162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only 262306a36Sopenharmony_ci/* 362306a36Sopenharmony_ci * linux/arch/arm/mm/fault-armv.c 462306a36Sopenharmony_ci * 562306a36Sopenharmony_ci * Copyright (C) 1995 Linus Torvalds 662306a36Sopenharmony_ci * Modifications for ARM processor (c) 1995-2002 Russell King 762306a36Sopenharmony_ci */ 862306a36Sopenharmony_ci#include <linux/sched.h> 962306a36Sopenharmony_ci#include <linux/kernel.h> 1062306a36Sopenharmony_ci#include <linux/mm.h> 1162306a36Sopenharmony_ci#include <linux/bitops.h> 1262306a36Sopenharmony_ci#include <linux/vmalloc.h> 1362306a36Sopenharmony_ci#include <linux/init.h> 1462306a36Sopenharmony_ci#include <linux/pagemap.h> 1562306a36Sopenharmony_ci#include <linux/gfp.h> 1662306a36Sopenharmony_ci 1762306a36Sopenharmony_ci#include <asm/bugs.h> 1862306a36Sopenharmony_ci#include <asm/cacheflush.h> 1962306a36Sopenharmony_ci#include <asm/cachetype.h> 2062306a36Sopenharmony_ci#include <asm/tlbflush.h> 2162306a36Sopenharmony_ci 2262306a36Sopenharmony_ci#include "mm.h" 2362306a36Sopenharmony_ci 2462306a36Sopenharmony_cistatic pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE; 2562306a36Sopenharmony_ci 2662306a36Sopenharmony_ci#if __LINUX_ARM_ARCH__ < 6 2762306a36Sopenharmony_ci/* 2862306a36Sopenharmony_ci * We take the easy way out of this problem - we make the 2962306a36Sopenharmony_ci * PTE uncacheable. However, we leave the write buffer on. 3062306a36Sopenharmony_ci * 3162306a36Sopenharmony_ci * Note that the pte lock held when calling update_mmu_cache must also 3262306a36Sopenharmony_ci * guard the pte (somewhere else in the same mm) that we modify here. 3362306a36Sopenharmony_ci * Therefore those configurations which might call adjust_pte (those 3462306a36Sopenharmony_ci * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock. 3562306a36Sopenharmony_ci */ 3662306a36Sopenharmony_cistatic int do_adjust_pte(struct vm_area_struct *vma, unsigned long address, 3762306a36Sopenharmony_ci unsigned long pfn, pte_t *ptep) 3862306a36Sopenharmony_ci{ 3962306a36Sopenharmony_ci pte_t entry = *ptep; 4062306a36Sopenharmony_ci int ret; 4162306a36Sopenharmony_ci 4262306a36Sopenharmony_ci /* 4362306a36Sopenharmony_ci * If this page is present, it's actually being shared. 4462306a36Sopenharmony_ci */ 4562306a36Sopenharmony_ci ret = pte_present(entry); 4662306a36Sopenharmony_ci 4762306a36Sopenharmony_ci /* 4862306a36Sopenharmony_ci * If this page isn't present, or is already setup to 4962306a36Sopenharmony_ci * fault (ie, is old), we can safely ignore any issues. 5062306a36Sopenharmony_ci */ 5162306a36Sopenharmony_ci if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) { 5262306a36Sopenharmony_ci flush_cache_page(vma, address, pfn); 5362306a36Sopenharmony_ci outer_flush_range((pfn << PAGE_SHIFT), 5462306a36Sopenharmony_ci (pfn << PAGE_SHIFT) + PAGE_SIZE); 5562306a36Sopenharmony_ci pte_val(entry) &= ~L_PTE_MT_MASK; 5662306a36Sopenharmony_ci pte_val(entry) |= shared_pte_mask; 5762306a36Sopenharmony_ci set_pte_at(vma->vm_mm, address, ptep, entry); 5862306a36Sopenharmony_ci flush_tlb_page(vma, address); 5962306a36Sopenharmony_ci } 6062306a36Sopenharmony_ci 6162306a36Sopenharmony_ci return ret; 6262306a36Sopenharmony_ci} 6362306a36Sopenharmony_ci 6462306a36Sopenharmony_ci#if USE_SPLIT_PTE_PTLOCKS 6562306a36Sopenharmony_ci/* 6662306a36Sopenharmony_ci * If we are using split PTE locks, then we need to take the page 6762306a36Sopenharmony_ci * lock here. Otherwise we are using shared mm->page_table_lock 6862306a36Sopenharmony_ci * which is already locked, thus cannot take it. 6962306a36Sopenharmony_ci */ 7062306a36Sopenharmony_cistatic inline void do_pte_lock(spinlock_t *ptl) 7162306a36Sopenharmony_ci{ 7262306a36Sopenharmony_ci /* 7362306a36Sopenharmony_ci * Use nested version here to indicate that we are already 7462306a36Sopenharmony_ci * holding one similar spinlock. 