xref: /kernel/linux/linux-5.10/virt/kvm/kvm_main.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 *   Avi Kivity   <avi@qumranet.com>
13 *   Yaniv Kamay  <yaniv@qumranet.com>
14 */
15
16#include <kvm/iodev.h>
17
18#include <linux/kvm_host.h>
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
22#include <linux/percpu.h>
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
26#include <linux/reboot.h>
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
30#include <linux/syscore_ops.h>
31#include <linux/cpu.h>
32#include <linux/sched/signal.h>
33#include <linux/sched/mm.h>
34#include <linux/sched/stat.h>
35#include <linux/cpumask.h>
36#include <linux/smp.h>
37#include <linux/anon_inodes.h>
38#include <linux/profile.h>
39#include <linux/kvm_para.h>
40#include <linux/pagemap.h>
41#include <linux/mman.h>
42#include <linux/swap.h>
43#include <linux/bitops.h>
44#include <linux/spinlock.h>
45#include <linux/compat.h>
46#include <linux/srcu.h>
47#include <linux/hugetlb.h>
48#include <linux/slab.h>
49#include <linux/sort.h>
50#include <linux/bsearch.h>
51#include <linux/io.h>
52#include <linux/lockdep.h>
53#include <linux/kthread.h>
54
55#include <asm/processor.h>
56#include <asm/ioctl.h>
57#include <linux/uaccess.h>
58
59#include "coalesced_mmio.h"
60#include "async_pf.h"
61#include "vfio.h"
62
63#define CREATE_TRACE_POINTS
64#include <trace/events/kvm.h>
65
66/* Worst case buffer size needed for holding an integer. */
67#define ITOA_MAX_LEN 12
68
69MODULE_AUTHOR("Qumranet");
70MODULE_LICENSE("GPL");
71
72/* Architectures should define their poll value according to the halt latency */
73unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74module_param(halt_poll_ns, uint, 0644);
75EXPORT_SYMBOL_GPL(halt_poll_ns);
76
77/* Default doubles per-vcpu halt_poll_ns. */
78unsigned int halt_poll_ns_grow = 2;
79module_param(halt_poll_ns_grow, uint, 0644);
80EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81
82/* The start value to grow halt_poll_ns from */
83unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84module_param(halt_poll_ns_grow_start, uint, 0644);
85EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86
87/* Default resets per-vcpu halt_poll_ns . */
88unsigned int halt_poll_ns_shrink;
89module_param(halt_poll_ns_shrink, uint, 0644);
90EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91
92/*
93 * Ordering of locks:
94 *
95 *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96 */
97
98DEFINE_MUTEX(kvm_lock);
99static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100LIST_HEAD(vm_list);
101
102static cpumask_var_t cpus_hardware_enabled;
103static int kvm_usage_count;
104static atomic_t hardware_enable_failed;
105
106static struct kmem_cache *kvm_vcpu_cache;
107
108static __read_mostly struct preempt_ops kvm_preempt_ops;
109static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
110
111struct dentry *kvm_debugfs_dir;
112EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113
114static int kvm_debugfs_num_entries;
115static const struct file_operations stat_fops_per_vm;
116
117static struct file_operations kvm_chardev_ops;
118
119static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
120			   unsigned long arg);
121#ifdef CONFIG_KVM_COMPAT
122static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
123				  unsigned long arg);
124#define KVM_COMPAT(c)	.compat_ioctl	= (c)
125#else
126/*
127 * For architectures that don't implement a compat infrastructure,
128 * adopt a double line of defense:
129 * - Prevent a compat task from opening /dev/kvm
130 * - If the open has been done by a 64bit task, and the KVM fd
131 *   passed to a compat task, let the ioctls fail.
132 */
133static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
134				unsigned long arg) { return -EINVAL; }
135
136static int kvm_no_compat_open(struct inode *inode, struct file *file)
137{
138	return is_compat_task() ? -ENODEV : 0;
139}
140#define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
141			.open		= kvm_no_compat_open
142#endif
143static int hardware_enable_all(void);
144static void hardware_disable_all(void);
145
146static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
147
148__visible bool kvm_rebooting;
149EXPORT_SYMBOL_GPL(kvm_rebooting);
150
151#define KVM_EVENT_CREATE_VM 0
152#define KVM_EVENT_DESTROY_VM 1
153static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154static unsigned long long kvm_createvm_count;
155static unsigned long long kvm_active_vms;
156
157static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
158
159__weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
160						   unsigned long start, unsigned long end)
161{
162}
163
164__weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
165{
166}
167
168bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
169{
170	/*
171	 * The metadata used by is_zone_device_page() to determine whether or
172	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
173	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
174	 * page_count() is zero to help detect bad usage of this helper.
175	 */
176	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
177		return false;
178
179	return is_zone_device_page(pfn_to_page(pfn));
180}
181
182bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
183{
184	/*
185	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
186	 * perspective they are "normal" pages, albeit with slightly different
187	 * usage rules.
