162306a36Sopenharmony_ci 262306a36Sopenharmony_ci.. _local_ops: 362306a36Sopenharmony_ci 462306a36Sopenharmony_ci================================================= 562306a36Sopenharmony_ciSemantics and Behavior of Local Atomic Operations 662306a36Sopenharmony_ci================================================= 762306a36Sopenharmony_ci 862306a36Sopenharmony_ci:Author: Mathieu Desnoyers 962306a36Sopenharmony_ci 1062306a36Sopenharmony_ci 1162306a36Sopenharmony_ciThis document explains the purpose of the local atomic operations, how 1262306a36Sopenharmony_cito implement them for any given architecture and shows how they can be used 1362306a36Sopenharmony_ciproperly. It also stresses on the precautions that must be taken when reading 1462306a36Sopenharmony_cithose local variables across CPUs when the order of memory writes matters. 1562306a36Sopenharmony_ci 1662306a36Sopenharmony_ci.. note:: 1762306a36Sopenharmony_ci 1862306a36Sopenharmony_ci Note that ``local_t`` based operations are not recommended for general 1962306a36Sopenharmony_ci kernel use. Please use the ``this_cpu`` operations instead unless there is 2062306a36Sopenharmony_ci really a special purpose. Most uses of ``local_t`` in the kernel have been 2162306a36Sopenharmony_ci replaced by ``this_cpu`` operations. ``this_cpu`` operations combine the 2262306a36Sopenharmony_ci relocation with the ``local_t`` like semantics in a single instruction and 2362306a36Sopenharmony_ci yield more compact and faster executing code. 2462306a36Sopenharmony_ci 2562306a36Sopenharmony_ci 2662306a36Sopenharmony_ciPurpose of local atomic operations 2762306a36Sopenharmony_ci================================== 2862306a36Sopenharmony_ci 2962306a36Sopenharmony_ciLocal atomic operations are meant to provide fast and highly reentrant per CPU 3062306a36Sopenharmony_cicounters. They minimize the performance cost of standard atomic operations by 3162306a36Sopenharmony_ciremoving the LOCK prefix and memory barriers normally required to synchronize 3262306a36Sopenharmony_ciacross CPUs. 3362306a36Sopenharmony_ci 3462306a36Sopenharmony_ciHaving fast per CPU atomic counters is interesting in many cases: it does not 3562306a36Sopenharmony_cirequire disabling interrupts to protect from interrupt handlers and it permits 3662306a36Sopenharmony_cicoherent counters in NMI handlers. It is especially useful for tracing purposes 3762306a36Sopenharmony_ciand for various performance monitoring counters. 3862306a36Sopenharmony_ci 3962306a36Sopenharmony_ciLocal atomic operations only guarantee variable modification atomicity wrt the 4062306a36Sopenharmony_ciCPU which owns the data. Therefore, care must taken to make sure that only one 4162306a36Sopenharmony_ciCPU writes to the ``local_t`` data. This is done by using per cpu data and 4262306a36Sopenharmony_cimaking sure that we modify it from within a preemption safe context. It is 4362306a36Sopenharmony_cihowever permitted to read ``local_t`` data from any CPU: it will then appear to 4462306a36Sopenharmony_cibe written out of order wrt other memory writes by the owner CPU. 4562306a36Sopenharmony_ci 4662306a36Sopenharmony_ci 4762306a36Sopenharmony_ciImplementation for a given architecture 4862306a36Sopenharmony_ci======================================= 4962306a36Sopenharmony_ci 5062306a36Sopenharmony_ciIt can be done by slightly modifying the standard atomic operations: only 5162306a36Sopenharmony_citheir UP variant must be kept. It typically means removing LOCK prefix (on 5262306a36Sopenharmony_cii386 and x86_64) and any SMP synchronization barrier. If the architecture does 5362306a36Sopenharmony_cinot have a different behavior between SMP and UP, including 5462306a36Sopenharmony_ci``asm-generic/local.h`` in your architecture's ``local.h`` is sufficient. 