1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7#ifndef __ARM64_KVM_MMU_H__
8#define __ARM64_KVM_MMU_H__
9
10#include <asm/page.h>
11#include <asm/memory.h>
12#include <asm/mmu.h>
13#include <asm/cpufeature.h>
14
15/*
16 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
17 * "negative" addresses. This makes it impossible to directly share
18 * mappings with the kernel.
19 *
20 * Instead, give the HYP mode its own VA region at a fixed offset from
21 * the kernel by just masking the top bits (which are all ones for a
22 * kernel address). We need to find out how many bits to mask.
23 *
24 * We want to build a set of page tables that cover both parts of the
25 * idmap (the trampoline page used to initialize EL2), and our normal
26 * runtime VA space, at the same time.
27 *
28 * Given that the kernel uses VA_BITS for its entire address space,
29 * and that half of that space (VA_BITS - 1) is used for the linear
30 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
31 *
32 * The main question is "Within the VA_BITS space, does EL2 use the
33 * top or the bottom half of that space to shadow the kernel's linear
34 * mapping?". As we need to idmap the trampoline page, this is
35 * determined by the range in which this page lives.
36 *
37 * If the page is in the bottom half, we have to use the top half. If
38 * the page is in the top half, we have to use the bottom half:
39 *
40 * T = __pa_symbol(__hyp_idmap_text_start)
41 * if (T & BIT(VA_BITS - 1))
42 *	HYP_VA_MIN = 0  //idmap in upper half
43 * else
44 *	HYP_VA_MIN = 1 << (VA_BITS - 1)
45 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
46 *
47 * When using VHE, there are no separate hyp mappings and all KVM
48 * functionality is already mapped as part of the main kernel
49 * mappings, and none of this applies in that case.
50 */
51
52#ifdef __ASSEMBLY__
53
54#include <asm/alternative.h>
55
56/*
57 * Convert a kernel VA into a HYP VA.
58 * reg: VA to be converted.
59 *
60 * The actual code generation takes place in kvm_update_va_mask, and
61 * the instructions below are only there to reserve the space and
62 * perform the register allocation (kvm_update_va_mask uses the
63 * specific registers encoded in the instructions).
64 */
65.macro kern_hyp_va	reg
66#ifndef __KVM_VHE_HYPERVISOR__
67alternative_cb ARM64_ALWAYS_SYSTEM, kvm_update_va_mask
68	and     \reg, \reg, #1		/* mask with va_mask */
69	ror	\reg, \reg, #1		/* rotate to the first tag bit */
70	add	\reg, \reg, #0		/* insert the low 12 bits of the tag */
71	add	\reg, \reg, #0, lsl 12	/* insert the top 12 bits of the tag */
72	ror	\reg, \reg, #63		/* rotate back */
73alternative_cb_end
74#endif
75.endm
76
77/*
78 * Convert a hypervisor VA to a PA
79 * reg: hypervisor address to be converted in place
80 * tmp: temporary register
81 */
82.macro hyp_pa reg, tmp
83	ldr_l	\tmp, hyp_physvirt_offset
84	add	\reg, \reg, \tmp
85.endm
86
87/*
88 * Convert a hypervisor VA to a kernel image address
89 * reg: hypervisor address to be converted in place
90 * tmp: temporary register
91 *
92 * The actual code generation takes place in kvm_get_kimage_voffset, and
93 * the instructions below are only there to reserve the space and
94 * perform the register allocation (kvm_get_kimage_voffset uses the
95 * specific registers encoded in the instructions).
96 */
97.macro hyp_kimg_va reg, tmp
98	/* Convert hyp VA -> PA. */
99	hyp_pa	\reg, \tmp
100
101	/* Load kimage_voffset. */
102alternative_cb ARM64_ALWAYS_SYSTEM, kvm_get_kimage_voffset
103	movz	\tmp, #0
104	movk	\tmp, #0, lsl #16
105	movk	\tmp, #0, lsl #32
106	movk	\tmp, #0, lsl #48
107alternative_cb_end
108
109	/* Convert PA -> kimg VA. */
110	add	\reg, \reg, \tmp
111.endm
112
113#else
114
115#include <linux/pgtable.h>
116#include <asm/pgalloc.h>
117#include <asm/cache.h>
118#include <asm/cacheflush.h>
119#include <asm/mmu_context.h>
120#include <asm/kvm_emulate.h>
121#include <asm/kvm_host.h>
122
123void kvm_update_va_mask(struct alt_instr *alt,
124			__le32 *origptr, __le32 *updptr, int nr_inst);
125void kvm_compute_layout(void);
126void kvm_apply_hyp_relocations(void);
127
128#define __hyp_pa(x) (((phys_addr_t)(x)) + hyp_physvirt_offset)
129
130static __always_inline unsigned long __kern_hyp_va(unsigned long v)
131{
132#ifndef __KVM_VHE_HYPERVISOR__
133	asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
134				    "ror %0, %0, #1\n"
135				    "add %0, %0, #0\n"
136				    "add %0, %0, #0, lsl 12\n"
137				    "ror %0, %0, #63\n",
138				    ARM64_ALWAYS_SYSTEM,
139				    kvm_update_va_mask)
140		     : "+r" (v));
141#endif
142	return v;
143}
144
145#define kern_hyp_va(v) 	((typeof(v))(__kern_hyp_va((unsigned long)(v))))
146
147/*
148 * We currently support using a VM-specified IPA size. For backward
149 * compatibility, the default IPA size is fixed to 40bits.
