1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Based on arch/arm/include/asm/memory.h
4 *
5 * Copyright (C) 2000-2002 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * Note: this file should not be included by non-asm/.h files
9 */
10#ifndef __ASM_MEMORY_H
11#define __ASM_MEMORY_H
12
13#include <linux/const.h>
14#include <linux/sizes.h>
15#include <asm/page-def.h>
16
17/*
18 * Size of the PCI I/O space. This must remain a power of two so that
19 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses.
20 */
21#define PCI_IO_SIZE		SZ_16M
22
23/*
24 * VMEMMAP_SIZE - allows the whole linear region to be covered by
25 *                a struct page array
26 *
27 * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE
28 * needs to cover the memory region from the beginning of the 52-bit
29 * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to
30 * keep a constant PAGE_OFFSET and "fallback" to using the higher end
31 * of the VMEMMAP where 52-bit support is not available in hardware.
32 */
33#define VMEMMAP_SHIFT	(PAGE_SHIFT - STRUCT_PAGE_MAX_SHIFT)
34#define VMEMMAP_SIZE	((_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) >> VMEMMAP_SHIFT)
35
36/*
37 * PAGE_OFFSET - the virtual address of the start of the linear map, at the
38 *               start of the TTBR1 address space.
39 * PAGE_END - the end of the linear map, where all other kernel mappings begin.
40 * KIMAGE_VADDR - the virtual address of the start of the kernel image.
41 * VA_BITS - the maximum number of bits for virtual addresses.
42 */
43#define VA_BITS			(CONFIG_ARM64_VA_BITS)
44#define _PAGE_OFFSET(va)	(-(UL(1) << (va)))
45#define PAGE_OFFSET		(_PAGE_OFFSET(VA_BITS))
46#define KIMAGE_VADDR		(MODULES_END)
47#define MODULES_END		(MODULES_VADDR + MODULES_VSIZE)
48#define MODULES_VADDR		(_PAGE_END(VA_BITS_MIN))
49#define MODULES_VSIZE		(SZ_2G)
50#define VMEMMAP_START		(-(UL(1) << (VA_BITS - VMEMMAP_SHIFT)))
51#define VMEMMAP_END		(VMEMMAP_START + VMEMMAP_SIZE)
52#define PCI_IO_END		(VMEMMAP_START - SZ_8M)
53#define PCI_IO_START		(PCI_IO_END - PCI_IO_SIZE)
54#define FIXADDR_TOP		(VMEMMAP_START - SZ_32M)
55
56#if VA_BITS > 48
57#define VA_BITS_MIN		(48)
58#else
59#define VA_BITS_MIN		(VA_BITS)
60#endif
61
62#define _PAGE_END(va)		(-(UL(1) << ((va) - 1)))
63
64#define KERNEL_START		_text
65#define KERNEL_END		_end
66
67/*
68 * Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual
69 * address space for the shadow region respectively. They can bloat the stack
70 * significantly, so double the (minimum) stack size when they are in use.
71 */
72#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
73#define KASAN_SHADOW_OFFSET	_AC(CONFIG_KASAN_SHADOW_OFFSET, UL)
74#define KASAN_SHADOW_END	((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) \
75					+ KASAN_SHADOW_OFFSET)
76#define PAGE_END		(KASAN_SHADOW_END - (1UL << (vabits_actual - KASAN_SHADOW_SCALE_SHIFT)))
77#define KASAN_THREAD_SHIFT	1
78#else
79#define KASAN_THREAD_SHIFT	0
80#define PAGE_END		(_PAGE_END(VA_BITS_MIN))
81#endif /* CONFIG_KASAN */
82
83#define MIN_THREAD_SHIFT	(14 + KASAN_THREAD_SHIFT)
84
85/*
86 * VMAP'd stacks are allocated at page granularity, so we must ensure that such
87 * stacks are a multiple of page size.
88 */
89#if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT)
90#define THREAD_SHIFT		PAGE_SHIFT
91#else
92#define THREAD_SHIFT		MIN_THREAD_SHIFT
93#endif
94
95#if THREAD_SHIFT >= PAGE_SHIFT
96#define THREAD_SIZE_ORDER	(THREAD_SHIFT - PAGE_SHIFT)
97#endif
98
99#define THREAD_SIZE		(UL(1) << THREAD_SHIFT)
100
101/*
102 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by
103 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry
104 * assembly.