188	 */
189	if (pfn_valid(pfn))
190		return PageReserved(pfn_to_page(pfn)) &&
191		       !is_zero_pfn(pfn) &&
192		       !kvm_is_zone_device_pfn(pfn);
193
194	return true;
195}
196
197bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
198{
199	struct page *page = pfn_to_page(pfn);
200
201	if (!PageTransCompoundMap(page))
202		return false;
203
204	return is_transparent_hugepage(compound_head(page));
205}
206
207/*
208 * Switches to specified vcpu, until a matching vcpu_put()
209 */
210void vcpu_load(struct kvm_vcpu *vcpu)
211{
212	int cpu = get_cpu();
213
214	__this_cpu_write(kvm_running_vcpu, vcpu);
215	preempt_notifier_register(&vcpu->preempt_notifier);
216	kvm_arch_vcpu_load(vcpu, cpu);
217	put_cpu();
218}
219EXPORT_SYMBOL_GPL(vcpu_load);
220
221void vcpu_put(struct kvm_vcpu *vcpu)
222{
223	preempt_disable();
224	kvm_arch_vcpu_put(vcpu);
225	preempt_notifier_unregister(&vcpu->preempt_notifier);
226	__this_cpu_write(kvm_running_vcpu, NULL);
227	preempt_enable();
228}
229EXPORT_SYMBOL_GPL(vcpu_put);
230
231/* TODO: merge with kvm_arch_vcpu_should_kick */
232static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
233{
234	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
235
236	/*
237	 * We need to wait for the VCPU to reenable interrupts and get out of
238	 * READING_SHADOW_PAGE_TABLES mode.
239	 */
240	if (req & KVM_REQUEST_WAIT)
241		return mode != OUTSIDE_GUEST_MODE;
242
243	/*
244	 * Need to kick a running VCPU, but otherwise there is nothing to do.
245	 */
246	return mode == IN_GUEST_MODE;
247}
248
249static void ack_flush(void *_completed)
250{
251}
252
253static inline bool kvm_kick_many_cpus(cpumask_var_t tmp, bool wait)
254{
255	const struct cpumask *cpus;
256
257	if (likely(cpumask_available(tmp)))
258		cpus = tmp;
259	else
260		cpus = cpu_online_mask;
261
262	if (cpumask_empty(cpus))
263		return false;
264
265	smp_call_function_many(cpus, ack_flush, NULL, wait);
266	return true;
267}
268
269static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu,
270				  unsigned int req, cpumask_var_t tmp,
271				  int current_cpu)
272{
273	int cpu;
274
275	kvm_make_request(req, vcpu);
276
277	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
278		return;
279
280	/*
281	 * tmp can be "unavailable" if cpumasks are allocated off stack as
282	 * allocation of the mask is deliberately not fatal and is handled by
283	 * falling back to kicking all online CPUs.
284	 */
285	if (!cpumask_available(tmp))
286		return;
287
288	/*
289	 * Note, the vCPU could get migrated to a different pCPU at any point
290	 * after kvm_request_needs_ipi(), which could result in sending an IPI
291	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
292	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
293	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
294	 * after this point is also OK, as the requirement is only that KVM wait
295	 * for vCPUs that were reading SPTEs _before_ any changes were
296	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
297	 */
298	if (kvm_request_needs_ipi(vcpu, req)) {
299		cpu = READ_ONCE(vcpu->cpu);
300		if (cpu != -1 && cpu != current_cpu)
301			__cpumask_set_cpu(cpu, tmp);
302	}
303}
304
305bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
306				 struct kvm_vcpu *except,
307				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
308{
309	struct kvm_vcpu *vcpu;
310	int i, me;
311	bool called;
312
313	me = get_cpu();
314
315	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
316		vcpu = kvm_get_vcpu(kvm, i);
317		if (!vcpu || vcpu == except)
318			continue;
319		kvm_make_vcpu_request(kvm, vcpu, req, tmp, me);
320	}
321
322	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
323	put_cpu();
324
325	return called;
326}
327
328bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
329				      struct kvm_vcpu *except)
330{
331	struct kvm_vcpu *vcpu;
332	struct cpumask *cpus;
333	bool called;
334	int i, me;
335
336	me = get_cpu();
337
338	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
339	cpumask_clear(cpus);
340
341	kvm_for_each_vcpu(i, vcpu, kvm) {
342		if (vcpu == except)
343			continue;
344		kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
345	}
346
347	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
348	put_cpu();
349
350	return called;
351}
352
353bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
354{
355	return kvm_make_all_cpus_request_except(kvm, req, NULL);
356}
357
358#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
359void kvm_flush_remote_tlbs(struct kvm *kvm)
360{
361	/*
362	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
363	 * kvm_make_all_cpus_request.
364	 */
365	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
366
367	/*
368	 * We want to publish modifications to the page tables before reading
369	 * mode. Pairs with a memory barrier in arch-specific code.
370	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
371	 * and smp_mb in walk_shadow_page_lockless_begin/end.
372	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
373	 *
374	 * There is already an smp_mb__after_atomic() before
375	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
376	 * barrier here.