150 */
151#define KVM_PHYS_SHIFT	(40)
152
153#define kvm_phys_shift(kvm)		VTCR_EL2_IPA(kvm->arch.vtcr)
154#define kvm_phys_size(kvm)		(_AC(1, ULL) << kvm_phys_shift(kvm))
155#define kvm_phys_mask(kvm)		(kvm_phys_size(kvm) - _AC(1, ULL))
156
157#include <asm/kvm_pgtable.h>
158#include <asm/stage2_pgtable.h>
159
160int kvm_share_hyp(void *from, void *to);
161void kvm_unshare_hyp(void *from, void *to);
162int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot);
163int __create_hyp_mappings(unsigned long start, unsigned long size,
164			  unsigned long phys, enum kvm_pgtable_prot prot);
165int hyp_alloc_private_va_range(size_t size, unsigned long *haddr);
166int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
167			   void __iomem **kaddr,
168			   void __iomem **haddr);
169int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
170			     void **haddr);
171int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr);
172void __init free_hyp_pgds(void);
173
174void stage2_unmap_vm(struct kvm *kvm);
175int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type);
176void kvm_uninit_stage2_mmu(struct kvm *kvm);
177void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
178int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
179			  phys_addr_t pa, unsigned long size, bool writable);
180
181int kvm_handle_guest_abort(struct kvm_vcpu *vcpu);
182
183phys_addr_t kvm_mmu_get_httbr(void);
184phys_addr_t kvm_get_idmap_vector(void);
185int __init kvm_mmu_init(u32 *hyp_va_bits);
186
187static inline void *__kvm_vector_slot2addr(void *base,
188					   enum arm64_hyp_spectre_vector slot)
189{
190	int idx = slot - (slot != HYP_VECTOR_DIRECT);
191
192	return base + (idx * SZ_2K);
193}
194
195struct kvm;
196
197#define kvm_flush_dcache_to_poc(a,l)	\
198	dcache_clean_inval_poc((unsigned long)(a), (unsigned long)(a)+(l))
199
200static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
201{
202	u64 cache_bits = SCTLR_ELx_M | SCTLR_ELx_C;
203	int reg;
204
205	if (vcpu_is_el2(vcpu))
206		reg = SCTLR_EL2;
207	else
208		reg = SCTLR_EL1;
209
210	return (vcpu_read_sys_reg(vcpu, reg) & cache_bits) == cache_bits;
211}
212
213static inline void __clean_dcache_guest_page(void *va, size_t size)
214{
215	/*
216	 * With FWB, we ensure that the guest always accesses memory using
217	 * cacheable attributes, and we don't have to clean to PoC when
218	 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
219	 * PoU is not required either in this case.
220	 */
221	if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
222		return;
223
224	kvm_flush_dcache_to_poc(va, size);
225}
226
227static inline void __invalidate_icache_guest_page(void *va, size_t size)
228{
229	if (icache_is_aliasing()) {
230		/* any kind of VIPT cache */
231		icache_inval_all_pou();
232	} else if (read_sysreg(CurrentEL) != CurrentEL_EL1 ||
233		   !icache_is_vpipt()) {
234		/* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
235		icache_inval_pou((unsigned long)va, (unsigned long)va + size);
236	}
237}
238
239void kvm_set_way_flush(struct kvm_vcpu *vcpu);
240void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
241
242static inline unsigned int kvm_get_vmid_bits(void)
243{
244	int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
245
246	return get_vmid_bits(reg);
247}
248
249/*
250 * We are not in the kvm->srcu critical section most of the time, so we take
251 * the SRCU read lock here. Since we copy the data from the user page, we
252 * can immediately drop the lock again.
253 */
254static inline int kvm_read_guest_lock(struct kvm *kvm,
255				      gpa_t gpa, void *data, unsigned long len)
256{
257	int srcu_idx = srcu_read_lock(&kvm->srcu);
258	int ret = kvm_read_guest(kvm, gpa, data, len);
259
260	srcu_read_unlock(&kvm->srcu, srcu_idx);
261
262	return ret;
263}
264
265static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
266				       const void *data, unsigned long len)
267{
268	int srcu_idx = srcu_read_lock(&kvm->srcu);
269	int ret = kvm_write_guest(kvm, gpa, data, len);
270
271	srcu_read_unlock(&kvm->srcu, srcu_idx);
272
273	return ret;
274}
275
276#define kvm_phys_to_vttbr(addr)		phys_to_ttbr(addr)
277
278/*
279 * When this is (directly or indirectly) used on the TLB invalidation
280 * path, we rely on a previously issued DSB so that page table updates
281 * and VMID reads are correctly ordered.
282 */
283static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu)
284{
285	struct kvm_vmid *vmid = &mmu->vmid;
286	u64 vmid_field, baddr;
287	u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
288
289	baddr = mmu->pgd_phys;
290	vmid_field = atomic64_read(&vmid->id) << VTTBR_VMID_SHIFT;
291	vmid_field &= VTTBR_VMID_MASK(kvm_arm_vmid_bits);
292	return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
293}
294
295/*
296 * Must be called from hyp code running at EL2 with an updated VTTBR
297 * and interrupts disabled.
298 */
299static __always_inline void __load_stage2(struct kvm_s2_mmu *mmu,
300					  struct kvm_arch *arch)
301{
302	write_sysreg(arch->vtcr, vtcr_el2);
303	write_sysreg(kvm_get_vttbr(mmu), vttbr_el2);
304
305	/*
306	 * ARM errata 1165522 and 1530923 require the actual execution of the
307	 * above before we can switch to the EL1/EL0 translation regime used by
308	 * the guest.
309	 */
310	asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
311}
312
313static inline struct kvm *kvm_s2_mmu_to_kvm(struct kvm_s2_mmu *mmu)
314{
315	return container_of(mmu->arch, struct kvm, arch);
316}
317#endif /* __ASSEMBLY__ */
318#endif /* __ARM64_KVM_MMU_H__ */
319