105 */
106#ifdef CONFIG_VMAP_STACK
107#define THREAD_ALIGN		(2 * THREAD_SIZE)
108#else
109#define THREAD_ALIGN		THREAD_SIZE
110#endif
111
112#define IRQ_STACK_SIZE		THREAD_SIZE
113
114#define OVERFLOW_STACK_SIZE	SZ_4K
115
116/*
117 * With the minimum frame size of [x29, x30], exactly half the combined
118 * sizes of the hyp and overflow stacks is the maximum size needed to
119 * save the unwinded stacktrace; plus an additional entry to delimit the
120 * end.
121 */
122#define NVHE_STACKTRACE_SIZE	((OVERFLOW_STACK_SIZE + PAGE_SIZE) / 2 + sizeof(long))
123
124/*
125 * Alignment of kernel segments (e.g. .text, .data).
126 *
127 *  4 KB granule:  16 level 3 entries, with contiguous bit
128 * 16 KB granule:   4 level 3 entries, without contiguous bit
129 * 64 KB granule:   1 level 3 entry
130 */
131#define SEGMENT_ALIGN		SZ_64K
132
133/*
134 * Memory types available.
135 *
136 * IMPORTANT: MT_NORMAL must be index 0 since vm_get_page_prot() may 'or' in
137 *	      the MT_NORMAL_TAGGED memory type for PROT_MTE mappings. Note
138 *	      that protection_map[] only contains MT_NORMAL attributes.
139 */
140#define MT_NORMAL		0
141#define MT_NORMAL_TAGGED	1
142#define MT_NORMAL_NC		2
143#define MT_DEVICE_nGnRnE	3
144#define MT_DEVICE_nGnRE		4
145
146/*
147 * Memory types for Stage-2 translation
148 */
149#define MT_S2_NORMAL		0xf
150#define MT_S2_DEVICE_nGnRE	0x1
151
152/*
153 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001
154 * Stage-2 enforces Normal-WB and Device-nGnRE
155 */
156#define MT_S2_FWB_NORMAL	6
157#define MT_S2_FWB_DEVICE_nGnRE	1
158
159#ifdef CONFIG_ARM64_4K_PAGES
160#define IOREMAP_MAX_ORDER	(PUD_SHIFT)
161#else
162#define IOREMAP_MAX_ORDER	(PMD_SHIFT)
163#endif
164
165/*
166 *  Open-coded (swapper_pg_dir - reserved_pg_dir) as this cannot be calculated
167 *  until link time.
168 */
169#define RESERVED_SWAPPER_OFFSET	(PAGE_SIZE)
170
171/*
172 *  Open-coded (swapper_pg_dir - tramp_pg_dir) as this cannot be calculated
173 *  until link time.
174 */
175#define TRAMP_SWAPPER_OFFSET	(2 * PAGE_SIZE)
176
177#ifndef __ASSEMBLY__
178
179#include <linux/bitops.h>
180#include <linux/compiler.h>
181#include <linux/mmdebug.h>
182#include <linux/types.h>
183#include <asm/boot.h>
184#include <asm/bug.h>
185
186#if VA_BITS > 48
187extern u64			vabits_actual;
188#else
189#define vabits_actual		((u64)VA_BITS)
190#endif
191
192extern s64			memstart_addr;
193/* PHYS_OFFSET - the physical address of the start of memory. */
194#define PHYS_OFFSET		({ VM_BUG_ON(memstart_addr & 1); memstart_addr; })
195
196/* the virtual base of the kernel image */
197extern u64			kimage_vaddr;
198
199/* the offset between the kernel virtual and physical mappings */
200extern u64			kimage_voffset;
201
202static inline unsigned long kaslr_offset(void)
203{
204	return kimage_vaddr - KIMAGE_VADDR;
205}
206
207#ifdef CONFIG_RANDOMIZE_BASE
208void kaslr_init(void);
209static inline bool kaslr_enabled(void)
210{
211	extern bool __kaslr_is_enabled;
212	return __kaslr_is_enabled;
213}
214#else
215static inline void kaslr_init(void) { }
216static inline bool kaslr_enabled(void) { return false; }
217#endif
218
219/*
220 * Allow all memory at the discovery stage. We will clip it later.