377	 */
378	if (!kvm_arch_flush_remote_tlb(kvm)
379	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
380		++kvm->stat.remote_tlb_flush;
381	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
382}
383EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
384#endif
385
386void kvm_reload_remote_mmus(struct kvm *kvm)
387{
388	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
389}
390
391static void kvm_flush_shadow_all(struct kvm *kvm)
392{
393	kvm_arch_flush_shadow_all(kvm);
394	kvm_arch_guest_memory_reclaimed(kvm);
395}
396
397#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
398static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
399					       gfp_t gfp_flags)
400{
401	gfp_flags |= mc->gfp_zero;
402
403	if (mc->kmem_cache)
404		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
405	else
406		return (void *)__get_free_page(gfp_flags);
407}
408
409int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
410{
411	void *obj;
412
413	if (mc->nobjs >= min)
414		return 0;
415	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
416		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
417		if (!obj)
418			return mc->nobjs >= min ? 0 : -ENOMEM;
419		mc->objects[mc->nobjs++] = obj;
420	}
421	return 0;
422}
423
424int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
425{
426	return mc->nobjs;
427}
428
429void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
430{
431	while (mc->nobjs) {
432		if (mc->kmem_cache)
433			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
434		else
435			free_page((unsigned long)mc->objects[--mc->nobjs]);
436	}
437}
438
439void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
440{
441	void *p;
442
443	if (WARN_ON(!mc->nobjs))
444		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
445	else
446		p = mc->objects[--mc->nobjs];
447	BUG_ON(!p);
448	return p;
449}
450#endif
451
452static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
453{
454	mutex_init(&vcpu->mutex);
455	vcpu->cpu = -1;
456	vcpu->kvm = kvm;
457	vcpu->vcpu_id = id;
458	vcpu->pid = NULL;
459	rcuwait_init(&vcpu->wait);
460	kvm_async_pf_vcpu_init(vcpu);
461
462	vcpu->pre_pcpu = -1;
463	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
464
465	kvm_vcpu_set_in_spin_loop(vcpu, false);
466	kvm_vcpu_set_dy_eligible(vcpu, false);
467	vcpu->preempted = false;
468	vcpu->ready = false;
469	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
470}
471
472void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
473{
474	kvm_arch_vcpu_destroy(vcpu);
475
476	/*
477	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
478	 * the vcpu->pid pointer, and at destruction time all file descriptors
479	 * are already gone.
480	 */
481	put_pid(rcu_dereference_protected(vcpu->pid, 1));
482
483	free_page((unsigned long)vcpu->run);
484	kmem_cache_free(kvm_vcpu_cache, vcpu);
485}
486EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
487
488#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
489static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
490{
491	return container_of(mn, struct kvm, mmu_notifier);
492}
493
494static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
495					      struct mm_struct *mm,
496					      unsigned long start, unsigned long end)
497{
498	struct kvm *kvm = mmu_notifier_to_kvm(mn);
499	int idx;
500
501	idx = srcu_read_lock(&kvm->srcu);
502	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
503	srcu_read_unlock(&kvm->srcu, idx);
504}
505
506static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
507					struct mm_struct *mm,
508					unsigned long address,
509					pte_t pte)
510{
511	struct kvm *kvm = mmu_notifier_to_kvm(mn);
512	int idx;
513
514	idx = srcu_read_lock(&kvm->srcu);
515	spin_lock(&kvm->mmu_lock);
516	kvm->mmu_notifier_seq++;
517
518	if (kvm_set_spte_hva(kvm, address, pte))
519		kvm_flush_remote_tlbs(kvm);
520
521	spin_unlock(&kvm->mmu_lock);
522	srcu_read_unlock(&kvm->srcu, idx);
523}
524
525static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
526					const struct mmu_notifier_range *range)
527{
528	struct kvm *kvm = mmu_notifier_to_kvm(mn);
529	int need_tlb_flush = 0, idx;
530
531	idx = srcu_read_lock(&kvm->srcu);
532	spin_lock(&kvm->mmu_lock);
533	/*
534	 * The count increase must become visible at unlock time as no
535	 * spte can be established without taking the mmu_lock and
536	 * count is also read inside the mmu_lock critical section.
537	 */
538	kvm->mmu_notifier_count++;
539	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end,
540					     range->flags);
541	/* we've to flush the tlb before the pages can be freed */
542	if (need_tlb_flush || kvm->tlbs_dirty)
543		kvm_flush_remote_tlbs(kvm);
544
545	spin_unlock(&kvm->mmu_lock);
546	kvm_arch_guest_memory_reclaimed(kvm);
547	srcu_read_unlock(&kvm->srcu, idx);
548
549	return 0;
550}
551
552static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
553					const struct mmu_notifier_range *range)
554{
555	struct kvm *kvm = mmu_notifier_to_kvm(mn);
556
557	spin_lock(&kvm->mmu_lock);
558	/*
559	 * This sequence increase will notify the kvm page fault that
560	 * the page that is going to be mapped in the spte could have
561	 * been freed.
562	 */
563	kvm->mmu_notifier_seq++;
564	smp_wmb();
565	/*
566	 * The above sequence increase must be visible before the
567	 * below count decrease, which is ensured by the smp_wmb above
568	 * in conjunction with the smp_rmb in mmu_notifier_retry().
