1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/include/asm/kvm_host.h:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9 */
10
11#ifndef __ARM64_KVM_HOST_H__
12#define __ARM64_KVM_HOST_H__
13
14#include <linux/arm-smccc.h>
15#include <linux/bitmap.h>
16#include <linux/types.h>
17#include <linux/jump_label.h>
18#include <linux/kvm_types.h>
19#include <linux/maple_tree.h>
20#include <linux/percpu.h>
21#include <linux/psci.h>
22#include <asm/arch_gicv3.h>
23#include <asm/barrier.h>
24#include <asm/cpufeature.h>
25#include <asm/cputype.h>
26#include <asm/daifflags.h>
27#include <asm/fpsimd.h>
28#include <asm/kvm.h>
29#include <asm/kvm_asm.h>
30
31#define __KVM_HAVE_ARCH_INTC_INITIALIZED
32
33#define KVM_HALT_POLL_NS_DEFAULT 500000
34
35#include <kvm/arm_vgic.h>
36#include <kvm/arm_arch_timer.h>
37#include <kvm/arm_pmu.h>
38
39#define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
40
41#define KVM_VCPU_MAX_FEATURES 7
42#define KVM_VCPU_VALID_FEATURES	(BIT(KVM_VCPU_MAX_FEATURES) - 1)
43
44#define KVM_REQ_SLEEP \
45	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
46#define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
47#define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
48#define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
49#define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
50#define KVM_REQ_RELOAD_PMU	KVM_ARCH_REQ(5)
51#define KVM_REQ_SUSPEND		KVM_ARCH_REQ(6)
52#define KVM_REQ_RESYNC_PMU_EL0	KVM_ARCH_REQ(7)
53
54#define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
55				     KVM_DIRTY_LOG_INITIALLY_SET)
56
57#define KVM_HAVE_MMU_RWLOCK
58
59/*
60 * Mode of operation configurable with kvm-arm.mode early param.
61 * See Documentation/admin-guide/kernel-parameters.txt for more information.
62 */
63enum kvm_mode {
64	KVM_MODE_DEFAULT,
65	KVM_MODE_PROTECTED,
66	KVM_MODE_NV,
67	KVM_MODE_NONE,
68};
69#ifdef CONFIG_KVM
70enum kvm_mode kvm_get_mode(void);
71#else
72static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
73#endif
74
75DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
76
77extern unsigned int __ro_after_init kvm_sve_max_vl;
78int __init kvm_arm_init_sve(void);
79
80u32 __attribute_const__ kvm_target_cpu(void);
81int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
82void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
83
84struct kvm_hyp_memcache {
85	phys_addr_t head;
86	unsigned long nr_pages;
87};
88
89static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
90				     phys_addr_t *p,
91				     phys_addr_t (*to_pa)(void *virt))
92{
93	*p = mc->head;
94	mc->head = to_pa(p);
95	mc->nr_pages++;
96}
97
98static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
99				     void *(*to_va)(phys_addr_t phys))
100{
101	phys_addr_t *p = to_va(mc->head);
102
103	if (!mc->nr_pages)
104		return NULL;
105
106	mc->head = *p;
107	mc->nr_pages--;
108
109	return p;
110}
111
112static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
113				       unsigned long min_pages,
114				       void *(*alloc_fn)(void *arg),
115				       phys_addr_t (*to_pa)(void *virt),
116				       void *arg)
117{
118	while (mc->nr_pages < min_pages) {
119		phys_addr_t *p = alloc_fn(arg);
120
121		if (!p)
122			return -ENOMEM;
123		push_hyp_memcache(mc, p, to_pa);
124	}
125
126	return 0;
127}
128
129static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
130				       void (*free_fn)(void *virt, void *arg),
131				       void *(*to_va)(phys_addr_t phys),
132				       void *arg)
133{
134	while (mc->nr_pages)
135		free_fn(pop_hyp_memcache(mc, to_va), arg);
136}
137
138void free_hyp_memcache(struct kvm_hyp_memcache *mc);
139int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
140
141struct kvm_vmid {
142	atomic64_t id;
143};
144
145struct kvm_s2_mmu {
146	struct kvm_vmid vmid;
147
148	/*
149	 * stage2 entry level table
150	 *
151	 * Two kvm_s2_mmu structures in the same VM can point to the same
152	 * pgd here.  This happens when running a guest using a
153	 * translation regime that isn't affected by its own stage-2
154	 * translation, such as a non-VHE hypervisor running at vEL2, or
155	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
156	 * canonical stage-2 page tables.
