xref: /kernel/linux/linux-6.6/arch/arm/vfp/vfp.h (revision 62306a36)
162306a36Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0-only */
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci *  linux/arch/arm/vfp/vfp.h
462306a36Sopenharmony_ci *
562306a36Sopenharmony_ci *  Copyright (C) 2004 ARM Limited.
662306a36Sopenharmony_ci *  Written by Deep Blue Solutions Limited.
762306a36Sopenharmony_ci */
862306a36Sopenharmony_ci
962306a36Sopenharmony_cistatic inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
1062306a36Sopenharmony_ci{
1162306a36Sopenharmony_ci	if (shift) {
1262306a36Sopenharmony_ci		if (shift < 32)
1362306a36Sopenharmony_ci			val = val >> shift | ((val << (32 - shift)) != 0);
1462306a36Sopenharmony_ci		else
1562306a36Sopenharmony_ci			val = val != 0;
1662306a36Sopenharmony_ci	}
1762306a36Sopenharmony_ci	return val;
1862306a36Sopenharmony_ci}
1962306a36Sopenharmony_ci
2062306a36Sopenharmony_cistatic inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
2162306a36Sopenharmony_ci{
2262306a36Sopenharmony_ci	if (shift) {
2362306a36Sopenharmony_ci		if (shift < 64)
2462306a36Sopenharmony_ci			val = val >> shift | ((val << (64 - shift)) != 0);
2562306a36Sopenharmony_ci		else
2662306a36Sopenharmony_ci			val = val != 0;
2762306a36Sopenharmony_ci	}
2862306a36Sopenharmony_ci	return val;
2962306a36Sopenharmony_ci}
3062306a36Sopenharmony_ci
3162306a36Sopenharmony_cistatic inline u32 vfp_hi64to32jamming(u64 val)
3262306a36Sopenharmony_ci{
3362306a36Sopenharmony_ci	u32 v;
3462306a36Sopenharmony_ci
3562306a36Sopenharmony_ci	asm(
3662306a36Sopenharmony_ci	"cmp	%Q1, #1		@ vfp_hi64to32jamming\n\t"
3762306a36Sopenharmony_ci	"movcc	%0, %R1\n\t"
3862306a36Sopenharmony_ci	"orrcs	%0, %R1, #1"
3962306a36Sopenharmony_ci	: "=r" (v) : "r" (val) : "cc");
4062306a36Sopenharmony_ci
4162306a36Sopenharmony_ci	return v;
4262306a36Sopenharmony_ci}
4362306a36Sopenharmony_ci
4462306a36Sopenharmony_cistatic inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
4562306a36Sopenharmony_ci{
4662306a36Sopenharmony_ci	asm(	"adds	%Q0, %Q2, %Q4\n\t"
4762306a36Sopenharmony_ci		"adcs	%R0, %R2, %R4\n\t"
4862306a36Sopenharmony_ci		"adcs	%Q1, %Q3, %Q5\n\t"
4962306a36Sopenharmony_ci		"adc	%R1, %R3, %R5"
5062306a36Sopenharmony_ci	    : "=r" (nl), "=r" (nh)
5162306a36Sopenharmony_ci	    : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
5262306a36Sopenharmony_ci	    : "cc");
5362306a36Sopenharmony_ci	*resh = nh;
5462306a36Sopenharmony_ci	*resl = nl;
5562306a36Sopenharmony_ci}
5662306a36Sopenharmony_ci
5762306a36Sopenharmony_cistatic inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
5862306a36Sopenharmony_ci{
5962306a36Sopenharmony_ci	asm(	"subs	%Q0, %Q2, %Q4\n\t"
6062306a36Sopenharmony_ci		"sbcs	%R0, %R2, %R4\n\t"
6162306a36Sopenharmony_ci		"sbcs	%Q1, %Q3, %Q5\n\t"
6262306a36Sopenharmony_ci		"sbc	%R1, %R3, %R5\n\t"
6362306a36Sopenharmony_ci	    : "=r" (nl), "=r" (nh)
6462306a36Sopenharmony_ci	    : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