569	 */
570	kvm->mmu_notifier_count--;
571	spin_unlock(&kvm->mmu_lock);
572
573	BUG_ON(kvm->mmu_notifier_count < 0);
574}
575
576static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
577					      struct mm_struct *mm,
578					      unsigned long start,
579					      unsigned long end)
580{
581	struct kvm *kvm = mmu_notifier_to_kvm(mn);
582	int young, idx;
583
584	idx = srcu_read_lock(&kvm->srcu);
585	spin_lock(&kvm->mmu_lock);
586
587	young = kvm_age_hva(kvm, start, end);
588	if (young)
589		kvm_flush_remote_tlbs(kvm);
590
591	spin_unlock(&kvm->mmu_lock);
592	srcu_read_unlock(&kvm->srcu, idx);
593
594	return young;
595}
596
597static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
598					struct mm_struct *mm,
599					unsigned long start,
600					unsigned long end)
601{
602	struct kvm *kvm = mmu_notifier_to_kvm(mn);
603	int young, idx;
604
605	idx = srcu_read_lock(&kvm->srcu);
606	spin_lock(&kvm->mmu_lock);
607	/*
608	 * Even though we do not flush TLB, this will still adversely
609	 * affect performance on pre-Haswell Intel EPT, where there is
610	 * no EPT Access Bit to clear so that we have to tear down EPT
611	 * tables instead. If we find this unacceptable, we can always
612	 * add a parameter to kvm_age_hva so that it effectively doesn't
613	 * do anything on clear_young.
614	 *
615	 * Also note that currently we never issue secondary TLB flushes
616	 * from clear_young, leaving this job up to the regular system
617	 * cadence. If we find this inaccurate, we might come up with a
618	 * more sophisticated heuristic later.
619	 */
620	young = kvm_age_hva(kvm, start, end);
621	spin_unlock(&kvm->mmu_lock);
622	srcu_read_unlock(&kvm->srcu, idx);
623
624	return young;
625}
626
627static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
628				       struct mm_struct *mm,
629				       unsigned long address)
630{
631	struct kvm *kvm = mmu_notifier_to_kvm(mn);
632	int young, idx;
633
634	idx = srcu_read_lock(&kvm->srcu);
635	spin_lock(&kvm->mmu_lock);
636	young = kvm_test_age_hva(kvm, address);
637	spin_unlock(&kvm->mmu_lock);
638	srcu_read_unlock(&kvm->srcu, idx);
639
640	return young;
641}
642
643static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
644				     struct mm_struct *mm)
645{
646	struct kvm *kvm = mmu_notifier_to_kvm(mn);
647	int idx;
648
649	idx = srcu_read_lock(&kvm->srcu);
650	kvm_flush_shadow_all(kvm);
651	srcu_read_unlock(&kvm->srcu, idx);
652}
653
654static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
655	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
656	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
657	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
658	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
659	.clear_young		= kvm_mmu_notifier_clear_young,
660	.test_young		= kvm_mmu_notifier_test_young,
661	.change_pte		= kvm_mmu_notifier_change_pte,
662	.release		= kvm_mmu_notifier_release,
663};
664
665static int kvm_init_mmu_notifier(struct kvm *kvm)
666{
667	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
668	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
669}
670
671#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
672
673static int kvm_init_mmu_notifier(struct kvm *kvm)
674{
675	return 0;
676}
677
678#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
679
680static struct kvm_memslots *kvm_alloc_memslots(void)
681{
682	int i;
683	struct kvm_memslots *slots;
684
685	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
686	if (!slots)
687		return NULL;
688
689	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
690		slots->id_to_index[i] = -1;
691
692	return slots;
693}
694
695static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
696{
697	if (!memslot->dirty_bitmap)
698		return;
699
700	kvfree(memslot->dirty_bitmap);
701	memslot->dirty_bitmap = NULL;
702}
703
704static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
705{
706	kvm_destroy_dirty_bitmap(slot);
707
708	kvm_arch_free_memslot(kvm, slot);
709
710	slot->flags = 0;
711	slot->npages = 0;
712}
713
714static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
715{
716	struct kvm_memory_slot *memslot;
717
718	if (!slots)
719		return;
720
721	kvm_for_each_memslot(memslot, slots)
722		kvm_free_memslot(kvm, memslot);
723
724	kvfree(slots);
725}
726
727static void kvm_destroy_vm_debugfs(struct kvm *kvm)
728{
729	int i;
730
731	if (!kvm->debugfs_dentry)
732		return;
733
734	debugfs_remove_recursive(kvm->debugfs_dentry);
735
736	if (kvm->debugfs_stat_data) {
737		for (i = 0; i < kvm_debugfs_num_entries; i++)
738			kfree(kvm->debugfs_stat_data[i]);
739		kfree(kvm->debugfs_stat_data);
740	}
741}
742
743static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
744{
745	static DEFINE_MUTEX(kvm_debugfs_lock);
746	struct dentry *dent;
747	char dir_name[ITOA_MAX_LEN * 2];
748	struct kvm_stat_data *stat_data;
749	struct kvm_stats_debugfs_item *p;
750
751	if (!debugfs_initialized())
752		return 0;
753
754	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
755	mutex_lock(&kvm_debugfs_lock);
756	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
757	if (dent) {
758		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
759		dput(dent);
760		mutex_unlock(&kvm_debugfs_lock);
761		return 0;
762	}
763	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
764	mutex_unlock(&kvm_debugfs_lock);
765	if (IS_ERR(dent))
766		return 0;
767
768	kvm->debugfs_dentry = dent;
769	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
770					 sizeof(*kvm->debugfs_stat_data),
771					 GFP_KERNEL_ACCOUNT);
772	if (!kvm->debugfs_stat_data)
773		return -ENOMEM;
774
775	for (p = debugfs_entries; p->name; p++) {
776		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
777		if (!stat_data)
778			return -ENOMEM;
779
780		stat_data->kvm = kvm;
781		stat_data->dbgfs_item = p;
782		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
783		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
784				    kvm->debugfs_dentry, stat_data,
785				    &stat_fops_per_vm);
786	}
787	return 0;
788}
789
790/*
791 * Called after the VM is otherwise initialized, but just before adding it to
792 * the vm_list.