157	 */
158	phys_addr_t	pgd_phys;
159	struct kvm_pgtable *pgt;
160
161	/* The last vcpu id that ran on each physical CPU */
162	int __percpu *last_vcpu_ran;
163
164#define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
165	/*
166	 * Memory cache used to split
167	 * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
168	 * is used to allocate stage2 page tables while splitting huge
169	 * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
170	 * influences both the capacity of the split page cache, and
171	 * how often KVM reschedules. Be wary of raising CHUNK_SIZE
172	 * too high.
173	 *
174	 * Protected by kvm->slots_lock.
175	 */
176	struct kvm_mmu_memory_cache split_page_cache;
177	uint64_t split_page_chunk_size;
178
179	struct kvm_arch *arch;
180};
181
182struct kvm_arch_memory_slot {
183};
184
185/**
186 * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
187 *
188 * @std_bmap: Bitmap of standard secure service calls
189 * @std_hyp_bmap: Bitmap of standard hypervisor service calls
190 * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
191 */
192struct kvm_smccc_features {
193	unsigned long std_bmap;
194	unsigned long std_hyp_bmap;
195	unsigned long vendor_hyp_bmap;
196};
197
198typedef unsigned int pkvm_handle_t;
199
200struct kvm_protected_vm {
201	pkvm_handle_t handle;
202	struct kvm_hyp_memcache teardown_mc;
203};
204
205struct kvm_arch {
206	struct kvm_s2_mmu mmu;
207
208	/* VTCR_EL2 value for this VM */
209	u64    vtcr;
210
211	/* Interrupt controller */
212	struct vgic_dist	vgic;
213
214	/* Timers */
215	struct arch_timer_vm_data timer_data;
216
217	/* Mandated version of PSCI */
218	u32 psci_version;
219
220	/* Protects VM-scoped configuration data */
221	struct mutex config_lock;
222
223	/*
224	 * If we encounter a data abort without valid instruction syndrome
225	 * information, report this to user space.  User space can (and
226	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
227	 * supported.
228	 */
229#define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER	0
230	/* Memory Tagging Extension enabled for the guest */
231#define KVM_ARCH_FLAG_MTE_ENABLED			1
232	/* At least one vCPU has ran in the VM */
233#define KVM_ARCH_FLAG_HAS_RAN_ONCE			2
234	/* The vCPU feature set for the VM is configured */
235#define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED		3
236	/* PSCI SYSTEM_SUSPEND enabled for the guest */
237#define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED		4
238	/* VM counter offset */
239#define KVM_ARCH_FLAG_VM_COUNTER_OFFSET			5
240	/* Timer PPIs made immutable */
241#define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE		6
242	/* SMCCC filter initialized for the VM */
243#define KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED		7
244	/* Initial ID reg values loaded */
245#define KVM_ARCH_FLAG_ID_REGS_INITIALIZED		8
246	unsigned long flags;
247
248	/* VM-wide vCPU feature set */
249	DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
250
251	/*
252	 * VM-wide PMU filter, implemented as a bitmap and big enough for
253	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
254	 */
255	unsigned long *pmu_filter;
256	struct arm_pmu *arm_pmu;
257
258	cpumask_var_t supported_cpus;
259
260	/* Hypercall features firmware registers' descriptor */
261	struct kvm_smccc_features smccc_feat;
262	struct maple_tree smccc_filter;
263
264	/*
265	 * Emulated CPU ID registers per VM
266	 * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
267	 * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
268	 *
269	 * These emulated idregs are VM-wide, but accessed from the context of a vCPU.
270	 * Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
271	 */
272#define IDREG_IDX(id)		(((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
273#define IDREG(kvm, id)		((kvm)->arch.id_regs[IDREG_IDX(id)])
274#define KVM_ARM_ID_REG_NUM	(IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
275	u64 id_regs[KVM_ARM_ID_REG_NUM];
276
277	/*
278	 * For an untrusted host VM, 'pkvm.handle' is used to lookup
279	 * the associated pKVM instance in the hypervisor.