7562306a36Sopenharmony_ci */ 7662306a36Sopenharmony_ci spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 7762306a36Sopenharmony_ci} 7862306a36Sopenharmony_ci 7962306a36Sopenharmony_cistatic inline void do_pte_unlock(spinlock_t *ptl) 8062306a36Sopenharmony_ci{ 8162306a36Sopenharmony_ci spin_unlock(ptl); 8262306a36Sopenharmony_ci} 8362306a36Sopenharmony_ci#else /* !USE_SPLIT_PTE_PTLOCKS */ 8462306a36Sopenharmony_cistatic inline void do_pte_lock(spinlock_t *ptl) {} 8562306a36Sopenharmony_cistatic inline void do_pte_unlock(spinlock_t *ptl) {} 8662306a36Sopenharmony_ci#endif /* USE_SPLIT_PTE_PTLOCKS */ 8762306a36Sopenharmony_ci 8862306a36Sopenharmony_cistatic int adjust_pte(struct vm_area_struct *vma, unsigned long address, 8962306a36Sopenharmony_ci unsigned long pfn) 9062306a36Sopenharmony_ci{ 9162306a36Sopenharmony_ci spinlock_t *ptl; 9262306a36Sopenharmony_ci pgd_t *pgd; 9362306a36Sopenharmony_ci p4d_t *p4d; 9462306a36Sopenharmony_ci pud_t *pud; 9562306a36Sopenharmony_ci pmd_t *pmd; 9662306a36Sopenharmony_ci pte_t *pte; 9762306a36Sopenharmony_ci int ret; 9862306a36Sopenharmony_ci 9962306a36Sopenharmony_ci pgd = pgd_offset(vma->vm_mm, address); 10062306a36Sopenharmony_ci if (pgd_none_or_clear_bad(pgd)) 10162306a36Sopenharmony_ci return 0; 10262306a36Sopenharmony_ci 10362306a36Sopenharmony_ci p4d = p4d_offset(pgd, address); 10462306a36Sopenharmony_ci if (p4d_none_or_clear_bad(p4d)) 10562306a36Sopenharmony_ci return 0; 10662306a36Sopenharmony_ci 10762306a36Sopenharmony_ci pud = pud_offset(p4d, address); 10862306a36Sopenharmony_ci if (pud_none_or_clear_bad(pud)) 10962306a36Sopenharmony_ci return 0; 11062306a36Sopenharmony_ci 11162306a36Sopenharmony_ci pmd = pmd_offset(pud, address); 11262306a36Sopenharmony_ci if (pmd_none_or_clear_bad(pmd)) 11362306a36Sopenharmony_ci return 0; 11462306a36Sopenharmony_ci 11562306a36Sopenharmony_ci /* 11662306a36Sopenharmony_ci * This is called while another page table is mapped, so we 11762306a36Sopenharmony_ci * must use the nested version. This also means we need to 11862306a36Sopenharmony_ci * open-code the spin-locking. 11962306a36Sopenharmony_ci */ 12062306a36Sopenharmony_ci pte = pte_offset_map_nolock(vma->vm_mm, pmd, address, &ptl); 12162306a36Sopenharmony_ci if (!pte) 12262306a36Sopenharmony_ci return 0; 12362306a36Sopenharmony_ci 12462306a36Sopenharmony_ci do_pte_lock(ptl); 12562306a36Sopenharmony_ci 12662306a36Sopenharmony_ci ret = do_adjust_pte(vma, address, pfn, pte); 12762306a36Sopenharmony_ci 12862306a36Sopenharmony_ci do_pte_unlock(ptl); 12962306a36Sopenharmony_ci pte_unmap(pte); 13062306a36Sopenharmony_ci 13162306a36Sopenharmony_ci return ret; 13262306a36Sopenharmony_ci} 13362306a36Sopenharmony_ci 13462306a36Sopenharmony_cistatic void 13562306a36Sopenharmony_cimake_coherent(struct address_space *mapping, struct vm_area_struct *vma, 13662306a36Sopenharmony_ci unsigned long addr, pte_t *ptep, unsigned long pfn) 13762306a36Sopenharmony_ci{ 13862306a36Sopenharmony_ci struct