793 */
794int __weak kvm_arch_post_init_vm(struct kvm *kvm)
795{
796	return 0;
797}
798
799/*
800 * Called just after removing the VM from the vm_list, but before doing any
801 * other destruction.
802 */
803void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
804{
805}
806
807static struct kvm *kvm_create_vm(unsigned long type)
808{
809	struct kvm *kvm = kvm_arch_alloc_vm();
810	int r = -ENOMEM;
811	int i;
812
813	if (!kvm)
814		return ERR_PTR(-ENOMEM);
815
816	spin_lock_init(&kvm->mmu_lock);
817	mmgrab(current->mm);
818	kvm->mm = current->mm;
819	kvm_eventfd_init(kvm);
820	mutex_init(&kvm->lock);
821	mutex_init(&kvm->irq_lock);
822	mutex_init(&kvm->slots_lock);
823	INIT_LIST_HEAD(&kvm->devices);
824
825	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
826
827	if (init_srcu_struct(&kvm->srcu))
828		goto out_err_no_srcu;
829	if (init_srcu_struct(&kvm->irq_srcu))
830		goto out_err_no_irq_srcu;
831
832	refcount_set(&kvm->users_count, 1);
833	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
834		struct kvm_memslots *slots = kvm_alloc_memslots();
835
836		if (!slots)
837			goto out_err_no_arch_destroy_vm;
838		/* Generations must be different for each address space. */
839		slots->generation = i;
840		rcu_assign_pointer(kvm->memslots[i], slots);
841	}
842
843	for (i = 0; i < KVM_NR_BUSES; i++) {
844		rcu_assign_pointer(kvm->buses[i],
845			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
846		if (!kvm->buses[i])
847			goto out_err_no_arch_destroy_vm;
848	}
849
850	kvm->max_halt_poll_ns = halt_poll_ns;
851
852	r = kvm_arch_init_vm(kvm, type);
853	if (r)
854		goto out_err_no_arch_destroy_vm;
855
856	r = hardware_enable_all();
857	if (r)
858		goto out_err_no_disable;
859
860#ifdef CONFIG_HAVE_KVM_IRQFD
861	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
862#endif
863
864	r = kvm_init_mmu_notifier(kvm);
865	if (r)
866		goto out_err_no_mmu_notifier;
867
868	r = kvm_arch_post_init_vm(kvm);
869	if (r)
870		goto out_err;
871
872	mutex_lock(&kvm_lock);
873	list_add(&kvm->vm_list, &vm_list);
874	mutex_unlock(&kvm_lock);
875
876	preempt_notifier_inc();
877
878	/*
879	 * When the fd passed to this ioctl() is opened it pins the module,
880	 * but try_module_get() also prevents getting a reference if the module
881	 * is in MODULE_STATE_GOING (e.g. if someone ran "rmmod --wait").
882	 */
883	if (!try_module_get(kvm_chardev_ops.owner)) {
884		r = -ENODEV;
885		goto out_err;
886	}
887
888	return kvm;
889
890out_err:
891#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
892	if (kvm->mmu_notifier.ops)
893		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
894#endif
895out_err_no_mmu_notifier:
896	hardware_disable_all();
897out_err_no_disable:
898	kvm_arch_destroy_vm(kvm);
899out_err_no_arch_destroy_vm:
900	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
901	for (i = 0; i < KVM_NR_BUSES; i++)
902		kfree(kvm_get_bus(kvm, i));
903	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
904		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
905	cleanup_srcu_struct(&kvm->irq_srcu);
906out_err_no_irq_srcu:
907	cleanup_srcu_struct(&kvm->srcu);
908out_err_no_srcu:
909	kvm_arch_free_vm(kvm);
910	mmdrop(current->mm);
911	return ERR_PTR(r);
912}
913
914static void kvm_destroy_devices(struct kvm *kvm)
915{
916	struct kvm_device *dev, *tmp;
917
918	/*
919	 * We do not need to take the kvm->lock here, because nobody else
920	 * has a reference to the struct kvm at this point and therefore
921	 * cannot access the devices list anyhow.