280	 */
281	struct kvm_protected_vm pkvm;
282};
283
284struct kvm_vcpu_fault_info {
285	u64 esr_el2;		/* Hyp Syndrom Register */
286	u64 far_el2;		/* Hyp Fault Address Register */
287	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
288	u64 disr_el1;		/* Deferred [SError] Status Register */
289};
290
291enum vcpu_sysreg {
292	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
293	MPIDR_EL1,	/* MultiProcessor Affinity Register */
294	CLIDR_EL1,	/* Cache Level ID Register */
295	CSSELR_EL1,	/* Cache Size Selection Register */
296	SCTLR_EL1,	/* System Control Register */
297	ACTLR_EL1,	/* Auxiliary Control Register */
298	CPACR_EL1,	/* Coprocessor Access Control */
299	ZCR_EL1,	/* SVE Control */
300	TTBR0_EL1,	/* Translation Table Base Register 0 */
301	TTBR1_EL1,	/* Translation Table Base Register 1 */
302	TCR_EL1,	/* Translation Control Register */
303	TCR2_EL1,	/* Extended Translation Control Register */
304	ESR_EL1,	/* Exception Syndrome Register */
305	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
306	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
307	FAR_EL1,	/* Fault Address Register */
308	MAIR_EL1,	/* Memory Attribute Indirection Register */
309	VBAR_EL1,	/* Vector Base Address Register */
310	CONTEXTIDR_EL1,	/* Context ID Register */
311	TPIDR_EL0,	/* Thread ID, User R/W */
312	TPIDRRO_EL0,	/* Thread ID, User R/O */
313	TPIDR_EL1,	/* Thread ID, Privileged */
314	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
315	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
316	PAR_EL1,	/* Physical Address Register */
317	MDSCR_EL1,	/* Monitor Debug System Control Register */
318	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
319	OSLSR_EL1,	/* OS Lock Status Register */
320	DISR_EL1,	/* Deferred Interrupt Status Register */
321
322	/* Performance Monitors Registers */
323	PMCR_EL0,	/* Control Register */
324	PMSELR_EL0,	/* Event Counter Selection Register */
325	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
326	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
327	PMCCNTR_EL0,	/* Cycle Counter Register */
328	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
329	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
330	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
331	PMCNTENSET_EL0,	/* Count Enable Set Register */
332	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
333	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
334	PMUSERENR_EL0,	/* User Enable Register */
335
336	/* Pointer Authentication Registers in a strict increasing order. */
337	APIAKEYLO_EL1,
338	APIAKEYHI_EL1,
339	APIBKEYLO_EL1,
340	APIBKEYHI_EL1,
341	APDAKEYLO_EL1,
342	APDAKEYHI_EL1,
343	APDBKEYLO_EL1,
344	APDBKEYHI_EL1,
345	APGAKEYLO_EL1,
346	APGAKEYHI_EL1,
347
348	ELR_EL1,
349	SP_EL1,
350	SPSR_EL1,
351
352	CNTVOFF_EL2,
353	CNTV_CVAL_EL0,
354	CNTV_CTL_EL0,
355	CNTP_CVAL_EL0,
356	CNTP_CTL_EL0,
357
358	/* Memory Tagging Extension registers */
359	RGSR_EL1,	/* Random Allocation Tag Seed Register */
360	GCR_EL1,	/* Tag Control Register */
361	TFSR_EL1,	/* Tag Fault Status Register (EL1) */
362	TFSRE0_EL1,	/* Tag Fault Status Register (EL0) */
363
364	/* Permission Indirection Extension registers */
365	PIR_EL1,       /* Permission Indirection Register 1 (EL1) */
366	PIRE0_EL1,     /*  Permission Indirection Register 0 (EL1) */
367
368	/* 32bit specific registers. */
369	DACR32_EL2,	/* Domain Access Control Register */
370	IFSR32_EL2,	/* Instruction Fault Status Register */
371	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
372	DBGVCR32_EL2,	/* Debug Vector Catch Register */
373
374	/* EL2 registers */
375	VPIDR_EL2,	/* Virtualization Processor ID Register */
376	VMPIDR_EL2,	/* Virtualization Multiprocessor ID Register */
377	SCTLR_EL2,	/* System Control Register (EL2) */
378	ACTLR_EL2,	/* Auxiliary Control Register (EL2) */
379	HCR_EL2,	/* Hypervisor Configuration Register */
380	MDCR_EL2,	/* Monitor Debug Configuration Register (EL2) */
381	CPTR_EL2,	/* Architectural Feature Trap Register (EL2) */
382	HSTR_EL2,	/* Hypervisor System Trap Register */
383	HACR_EL2,	/* Hypervisor Auxiliary Control Register */
384	HCRX_EL2,	/* Extended Hypervisor Configuration Register */
385	TTBR0_EL2,	/* Translation Table Base Register 0 (EL2) */
386	TTBR1_EL2,	/* Translation Table Base Register 1 (EL2) */
387	TCR_EL2,	/* Translation Control Register (EL2) */
388	VTTBR_EL2,	/* Virtualization Translation Table Base Register */
389	VTCR_EL2,	/* Virtualization Translation Control Register */
390	SPSR_EL2,	/* EL2 saved program status register */
