162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci *  linux/arch/arm/mm/fault-armv.c
462306a36Sopenharmony_ci *
562306a36Sopenharmony_ci *  Copyright (C) 1995  Linus Torvalds
662306a36Sopenharmony_ci *  Modifications for ARM processor (c) 1995-2002 Russell King
762306a36Sopenharmony_ci */
862306a36Sopenharmony_ci#include <linux/sched.h>
962306a36Sopenharmony_ci#include <linux/kernel.h>
1062306a36Sopenharmony_ci#include <linux/mm.h>
1162306a36Sopenharmony_ci#include <linux/bitops.h>
1262306a36Sopenharmony_ci#include <linux/vmalloc.h>
1362306a36Sopenharmony_ci#include <linux/init.h>
1462306a36Sopenharmony_ci#include <linux/pagemap.h>
1562306a36Sopenharmony_ci#include <linux/gfp.h>
1662306a36Sopenharmony_ci
1762306a36Sopenharmony_ci#include <asm/bugs.h>
1862306a36Sopenharmony_ci#include <asm/cacheflush.h>
1962306a36Sopenharmony_ci#include <asm/cachetype.h>
2062306a36Sopenharmony_ci#include <asm/tlbflush.h>
2162306a36Sopenharmony_ci
2262306a36Sopenharmony_ci#include "mm.h"
2362306a36Sopenharmony_ci
2462306a36Sopenharmony_cistatic pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
2562306a36Sopenharmony_ci
2662306a36Sopenharmony_ci#if __LINUX_ARM_ARCH__ < 6
2762306a36Sopenharmony_ci/*
2862306a36Sopenharmony_ci * We take the easy way out of this problem - we make the
2962306a36Sopenharmony_ci * PTE uncacheable.  However, we leave the write buffer on.
3062306a36Sopenharmony_ci *
3162306a36Sopenharmony_ci * Note that the pte lock held when calling update_mmu_cache must also
3262306a36Sopenharmony_ci * guard the pte (somewhere else in the same mm) that we modify here.
3362306a36Sopenharmony_ci * Therefore those configurations which might call adjust_pte (those
3462306a36Sopenharmony_ci * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
3562306a36Sopenharmony_ci */
3662306a36Sopenharmony_cistatic int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
3762306a36Sopenharmony_ci	unsigned long pfn, pte_t *ptep)
3862306a36Sopenharmony_ci{
3962306a36Sopenharmony_ci	pte_t entry = *ptep;
4062306a36Sopenharmony_ci	int ret;
4162306a36Sopenharmony_ci
4262306a36Sopenharmony_ci	/*
4362306a36Sopenharmony_ci	 * If this page is present, it's actually being shared.
4462306a36Sopenharmony_ci	 */
4562306a36Sopenharmony_ci	ret = pte_present(entry);
4662306a36Sopenharmony_ci
4762306a36Sopenharmony_ci	/*
4862306a36Sopenharmony_ci	 * If this page isn't present, or is already setup to
4962306a36Sopenharmony_ci	 * fault (ie, is old), we can safely ignore any issues.
5062306a36Sopenharmony_ci	 */
5162306a36Sopenharmony_ci	if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
5262306a36Sopenharmony_ci		flush_cache_page(vma, address, pfn);
5362306a36Sopenharmony_ci		outer_flush_range((pfn << PAGE_SHIFT),
5462306a36Sopenharmony_ci				  (pfn << PAGE_SHIFT) + PAGE_SIZE);
5562306a36Sopenharmony_ci		pte_val(entry) &= ~L_PTE_MT_MASK;
5662306a36Sopenharmony_ci		pte_val(entry) |= shared_pte_mask;
5762306a36Sopenharmony_ci		set_pte_at(vma->vm_mm, address, ptep, entry);
5862306a36Sopenharmony_ci		flush_tlb_page(vma, address);
5962306a36Sopenharmony_ci	}
6062306a36Sopenharmony_ci
6162306a36Sopenharmony_ci	return ret;
6262306a36Sopenharmony_ci}
6362306a36Sopenharmony_ci
6462306a36Sopenharmony_ci#if USE_SPLIT_PTE_PTLOCKS
6562306a36Sopenharmony_ci/*
6662306a36Sopenharmony_ci * If we are using split PTE locks, then we need to take the page
6762306a36Sopenharmony_ci * lock here.  Otherwise we are using shared mm->page_table_lock
6862306a36Sopenharmony_ci * which is already locked, thus cannot take it.