221 */
222#define MIN_MEMBLOCK_ADDR	0
223#define MAX_MEMBLOCK_ADDR	U64_MAX
224
225/*
226 * PFNs are used to describe any physical page; this means
227 * PFN 0 == physical address 0.
228 *
229 * This is the PFN of the first RAM page in the kernel
230 * direct-mapped view.  We assume this is the first page
231 * of RAM in the mem_map as well.
232 */
233#define PHYS_PFN_OFFSET	(PHYS_OFFSET >> PAGE_SHIFT)
234
235/*
236 * When dealing with data aborts, watchpoints, or instruction traps we may end
237 * up with a tagged userland pointer. Clear the tag to get a sane pointer to
238 * pass on to access_ok(), for instance.
239 */
240#define __untagged_addr(addr)	\
241	((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55))
242
243#define untagged_addr(addr)	({					\
244	u64 __addr = (__force u64)(addr);					\
245	__addr &= __untagged_addr(__addr);				\
246	(__force __typeof__(addr))__addr;				\
247})
248
249#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
250#define __tag_shifted(tag)	((u64)(tag) << 56)
251#define __tag_reset(addr)	__untagged_addr(addr)
252#define __tag_get(addr)		(__u8)((u64)(addr) >> 56)
253#else
254#define __tag_shifted(tag)	0UL
255#define __tag_reset(addr)	(addr)
256#define __tag_get(addr)		0
257#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
258
259static inline const void *__tag_set(const void *addr, u8 tag)
260{
261	u64 __addr = (u64)addr & ~__tag_shifted(0xff);
262	return (const void *)(__addr | __tag_shifted(tag));
263}
264
265#ifdef CONFIG_KASAN_HW_TAGS
266#define arch_enable_tag_checks_sync()		mte_enable_kernel_sync()
267#define arch_enable_tag_checks_async()		mte_enable_kernel_async()
268#define arch_enable_tag_checks_asymm()		mte_enable_kernel_asymm()
269#define arch_suppress_tag_checks_start()	mte_enable_tco()
270#define arch_suppress_tag_checks_stop()		mte_disable_tco()
271#define arch_force_async_tag_fault()		mte_check_tfsr_exit()
272#define arch_get_random_tag()			mte_get_random_tag()
273#define arch_get_mem_tag(addr)			mte_get_mem_tag(addr)
274#define arch_set_mem_tag_range(addr, size, tag, init)	\
275			mte_set_mem_tag_range((addr), (size), (tag), (init))
276#endif /* CONFIG_KASAN_HW_TAGS */
277
278/*
279 * Physical vs virtual RAM address space conversion.  These are
280 * private definitions which should NOT be used outside memory.h
281 * files.  Use virt_to_phys/phys_to_virt/__pa/__va instead.
282 */
283
284
285/*
286 * Check whether an arbitrary address is within the linear map, which
287 * lives in the [PAGE_OFFSET, PAGE_END) interval at the bottom of the
288 * kernel's TTBR1 address range.
289 */
290#define __is_lm_address(addr)	(((u64)(addr) - PAGE_OFFSET) < (PAGE_END - PAGE_OFFSET))
291
292#define __lm_to_phys(addr)	(((addr) - PAGE_OFFSET) + PHYS_OFFSET)
293#define __kimg_to_phys(addr)	((addr) - kimage_voffset)
294
295#define __virt_to_phys_nodebug(x) ({					\
296	phys_addr_t __x = (phys_addr_t)(__tag_reset(x));		\
297	__is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x);	\
298})
299
300#define __pa_symbol_nodebug(x)	__kimg_to_phys((phys_addr_t)(x))
301
302#ifdef CONFIG_DEBUG_VIRTUAL
303extern phys_addr_t __virt_to_phys(unsigned long x);
304extern phys_addr_t __phys_addr_symbol(unsigned long x);
305#else
306#define __virt_to_phys(x)	__virt_to_phys_nodebug(x)
307#define __phys_addr_symbol(x)	__pa_symbol_nodebug(x)
308#endif /* CONFIG_DEBUG_VIRTUAL */
309
310#define __phys_to_virt(x)	((unsigned long)((x) - PHYS_OFFSET) | PAGE_OFFSET)
311#define __phys_to_kimg(x)	((unsigned long)((x) + kimage_voffset))
312
313/*
314 * Convert a page to/from a physical address
315 */
316#define page_to_phys(page)	(__pfn_to_phys(page_to_pfn(page)))
317#define phys_to_page(phys)	(pfn_to_page(__phys_to_pfn(phys)))
318
319/*
320 * Note: Drivers should NOT use these.  They are the wrong
321 * translation for translating DMA addresses.  Use the driver
322 * DMA support - see dma-mapping.h.