391	ELR_EL2,	/* EL2 exception link register */
392	AFSR0_EL2,	/* Auxiliary Fault Status Register 0 (EL2) */
393	AFSR1_EL2,	/* Auxiliary Fault Status Register 1 (EL2) */
394	ESR_EL2,	/* Exception Syndrome Register (EL2) */
395	FAR_EL2,	/* Fault Address Register (EL2) */
396	HPFAR_EL2,	/* Hypervisor IPA Fault Address Register */
397	MAIR_EL2,	/* Memory Attribute Indirection Register (EL2) */
398	AMAIR_EL2,	/* Auxiliary Memory Attribute Indirection Register (EL2) */
399	VBAR_EL2,	/* Vector Base Address Register (EL2) */
400	RVBAR_EL2,	/* Reset Vector Base Address Register */
401	CONTEXTIDR_EL2,	/* Context ID Register (EL2) */
402	TPIDR_EL2,	/* EL2 Software Thread ID Register */
403	CNTHCTL_EL2,	/* Counter-timer Hypervisor Control register */
404	SP_EL2,		/* EL2 Stack Pointer */
405	HFGRTR_EL2,
406	HFGWTR_EL2,
407	HFGITR_EL2,
408	HDFGRTR_EL2,
409	HDFGWTR_EL2,
410	CNTHP_CTL_EL2,
411	CNTHP_CVAL_EL2,
412	CNTHV_CTL_EL2,
413	CNTHV_CVAL_EL2,
414
415	NR_SYS_REGS	/* Nothing after this line! */
416};
417
418struct kvm_cpu_context {
419	struct user_pt_regs regs;	/* sp = sp_el0 */
420
421	u64	spsr_abt;
422	u64	spsr_und;
423	u64	spsr_irq;
424	u64	spsr_fiq;
425
426	struct user_fpsimd_state fp_regs;
427
428	u64 sys_regs[NR_SYS_REGS];
429
430	struct kvm_vcpu *__hyp_running_vcpu;
431};
432
433struct kvm_host_data {
434	struct kvm_cpu_context host_ctxt;
435};
436
437struct kvm_host_psci_config {
438	/* PSCI version used by host. */
439	u32 version;
440	u32 smccc_version;
441
442	/* Function IDs used by host if version is v0.1. */
443	struct psci_0_1_function_ids function_ids_0_1;
444
445	bool psci_0_1_cpu_suspend_implemented;
446	bool psci_0_1_cpu_on_implemented;
447	bool psci_0_1_cpu_off_implemented;
448	bool psci_0_1_migrate_implemented;
449};
450
451extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
452#define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
453
454extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
455#define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
456
457extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
458#define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
459
460struct vcpu_reset_state {
461	unsigned long	pc;
462	unsigned long	r0;
463	bool		be;
464	bool		reset;
465};
466
467struct kvm_vcpu_arch {
468	struct kvm_cpu_context ctxt;
469
470	/*
471	 * Guest floating point state
472	 *
473	 * The architecture has two main floating point extensions,
474	 * the original FPSIMD and SVE.  These have overlapping
475	 * register views, with the FPSIMD V registers occupying the
476	 * low 128 bits of the SVE Z registers.  When the core
477	 * floating point code saves the register state of a task it
478	 * records which view it saved in fp_type.
479	 */
480	void *sve_state;
481	enum fp_type fp_type;
482	unsigned int sve_max_vl;
483	u64 svcr;
484
485	/* Stage 2 paging state used by the hardware on next switch */
486	struct kvm_s2_mmu *hw_mmu;
487
488	/* Values of trap registers for the guest. */
489	u64 hcr_el2;
490	u64 mdcr_el2;
491	u64 cptr_el2;
492
493	/* Values of trap registers for the host before guest entry. */
494	u64 mdcr_el2_host;
495
496	/* Exception Information */
497	struct kvm_vcpu_fault_info fault;
498
499	/* Ownership of the FP regs */
500	enum {
501		FP_STATE_FREE,
502		FP_STATE_HOST_OWNED,
503		FP_STATE_GUEST_OWNED,
504	} fp_state;
505
506	/* Configuration flags, set once and for all before the vcpu can run */
507	u8 cflags;
508
509	/* Input flags to the hypervisor code, potentially cleared after use */
510	u8 iflags;
511
512	/* State flags for kernel bookkeeping, unused by the hypervisor code */
513	u8 sflags;
514
515	/*
516	 * Don't run the guest (internal implementation need).
517	 *
518	 * Contrary to the flags above, this is set/cleared outside of
519	 * a vcpu context, and thus cannot be mixed with the flags
520	 * themselves (or the flag accesses need to be made atomic).
521	 */
522	bool pause;
523
524	/*
525	 * We maintain more than a single set of debug registers to support
526	 * debugging the guest from the host and to maintain separate host and
527	 * guest state during world switches. vcpu_debug_state are the debug
528	 * registers of the vcpu as the guest sees them.  host_debug_state are
529	 * the host registers which are saved and restored during
530	 * world switches. external_debug_state contains the debug
531	 * values we want to debug the guest. This is set via the
532	 * KVM_SET_GUEST_DEBUG ioctl.
533	 *
534	 * debug_ptr points to the set of debug registers that should be loaded
535	 * onto the hardware when running the guest.
