
211	/*
212	 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
213	 * clear), set the PTE_DIRTY bit.
214	 */
215	if (pte_hw_dirty(pte))
216		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
217
218	pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
219	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
220	return pte;
221}
222
223static inline pte_t pte_mkold(pte_t pte)
224{
225	return clear_pte_bit(pte, __pgprot(PTE_AF));
226}
227
228static inline pte_t pte_mkyoung(pte_t pte)
229{
230	return set_pte_bit(pte, __pgprot(PTE_AF));
231}
232
233static inline pte_t pte_mkspecial(pte_t pte)
234{
235	return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
236}
237
238static inline pte_t pte_mkcont(pte_t pte)
239{
240	pte = set_pte_bit(pte, __pgprot(PTE_CONT));
241	return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
242}
243
244static inline pte_t pte_mknoncont(pte_t pte)
245{
246	return clear_pte_bit(pte, __pgprot(PTE_CONT));
247}
248
249static inline pte_t pte_mkpresent(pte_t pte)
250{
251	return set_pte_bit(pte, __pgprot(PTE_VALID));
252}
253
254static inline pmd_t pmd_mkcont(pmd_t pmd)
255{
256	return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
257}
258
259static inline pte_t pte_mkdevmap(pte_t pte)
260{
261	return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
262}
263
264static inline void set_pte(pte_t *ptep, pte_t pte)
265{
266	WRITE_ONCE(*ptep, pte);
267
268	/*
269	 * Only if the new pte is valid and kernel, otherwise TLB maintenance
270	 * or update_mmu_cache() have the necessary barriers.
271	 */
272	if (pte_valid_not_user(pte)) {
273		dsb(ishst);
274		isb();
275	}
276}
277
278extern void __sync_icache_dcache(pte_t pteval);
279bool pgattr_change_is_safe(u64 old, u64 new);
280
281/*
282 * PTE bits configuration in the presence of hardware Dirty Bit Management
283 * (PTE_WRITE == PTE_DBM):
284 *
285 * Dirty  Writable | PTE_RDONLY  PTE_WRITE  PTE_DIRTY (sw)
286 *   0      0      |   1           0          0
287 *   0      1      |   1           1          0
288 *   1      0      |   1           0          1
289 *   1      1      |   0           1          x
290 *
291 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
292 * the page fault mechanism. Checking the dirty status of a pte becomes:
293 *
294 *   PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
295 */
296
297static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
298					   pte_t pte)
299{
300	pte_t old_pte;
301
302	if (!IS_ENABLED(CONFIG_DEBUG_VM))
303		return;
304
305	old_pte = READ_ONCE(*ptep);
306
307	if (!pte_valid(old_pte) || !pte_valid(pte))
308		return;
309	if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
310		return;
311
312	/*
313	 * Check for potential race with hardware updates of the pte
314	 * (ptep_set_access_flags safely changes valid ptes without going
315	 * through an invalid entry).
316	 */
317	VM_WARN_ONCE(!pte_young(pte),
318		     "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
319		     __func__, pte_val(old_pte), pte_val(pte));
320	VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
321		     "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
322		     __func__, pte_val(old_pte), pte_val(pte));
323	VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
324		     "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
325		     __func__, pte_val(old_pte), pte_val(pte));
326}
327
328static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
329				pte_t *ptep, pte_t pte)
330{
331	if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
332		__sync_icache_dcache(pte);
333
334	/*
335	 * If the PTE would provide user space access to the tags associated
336	 * with it then ensure that the MTE tags are synchronised.  Although
337	 * pte_access_permitted() returns false for exec only mappings, they
338	 * don't expose tags (instruction fetches don't check tags).