323 */
324#define virt_to_phys virt_to_phys
325static inline phys_addr_t virt_to_phys(const volatile void *x)
326{
327	return __virt_to_phys((unsigned long)(x));
328}
329
330#define phys_to_virt phys_to_virt
331static inline void *phys_to_virt(phys_addr_t x)
332{
333	return (void *)(__phys_to_virt(x));
334}
335
336/* Needed already here for resolving __phys_to_pfn() in virt_to_pfn() */
337#include <asm-generic/memory_model.h>
338
339static inline unsigned long virt_to_pfn(const void *kaddr)
340{
341	return __phys_to_pfn(virt_to_phys(kaddr));
342}
343
344/*
345 * Drivers should NOT use these either.
346 */
347#define __pa(x)			__virt_to_phys((unsigned long)(x))
348#define __pa_symbol(x)		__phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0))
349#define __pa_nodebug(x)		__virt_to_phys_nodebug((unsigned long)(x))
350#define __va(x)			((void *)__phys_to_virt((phys_addr_t)(x)))
351#define pfn_to_kaddr(pfn)	__va((pfn) << PAGE_SHIFT)
352#define sym_to_pfn(x)		__phys_to_pfn(__pa_symbol(x))
353
354/*
355 *  virt_to_page(x)	convert a _valid_ virtual address to struct page *
356 *  virt_addr_valid(x)	indicates whether a virtual address is valid
357 */
358#define ARCH_PFN_OFFSET		((unsigned long)PHYS_PFN_OFFSET)
359
360#if defined(CONFIG_DEBUG_VIRTUAL)
361#define page_to_virt(x)	({						\
362	__typeof__(x) __page = x;					\
363	void *__addr = __va(page_to_phys(__page));			\
364	(void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\
365})
366#define virt_to_page(x)		pfn_to_page(virt_to_pfn(x))
367#else
368#define page_to_virt(x)	({						\
369	__typeof__(x) __page = x;					\
370	u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\
371	u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE);			\
372	(void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\
373})
374
375#define virt_to_page(x)	({						\
376	u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE;	\
377	u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page));	\
378	(struct page *)__addr;						\
379})
380#endif /* CONFIG_DEBUG_VIRTUAL */
381
382#define virt_addr_valid(addr)	({					\
383	__typeof__(addr) __addr = __tag_reset(addr);			\
384	__is_lm_address(__addr) && pfn_is_map_memory(virt_to_pfn(__addr));	\
385})
386
387void dump_mem_limit(void);
388#endif /* !ASSEMBLY */
389
390/*
391 * Given that the GIC architecture permits ITS implementations that can only be
392 * configured with a LPI table address once, GICv3 systems with many CPUs may
393 * end up reserving a lot of different regions after a kexec for their LPI
394 * tables (one per CPU), as we are forced to reuse the same memory after kexec
395 * (and thus reserve it persistently with EFI beforehand)
396 */
397#if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS)
398# define INIT_MEMBLOCK_RESERVED_REGIONS	(INIT_MEMBLOCK_REGIONS + NR_CPUS + 1)
399#endif
400
401/*
402 * memory regions which marked with flag MEMBLOCK_NOMAP(for example, the memory
403 * of the EFI_UNUSABLE_MEMORY type) may divide a continuous memory block into
404 * multiple parts. As a result, the number of memory regions is large.
405 */
406#ifdef CONFIG_EFI
407#define INIT_MEMBLOCK_MEMORY_REGIONS	(INIT_MEMBLOCK_REGIONS * 8)
408#endif
409
410#include <asm-generic/memory_model.h>
411
412#endif /* __ASM_MEMORY_H */
413