6962306a36Sopenharmony_ci */
7062306a36Sopenharmony_cistatic inline void do_pte_lock(spinlock_t *ptl)
7162306a36Sopenharmony_ci{
7262306a36Sopenharmony_ci	/*
7362306a36Sopenharmony_ci	 * Use nested version here to indicate that we are already
7462306a36Sopenharmony_ci	 * holding one similar spinlock.
7562306a36Sopenharmony_ci	 */
7662306a36Sopenharmony_ci	spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
7762306a36Sopenharmony_ci}
7862306a36Sopenharmony_ci
7962306a36Sopenharmony_cistatic inline void do_pte_unlock(spinlock_t *ptl)
8062306a36Sopenharmony_ci{
8162306a36Sopenharmony_ci	spin_unlock(ptl);
8262306a36Sopenharmony_ci}
8362306a36Sopenharmony_ci#else /* !USE_SPLIT_PTE_PTLOCKS */
8462306a36Sopenharmony_cistatic inline void do_pte_lock(spinlock_t *ptl) {}
8562306a36Sopenharmony_cistatic inline void do_pte_unlock(spinlock_t *ptl) {}
8662306a36Sopenharmony_ci#endif /* USE_SPLIT_PTE_PTLOCKS */
8762306a36Sopenharmony_ci
8862306a36Sopenharmony_cistatic int adjust_pte(struct vm_area_struct *vma, unsigned long address,
8962306a36Sopenharmony_ci	unsigned long pfn)
9062306a36Sopenharmony_ci{
9162306a36Sopenharmony_ci	spinlock_t *ptl;
9262306a36Sopenharmony_ci	pgd_t *pgd;
9362306a36Sopenharmony_ci	p4d_t *p4d;
9462306a36Sopenharmony_ci	pud_t *pud;
9562306a36Sopenharmony_ci	pmd_t *pmd;
9662306a36Sopenharmony_ci	pte_t *pte;
9762306a36Sopenharmony_ci	int ret;
9862306a36Sopenharmony_ci
9962306a36Sopenharmony_ci	pgd = pgd_offset(vma->vm_mm, address);
10062306a36Sopenharmony_ci	if (pgd_none_or_clear_bad(pgd))
10162306a36Sopenharmony_ci		return 0;
10262306a36Sopenharmony_ci
10362306a36Sopenharmony_ci	p4d = p4d_offset(pgd, address);
10462306a36Sopenharmony_ci	if (p4d_none_or_clear_bad(p4d))
10562306a36Sopenharmony_ci		return 0;
10662306a36Sopenharmony_ci
10762306a36Sopenharmony_ci	pud = pud_offset(p4d, address);
10862306a36Sopenharmony_ci	if (pud_none_or_clear_bad(pud))
10962306a36Sopenharmony_ci		return 0;
11062306a36Sopenharmony_ci
11162306a36Sopenharmony_ci	pmd = pmd_offset(pud, address);
11262306a36Sopenharmony_ci	if (pmd_none_or_clear_bad(pmd))
11362306a36Sopenharmony_ci		return 0;
11462306a36Sopenharmony_ci
11562306a36Sopenharmony_ci	/*
11662306a36Sopenharmony_ci	 * This is called while another page table is mapped, so we
11762306a36Sopenharmony_ci	 * must use the nested version.  This also means we need to
11862306a36Sopenharmony_ci	 * open-code the spin-locking.
11962306a36Sopenharmony_ci	 */
12062306a36Sopenharmony_ci	pte = pte_offset_map_nolock(vma->vm_mm, pmd, address, &ptl);
12162306a36Sopenharmony_ci	if (!pte)
12262306a36Sopenharmony_ci		return 0;
12362306a36Sopenharmony_ci
12462306a36Sopenharmony_ci	do_pte_lock(ptl);
12562306a36Sopenharmony_ci
12662306a36Sopenharmony_ci	ret = do_adjust_pte(vma, address, pfn, pte);
12762306a36Sopenharmony_ci
12862306a36Sopenharmony_ci	do_pte_unlock(ptl);
12962306a36Sopenharmony_ci	pte_unmap(pte);
13062306a36Sopenharmony_ci
13162306a36Sopenharmony_ci	return ret;
13262306a36Sopenharmony_ci}
13362306a36Sopenharmony_ci
13462306a36Sopenharmony_cistatic void
13562306a36Sopenharmony_cimake_coherent(struct address_space *mapping, struct vm_area_struct *vma,
13662306a36Sopenharmony_ci	unsigned long addr, pte_t *ptep, unsigned long pfn)
13762306a36Sopenharmony_ci{
13862306a36Sopenharmony_ci	struct mm_struct *mm = vma->vm_mm;
13962306a36Sopenharmony_ci	struct vm_area_struct *mpnt;
14062306a36Sopenharmony_ci	unsigned long offset;
14162306a36Sopenharmony_ci	pgoff_t pgoff;
14262306a36Sopenharmony_ci	int aliases = 0;
14362306a36Sopenharmony_ci
14462306a36Sopenharmony_ci	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
14562306a36Sopenharmony_ci
14662306a36Sopenharmony_ci	/*
14762306a36Sopenharmony_ci	 * If we have any shared mappings that are in the same mm
14862306a36Sopenharmony_ci	 * space, then we need to handle them specially to maintain
14962306a36Sopenharmony_ci	 * cache coherency.