339	 */
340	if (system_supports_mte() && pte_access_permitted(pte, false) &&
341	    !pte_special(pte) && pte_tagged(pte))
342		mte_sync_tags(pte);
343
344	__check_safe_pte_update(mm, ptep, pte);
345
346	set_pte(ptep, pte);
347}
348
349static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
350			      pte_t *ptep, pte_t pte, unsigned int nr)
351{
352	page_table_check_ptes_set(mm, ptep, pte, nr);
353
354	for (;;) {
355		__set_pte_at(mm, addr, ptep, pte);
356		if (--nr == 0)
357			break;
358		ptep++;
359		addr += PAGE_SIZE;
360		pte_val(pte) += PAGE_SIZE;
361	}
362}
363#define set_ptes set_ptes
364
365/*
366 * Huge pte definitions.
367 */
368#define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
369
370/*
371 * Hugetlb definitions.
372 */
373#define HUGE_MAX_HSTATE		4
374#define HPAGE_SHIFT		PMD_SHIFT
375#define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
376#define HPAGE_MASK		(~(HPAGE_SIZE - 1))
377#define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
378
379static inline pte_t pgd_pte(pgd_t pgd)
380{
381	return __pte(pgd_val(pgd));
382}
383
384static inline pte_t p4d_pte(p4d_t p4d)
385{
386	return __pte(p4d_val(p4d));
387}
388
389static inline pte_t pud_pte(pud_t pud)
390{
391	return __pte(pud_val(pud));
392}
393
394static inline pud_t pte_pud(pte_t pte)
395{
396	return __pud(pte_val(pte));
397}
398
399static inline pmd_t pud_pmd(pud_t pud)
400{
401	return __pmd(pud_val(pud));
402}
403
404static inline pte_t pmd_pte(pmd_t pmd)
405{
406	return __pte(pmd_val(pmd));
407}
408
409static inline pmd_t pte_pmd(pte_t pte)
410{
411	return __pmd(pte_val(pte));
412}
413
414static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
415{
416	return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
417}
418
419static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
420{
421	return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
422}
423
424static inline pte_t pte_swp_mkexclusive(pte_t pte)
425{
426	return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
427}
428
429static inline int pte_swp_exclusive(pte_t pte)
430{
431	return pte_val(pte) & PTE_SWP_EXCLUSIVE;
432}
433
434static inline pte_t pte_swp_clear_exclusive(pte_t pte)
435{
436	return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
437}
438
439/*
440 * Select all bits except the pfn
441 */
442static inline pgprot_t pte_pgprot(pte_t pte)
443{
444	unsigned long pfn = pte_pfn(pte);
445
446	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
447}
448
449#ifdef CONFIG_NUMA_BALANCING
450/*
451 * See the comment in include/linux/pgtable.h
452 */
453static inline int pte_protnone(pte_t pte)
454{
455	return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE;
456}
457
458static inline int pmd_protnone(pmd_t pmd)
459{
460	return pte_protnone(pmd_pte(pmd));
461}
462#endif
463
464#define pmd_present_invalid(pmd)     (!!(pmd_val(pmd) & PMD_PRESENT_INVALID))
465
466static inline int pmd_present(pmd_t pmd)
467{
468	return pte_present(pmd_pte(pmd)) || pmd_present_invalid(pmd);
469}
470
471/*
472 * THP definitions.