mm_struct *mm = vma->vm_mm; 13962306a36Sopenharmony_ci struct vm_area_struct *mpnt; 14062306a36Sopenharmony_ci unsigned long offset; 14162306a36Sopenharmony_ci pgoff_t pgoff; 14262306a36Sopenharmony_ci int aliases = 0; 14362306a36Sopenharmony_ci 14462306a36Sopenharmony_ci pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT); 14562306a36Sopenharmony_ci 14662306a36Sopenharmony_ci /* 14762306a36Sopenharmony_ci * If we have any shared mappings that are in the same mm 14862306a36Sopenharmony_ci * space, then we need to handle them specially to maintain 14962306a36Sopenharmony_ci * cache coherency. 15062306a36Sopenharmony_ci */ 15162306a36Sopenharmony_ci flush_dcache_mmap_lock(mapping); 15262306a36Sopenharmony_ci vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) { 15362306a36Sopenharmony_ci /* 15462306a36Sopenharmony_ci * If this VMA is not in our MM, we can ignore it. 15562306a36Sopenharmony_ci * Note that we intentionally mask out the VMA 15662306a36Sopenharmony_ci * that we are fixing up. 15762306a36Sopenharmony_ci */ 15862306a36Sopenharmony_ci if (mpnt->vm_mm != mm || mpnt == vma) 15962306a36Sopenharmony_ci continue; 16062306a36Sopenharmony_ci if (!(mpnt->vm_flags & VM_MAYSHARE)) 16162306a36Sopenharmony_ci continue; 16262306a36Sopenharmony_ci offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT; 16362306a36Sopenharmony_ci aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn); 16462306a36Sopenharmony_ci } 16562306a36Sopenharmony_ci flush_dcache_mmap_unlock(mapping); 16662306a36Sopenharmony_ci if (aliases) 16762306a36Sopenharmony_ci do_adjust_pte(vma, addr, pfn, ptep); 16862306a36Sopenharmony_ci} 16962306a36Sopenharmony_ci 17062306a36Sopenharmony_ci/* 17162306a36Sopenharmony_ci * Take care of architecture specific things when placing a new PTE into 17262306a36Sopenharmony_ci * a page table, or changing an existing PTE. Basically, there are two 17362306a36Sopenharmony_ci * things that we need to take care of: 17462306a36Sopenharmony_ci * 17562306a36Sopenharmony_ci * 1. If PG_dcache_clean is not set for the page, we need to ensure 17662306a36Sopenharmony_ci * that any cache entries for the kernels virtual memory 17762306a36Sopenharmony_ci * range are written back to the page. 17862306a36Sopenharmony_ci * 2. If we have multiple shared mappings of the same space in 17962306a36Sopenharmony_ci * an object, we need to deal with the cache aliasing issues. 18062306a36Sopenharmony_ci * 18162306a36Sopenharmony_ci * Note that the pte lock will be held. 18262306a36Sopenharmony_ci */ 18362306a36Sopenharmony_civoid update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma, 18462306a36Sopenharmony_ci unsigned long addr, pte_t *ptep, unsigned int nr) 18562306a36Sopenharmony_ci{ 18662306a36Sopenharmony_ci unsigned long pfn = pte_pfn(*ptep); 18762306a36Sopenharmony_ci struct address_space *mapping; 18862306a36Sopenharmony_ci struct folio *folio; 18962306a36Sopenharmony_ci 19062306a36Sopenharmony_ci if (!pfn_valid(pfn)) 19162306a36Sopenharmony_ci return; 19262306a36Sopenharmony_ci 19362306a36Sopenharmony_ci /* 19462306a36Sopenharmony_ci * The zero page is never written to, so never has any dirty 19562306a36Sopenharmony_ci * cache lines, and therefore never needs to be flushed. 