536	 */
537	struct kvm_guest_debug_arch *debug_ptr;
538	struct kvm_guest_debug_arch vcpu_debug_state;
539	struct kvm_guest_debug_arch external_debug_state;
540
541	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */
542	struct task_struct *parent_task;
543
544	struct {
545		/* {Break,watch}point registers */
546		struct kvm_guest_debug_arch regs;
547		/* Statistical profiling extension */
548		u64 pmscr_el1;
549		/* Self-hosted trace */
550		u64 trfcr_el1;
551	} host_debug_state;
552
553	/* VGIC state */
554	struct vgic_cpu vgic_cpu;
555	struct arch_timer_cpu timer_cpu;
556	struct kvm_pmu pmu;
557
558	/*
559	 * Guest registers we preserve during guest debugging.
560	 *
561	 * These shadow registers are updated by the kvm_handle_sys_reg
562	 * trap handler if the guest accesses or updates them while we
563	 * are using guest debug.
564	 */
565	struct {
566		u32	mdscr_el1;
567		bool	pstate_ss;
568	} guest_debug_preserved;
569
570	/* vcpu power state */
571	struct kvm_mp_state mp_state;
572	spinlock_t mp_state_lock;
573
574	/* Cache some mmu pages needed inside spinlock regions */
575	struct kvm_mmu_memory_cache mmu_page_cache;
576
577	/* feature flags */
578	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
579
580	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
581	u64 vsesr_el2;
582
583	/* Additional reset state */
584	struct vcpu_reset_state	reset_state;
585
586	/* Guest PV state */
587	struct {
588		u64 last_steal;
589		gpa_t base;
590	} steal;
591
592	/* Per-vcpu CCSIDR override or NULL */
593	u32 *ccsidr;
594};
595
596/*
597 * Each 'flag' is composed of a comma-separated triplet:
598 *
599 * - the flag-set it belongs to in the vcpu->arch structure
600 * - the value for that flag
601 * - the mask for that flag
602 *
603 *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
604 * unpack_vcpu_flag() extract the flag value from the triplet for
605 * direct use outside of the flag accessors.
606 */
607#define __vcpu_single_flag(_set, _f)	_set, (_f), (_f)
608
609#define __unpack_flag(_set, _f, _m)	_f
610#define unpack_vcpu_flag(...)		__unpack_flag(__VA_ARGS__)
611
612#define __build_check_flag(v, flagset, f, m)			\
613	do {							\
614		typeof(v->arch.flagset) *_fset;			\
615								\
616		/* Check that the flags fit in the mask */	\
617		BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m)));	\
618		/* Check that the flags fit in the type */	\
619		BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m));	\
620	} while (0)
621
622#define __vcpu_get_flag(v, flagset, f, m)			\
623	({							\
624		__build_check_flag(v, flagset, f, m);		\
625								\
626		READ_ONCE(v->arch.flagset) & (m);		\
627	})
628
629/*
630 * Note that the set/clear accessors must be preempt-safe in order to
631 * avoid nesting them with load/put which also manipulate flags...
632 */
633#ifdef __KVM_NVHE_HYPERVISOR__
634/* the nVHE hypervisor is always non-preemptible */
635#define __vcpu_flags_preempt_disable()
636#define __vcpu_flags_preempt_enable()
637#else
638#define __vcpu_flags_preempt_disable()	preempt_disable()
639#define __vcpu_flags_preempt_enable()	preempt_enable()
640#endif
641
642#define __vcpu_set_flag(v, flagset, f, m)			\
643	do {							\
644		typeof(v->arch.flagset) *fset;			\
645								\
646		__build_check_flag(v, flagset, f, m);		\
647								\
648		fset = &v->arch.flagset;			\
649		__vcpu_flags_preempt_disable();			\
650		if (HWEIGHT(m) > 1)				\
651			*fset &= ~(m);				\
652		*fset |= (f);					\
653		__vcpu_flags_preempt_enable();			\
654	} while (0)
655
656#define __vcpu_clear_flag(v, flagset, f, m)			\
657	do {							\
658		typeof(v->arch.flagset) *fset;			\
659								\
660		__build_check_flag(v, flagset, f, m);		\
661								\
662		fset = &v->arch.flagset;			\
663		__vcpu_flags_preempt_disable();			\
664		*fset &= ~(m);					\
665		__vcpu_flags_preempt_enable();			\
666	} while (0)
667
668#define vcpu_get_flag(v, ...)	__vcpu_get_flag((v), __VA_ARGS__)
669#define vcpu_set_flag(v, ...)	__vcpu_set_flag((v), __VA_ARGS__)
670#define vcpu_clear_flag(v, ...)	__vcpu_clear_flag((v), __VA_ARGS__)
671
672/* SVE exposed to guest */
673#define GUEST_HAS_SVE		__vcpu_single_flag(cflags, BIT(0))
674/* SVE config completed */
675#define VCPU_SVE_FINALIZED	__vcpu_single_flag(cflags, BIT(1))
676/* PTRAUTH exposed to guest */
677#define GUEST_HAS_PTRAUTH	__vcpu_single_flag(cflags, BIT(2))
678/* KVM_ARM_VCPU_INIT completed */
679#define VCPU_INITIALIZED	__vcpu_single_flag(cflags, BIT(3))
680
681/* Exception pending */
682#define PENDING_EXCEPTION	__vcpu_single_flag(iflags, BIT(0))
683/*
684 * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
685 * be set together with an exception...