15062306a36Sopenharmony_ci	 */
15162306a36Sopenharmony_ci	flush_dcache_mmap_lock(mapping);
15262306a36Sopenharmony_ci	vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
15362306a36Sopenharmony_ci		/*
15462306a36Sopenharmony_ci		 * If this VMA is not in our MM, we can ignore it.
15562306a36Sopenharmony_ci		 * Note that we intentionally mask out the VMA
15662306a36Sopenharmony_ci		 * that we are fixing up.
15762306a36Sopenharmony_ci		 */
15862306a36Sopenharmony_ci		if (mpnt->vm_mm != mm || mpnt == vma)
15962306a36Sopenharmony_ci			continue;
16062306a36Sopenharmony_ci		if (!(mpnt->vm_flags & VM_MAYSHARE))
16162306a36Sopenharmony_ci			continue;
16262306a36Sopenharmony_ci		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
16362306a36Sopenharmony_ci		aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
16462306a36Sopenharmony_ci	}
16562306a36Sopenharmony_ci	flush_dcache_mmap_unlock(mapping);
16662306a36Sopenharmony_ci	if (aliases)
16762306a36Sopenharmony_ci		do_adjust_pte(vma, addr, pfn, ptep);
16862306a36Sopenharmony_ci}
16962306a36Sopenharmony_ci
17062306a36Sopenharmony_ci/*
17162306a36Sopenharmony_ci * Take care of architecture specific things when placing a new PTE into
17262306a36Sopenharmony_ci * a page table, or changing an existing PTE.  Basically, there are two
17362306a36Sopenharmony_ci * things that we need to take care of:
17462306a36Sopenharmony_ci *
17562306a36Sopenharmony_ci *  1. If PG_dcache_clean is not set for the page, we need to ensure
17662306a36Sopenharmony_ci *     that any cache entries for the kernels virtual memory
17762306a36Sopenharmony_ci *     range are written back to the page.
17862306a36Sopenharmony_ci *  2. If we have multiple shared mappings of the same space in
17962306a36Sopenharmony_ci *     an object, we need to deal with the cache aliasing issues.
18062306a36Sopenharmony_ci *
18162306a36Sopenharmony_ci * Note that the pte lock will be held.
18262306a36Sopenharmony_ci */
18362306a36Sopenharmony_civoid update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma,
18462306a36Sopenharmony_ci		unsigned long addr, pte_t *ptep, unsigned int nr)
18562306a36Sopenharmony_ci{
18662306a36Sopenharmony_ci	unsigned long pfn = pte_pfn(*ptep);
18762306a36Sopenharmony_ci	struct address_space *mapping;
18862306a36Sopenharmony_ci	struct folio *folio;
18962306a36Sopenharmony_ci
19062306a36Sopenharmony_ci	if (!pfn_valid(pfn))
19162306a36Sopenharmony_ci		return;
19262306a36Sopenharmony_ci
19362306a36Sopenharmony_ci	/*
19462306a36Sopenharmony_ci	 * The zero page is never written to, so never has any dirty
19562306a36Sopenharmony_ci	 * cache lines, and therefore never needs to be flushed.