19662306a36Sopenharmony_ci */ 19762306a36Sopenharmony_ci if (is_zero_pfn(pfn)) 19862306a36Sopenharmony_ci return; 19962306a36Sopenharmony_ci 20062306a36Sopenharmony_ci folio = page_folio(pfn_to_page(pfn)); 20162306a36Sopenharmony_ci mapping = folio_flush_mapping(folio); 20262306a36Sopenharmony_ci if (!test_and_set_bit(PG_dcache_clean, &folio->flags)) 20362306a36Sopenharmony_ci __flush_dcache_folio(mapping, folio); 20462306a36Sopenharmony_ci if (mapping) { 20562306a36Sopenharmony_ci if (cache_is_vivt()) 20662306a36Sopenharmony_ci make_coherent(mapping, vma, addr, ptep, pfn); 20762306a36Sopenharmony_ci else if (vma->vm_flags & VM_EXEC) 20862306a36Sopenharmony_ci __flush_icache_all(); 20962306a36Sopenharmony_ci } 21062306a36Sopenharmony_ci} 21162306a36Sopenharmony_ci#endif /* __LINUX_ARM_ARCH__ < 6 */ 21262306a36Sopenharmony_ci 21362306a36Sopenharmony_ci/* 21462306a36Sopenharmony_ci * Check whether the write buffer has physical address aliasing 21562306a36Sopenharmony_ci * issues. If it has, we need to avoid them for the case where 21662306a36Sopenharmony_ci * we have several shared mappings of the same object in user 21762306a36Sopenharmony_ci * space. 21862306a36Sopenharmony_ci */ 21962306a36Sopenharmony_cistatic int __init check_writebuffer(unsigned long *p1, unsigned long *p2) 22062306a36Sopenharmony_ci{ 22162306a36Sopenharmony_ci register unsigned long zero = 0, one = 1, val; 22262306a36Sopenharmony_ci 22362306a36Sopenharmony_ci local_irq_disable(); 22462306a36Sopenharmony_ci mb(); 22562306a36Sopenharmony_ci *p1 = one; 22662306a36Sopenharmony_ci mb(); 22762306a36Sopenharmony_ci *p2 = zero; 22862306a36Sopenharmony_ci mb(); 22962306a36Sopenharmony_ci val = *p1; 23062306a36Sopenharmony_ci mb(); 23162306a36Sopenharmony_ci local_irq_enable(); 23262306a36Sopenharmony_ci return val != zero; 23362306a36Sopenharmony_ci} 23462306a36Sopenharmony_ci 23562306a36Sopenharmony_civoid __init check_writebuffer_bugs(void) 23662306a36Sopenharmony_ci{ 23762306a36Sopenharmony_ci struct page *page; 23862306a36Sopenharmony_ci const char *reason; 23962306a36Sopenharmony_ci unsigned long v = 1; 24062306a36Sopenharmony_ci 24162306a36Sopenharmony_ci pr_info("CPU: Testing write buffer coherency: "); 24262306a36Sopenharmony_ci 24362306a36Sopenharmony_ci page = alloc_page(GFP_KERNEL); 24462306a36Sopenharmony_ci if (page) { 24562306a36Sopenharmony_ci unsigned long *p1, *p2; 24662306a36Sopenharmony_ci pgprot_t prot = __pgprot_modify(PAGE_KERNEL, 24762306a36Sopenharmony_ci L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE); 24862306a36Sopenharmony_ci 24962306a36Sopenharmony_ci p1 = vmap(&page, 1, VM_IOREMAP, prot); 25062306a36Sopenharmony_ci p2 = vmap(&page, 1, VM_IOREMAP, prot); 25162306a36Sopenharmony_ci 25262306a36Sopenharmony_ci if (p1 && p2) { 25362306a36Sopenharmony_ci v = check_writebuffer(p1, p2); 25462306a36Sopenharmony_ci reason = "enabling work-around"; 25562306a36Sopenharmony_ci } else { 25662306a36Sopenharmony_ci reason = "unable to map memory\n"; 25762306a36Sopenharmony_ci } 25862306a36Sopenharmony_ci 25962306a36Sopenharmony_ci vunmap(p1); 26062306a36Sopenharmony_ci vunmap(p2); 26162306a36Sopenharmony_ci put_page(page); 26262306a36Sopenharmony_ci } else { 26362306a36Sopenharmony_ci reason = "unable to grab page\n"; 26462306a36Sopenharmony_ci } 26562306a36Sopenharmony_ci 26662306a36Sopenharmony_ci if (v) { 26762306a36Sopenharmony_ci pr_cont("failed, %s\n", reason); 26862306a36Sopenharmony_ci shared_pte_mask = L_PTE_MT_UNCACHED; 26962306a36Sopenharmony_ci } else { 27062306a36Sopenharmony_ci pr_cont("ok\n"); 27162306a36Sopenharmony_ci } 27262306a36Sopenharmony_ci} 273