473 */
474
475#ifdef CONFIG_TRANSPARENT_HUGEPAGE
476static inline int pmd_trans_huge(pmd_t pmd)
477{
478	return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
479}
480#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
481
482#define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
483#define pmd_young(pmd)		pte_young(pmd_pte(pmd))
484#define pmd_valid(pmd)		pte_valid(pmd_pte(pmd))
485#define pmd_user(pmd)		pte_user(pmd_pte(pmd))
486#define pmd_user_exec(pmd)	pte_user_exec(pmd_pte(pmd))
487#define pmd_cont(pmd)		pte_cont(pmd_pte(pmd))
488#define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
489#define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
490#define pmd_mkwrite_novma(pmd)	pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
491#define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
492#define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
493#define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
494
495static inline pmd_t pmd_mkinvalid(pmd_t pmd)
496{
497	pmd = set_pmd_bit(pmd, __pgprot(PMD_PRESENT_INVALID));
498	pmd = clear_pmd_bit(pmd, __pgprot(PMD_SECT_VALID));
499
500	return pmd;
501}
502
503#define pmd_thp_or_huge(pmd)	(pmd_huge(pmd) || pmd_trans_huge(pmd))
504
505#define pmd_write(pmd)		pte_write(pmd_pte(pmd))
506
507#define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
508
509#ifdef CONFIG_TRANSPARENT_HUGEPAGE
510#define pmd_devmap(pmd)		pte_devmap(pmd_pte(pmd))
511#endif
512static inline pmd_t pmd_mkdevmap(pmd_t pmd)
513{
514	return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
515}
516
517#define __pmd_to_phys(pmd)	__pte_to_phys(pmd_pte(pmd))
518#define __phys_to_pmd_val(phys)	__phys_to_pte_val(phys)
519#define pmd_pfn(pmd)		((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
520#define pfn_pmd(pfn,prot)	__pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
521#define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
522
523#define pud_young(pud)		pte_young(pud_pte(pud))
524#define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
525#define pud_write(pud)		pte_write(pud_pte(pud))
526
527#define pud_mkhuge(pud)		(__pud(pud_val(pud) & ~PUD_TABLE_BIT))
528
529#define __pud_to_phys(pud)	__pte_to_phys(pud_pte(pud))
530#define __phys_to_pud_val(phys)	__phys_to_pte_val(phys)
531#define pud_pfn(pud)		((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
532#define pfn_pud(pfn,prot)	__pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
533
534static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
535			      pmd_t *pmdp, pmd_t pmd)
536{
537	page_table_check_pmd_set(mm, pmdp, pmd);
538	return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd));
539}
540
541static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
542			      pud_t *pudp, pud_t pud)
543{
544	page_table_check_pud_set(mm, pudp, pud);
545	return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud));
546}
547
548#define __p4d_to_phys(p4d)	__pte_to_phys(p4d_pte(p4d))
549#define __phys_to_p4d_val(phys)	__phys_to_pte_val(phys)
550
551#define __pgd_to_phys(pgd)	__pte_to_phys(pgd_pte(pgd))
552#define __phys_to_pgd_val(phys)	__phys_to_pte_val(phys)
553
554#define __pgprot_modify(prot,mask,bits) \
555	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
556
557#define pgprot_nx(prot) \
558	__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
559
560/*
561 * Mark the prot value as uncacheable and unbufferable.
562 */
563#define pgprot_noncached(prot) \
564	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
565#define pgprot_writecombine(prot) \
566	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
567#define pgprot_device(prot) \
568	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
569#define pgprot_tagged(prot) \
570	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
571#define pgprot_mhp	pgprot_tagged
572/*
573 * DMA allocations for non-coherent devices use what the Arm architecture calls
574 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
575 * and merging of writes.  This is different from "Device-nGnR[nE]" memory which
576 * is intended for MMIO and thus forbids speculation, preserves access size,
577 * requires strict alignment and can also force write responses to come from the
578 * endpoint.