19662306a36Sopenharmony_ci	 */
19762306a36Sopenharmony_ci	if (is_zero_pfn(pfn))
19862306a36Sopenharmony_ci		return;
19962306a36Sopenharmony_ci
20062306a36Sopenharmony_ci	folio = page_folio(pfn_to_page(pfn));
20162306a36Sopenharmony_ci	mapping = folio_flush_mapping(folio);
20262306a36Sopenharmony_ci	if (!test_and_set_bit(PG_dcache_clean, &folio->flags))
20362306a36Sopenharmony_ci		__flush_dcache_folio(mapping, folio);
20462306a36Sopenharmony_ci	if (mapping) {
20562306a36Sopenharmony_ci		if (cache_is_vivt())
20662306a36Sopenharmony_ci			make_coherent(mapping, vma, addr, ptep, pfn);
20762306a36Sopenharmony_ci		else if (vma->vm_flags & VM_EXEC)
20862306a36Sopenharmony_ci			__flush_icache_all();
20962306a36Sopenharmony_ci	}
21062306a36Sopenharmony_ci}
21162306a36Sopenharmony_ci#endif	/* __LINUX_ARM_ARCH__ < 6 */
21262306a36Sopenharmony_ci
21362306a36Sopenharmony_ci/*
21462306a36Sopenharmony_ci * Check whether the write buffer has physical address aliasing
21562306a36Sopenharmony_ci * issues.  If it has, we need to avoid them for the case where
21662306a36Sopenharmony_ci * we have several shared mappings of the same object in user
21762306a36Sopenharmony_ci * space.
21862306a36Sopenharmony_ci */
21962306a36Sopenharmony_cistatic int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
22062306a36Sopenharmony_ci{
22162306a36Sopenharmony_ci	register unsigned long zero = 0, one = 1, val;
22262306a36Sopenharmony_ci
22362306a36Sopenharmony_ci	local_irq_disable();
22462306a36Sopenharmony_ci	mb();
22562306a36Sopenharmony_ci	*p1 = one;
22662306a36Sopenharmony_ci	mb();
22762306a36Sopenharmony_ci	*p2 = zero;
22862306a36Sopenharmony_ci	mb();
22962306a36Sopenharmony_ci	val = *p1;
23062306a36Sopenharmony_ci	mb();
23162306a36Sopenharmony_ci	local_irq_enable();
23262306a36Sopenharmony_ci	return val != zero;
23362306a36Sopenharmony_ci}
23462306a36Sopenharmony_ci
23562306a36Sopenharmony_civoid __init check_writebuffer_bugs(void)
23662306a36Sopenharmony_ci{
23762306a36Sopenharmony_ci	struct page *page;
23862306a36Sopenharmony_ci	const char *reason;
23962306a36Sopenharmony_ci	unsigned long v = 1;
24062306a36Sopenharmony_ci
24162306a36Sopenharmony_ci	pr_info("CPU: Testing write buffer coherency: ");
24262306a36Sopenharmony_ci
24362306a36Sopenharmony_ci	page = alloc_page(GFP_KERNEL);
24462306a36Sopenharmony_ci	if (page) {
24562306a36Sopenharmony_ci		unsigned long *p1, *p2;
24662306a36Sopenharmony_ci		pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
24762306a36Sopenharmony_ci					L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
24862306a36Sopenharmony_ci
24962306a36Sopenharmony_ci		p1 = vmap(&page, 1, VM_IOREMAP, prot);
25062306a36Sopenharmony_ci		p2 = vmap(&page, 1, VM_IOREMAP, prot);
25162306a36Sopenharmony_ci
25262306a36Sopenharmony_ci		if (p1 && p2) {
25362306a36Sopenharmony_ci			v = check_writebuffer(p1, p2);
25462306a36Sopenharmony_ci			reason = "enabling work-around";
25562306a36Sopenharmony_ci		} else {
25662306a36Sopenharmony_ci			reason = "unable to map memory\n";
25762306a36Sopenharmony_ci		}
25862306a36Sopenharmony_ci
25962306a36Sopenharmony_ci		vunmap(p1);
26062306a36Sopenharmony_ci		vunmap(p2);
26162306a36Sopenharmony_ci		put_page(page);
26262306a36Sopenharmony_ci	} else {
26362306a36Sopenharmony_ci		reason = "unable to grab page\n";
26462306a36Sopenharmony_ci	}
26562306a36Sopenharmony_ci
26662306a36Sopenharmony_ci	if (v) {
26762306a36Sopenharmony_ci		pr_cont("failed, %s\n", reason);
26862306a36Sopenharmony_ci		shared_pte_mask = L_PTE_MT_UNCACHED;
26962306a36Sopenharmony_ci	} else {
27062306a36Sopenharmony_ci		pr_cont("ok\n");
27162306a36Sopenharmony_ci	}
27262306a36Sopenharmony_ci}
273