686 */
687#define INCREMENT_PC		__vcpu_single_flag(iflags, BIT(1))
688/* Target EL/MODE (not a single flag, but let's abuse the macro) */
689#define EXCEPT_MASK		__vcpu_single_flag(iflags, GENMASK(3, 1))
690
691/* Helpers to encode exceptions with minimum fuss */
692#define __EXCEPT_MASK_VAL	unpack_vcpu_flag(EXCEPT_MASK)
693#define __EXCEPT_SHIFT		__builtin_ctzl(__EXCEPT_MASK_VAL)
694#define __vcpu_except_flags(_f)	iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
695
696/*
697 * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
698 * values:
699 *
700 * For AArch32 EL1:
701 */
702#define EXCEPT_AA32_UND		__vcpu_except_flags(0)
703#define EXCEPT_AA32_IABT	__vcpu_except_flags(1)
704#define EXCEPT_AA32_DABT	__vcpu_except_flags(2)
705/* For AArch64: */
706#define EXCEPT_AA64_EL1_SYNC	__vcpu_except_flags(0)
707#define EXCEPT_AA64_EL1_IRQ	__vcpu_except_flags(1)
708#define EXCEPT_AA64_EL1_FIQ	__vcpu_except_flags(2)
709#define EXCEPT_AA64_EL1_SERR	__vcpu_except_flags(3)
710/* For AArch64 with NV: */
711#define EXCEPT_AA64_EL2_SYNC	__vcpu_except_flags(4)
712#define EXCEPT_AA64_EL2_IRQ	__vcpu_except_flags(5)
713#define EXCEPT_AA64_EL2_FIQ	__vcpu_except_flags(6)
714#define EXCEPT_AA64_EL2_SERR	__vcpu_except_flags(7)
715/* Guest debug is live */
716#define DEBUG_DIRTY		__vcpu_single_flag(iflags, BIT(4))
717/* Save SPE context if active  */
718#define DEBUG_STATE_SAVE_SPE	__vcpu_single_flag(iflags, BIT(5))
719/* Save TRBE context if active  */
720#define DEBUG_STATE_SAVE_TRBE	__vcpu_single_flag(iflags, BIT(6))
721/* vcpu running in HYP context */
722#define VCPU_HYP_CONTEXT	__vcpu_single_flag(iflags, BIT(7))
723
724/* SVE enabled for host EL0 */
725#define HOST_SVE_ENABLED	__vcpu_single_flag(sflags, BIT(0))
726/* SME enabled for EL0 */
727#define HOST_SME_ENABLED	__vcpu_single_flag(sflags, BIT(1))
728/* Physical CPU not in supported_cpus */
729#define ON_UNSUPPORTED_CPU	__vcpu_single_flag(sflags, BIT(2))
730/* WFIT instruction trapped */
731#define IN_WFIT			__vcpu_single_flag(sflags, BIT(3))
732/* vcpu system registers loaded on physical CPU */
733#define SYSREGS_ON_CPU		__vcpu_single_flag(sflags, BIT(4))
734/* Software step state is Active-pending */
735#define DBG_SS_ACTIVE_PENDING	__vcpu_single_flag(sflags, BIT(5))
736/* PMUSERENR for the guest EL0 is on physical CPU */
737#define PMUSERENR_ON_CPU	__vcpu_single_flag(sflags, BIT(6))
738/* WFI instruction trapped */
739#define IN_WFI			__vcpu_single_flag(sflags, BIT(7))
740
741
742/* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
743#define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +	\
744			     sve_ffr_offset((vcpu)->arch.sve_max_vl))
745
746#define vcpu_sve_max_vq(vcpu)	sve_vq_from_vl((vcpu)->arch.sve_max_vl)
747
748#define vcpu_sve_state_size(vcpu) ({					\
749	size_t __size_ret;						\
750	unsigned int __vcpu_vq;						\
751									\
752	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
753		__size_ret = 0;						\
754	} else {							\
755		__vcpu_vq = vcpu_sve_max_vq(vcpu);			\
756		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
757	}								\
758									\
759	__size_ret;							\
760})
761
762#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
763				 KVM_GUESTDBG_USE_SW_BP | \
764				 KVM_GUESTDBG_USE_HW | \
765				 KVM_GUESTDBG_SINGLESTEP)
766
767#define vcpu_has_sve(vcpu) (system_supports_sve() &&			\
768			    vcpu_get_flag(vcpu, GUEST_HAS_SVE))
769
770#ifdef CONFIG_ARM64_PTR_AUTH
771#define vcpu_has_ptrauth(vcpu)						\
772	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
773	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
774	  vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
775#else
776#define vcpu_has_ptrauth(vcpu)		false
777#endif
778
779#define vcpu_on_unsupported_cpu(vcpu)					\
780	vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
781
782#define vcpu_set_on_unsupported_cpu(vcpu)				\
783	vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
784
785#define vcpu_clear_on_unsupported_cpu(vcpu)				\
786	vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
787
788#define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
789
790/*
791 * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
792 * memory backed version of a register, and not the one most recently
793 * accessed by a running VCPU.  For example, for userspace access or
794 * for system registers that are never context switched, but only
795 * emulated.