5562306a36Sopenharmony_ci 5662306a36Sopenharmony_ciThe ``local_t`` type is defined as an opaque ``signed long`` by embedding an 5762306a36Sopenharmony_ci``atomic_long_t`` inside a structure. This is made so a cast from this type to 5862306a36Sopenharmony_cia ``long`` fails. The definition looks like:: 5962306a36Sopenharmony_ci 6062306a36Sopenharmony_ci typedef struct { atomic_long_t a; } local_t; 6162306a36Sopenharmony_ci 6262306a36Sopenharmony_ci 6362306a36Sopenharmony_ciRules to follow when using local atomic operations 6462306a36Sopenharmony_ci================================================== 6562306a36Sopenharmony_ci 6662306a36Sopenharmony_ci* Variables touched by local ops must be per cpu variables. 6762306a36Sopenharmony_ci* *Only* the CPU owner of these variables must write to them. 6862306a36Sopenharmony_ci* This CPU can use local ops from any context (process, irq, softirq, nmi, ...) 6962306a36Sopenharmony_ci to update its ``local_t`` variables. 7062306a36Sopenharmony_ci* Preemption (or interrupts) must be disabled when using local ops in 7162306a36Sopenharmony_ci process context to make sure the process won't be migrated to a 7262306a36Sopenharmony_ci different CPU between getting the per-cpu variable and doing the 7362306a36Sopenharmony_ci actual local op. 7462306a36Sopenharmony_ci* When using local ops in interrupt context, no special care must be 7562306a36Sopenharmony_ci taken on a mainline kernel, since they will run on the local CPU with 7662306a36Sopenharmony_ci preemption already disabled. I suggest, however, to explicitly 7762306a36Sopenharmony_ci disable preemption anyway to make sure it will still work correctly on 7862306a36Sopenharmony_ci -rt kernels. 7962306a36Sopenharmony_ci* Reading the local cpu variable will provide the current copy of the 8062306a36Sopenharmony_ci variable. 8162306a36Sopenharmony_ci* Reads of these variables can be done from any CPU, because updates to 8262306a36Sopenharmony_ci "``long``", aligned, variables are always atomic. Since no memory 8362306a36Sopenharmony_ci synchronization is done by the writer CPU, an outdated copy of the 8462306a36Sopenharmony_ci variable can be read when reading some *other* cpu's variables. 8562306a36Sopenharmony_ci 8662306a36Sopenharmony_ci 8762306a36Sopenharmony_ciHow to use local atomic operations 8862306a36Sopenharmony_ci================================== 8962306a36Sopenharmony_ci 9062306a36Sopenharmony_ci:: 9162306a36Sopenharmony_ci 9262306a36Sopenharmony_ci #include <linux/percpu.h> 9362306a36Sopenharmony_ci #include <asm/local.h> 9462306a36Sopenharmony_ci 9562306a36Sopenharmony_ci static DEFINE_PER_CPU(local_t, counters) = LOCAL_INIT(0); 9662306a36Sopenharmony_ci 9762306a36Sopenharmony_ci 9862306a36Sopenharmony_ciCounting 9962306a36Sopenharmony_ci======== 10062306a36Sopenharmony_ci 10162306a36Sopenharmony_ciCounting is done on all the bits of a signed long. 10262306a36Sopenharmony_ci 10362306a36Sopenharmony_ciIn preemptible context, use ``get_cpu_var()`` and ``put_cpu_var()`` around 10462306a36Sopenharmony_cilocal atomic operations: it makes sure that preemption is disabled around write 10562306a36Sopenharmony_ciaccess to the per cpu variable. For instance:: 10662306a36Sopenharmony_ci 10762306a36Sopenharmony_ci local_inc(&get_cpu_var(counters)); 10862306a36Sopenharmony_ci put_cpu_var(counters); 10962306a36Sopenharmony_ci 11062306a36Sopenharmony_ciIf you are already in a preemption-safe context, you can use 11162306a36Sopenharmony_ci``this_cpu_ptr()`` instead:: 11262306a36Sopenharmony_ci 11362306a36Sopenharmony_ci local_inc(this_cpu_ptr(&counters)); 11462306a36Sopenharmony_ci 11562306a36Sopenharmony_ci 11662306a36Sopenharmony_ci 11762306a36Sopenharmony_ciReading the counters 11862306a36Sopenharmony_ci==================== 11962306a36Sopenharmony_ci 12062306a36Sopenharmony_ciThose local counters can be read from foreign CPUs to sum the count. Note that 12162306a36Sopenharmony_cithe data seen by local_read across CPUs must be considered to be out of order 12262306a36Sopenharmony_cirelatively to other memory writes happening on the CPU that owns the data:: 12362306a36Sopenharmony_ci 12462306a36Sopenharmony_ci long sum = 0; 12562306a36Sopenharmony_ci for_each_online_cpu(cpu) 12662306a36Sopenharmony_ci sum += local_read(&per_cpu(counters, cpu)); 12762306a36Sopenharmony_ci 12862306a36Sopenharmony_ciIf you want to use a remote local_read to synchronize access to a resource 12962306a36Sopenharmony_cibetween CPUs, explicit ``smp_wmb()`` and ``smp_rmb()`` memory barriers must be used 13062306a36Sopenharmony_cirespectively on the writer and the reader CPUs. It would be the case if you use 13162306a36Sopenharmony_cithe ``local_t`` variable as a counter of bytes written in a buffer: there should 13262306a36Sopenharmony_cibe a ``smp_wmb()`` between the buffer write and the counter increment and also a 13362306a36Sopenharmony_ci``smp_rmb()`` between the counter read and the buffer read. 13462306a36Sopenharmony_ci 13562306a36Sopenharmony_ci 13662306a36Sopenharmony_ciHere is a sample module which implements a basic per cpu counter using 13762306a36Sopenharmony_ci``local.h``:: 13862306a36Sopenharmony_ci 13962306a36Sopenharmony_ci /* test-local.c 14062306a36Sopenharmony_ci * 14162306a36Sopenharmony_ci * Sample module for local.h usage. 14262306a36Sopenharmony_ci */ 14362306a36Sopenharmony_ci 14462306a36Sopenharmony_ci 14562306a36Sopenharmony_ci #include <asm/local.h> 14662306a36Sopenharmony_ci #include <linux/module.h> 14762306a36Sopenharmony_ci #include <linux/timer.h> 14862306a36Sopenharmony_ci 14962306a36Sopenharmony_ci static DEFINE_PER_CPU(local_t, counters) = LOCAL_INIT(0); 15062306a36Sopenharmony_ci 15162306a36Sopenharmony_ci static struct timer_list test_timer; 15262306a36Sopenharmony_ci 15362306a36Sopenharmony_ci /* IPI called on each CPU. */ 15462306a36Sopenharmony_ci static void test_each(void *info) 15562306a36Sopenharmony_ci { 15662306a36Sopenharmony_ci /* Increment the counter from a non preemptible context */ 15762306a36Sopenharmony_ci printk("Increment on cpu %d\n", smp_processor_id()); 15862306a36Sopenharmony_ci local_inc(this_cpu_ptr(&counters)); 15962306a36Sopenharmony_ci 16062306a36Sopenharmony_ci /* This is what incrementing the variable would look like within a 16162306a36Sopenharmony_ci * preemptible context (it disables preemption) : 16262306a36Sopenharmony_ci * 16362306a36Sopenharmony_ci * local_inc(&get_cpu_var(counters)); 16462306a36Sopenharmony_ci * put_cpu_var(counters); 16562306a36Sopenharmony_ci */ 16662306a36Sopenharmony_ci } 16762306a36Sopenharmony_ci 16862306a36Sopenharmony_ci static void do_test_timer(unsigned long data) 16962306a36Sopenharmony_ci { 17062306a36Sopenharmony_ci int cpu; 17162306a36Sopenharmony_ci 17262306a36Sopenharmony_ci /* Increment the counters */ 17362306a36Sopenharmony_ci on_each_cpu(test_each, NULL, 1); 17462306a36Sopenharmony_ci /* Read all the counters */ 17562306a36Sopenharmony_ci printk("Counters read from CPU %d\n", smp_processor_id()); 17662306a36Sopenharmony_ci for_each_online_cpu(cpu) { 17762306a36Sopenharmony_ci printk("Read : CPU %d, count %ld\n", cpu, 17862306a36Sopenharmony_ci local_read(&per_cpu(counters, cpu))); 17962306a36Sopenharmony_ci } 18062306a36Sopenharmony_ci mod_timer(&test_timer, jiffies + 1000); 18162306a36Sopenharmony_ci } 18262306a36Sopenharmony_ci 18362306a36Sopenharmony_ci static int __init test_init(void) 18462306a36Sopenharmony_ci { 18562306a36Sopenharmony_ci /* initialize the timer that will increment the counter */ 18662306a36Sopenharmony_ci timer_setup(&test_timer, do_test_timer, 0); 18762306a36Sopenharmony_ci mod_timer(&test_timer, jiffies + 1); 18862306a36Sopenharmony_ci 18962306a36Sopenharmony_ci return 0; 19062306a36Sopenharmony_ci } 19162306a36Sopenharmony_ci 19262306a36Sopenharmony_ci static void __exit test_exit(void) 19362306a36Sopenharmony_ci { 19462306a36Sopenharmony_ci timer_shutdown_sync(&test_timer); 19562306a36Sopenharmony_ci } 19662306a36Sopenharmony_ci 19762306a36Sopenharmony_ci module_init(test_init); 19862306a36Sopenharmony_ci module_exit(test_exit); 19962306a36Sopenharmony_ci 20062306a36Sopenharmony_ci MODULE_LICENSE("GPL"); 20162306a36Sopenharmony_ci MODULE_AUTHOR("Mathieu Desnoyers"); 20262306a36Sopenharmony_ci MODULE_DESCRIPTION("Local Atomic Ops"); 203