922	 */
923	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
924		list_del(&dev->vm_node);
925		dev->ops->destroy(dev);
926	}
927}
928
929static void kvm_destroy_vm(struct kvm *kvm)
930{
931	int i;
932	struct mm_struct *mm = kvm->mm;
933
934	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
935	kvm_destroy_vm_debugfs(kvm);
936	kvm_arch_sync_events(kvm);
937	mutex_lock(&kvm_lock);
938	list_del(&kvm->vm_list);
939	mutex_unlock(&kvm_lock);
940	kvm_arch_pre_destroy_vm(kvm);
941
942	kvm_free_irq_routing(kvm);
943	for (i = 0; i < KVM_NR_BUSES; i++) {
944		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
945
946		if (bus)
947			kvm_io_bus_destroy(bus);
948		kvm->buses[i] = NULL;
949	}
950	kvm_coalesced_mmio_free(kvm);
951#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
952	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
953#else
954	kvm_flush_shadow_all(kvm);
955#endif
956	kvm_arch_destroy_vm(kvm);
957	kvm_destroy_devices(kvm);
958	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
959		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
960	cleanup_srcu_struct(&kvm->irq_srcu);
961	cleanup_srcu_struct(&kvm->srcu);
962	kvm_arch_free_vm(kvm);
963	preempt_notifier_dec();
964	hardware_disable_all();
965	mmdrop(mm);
966	module_put(kvm_chardev_ops.owner);
967}
968
969void kvm_get_kvm(struct kvm *kvm)
970{
971	refcount_inc(&kvm->users_count);
972}
973EXPORT_SYMBOL_GPL(kvm_get_kvm);
974
975void kvm_put_kvm(struct kvm *kvm)
976{
977	if (refcount_dec_and_test(&kvm->users_count))
978		kvm_destroy_vm(kvm);
979}
980EXPORT_SYMBOL_GPL(kvm_put_kvm);
981
982/*
983 * Used to put a reference that was taken on behalf of an object associated
984 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
985 * of the new file descriptor fails and the reference cannot be transferred to
986 * its final owner.  In such cases, the caller is still actively using @kvm and
987 * will fail miserably if the refcount unexpectedly hits zero.
988 */
989void kvm_put_kvm_no_destroy(struct kvm *kvm)
990{
991	WARN_ON(refcount_dec_and_test(&kvm->users_count));
992}
993EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
994
995static int kvm_vm_release(struct inode *inode, struct file *filp)
996{
997	struct kvm *kvm = filp->private_data;
998
999	kvm_irqfd_release(kvm);
1000
1001	kvm_put_kvm(kvm);
1002	return 0;
1003}
1004
1005/*
1006 * Allocation size is twice as large as the actual dirty bitmap size.
1007 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1008 */
1009static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1010{
1011	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1012
1013	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1014	if (!memslot->dirty_bitmap)
1015		return -ENOMEM;
1016
1017	return 0;
1018}
1019
1020/*
1021 * Delete a memslot by decrementing the number of used slots and shifting all
1022 * other entries in the array forward one spot.
1023 */
1024static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1025				      struct kvm_memory_slot *memslot)
1026{
1027	struct kvm_memory_slot *mslots = slots->memslots;
1028	int i;
1029
1030	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1031		return;
1032
1033	slots->used_slots--;
1034
1035	if (atomic_read(&slots->lru_slot) >= slots->used_slots)
1036		atomic_set(&slots->lru_slot, 0);
1037
1038	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1039		mslots[i] = mslots[i + 1];
1040		slots->id_to_index[mslots[i].id] = i;
1041	}
1042	mslots[i] = *memslot;
1043	slots->id_to_index[memslot->id] = -1;
1044}
1045
1046/*
1047 * "Insert" a new memslot by incrementing the number of used slots.  Returns
1048 * the new slot's initial index into the memslots array.
1049 */
1050static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1051{
1052	return slots->used_slots++;
1053}
1054
1055/*
1056 * Move a changed memslot backwards in the array by shifting existing slots
1057 * with a higher GFN toward the front of the array.  Note, the changed memslot
1058 * itself is not preserved in the array, i.e. not swapped at this time, only
1059 * its new index into the array is tracked.  Returns the changed memslot's
1060 * current index into the memslots array.
1061 */
1062static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1063					    struct kvm_memory_slot *memslot)
1064{
1065	struct kvm_memory_slot *mslots = slots->memslots;
1066	int i;
1067
1068	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1069	    WARN_ON_ONCE(!slots->used_slots))
1070		return -1;
1071
1072	/*
1073	 * Move the target memslot backward in the array by shifting existing
1074	 * memslots with a higher GFN (than the target memslot) towards the
1075	 * front of the array.
1076	 */
1077	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1078		if (memslot->base_gfn > mslots[i + 1].base_gfn)
1079			break;
1080
1081		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1082
1083		/* Shift the next memslot forward one and update its index. */
1084		mslots[i] = mslots[i + 1];
1085		slots->id_to_index[mslots[i].id] = i;
1086	}
1087	return i;
1088}
1089
1090/*
1091 * Move a changed memslot forwards in the array by shifting existing slots with
1092 * a lower GFN toward the back of the array.  Note, the changed memslot itself
1093 * is not preserved in the array, i.e. not swapped at this time, only its new
1094 * index into the array is tracked.  Returns the changed memslot's final index
1095 * into the memslots array.
1096 */
1097static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1098					   struct kvm_memory_slot *memslot,
1099					   int start)
1100{
1101	struct kvm_memory_slot *mslots = slots->memslots;
1102	int i;
1103
1104	for (i = start; i > 0; i--) {
1105		if (memslot->base_gfn < mslots[i - 1].base_gfn)
1106			break;
1107
1108		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1109
1110		/* Shift the next memslot back one and update its index. */
1111		mslots[i] = mslots[i - 1];
1112		slots->id_to_index[mslots[i].id] = i;
1113	}
1114	return i;
1115}
1116
1117/*
1118 * Re-sort memslots based on their GFN to account for an added, deleted, or
1119 * moved memslot.  Sorting memslots by GFN allows using a binary search during
1120 * memslot lookup.