579 */
580#define pgprot_dmacoherent(prot) \
581	__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
582			PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
583
584#define __HAVE_PHYS_MEM_ACCESS_PROT
585struct file;
586extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
587				     unsigned long size, pgprot_t vma_prot);
588
589#define pmd_none(pmd)		(!pmd_val(pmd))
590
591#define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
592				 PMD_TYPE_TABLE)
593#define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
594				 PMD_TYPE_SECT)
595#define pmd_leaf(pmd)		(pmd_present(pmd) && !pmd_table(pmd))
596#define pmd_bad(pmd)		(!pmd_table(pmd))
597
598#define pmd_leaf_size(pmd)	(pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
599#define pte_leaf_size(pte)	(pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
600
601#if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
602static inline bool pud_sect(pud_t pud) { return false; }
603static inline bool pud_table(pud_t pud) { return true; }
604#else
605#define pud_sect(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
606				 PUD_TYPE_SECT)
607#define pud_table(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
608				 PUD_TYPE_TABLE)
609#endif
610
611extern pgd_t init_pg_dir[PTRS_PER_PGD];
612extern pgd_t init_pg_end[];
613extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
614extern pgd_t idmap_pg_dir[PTRS_PER_PGD];
615extern pgd_t tramp_pg_dir[PTRS_PER_PGD];
616extern pgd_t reserved_pg_dir[PTRS_PER_PGD];
617
618extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
619
620static inline bool in_swapper_pgdir(void *addr)
621{
622	return ((unsigned long)addr & PAGE_MASK) ==
623	        ((unsigned long)swapper_pg_dir & PAGE_MASK);
624}
625
626static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
627{
628#ifdef __PAGETABLE_PMD_FOLDED
629	if (in_swapper_pgdir(pmdp)) {
630		set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
631		return;
632	}
633#endif /* __PAGETABLE_PMD_FOLDED */
634
635	WRITE_ONCE(*pmdp, pmd);
636
637	if (pmd_valid(pmd)) {
638		dsb(ishst);
639		isb();
640	}
641}
642
643static inline void pmd_clear(pmd_t *pmdp)
644{
645	set_pmd(pmdp, __pmd(0));
646}
647
648static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
649{
650	return __pmd_to_phys(pmd);
651}
652
653static inline unsigned long pmd_page_vaddr(pmd_t pmd)
654{
655	return (unsigned long)__va(pmd_page_paddr(pmd));
656}
657
658/* Find an entry in the third-level page table. */
659#define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
660
661#define pte_set_fixmap(addr)		((pte_t *)set_fixmap_offset(FIX_PTE, addr))
662#define pte_set_fixmap_offset(pmd, addr)	pte_set_fixmap(pte_offset_phys(pmd, addr))
663#define pte_clear_fixmap()		clear_fixmap(FIX_PTE)
664
665#define pmd_page(pmd)			phys_to_page(__pmd_to_phys(pmd))
666
667/* use ONLY for statically allocated translation tables */
668#define pte_offset_kimg(dir,addr)	((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
669
670/*
671 * Conversion functions: convert a page and protection to a page entry,
672 * and a page entry and page directory to the page they refer to.
673 */
674#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page),prot)
675
676#if CONFIG_PGTABLE_LEVELS > 2
677
678#define pmd_ERROR(e)	\
679	pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
680
681#define pud_none(pud)		(!pud_val(pud))
682#define pud_bad(pud)		(!pud_table(pud))
683#define pud_present(pud)	pte_present(pud_pte(pud))
684#define pud_leaf(pud)		(pud_present(pud) && !pud_table(pud))
685#define pud_valid(pud)		pte_valid(pud_pte(pud))
686#define pud_user(pud)		pte_user(pud_pte(pud))
687#define pud_user_exec(pud)	pte_user_exec(pud_pte(pud))
688
689static inline void set_pud(pud_t *pudp, pud_t pud)
690{
691#ifdef __PAGETABLE_PUD_FOLDED
692	if (in_swapper_pgdir(pudp)) {
693		set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
694		return;
695	}
696#endif /* __PAGETABLE_PUD_FOLDED */
697
698	WRITE_ONCE(*pudp, pud);
699
700	if (pud_valid(pud)) {
701		dsb(ishst);
702		isb();
703	}
704}
705