6562306a36Sopenharmony_ci	    : "cc");
6662306a36Sopenharmony_ci	*resh = nh;
6762306a36Sopenharmony_ci	*resl = nl;
6862306a36Sopenharmony_ci}
6962306a36Sopenharmony_ci
7062306a36Sopenharmony_cistatic inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
7162306a36Sopenharmony_ci{
7262306a36Sopenharmony_ci	u32 nh, nl, mh, ml;
7362306a36Sopenharmony_ci	u64 rh, rma, rmb, rl;
7462306a36Sopenharmony_ci
7562306a36Sopenharmony_ci	nl = n;
7662306a36Sopenharmony_ci	ml = m;
7762306a36Sopenharmony_ci	rl = (u64)nl * ml;
7862306a36Sopenharmony_ci
7962306a36Sopenharmony_ci	nh = n >> 32;
8062306a36Sopenharmony_ci	rma = (u64)nh * ml;
8162306a36Sopenharmony_ci
8262306a36Sopenharmony_ci	mh = m >> 32;
8362306a36Sopenharmony_ci	rmb = (u64)nl * mh;
8462306a36Sopenharmony_ci	rma += rmb;
8562306a36Sopenharmony_ci
8662306a36Sopenharmony_ci	rh = (u64)nh * mh;
8762306a36Sopenharmony_ci	rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
8862306a36Sopenharmony_ci
8962306a36Sopenharmony_ci	rma <<= 32;
9062306a36Sopenharmony_ci	rl += rma;
9162306a36Sopenharmony_ci	rh += (rl < rma);
9262306a36Sopenharmony_ci
9362306a36Sopenharmony_ci	*resl = rl;
9462306a36Sopenharmony_ci	*resh = rh;
9562306a36Sopenharmony_ci}
9662306a36Sopenharmony_ci
9762306a36Sopenharmony_cistatic inline void shift64left(u64 *resh, u64 *resl, u64 n)
9862306a36Sopenharmony_ci{
9962306a36Sopenharmony_ci	*resh = n >> 63;
10062306a36Sopenharmony_ci	*resl = n << 1;
10162306a36Sopenharmony_ci}
10262306a36Sopenharmony_ci
10362306a36Sopenharmony_cistatic inline u64 vfp_hi64multiply64(u64 n, u64 m)
10462306a36Sopenharmony_ci{
10562306a36Sopenharmony_ci	u64 rh, rl;
10662306a36Sopenharmony_ci	mul64to128(&rh, &rl, n, m);
10762306a36Sopenharmony_ci	return rh | (rl != 0);
10862306a36Sopenharmony_ci}
10962306a36Sopenharmony_ci
11062306a36Sopenharmony_cistatic inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
11162306a36Sopenharmony_ci{
11262306a36Sopenharmony_ci	u64 mh, ml, remh, reml, termh, terml, z;
11362306a36Sopenharmony_ci
11462306a36Sopenharmony_ci	if (nh >= m)
11562306a36Sopenharmony_ci		return ~0ULL;
11662306a36Sopenharmony_ci	mh = m >> 32;
11762306a36Sopenharmony_ci	if (mh << 32 <= nh) {
11862306a36Sopenharmony_ci		z = 0xffffffff00000000ULL;
11962306a36Sopenharmony_ci	} else {
12062306a36Sopenharmony_ci		z = nh;
12162306a36Sopenharmony_ci		do_div(z, mh);
12262306a36Sopenharmony_ci		z <<= 32;
12362306a36Sopenharmony_ci	}
12462306a36Sopenharmony_ci	mul64to128(&termh, &terml, m, z);
12562306a36Sopenharmony_ci	sub128(&remh, &reml, nh, nl, termh, terml);
12662306a36Sopenharmony_ci	ml = m << 32;
12762306a36Sopenharmony_ci	while ((s64)remh < 0) {
12862306a36Sopenharmony_ci		z -= 0x100000000ULL;
12962306a36Sopenharmony_ci		add128(&remh, &reml, remh, reml, mh, ml);
13062306a36Sopenharmony_ci	}
13162306a36Sopenharmony_ci	remh = (remh << 32) | (reml >> 32);
13262306a36Sopenharmony_ci	if (mh << 32 <= remh) {