1121 *
1122 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1123 * at memslots[0] has the highest GFN.
1124 *
1125 * The sorting algorithm takes advantage of having initially sorted memslots
1126 * and knowing the position of the changed memslot.  Sorting is also optimized
1127 * by not swapping the updated memslot and instead only shifting other memslots
1128 * and tracking the new index for the update memslot.  Only once its final
1129 * index is known is the updated memslot copied into its position in the array.
1130 *
1131 *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1132 *    the end of the array.
1133 *
1134 *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1135 *    end of the array and then it forward to its correct location.
1136 *
1137 *  - When moving a memslot, the algorithm first moves the updated memslot
1138 *    backward to handle the scenario where the memslot's GFN was changed to a
1139 *    lower value.  update_memslots() then falls through and runs the same flow
1140 *    as creating a memslot to move the memslot forward to handle the scenario
1141 *    where its GFN was changed to a higher value.
1142 *
1143 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1144 * historical reasons.  Originally, invalid memslots where denoted by having
1145 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1146 * to the end of the array.  The current algorithm uses dedicated logic to
1147 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1148 *
1149 * The other historical motiviation for highest->lowest was to improve the
1150 * performance of memslot lookup.  KVM originally used a linear search starting
1151 * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1152 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1153 * single memslot above the 4gb boundary.  As the largest memslot is also the
1154 * most likely to be referenced, sorting it to the front of the array was
1155 * advantageous.  The current binary search starts from the middle of the array
1156 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1157 */
1158static void update_memslots(struct kvm_memslots *slots,
1159			    struct kvm_memory_slot *memslot,
1160			    enum kvm_mr_change change)
1161{
1162	int i;
1163
1164	if (change == KVM_MR_DELETE) {
1165		kvm_memslot_delete(slots, memslot);
1166	} else {
1167		if (change == KVM_MR_CREATE)
1168			i = kvm_memslot_insert_back(slots);
1169		else
1170			i = kvm_memslot_move_backward(slots, memslot);
1171		i = kvm_memslot_move_forward(slots, memslot, i);
1172
1173		/*
1174		 * Copy the memslot to its new position in memslots and update
1175		 * its index accordingly.
1176		 */
1177		slots->memslots[i] = *memslot;
1178		slots->id_to_index[memslot->id] = i;
1179	}
1180}
1181
1182static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1183{
1184	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1185
1186#ifdef __KVM_HAVE_READONLY_MEM
1187	valid_flags |= KVM_MEM_READONLY;
1188#endif
1189
1190	if (mem->flags & ~valid_flags)
1191		return -EINVAL;
1192
1193	return 0;
1194}
1195
1196static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1197		int as_id, struct kvm_memslots *slots)
1198{
1199	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1200	u64 gen = old_memslots->generation;
1201
1202	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1203	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1204
1205	rcu_assign_pointer(kvm->memslots[as_id], slots);
1206	synchronize_srcu_expedited(&kvm->srcu);
1207
1208	/*
1209	 * Increment the new memslot generation a second time, dropping the
1210	 * update in-progress flag and incrementing the generation based on
1211	 * the number of address spaces.  This provides a unique and easily
1212	 * identifiable generation number while the memslots are in flux.
1213	 */
1214	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1215
1216	/*
1217	 * Generations must be unique even across address spaces.  We do not need
1218	 * a global counter for that, instead the generation space is evenly split
1219	 * across address spaces.  For example, with two address spaces, address
1220	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1221	 * use generations 1, 3, 5, ...
1222	 */
1223	gen += KVM_ADDRESS_SPACE_NUM;
1224
1225	kvm_arch_memslots_updated(kvm, gen);
1226
1227	slots->generation = gen;
1228
1229	return old_memslots;
1230}
1231
1232/*
1233 * Note, at a minimum, the current number of used slots must be allocated, even
1234 * when deleting a memslot, as we need a complete duplicate of the memslots for
1235 * use when invalidating a memslot prior to deleting/moving the memslot.
1236 */
1237static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1238					     enum kvm_mr_change change)
1239{
1240	struct kvm_memslots *slots;
1241	size_t old_size, new_size;
1242
1243	old_size = sizeof(struct kvm_memslots) +
1244		   (sizeof(struct kvm_memory_slot) * old->used_slots);
1245
1246	if (change == KVM_MR_CREATE)
1247		new_size = old_size + sizeof(struct kvm_memory_slot);
1248	else
1249		new_size = old_size;
1250
1251	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1252	if (likely(slots))
1253		memcpy(slots, old, old_size);
1254
1255	return slots;
1256}
1257
1258static int kvm_set_memslot(struct kvm *kvm,
1259			   const struct kvm_userspace_memory_region *mem,
1260			   struct kvm_memory_slot *old,
1261			   struct kvm_memory_slot *new, int as_id,
1262			   enum kvm_mr_change change)
1263{
1264	struct kvm_memory_slot *slot;
1265	struct kvm_memslots *slots;
1266	int r;
1267
1268	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1269	if (!slots)
1270		return -ENOMEM;
1271
1272	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1273		/*
1274		 * Note, the INVALID flag needs to be in the appropriate entry
1275		 * in the freshly allocated memslots, not in @old or @new.
