1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 *  arch/arm/include/asm/pgtable.h
4 *
5 *  Copyright (C) 1995-2002 Russell King
6 */
7#ifndef _ASMARM_PGTABLE_H
8#define _ASMARM_PGTABLE_H
9
10#include <linux/const.h>
11#include <asm/proc-fns.h>
12
13#ifndef __ASSEMBLY__
14/*
15 * ZERO_PAGE is a global shared page that is always zero: used
16 * for zero-mapped memory areas etc..
17 */
18extern struct page *empty_zero_page;
19#define ZERO_PAGE(vaddr)	(empty_zero_page)
20#endif
21
22#ifndef CONFIG_MMU
23
24#include <asm-generic/pgtable-nopud.h>
25#include <asm/pgtable-nommu.h>
26
27#else
28
29#include <asm-generic/pgtable-nopud.h>
30#include <asm/page.h>
31#include <asm/pgtable-hwdef.h>
32
33
34#include <asm/tlbflush.h>
35
36#ifdef CONFIG_ARM_LPAE
37#include <asm/pgtable-3level.h>
38#else
39#include <asm/pgtable-2level.h>
40#endif
41
42/*
43 * Just any arbitrary offset to the start of the vmalloc VM area: the
44 * current 8MB value just means that there will be a 8MB "hole" after the
45 * physical memory until the kernel virtual memory starts.  That means that
46 * any out-of-bounds memory accesses will hopefully be caught.
47 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
48 * area for the same reason. ;)
49 */
50#define VMALLOC_OFFSET		(8*1024*1024)
51#define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
52#define VMALLOC_END		0xff800000UL
53
54#define LIBRARY_TEXT_START	0x0c000000
55
56#ifndef __ASSEMBLY__
57extern void __pte_error(const char *file, int line, pte_t);
58extern void __pmd_error(const char *file, int line, pmd_t);
59extern void __pgd_error(const char *file, int line, pgd_t);
60
61#define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)
62#define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)
63#define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)
64
65/*
66 * This is the lowest virtual address we can permit any user space
67 * mapping to be mapped at.  This is particularly important for
68 * non-high vector CPUs.
69 */
70#define FIRST_USER_ADDRESS	(PAGE_SIZE * 2)
71
72/*
73 * Use TASK_SIZE as the ceiling argument for free_pgtables() and
74 * free_pgd_range() to avoid freeing the modules pmd when LPAE is enabled (pmd
75 * page shared between user and kernel).
76 */
77#ifdef CONFIG_ARM_LPAE
78#define USER_PGTABLES_CEILING	TASK_SIZE
79#endif
80
81/*
82 * The pgprot_* and protection_map entries will be fixed up in runtime
83 * to include the cachable and bufferable bits based on memory policy,
84 * as well as any architecture dependent bits like global/ASID and SMP
85 * shared mapping bits.
86 */
87#define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
88
89extern pgprot_t		pgprot_user;
90extern pgprot_t		pgprot_kernel;
91
92#define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))
93
94#define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE)
95#define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
96#define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER)
97#define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
98#define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
99#define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
100#define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
101#define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN)
102#define PAGE_KERNEL_EXEC	pgprot_kernel
103
104#define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)
105#define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
106#define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
107#define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
108#define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
109#define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
110#define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
111
112#define __pgprot_modify(prot,mask,bits)		\
113	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
114
115#define pgprot_noncached(prot) \
116	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
117
118#define pgprot_writecombine(prot) \
119	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
120
121#define pgprot_stronglyordered(prot) \
122	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
123
124#define pgprot_device(prot) \
125	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_DEV_SHARED | L_PTE_SHARED | L_PTE_DIRTY | L_PTE_XN)
126
127#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
128#define pgprot_dmacoherent(prot) \
129	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
130#define __HAVE_PHYS_MEM_ACCESS_PROT
131struct file;
132extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
133				     unsigned long size, pgprot_t vma_prot);
134#else
135#define pgprot_dmacoherent(prot) \
136	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
137#endif
138
139#endif /* __ASSEMBLY__ */
140
141/*
142 * The table below defines the page protection levels that we insert into our
143 * Linux page table version.  These get translated into the best that the
144 * architecture can perform.  Note that on most ARM hardware:
145 *  1) We cannot do execute protection
146 *  2) If we could do execute protection, then read is implied
147 *  3) write implies read permissions
148 */
149
150#ifndef __ASSEMBLY__
151
152extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
153
154#define pud_page(pud)		pmd_page(__pmd(pud_val(pud)))
155#define pud_write(pud)		pmd_write(__pmd(pud_val(pud)))