13362306a36Sopenharmony_ci		z |= 0xffffffff;
13462306a36Sopenharmony_ci	} else {
13562306a36Sopenharmony_ci		do_div(remh, mh);
13662306a36Sopenharmony_ci		z |= remh;
13762306a36Sopenharmony_ci	}
13862306a36Sopenharmony_ci	return z;
13962306a36Sopenharmony_ci}
14062306a36Sopenharmony_ci
14162306a36Sopenharmony_ci/*
14262306a36Sopenharmony_ci * Operations on unpacked elements
14362306a36Sopenharmony_ci */
14462306a36Sopenharmony_ci#define vfp_sign_negate(sign)	(sign ^ 0x8000)
14562306a36Sopenharmony_ci
14662306a36Sopenharmony_ci/*
14762306a36Sopenharmony_ci * Single-precision
14862306a36Sopenharmony_ci */
14962306a36Sopenharmony_cistruct vfp_single {
15062306a36Sopenharmony_ci	s16	exponent;
15162306a36Sopenharmony_ci	u16	sign;
15262306a36Sopenharmony_ci	u32	significand;
15362306a36Sopenharmony_ci};
15462306a36Sopenharmony_ci
15562306a36Sopenharmony_ciasmlinkage s32 vfp_get_float(unsigned int reg);
15662306a36Sopenharmony_ciasmlinkage void vfp_put_float(s32 val, unsigned int reg);
15762306a36Sopenharmony_ci
15862306a36Sopenharmony_ci/*
15962306a36Sopenharmony_ci * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
16062306a36Sopenharmony_ci * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
16162306a36Sopenharmony_ci * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
16262306a36Sopenharmony_ci *  which are not propagated to the float upon packing.
16362306a36Sopenharmony_ci */
16462306a36Sopenharmony_ci#define VFP_SINGLE_MANTISSA_BITS	(23)
16562306a36Sopenharmony_ci#define VFP_SINGLE_EXPONENT_BITS	(8)
16662306a36Sopenharmony_ci#define VFP_SINGLE_LOW_BITS		(32 - VFP_SINGLE_MANTISSA_BITS - 2)
16762306a36Sopenharmony_ci#define VFP_SINGLE_LOW_BITS_MASK	((1 << VFP_SINGLE_LOW_BITS) - 1)
16862306a36Sopenharmony_ci
16962306a36Sopenharmony_ci/*
17062306a36Sopenharmony_ci * The bit in an unpacked float which indicates that it is a quiet NaN
17162306a36Sopenharmony_ci */
17262306a36Sopenharmony_ci#define VFP_SINGLE_SIGNIFICAND_QNAN	(1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
17362306a36Sopenharmony_ci
17462306a36Sopenharmony_ci/*
17562306a36Sopenharmony_ci * Operations on packed single-precision numbers
17662306a36Sopenharmony_ci */
17762306a36Sopenharmony_ci#define vfp_single_packed_sign(v)	((v) & 0x80000000)
17862306a36Sopenharmony_ci#define vfp_single_packed_negate(v)	((v) ^ 0x80000000)
17962306a36Sopenharmony_ci#define vfp_single_packed_abs(v)	((v) & ~0x80000000)
18062306a36Sopenharmony_ci#define vfp_single_packed_exponent(v)	(((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
18162306a36Sopenharmony_ci#define vfp_single_packed_mantissa(v)	((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
18262306a36Sopenharmony_ci
18362306a36Sopenharmony_ci/*
18462306a36Sopenharmony_ci * Unpack a single-precision float.  Note that this returns the magnitude
18562306a36Sopenharmony_ci * of the single-precision float mantissa with the 1. if necessary,
18662306a36Sopenharmony_ci * aligned to bit 30.