706static inline void pud_clear(pud_t *pudp)
707{
708	set_pud(pudp, __pud(0));
709}
710
711static inline phys_addr_t pud_page_paddr(pud_t pud)
712{
713	return __pud_to_phys(pud);
714}
715
716static inline pmd_t *pud_pgtable(pud_t pud)
717{
718	return (pmd_t *)__va(pud_page_paddr(pud));
719}
720
721/* Find an entry in the second-level page table. */
722#define pmd_offset_phys(dir, addr)	(pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
723
724#define pmd_set_fixmap(addr)		((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
725#define pmd_set_fixmap_offset(pud, addr)	pmd_set_fixmap(pmd_offset_phys(pud, addr))
726#define pmd_clear_fixmap()		clear_fixmap(FIX_PMD)
727
728#define pud_page(pud)			phys_to_page(__pud_to_phys(pud))
729
730/* use ONLY for statically allocated translation tables */
731#define pmd_offset_kimg(dir,addr)	((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
732
733#else
734
735#define pud_page_paddr(pud)	({ BUILD_BUG(); 0; })
736#define pud_user_exec(pud)	pud_user(pud) /* Always 0 with folding */
737
738/* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
739#define pmd_set_fixmap(addr)		NULL
740#define pmd_set_fixmap_offset(pudp, addr)	((pmd_t *)pudp)
741#define pmd_clear_fixmap()
742
743#define pmd_offset_kimg(dir,addr)	((pmd_t *)dir)
744
745#endif	/* CONFIG_PGTABLE_LEVELS > 2 */
746
747#if CONFIG_PGTABLE_LEVELS > 3
748
749#define pud_ERROR(e)	\
750	pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
751
752#define p4d_none(p4d)		(!p4d_val(p4d))
753#define p4d_bad(p4d)		(!(p4d_val(p4d) & 2))
754#define p4d_present(p4d)	(p4d_val(p4d))
755
756static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
757{
758	if (in_swapper_pgdir(p4dp)) {
759		set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
760		return;
761	}
762
763	WRITE_ONCE(*p4dp, p4d);
764	dsb(ishst);
765	isb();
766}
767
768static inline void p4d_clear(p4d_t *p4dp)
769{
770	set_p4d(p4dp, __p4d(0));
771}
772
773static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
774{
775	return __p4d_to_phys(p4d);
776}
777
778static inline pud_t *p4d_pgtable(p4d_t p4d)
779{
780	return (pud_t *)__va(p4d_page_paddr(p4d));
781}
782
783/* Find an entry in the first-level page table. */
784#define pud_offset_phys(dir, addr)	(p4d_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t))
785
786#define pud_set_fixmap(addr)		((pud_t *)set_fixmap_offset(FIX_PUD, addr))
787#define pud_set_fixmap_offset(p4d, addr)	pud_set_fixmap(pud_offset_phys(p4d, addr))
788#define pud_clear_fixmap()		clear_fixmap(FIX_PUD)
789
790#define p4d_page(p4d)		pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
791
792/* use ONLY for statically allocated translation tables */
793#define pud_offset_kimg(dir,addr)	((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr))))
794
795#else
796
797#define p4d_page_paddr(p4d)	({ BUILD_BUG(); 0;})
798#define pgd_page_paddr(pgd)	({ BUILD_BUG(); 0;})
799
800/* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
801#define pud_set_fixmap(addr)		NULL
802#define pud_set_fixmap_offset(pgdp, addr)	((pud_t *)pgdp)
803#define pud_clear_fixmap()
804
805#define pud_offset_kimg(dir,addr)	((pud_t *)dir)
806
807#endif  /* CONFIG_PGTABLE_LEVELS > 3 */
808
809#define pgd_ERROR(e)	\
810	pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
811
812#define pgd_set_fixmap(addr)	((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
813#define pgd_clear_fixmap()	clear_fixmap(FIX_PGD)
814
815static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
816{
817	/*
818	 * Normal and Normal-Tagged are two different memory types and indices
819	 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
820	 */
821	const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
822			      PTE_PROT_NONE | PTE_VALID | PTE_WRITE | PTE_GP |
823			      PTE_ATTRINDX_MASK;
824	/* preserve the hardware dirty information */
825	if (pte_hw_dirty(pte))
826		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
827
828	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
829	/*
830	 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
831	 * dirtiness again.