796 */
797#define __ctxt_sys_reg(c,r)	(&(c)->sys_regs[(r)])
798
799#define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
800
801#define __vcpu_sys_reg(v,r)	(ctxt_sys_reg(&(v)->arch.ctxt, (r)))
802
803u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
804void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
805
806static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
807{
808	/*
809	 * *** VHE ONLY ***
810	 *
811	 * System registers listed in the switch are not saved on every
812	 * exit from the guest but are only saved on vcpu_put.
813	 *
814	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
815	 * should never be listed below, because the guest cannot modify its
816	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
817	 * thread when emulating cross-VCPU communication.
818	 */
819	if (!has_vhe())
820		return false;
821
822	switch (reg) {
823	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
824	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
825	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
826	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
827	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
828	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
829	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
830	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
831	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
832	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
833	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
834	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
835	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
836	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
837	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
838	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
839	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
840	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
841	case PAR_EL1:		*val = read_sysreg_par();		break;
842	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
843	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
844	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
845	default:		return false;
846	}
847
848	return true;
849}
850
851static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
852{
853	/*
854	 * *** VHE ONLY ***
855	 *
856	 * System registers listed in the switch are not restored on every
857	 * entry to the guest but are only restored on vcpu_load.
858	 *
859	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
860	 * should never be listed below, because the MPIDR should only be set
861	 * once, before running the VCPU, and never changed later.
862	 */
863	if (!has_vhe())
864		return false;
865
866	switch (reg) {
867	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
868	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
869	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
870	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
871	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
872	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
873	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
874	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
875	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
876	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
877	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
878	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
879	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
880	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
881	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
882	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
883	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
884	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
885	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
886	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
887	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
888	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
889	default:		return false;
890	}
891
892	return true;
893}
894
895struct kvm_vm_stat {
896	struct kvm_vm_stat_generic generic;
897};
898
899struct kvm_vcpu_stat {
900	struct kvm_vcpu_stat_generic generic;
901	u64 hvc_exit_stat;
902	u64 wfe_exit_stat;
903	u64 wfi_exit_stat;
904	u64 mmio_exit_user;
905	u64 mmio_exit_kernel;
906	u64 signal_exits;
907	u64 exits;
908};
909
910unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
911int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
912int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
913int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
914
915unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
916int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
917
918int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
919			      struct kvm_vcpu_events *events);
920
921int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
922			      struct kvm_vcpu_events *events);
923
924#define KVM_ARCH_WANT_MMU_NOTIFIER
925
926void kvm_arm_halt_guest(struct kvm *kvm);
927void kvm_arm_resume_guest(struct kvm *kvm);
928
929#define vcpu_has_run_once(vcpu)	!!rcu_access_pointer((vcpu)->pid)
930
931#ifndef __KVM_NVHE_HYPERVISOR__
932#define kvm_call_hyp_nvhe(f, ...)						\
933	({								\
934		struct arm_smccc_res res;				\
935									\
936		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
937				  ##__VA_ARGS__, &res);			\
938		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
939									\
940		res.a1;							\
941	})
942
943/*
944 * The couple of isb() below are there to guarantee the same behaviour
945 * on VHE as on !VHE, where the eret to EL1 acts as a context
946 * synchronization event.