18762306a36Sopenharmony_ci */
18862306a36Sopenharmony_cistatic inline void vfp_single_unpack(struct vfp_single *s, s32 val)
18962306a36Sopenharmony_ci{
19062306a36Sopenharmony_ci	u32 significand;
19162306a36Sopenharmony_ci
19262306a36Sopenharmony_ci	s->sign = vfp_single_packed_sign(val) >> 16,
19362306a36Sopenharmony_ci	s->exponent = vfp_single_packed_exponent(val);
19462306a36Sopenharmony_ci
19562306a36Sopenharmony_ci	significand = (u32) val;
19662306a36Sopenharmony_ci	significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
19762306a36Sopenharmony_ci	if (s->exponent && s->exponent != 255)
19862306a36Sopenharmony_ci		significand |= 0x40000000;
19962306a36Sopenharmony_ci	s->significand = significand;
20062306a36Sopenharmony_ci}
20162306a36Sopenharmony_ci
20262306a36Sopenharmony_ci/*
20362306a36Sopenharmony_ci * Re-pack a single-precision float.  This assumes that the float is
20462306a36Sopenharmony_ci * already normalised such that the MSB is bit 30, _not_ bit 31.
20562306a36Sopenharmony_ci */
20662306a36Sopenharmony_cistatic inline s32 vfp_single_pack(struct vfp_single *s)
20762306a36Sopenharmony_ci{
20862306a36Sopenharmony_ci	u32 val;
20962306a36Sopenharmony_ci	val = (s->sign << 16) +
21062306a36Sopenharmony_ci	      (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
21162306a36Sopenharmony_ci	      (s->significand >> VFP_SINGLE_LOW_BITS);
21262306a36Sopenharmony_ci	return (s32)val;
21362306a36Sopenharmony_ci}
21462306a36Sopenharmony_ci
21562306a36Sopenharmony_ci#define VFP_NUMBER		(1<<0)
21662306a36Sopenharmony_ci#define VFP_ZERO		(1<<1)
21762306a36Sopenharmony_ci#define VFP_DENORMAL		(1<<2)
21862306a36Sopenharmony_ci#define VFP_INFINITY		(1<<3)
21962306a36Sopenharmony_ci#define VFP_NAN			(1<<4)
22062306a36Sopenharmony_ci#define VFP_NAN_SIGNAL		(1<<5)
22162306a36Sopenharmony_ci
22262306a36Sopenharmony_ci#define VFP_QNAN		(VFP_NAN)
22362306a36Sopenharmony_ci#define VFP_SNAN		(VFP_NAN|VFP_NAN_SIGNAL)
22462306a36Sopenharmony_ci
22562306a36Sopenharmony_cistatic inline int vfp_single_type(struct vfp_single *s)
22662306a36Sopenharmony_ci{
22762306a36Sopenharmony_ci	int type = VFP_NUMBER;
22862306a36Sopenharmony_ci	if (s->exponent == 255) {
22962306a36Sopenharmony_ci		if (s->significand == 0)
23062306a36Sopenharmony_ci			type = VFP_INFINITY;
23162306a36Sopenharmony_ci		else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
23262306a36Sopenharmony_ci			type = VFP_QNAN;
23362306a36Sopenharmony_ci		else
23462306a36Sopenharmony_ci			type = VFP_SNAN;
23562306a36Sopenharmony_ci	} else if (s->exponent == 0) {
23662306a36Sopenharmony_ci		if (s->significand == 0)
23762306a36Sopenharmony_ci			type |= VFP_ZERO;
23862306a36Sopenharmony_ci		else
23962306a36Sopenharmony_ci			type |= VFP_DENORMAL;
24062306a36Sopenharmony_ci	}
24162306a36Sopenharmony_ci	return type;
24262306a36Sopenharmony_ci}
24362306a36Sopenharmony_ci
24462306a36Sopenharmony_ci#ifndef DEBUG
24562306a36Sopenharmony_ci#define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
24662306a36Sopenharmony_ciu32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);
24762306a36Sopenharmony_ci#else
24862306a36Sopenharmony_ciu32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
24962306a36Sopenharmony_ci#endif
25062306a36Sopenharmony_ci
25162306a36Sopenharmony_ci/*
25262306a36Sopenharmony_ci * Double-precision
25362306a36Sopenharmony_ci */
25462306a36Sopenharmony_cistruct vfp_double {
25562306a36Sopenharmony_ci	s16	exponent;
25662306a36Sopenharmony_ci	u16	sign;
25762306a36Sopenharmony_ci	u64	significand;
25862306a36Sopenharmony_ci};
25962306a36Sopenharmony_ci
26062306a36Sopenharmony_ci/*
26162306a36Sopenharmony_ci * VFP_REG_ZERO is a special register number for vfp_get_double
26262306a36Sopenharmony_ci * which returns (double)0.0.  This is useful for the compare with
26362306a36Sopenharmony_ci * zero instructions.