832	 */
833	if (pte_sw_dirty(pte))
834		pte = pte_mkdirty(pte);
835	return pte;
836}
837
838static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
839{
840	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
841}
842
843#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
844extern int ptep_set_access_flags(struct vm_area_struct *vma,
845				 unsigned long address, pte_t *ptep,
846				 pte_t entry, int dirty);
847
848#ifdef CONFIG_TRANSPARENT_HUGEPAGE
849#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
850static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
851					unsigned long address, pmd_t *pmdp,
852					pmd_t entry, int dirty)
853{
854	return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
855}
856
857static inline int pud_devmap(pud_t pud)
858{
859	return 0;
860}
861
862static inline int pgd_devmap(pgd_t pgd)
863{
864	return 0;
865}
866#endif
867
868#ifdef CONFIG_PAGE_TABLE_CHECK
869static inline bool pte_user_accessible_page(pte_t pte)
870{
871	return pte_present(pte) && (pte_user(pte) || pte_user_exec(pte));
872}
873
874static inline bool pmd_user_accessible_page(pmd_t pmd)
875{
876	return pmd_leaf(pmd) && !pmd_present_invalid(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
877}
878
879static inline bool pud_user_accessible_page(pud_t pud)
880{
881	return pud_leaf(pud) && (pud_user(pud) || pud_user_exec(pud));
882}
883#endif
884
885/*
886 * Atomic pte/pmd modifications.
887 */
888#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
889static inline int __ptep_test_and_clear_young(pte_t *ptep)
890{
891	pte_t old_pte, pte;
892
893	pte = READ_ONCE(*ptep);
894	do {
895		old_pte = pte;
896		pte = pte_mkold(pte);
897		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
898					       pte_val(old_pte), pte_val(pte));
899	} while (pte_val(pte) != pte_val(old_pte));
900
901	return pte_young(pte);
902}
903
904static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
905					    unsigned long address,
906					    pte_t *ptep)
907{
908	return __ptep_test_and_clear_young(ptep);
909}
910
911#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
912static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
913					 unsigned long address, pte_t *ptep)
914{
915	int young = ptep_test_and_clear_young(vma, address, ptep);
916
917	if (young) {
918		/*
919		 * We can elide the trailing DSB here since the worst that can
920		 * happen is that a CPU continues to use the young entry in its
921		 * TLB and we mistakenly reclaim the associated page. The
922		 * window for such an event is bounded by the next
923		 * context-switch, which provides a DSB to complete the TLB
924		 * invalidation.
925		 */
926		flush_tlb_page_nosync(vma, address);
927	}
928
929	return young;
930}
931
932#ifdef CONFIG_TRANSPARENT_HUGEPAGE
933#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
934static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
935					    unsigned long address,
936					    pmd_t *pmdp)
937{
938	return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
939}
940#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
941
942#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
943static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
944				       unsigned long address, pte_t *ptep)
945{
946	pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
947
948	page_table_check_pte_clear(mm, pte);
949
950	return pte;
951}
952
953#ifdef CONFIG_TRANSPARENT_HUGEPAGE
954#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
955static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
956					    unsigned long address, pmd_t *pmdp)
957{
958	pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0));
959
960	page_table_check_pmd_clear(mm, pmd);
961
962	return pmd;
963}
964#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
965
966/*
967 * ptep_set_wrprotect - mark read-only while trasferring potential hardware
968 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
969 */
970#define __HAVE_ARCH_PTEP_SET_WRPROTECT
971static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
972{
973	pte_t old_pte, pte;
974
975	pte = READ_ONCE(*ptep);
976	do {
977		old_pte = pte;
978		pte = pte_wrprotect(pte);
979		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
980					       pte_val(old_pte), pte_val(pte));
981	} while (pte_val(pte) != pte_val(old_pte));
982}
983
984#ifdef CONFIG_TRANSPARENT_HUGEPAGE
985#define __HAVE_ARCH_PMDP_SET_WRPROTECT
986static inline void pmdp_set_wrprotect(struct mm_struct *mm,
987				      unsigned long address, pmd_t *pmdp)
988{
989	ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
990}
991
992#define pmdp_establish pmdp_establish
993static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
994		unsigned long address, pmd_t *pmdp, pmd_t pmd)
995{
996	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
997	return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
998}
999#endif
1000
1001/*
1002 * Encode and decode a swap entry:
1003 *	bits 0-1:	present (must be zero)
1004 *	bits 2:		remember PG_anon_exclusive
1005 *	bits 3-7:	swap type
1006 *	bits 8-57:	swap offset
1007 *	bit  58:	PTE_PROT_NONE (must be zero)
1008 */
1009#define __SWP_TYPE_SHIFT	3
1010#define __SWP_TYPE_BITS		5
1011#define __SWP_OFFSET_BITS	50
1012#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
1013#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
1014#define __SWP_OFFSET_MASK	((1UL << __SWP_OFFSET_BITS) - 1)
1015
1016#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1017#define __swp_offset(x)		(((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1018#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1019
1020#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1021#define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
1022
1023#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1024#define __pmd_to_swp_entry(pmd)		((swp_entry_t) { pmd_val(pmd) })
1025#define __swp_entry_to_pmd(swp)		__pmd((swp).val)
1026#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1027
1028/*
1029 * Ensure that there are not more swap files than can be encoded in the kernel
1030 * PTEs.