947 */
948#define kvm_call_hyp(f, ...)						\
949	do {								\
950		if (has_vhe()) {					\
951			f(__VA_ARGS__);					\
952			isb();						\
953		} else {						\
954			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
955		}							\
956	} while(0)
957
958#define kvm_call_hyp_ret(f, ...)					\
959	({								\
960		typeof(f(__VA_ARGS__)) ret;				\
961									\
962		if (has_vhe()) {					\
963			ret = f(__VA_ARGS__);				\
964			isb();						\
965		} else {						\
966			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
967		}							\
968									\
969		ret;							\
970	})
971#else /* __KVM_NVHE_HYPERVISOR__ */
972#define kvm_call_hyp(f, ...) f(__VA_ARGS__)
973#define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
974#define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
975#endif /* __KVM_NVHE_HYPERVISOR__ */
976
977int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
978void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
979
980int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
981int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
982int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
983int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
984int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
985int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
986int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
987
988void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
989
990int __init kvm_sys_reg_table_init(void);
991int __init populate_nv_trap_config(void);
992
993bool lock_all_vcpus(struct kvm *kvm);
994void unlock_all_vcpus(struct kvm *kvm);
995
996/* MMIO helpers */
997void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
998unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
999
1000int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
1001int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
1002
1003/*
1004 * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
1005 * arrived in guest context.  For arm64, any event that arrives while a vCPU is
1006 * loaded is considered to be "in guest".
1007 */
1008static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
1009{
1010	return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
1011}
1012
1013long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
1014gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
1015void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
1016
1017bool kvm_arm_pvtime_supported(void);
1018int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
1019			    struct kvm_device_attr *attr);
1020int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
1021			    struct kvm_device_attr *attr);
1022int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
1023			    struct kvm_device_attr *attr);
1024
1025extern unsigned int __ro_after_init kvm_arm_vmid_bits;
1026int __init kvm_arm_vmid_alloc_init(void);
1027void __init kvm_arm_vmid_alloc_free(void);
1028void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1029void kvm_arm_vmid_clear_active(void);
1030
1031static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1032{
1033	vcpu_arch->steal.base = INVALID_GPA;
1034}
1035
1036static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1037{
1038	return (vcpu_arch->steal.base != INVALID_GPA);
1039}
1040
1041void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
1042
1043struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1044
1045DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1046
1047static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1048{
1049	/* The host's MPIDR is immutable, so let's set it up at boot time */
1050	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1051}
1052
1053static inline bool kvm_system_needs_idmapped_vectors(void)
1054{
1055	return cpus_have_const_cap(ARM64_SPECTRE_V3A);
1056}
1057
1058static inline void kvm_arch_sync_events(struct kvm *kvm) {}
1059static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
1060
1061void kvm_arm_init_debug(void);
1062void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
1063void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
1064void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
1065void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
1066
1067#define kvm_vcpu_os_lock_enabled(vcpu)		\
1068	(!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
1069
1070int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1071			       struct kvm_device_attr *attr);
1072int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1073			       struct kvm_device_attr *attr);
1074int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1075			       struct kvm_device_attr *attr);
1076
1077int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1078			       struct kvm_arm_copy_mte_tags *copy_tags);
1079int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1080				    struct kvm_arm_counter_offset *offset);
1081
1082/* Guest/host FPSIMD coordination helpers */
1083int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1084void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1085void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1086void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1087void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1088void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu);
1089
1090static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1091{
1092	return (!has_vhe() && attr->exclude_host);
1093}
1094
1095/* Flags for host debug state */
1096void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
1097void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
1098
1099#ifdef CONFIG_KVM
1100void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
1101void kvm_clr_pmu_events(u32 clr);
1102bool kvm_set_pmuserenr(u64 val);
1103#else
1104static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
1105static inline void kvm_clr_pmu_events(u32 clr) {}
1106static inline bool kvm_set_pmuserenr(u64 val)
1107{
1108	return false;
1109}
1110#endif
1111
1112void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
1113void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
1114
1115int __init kvm_set_ipa_limit(void);
1116
1117#define __KVM_HAVE_ARCH_VM_ALLOC
1118struct kvm *kvm_arch_alloc_vm(void);
1119
1120#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1121
1122#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1123
1124static inline bool kvm_vm_is_protected(struct kvm *kvm)
1125{
1126	return false;
1127}
1128
1129int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1130bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1131
1132#define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1133
1134#define kvm_has_mte(kvm)					\
1135	(system_supports_mte() &&				\
1136	 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1137
1138#define kvm_supports_32bit_el0()				\
1139	(system_supports_32bit_el0() &&				\
1140	 !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1141
1142#define kvm_vm_has_ran_once(kvm)					\
1143	(test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1144
1145int kvm_trng_call(struct kvm_vcpu *vcpu);
1146#ifdef CONFIG_KVM
1147extern phys_addr_t hyp_mem_base;
1148extern phys_addr_t hyp_mem_size;
1149void __init kvm_hyp_reserve(void);
1150#else
1151static inline void kvm_hyp_reserve(void) { }
1152#endif
1153
1154void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1155bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1156
1157#endif /* __ARM64_KVM_HOST_H__ */
1158