26462306a36Sopenharmony_ci */
26562306a36Sopenharmony_ci#ifdef CONFIG_VFPv3
26662306a36Sopenharmony_ci#define VFP_REG_ZERO	32
26762306a36Sopenharmony_ci#else
26862306a36Sopenharmony_ci#define VFP_REG_ZERO	16
26962306a36Sopenharmony_ci#endif
27062306a36Sopenharmony_ciasmlinkage u64 vfp_get_double(unsigned int reg);
27162306a36Sopenharmony_ciasmlinkage void vfp_put_double(u64 val, unsigned int reg);
27262306a36Sopenharmony_ci
27362306a36Sopenharmony_ci#define VFP_DOUBLE_MANTISSA_BITS	(52)
27462306a36Sopenharmony_ci#define VFP_DOUBLE_EXPONENT_BITS	(11)
27562306a36Sopenharmony_ci#define VFP_DOUBLE_LOW_BITS		(64 - VFP_DOUBLE_MANTISSA_BITS - 2)
27662306a36Sopenharmony_ci#define VFP_DOUBLE_LOW_BITS_MASK	((1 << VFP_DOUBLE_LOW_BITS) - 1)
27762306a36Sopenharmony_ci
27862306a36Sopenharmony_ci/*
27962306a36Sopenharmony_ci * The bit in an unpacked double which indicates that it is a quiet NaN
28062306a36Sopenharmony_ci */
28162306a36Sopenharmony_ci#define VFP_DOUBLE_SIGNIFICAND_QNAN	(1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
28262306a36Sopenharmony_ci
28362306a36Sopenharmony_ci/*
28462306a36Sopenharmony_ci * Operations on packed single-precision numbers
28562306a36Sopenharmony_ci */
28662306a36Sopenharmony_ci#define vfp_double_packed_sign(v)	((v) & (1ULL << 63))
28762306a36Sopenharmony_ci#define vfp_double_packed_negate(v)	((v) ^ (1ULL << 63))
28862306a36Sopenharmony_ci#define vfp_double_packed_abs(v)	((v) & ~(1ULL << 63))
28962306a36Sopenharmony_ci#define vfp_double_packed_exponent(v)	(((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
29062306a36Sopenharmony_ci#define vfp_double_packed_mantissa(v)	((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
29162306a36Sopenharmony_ci
29262306a36Sopenharmony_ci/*
29362306a36Sopenharmony_ci * Unpack a double-precision float.  Note that this returns the magnitude
29462306a36Sopenharmony_ci * of the double-precision float mantissa with the 1. if necessary,
29562306a36Sopenharmony_ci * aligned to bit 62.
29662306a36Sopenharmony_ci */
29762306a36Sopenharmony_cistatic inline void vfp_double_unpack(struct vfp_double *s, s64 val)
29862306a36Sopenharmony_ci{
29962306a36Sopenharmony_ci	u64 significand;
30062306a36Sopenharmony_ci
30162306a36Sopenharmony_ci	s->sign = vfp_double_packed_sign(val) >> 48;
30262306a36Sopenharmony_ci	s->exponent = vfp_double_packed_exponent(val);
30362306a36Sopenharmony_ci
30462306a36Sopenharmony_ci	significand = (u64) val;
30562306a36Sopenharmony_ci	significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
30662306a36Sopenharmony_ci	if (s->exponent && s->exponent != 2047)
30762306a36Sopenharmony_ci		significand |= (1ULL << 62);
30862306a36Sopenharmony_ci	s->significand = significand;
30962306a36Sopenharmony_ci}
31062306a36Sopenharmony_ci
31162306a36Sopenharmony_ci/*
31262306a36Sopenharmony_ci * Re-pack a double-precision float.  This assumes that the float is
31362306a36Sopenharmony_ci * already normalised such that the MSB is bit 30, _not_ bit 31.