1031 */
1032#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1033
1034#ifdef CONFIG_ARM64_MTE
1035
1036#define __HAVE_ARCH_PREPARE_TO_SWAP
1037static inline int arch_prepare_to_swap(struct page *page)
1038{
1039	if (system_supports_mte())
1040		return mte_save_tags(page);
1041	return 0;
1042}
1043
1044#define __HAVE_ARCH_SWAP_INVALIDATE
1045static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1046{
1047	if (system_supports_mte())
1048		mte_invalidate_tags(type, offset);
1049}
1050
1051static inline void arch_swap_invalidate_area(int type)
1052{
1053	if (system_supports_mte())
1054		mte_invalidate_tags_area(type);
1055}
1056
1057#define __HAVE_ARCH_SWAP_RESTORE
1058static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1059{
1060	if (system_supports_mte())
1061		mte_restore_tags(entry, &folio->page);
1062}
1063
1064#endif /* CONFIG_ARM64_MTE */
1065
1066/*
1067 * On AArch64, the cache coherency is handled via the set_pte_at() function.
1068 */
1069static inline void update_mmu_cache_range(struct vm_fault *vmf,
1070		struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1071		unsigned int nr)
1072{
1073	/*
1074	 * We don't do anything here, so there's a very small chance of
1075	 * us retaking a user fault which we just fixed up. The alternative
1076	 * is doing a dsb(ishst), but that penalises the fastpath.
1077	 */
1078}
1079
1080#define update_mmu_cache(vma, addr, ptep) \
1081	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1082#define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1083
1084#ifdef CONFIG_ARM64_PA_BITS_52
1085#define phys_to_ttbr(addr)	(((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1086#else
1087#define phys_to_ttbr(addr)	(addr)
1088#endif
1089
1090/*
1091 * On arm64 without hardware Access Flag, copying from user will fail because
1092 * the pte is old and cannot be marked young. So we always end up with zeroed
1093 * page after fork() + CoW for pfn mappings. We don't always have a
1094 * hardware-managed access flag on arm64.
1095 */
1096#define arch_has_hw_pte_young		cpu_has_hw_af
1097
1098/*
1099 * Experimentally, it's cheap to set the access flag in hardware and we
1100 * benefit from prefaulting mappings as 'old' to start with.
1101 */
1102#define arch_wants_old_prefaulted_pte	cpu_has_hw_af
1103
1104static inline bool pud_sect_supported(void)
1105{
1106	return PAGE_SIZE == SZ_4K;
1107}
1108
1109
1110#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1111#define ptep_modify_prot_start ptep_modify_prot_start
1112extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1113				    unsigned long addr, pte_t *ptep);
1114
1115#define ptep_modify_prot_commit ptep_modify_prot_commit
1116extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1117				    unsigned long addr, pte_t *ptep,
1118				    pte_t old_pte, pte_t new_pte);
1119#endif /* !__ASSEMBLY__ */
1120
1121#endif /* __ASM_PGTABLE_H */
1122