156
157#define pmd_none(pmd)		(!pmd_val(pmd))
158
159static inline pte_t *pmd_page_vaddr(pmd_t pmd)
160{
161	return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
162}
163
164#define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
165
166#define pte_pfn(pte)		((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
167#define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot))
168
169#define pte_page(pte)		pfn_to_page(pte_pfn(pte))
170#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)
171
172#define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)
173
174#define pte_isset(pte, val)	((u32)(val) == (val) ? pte_val(pte) & (val) \
175						: !!(pte_val(pte) & (val)))
176#define pte_isclear(pte, val)	(!(pte_val(pte) & (val)))
177
178#define pte_none(pte)		(!pte_val(pte))
179#define pte_present(pte)	(pte_isset((pte), L_PTE_PRESENT))
180#define pte_valid(pte)		(pte_isset((pte), L_PTE_VALID))
181#define pte_accessible(mm, pte)	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
182#define pte_write(pte)		(pte_isclear((pte), L_PTE_RDONLY))
183#define pte_dirty(pte)		(pte_isset((pte), L_PTE_DIRTY))
184#define pte_young(pte)		(pte_isset((pte), L_PTE_YOUNG))
185#define pte_exec(pte)		(pte_isclear((pte), L_PTE_XN))
186
187#define pte_valid_user(pte)	\
188	(pte_valid(pte) && pte_isset((pte), L_PTE_USER) && pte_young(pte))
189
190static inline bool pte_access_permitted(pte_t pte, bool write)
191{
192	pteval_t mask = L_PTE_PRESENT | L_PTE_USER;
193	pteval_t needed = mask;
194
195	if (write)
196		mask |= L_PTE_RDONLY;
197
198	return (pte_val(pte) & mask) == needed;
199}
200#define pte_access_permitted pte_access_permitted
201
202#if __LINUX_ARM_ARCH__ < 6
203static inline void __sync_icache_dcache(pte_t pteval)
204{
205}
206#else
207extern void __sync_icache_dcache(pte_t pteval);
208#endif
209
210void set_ptes(struct mm_struct *mm, unsigned long addr,
211		      pte_t *ptep, pte_t pteval, unsigned int nr);
212#define set_ptes set_ptes
213
214static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
215{
216	pte_val(pte) &= ~pgprot_val(prot);
217	return pte;
218}
219
220static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
221{
222	pte_val(pte) |= pgprot_val(prot);
223	return pte;
224}
225
226static inline pte_t pte_wrprotect(pte_t pte)
227{
228	return set_pte_bit(pte, __pgprot(L_PTE_RDONLY));
229}
230
231static inline pte_t pte_mkwrite_novma(pte_t pte)
232{
233	return clear_pte_bit(pte, __pgprot(L_PTE_RDONLY));
234}
235
236static inline pte_t pte_mkclean(pte_t pte)
237{
238	return clear_pte_bit(pte, __pgprot(L_PTE_DIRTY));
239}
240
241static inline pte_t pte_mkdirty(pte_t pte)
242{
243	return set_pte_bit(pte, __pgprot(L_PTE_DIRTY));
244}
245
246static inline pte_t pte_mkold(pte_t pte)
247{
248	return clear_pte_bit(pte, __pgprot(L_PTE_YOUNG));
249}
250
251static inline pte_t pte_mkyoung(pte_t pte)
252{
253	return set_pte_bit(pte, __pgprot(L_PTE_YOUNG));
254}
255
256static inline pte_t pte_mkexec(pte_t pte)
257{
258	return clear_pte_bit(pte, __pgprot(L_PTE_XN));
259}
260
261static inline pte_t pte_mknexec(pte_t pte)
262{
263	return set_pte_bit(pte, __pgprot(L_PTE_XN));
264}
265
266static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
267{
268	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER |
269		L_PTE_NONE | L_PTE_VALID;
270	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
271	return pte;
272}
273
274/*
275 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
276 * are !pte_none() && !pte_present().
277 *
278 * Format of swap PTEs:
279 *
280 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
281 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
282 *   <------------------- offset ------------------> E < type -> 0 0
283 *
284 *   E is the exclusive marker that is not stored in swap entries.
285 *
286 * This gives us up to 31 swap files and 64GB per swap file.  Note that
287 * the offset field is always non-zero.
288 */
289#define __SWP_TYPE_SHIFT	2
290#define __SWP_TYPE_BITS		5
291#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
292#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT + 1)
293
294#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
295#define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
296#define __swp_entry(type, offset) ((swp_entry_t) { (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
297						   ((offset) << __SWP_OFFSET_SHIFT) })
298
299#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
300#define __swp_entry_to_pte(swp)	__pte((swp).val)
301
302static inline int pte_swp_exclusive(pte_t pte)
303{
304	return pte_isset(pte, L_PTE_SWP_EXCLUSIVE);
305}
306
307static inline pte_t pte_swp_mkexclusive(pte_t pte)
308{
309	return set_pte_bit(pte, __pgprot(L_PTE_SWP_EXCLUSIVE));
310}
311
312static inline pte_t pte_swp_clear_exclusive(pte_t pte)
313{
314	return clear_pte_bit(pte, __pgprot(L_PTE_SWP_EXCLUSIVE));
315}
316
317/*
318 * It is an error for the kernel to have more swap files than we can
319 * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
320 * is increased beyond what we presently support.
321 */
322#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
323
324/*
325 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
326 */
327#define HAVE_ARCH_UNMAPPED_AREA
328#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
329
330#endif /* !__ASSEMBLY__ */
331
332#endif /* CONFIG_MMU */
333
334#endif /* _ASMARM_PGTABLE_H */
335