31462306a36Sopenharmony_ci */
31562306a36Sopenharmony_cistatic inline s64 vfp_double_pack(struct vfp_double *s)
31662306a36Sopenharmony_ci{
31762306a36Sopenharmony_ci	u64 val;
31862306a36Sopenharmony_ci	val = ((u64)s->sign << 48) +
31962306a36Sopenharmony_ci	      ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
32062306a36Sopenharmony_ci	      (s->significand >> VFP_DOUBLE_LOW_BITS);
32162306a36Sopenharmony_ci	return (s64)val;
32262306a36Sopenharmony_ci}
32362306a36Sopenharmony_ci
32462306a36Sopenharmony_cistatic inline int vfp_double_type(struct vfp_double *s)
32562306a36Sopenharmony_ci{
32662306a36Sopenharmony_ci	int type = VFP_NUMBER;
32762306a36Sopenharmony_ci	if (s->exponent == 2047) {
32862306a36Sopenharmony_ci		if (s->significand == 0)
32962306a36Sopenharmony_ci			type = VFP_INFINITY;
33062306a36Sopenharmony_ci		else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
33162306a36Sopenharmony_ci			type = VFP_QNAN;
33262306a36Sopenharmony_ci		else
33362306a36Sopenharmony_ci			type = VFP_SNAN;
33462306a36Sopenharmony_ci	} else if (s->exponent == 0) {
33562306a36Sopenharmony_ci		if (s->significand == 0)
33662306a36Sopenharmony_ci			type |= VFP_ZERO;
33762306a36Sopenharmony_ci		else
33862306a36Sopenharmony_ci			type |= VFP_DENORMAL;
33962306a36Sopenharmony_ci	}
34062306a36Sopenharmony_ci	return type;
34162306a36Sopenharmony_ci}
34262306a36Sopenharmony_ci
34362306a36Sopenharmony_ciu32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
34462306a36Sopenharmony_ci
34562306a36Sopenharmony_ciu32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);
34662306a36Sopenharmony_ci
34762306a36Sopenharmony_ci/*
34862306a36Sopenharmony_ci * A special flag to tell the normalisation code not to normalise.
34962306a36Sopenharmony_ci */
35062306a36Sopenharmony_ci#define VFP_NAN_FLAG	0x100
35162306a36Sopenharmony_ci
35262306a36Sopenharmony_ci/*
35362306a36Sopenharmony_ci * A bit pattern used to indicate the initial (unset) value of the
35462306a36Sopenharmony_ci * exception mask, in case nothing handles an instruction.  This
35562306a36Sopenharmony_ci * doesn't include the NAN flag, which get masked out before
35662306a36Sopenharmony_ci * we check for an error.
35762306a36Sopenharmony_ci */
35862306a36Sopenharmony_ci#define VFP_EXCEPTION_ERROR	((u32)-1 & ~VFP_NAN_FLAG)
35962306a36Sopenharmony_ci
36062306a36Sopenharmony_ci/*
36162306a36Sopenharmony_ci * A flag to tell vfp instruction type.
36262306a36Sopenharmony_ci *  OP_SCALAR - this operation always operates in scalar mode
36362306a36Sopenharmony_ci *  OP_SD - the instruction exceptionally writes to a single precision result.
36462306a36Sopenharmony_ci *  OP_DD - the instruction exceptionally writes to a double precision result.
36562306a36Sopenharmony_ci *  OP_SM - the instruction exceptionally reads from a single precision operand.
36662306a36Sopenharmony_ci */
36762306a36Sopenharmony_ci#define OP_SCALAR	(1 << 0)
36862306a36Sopenharmony_ci#define OP_SD		(1 << 1)
36962306a36Sopenharmony_ci#define OP_DD		(1 << 1)
37062306a36Sopenharmony_ci#define OP_SM		(1 << 2)
37162306a36Sopenharmony_ci
37262306a36Sopenharmony_cistruct op {
37362306a36Sopenharmony_ci	u32 (* const fn)(int dd, int dn, int dm, u32 fpscr);
37462306a36Sopenharmony_ci	u32 flags;
37562306a36Sopenharmony_ci};
37662306a36Sopenharmony_ci
37762306a36Sopenharmony_ciasmlinkage void vfp_save_state(void *location, u32 fpexc);
37862306a36Sopenharmony_ciasmlinkage u32 vfp_load_state(const void *location);
379