1276		 */
1277		slot = id_to_memslot(slots, old->id);
1278		slot->flags |= KVM_MEMSLOT_INVALID;
1279
1280		/*
1281		 * We can re-use the old memslots, the only difference from the
1282		 * newly installed memslots is the invalid flag, which will get
1283		 * dropped by update_memslots anyway.  We'll also revert to the
1284		 * old memslots if preparing the new memory region fails.
1285		 */
1286		slots = install_new_memslots(kvm, as_id, slots);
1287
1288		/* From this point no new shadow pages pointing to a deleted,
1289		 * or moved, memslot will be created.
1290		 *
1291		 * validation of sp->gfn happens in:
1292		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1293		 *	- kvm_is_visible_gfn (mmu_check_root)
1294		 */
1295		kvm_arch_flush_shadow_memslot(kvm, slot);
1296		kvm_arch_guest_memory_reclaimed(kvm);
1297	}
1298
1299	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1300	if (r)
1301		goto out_slots;
1302
1303	update_memslots(slots, new, change);
1304	slots = install_new_memslots(kvm, as_id, slots);
1305
1306	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1307
1308	kvfree(slots);
1309	return 0;
1310
1311out_slots:
1312	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1313		slots = install_new_memslots(kvm, as_id, slots);
1314	kvfree(slots);
1315	return r;
1316}
1317
1318static int kvm_delete_memslot(struct kvm *kvm,
1319			      const struct kvm_userspace_memory_region *mem,
1320			      struct kvm_memory_slot *old, int as_id)
1321{
1322	struct kvm_memory_slot new;
1323	int r;
1324
1325	if (!old->npages)
1326		return -EINVAL;
1327
1328	memset(&new, 0, sizeof(new));
1329	new.id = old->id;
1330	/*
1331	 * This is only for debugging purpose; it should never be referenced
1332	 * for a removed memslot.
1333	 */
1334	new.as_id = as_id;
1335
1336	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1337	if (r)
1338		return r;
1339
1340	kvm_free_memslot(kvm, old);
1341	return 0;
1342}
1343
1344/*
1345 * Allocate some memory and give it an address in the guest physical address
1346 * space.
1347 *
1348 * Discontiguous memory is allowed, mostly for framebuffers.
1349 *
1350 * Must be called holding kvm->slots_lock for write.
1351 */
1352int __kvm_set_memory_region(struct kvm *kvm,
1353			    const struct kvm_userspace_memory_region *mem)
1354{
1355	struct kvm_memory_slot old, new;
1356	struct kvm_memory_slot *tmp;
1357	enum kvm_mr_change change;
1358	int as_id, id;
1359	int r;
1360
1361	r = check_memory_region_flags(mem);
1362	if (r)
1363		return r;
1364
1365	as_id = mem->slot >> 16;
1366	id = (u16)mem->slot;
1367
1368	/* General sanity checks */
1369	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1370	    (mem->memory_size != (unsigned long)mem->memory_size))
1371		return -EINVAL;
1372	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1373		return -EINVAL;
1374	/* We can read the guest memory with __xxx_user() later on. */
1375	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1376	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1377	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1378			mem->memory_size))
1379		return -EINVAL;
1380	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1381		return -EINVAL;
1382	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1383		return -EINVAL;
1384
1385	/*
1386	 * Make a full copy of the old memslot, the pointer will become stale
1387	 * when the memslots are re-sorted by update_memslots(), and the old
1388	 * memslot needs to be referenced after calling update_memslots(), e.g.
1389	 * to free its resources and for arch specific behavior.
1390	 */
1391	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1392	if (tmp) {
1393		old = *tmp;
1394		tmp = NULL;
1395	} else {
1396		memset(&old, 0, sizeof(old));
1397		old.id = id;
1398	}
1399
1400	if (!mem->memory_size)
1401		return kvm_delete_memslot(kvm, mem, &old, as_id);
1402
1403	new.as_id = as_id;
1404	new.id = id;
1405	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1406	new.npages = mem->memory_size >> PAGE_SHIFT;
1407	new.flags = mem->flags;
1408	new.userspace_addr = mem->userspace_addr;
1409
1410	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1411		return -EINVAL;
1412
1413	if (!old.npages) {
1414		change = KVM_MR_CREATE;
1415		new.dirty_bitmap = NULL;
1416		memset(&new.arch, 0, sizeof(new.arch));
1417	} else { /* Modify an existing slot. */
1418		if ((new.userspace_addr != old.userspace_addr) ||
1419		    (new.npages != old.npages) ||
1420		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1421			return -EINVAL;
1422
1423		if (new.base_gfn != old.base_gfn)
1424			change = KVM_MR_MOVE;
1425		else if (new.flags != old.flags)
1426			change = KVM_MR_FLAGS_ONLY;
1427		else /* Nothing to change. */
1428			return 0;
1429
1430		/* Copy dirty_bitmap and arch from the current memslot. */
1431		new.dirty_bitmap = old.dirty_bitmap;
1432		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1433	}
1434
1435	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1436		/* Check for overlaps */
1437		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1438			if (tmp->id == id)
1439				continue;
1440			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1441			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1442				return -EEXIST;
1443		}
1444	}
1445
1446	/* Allocate/free page dirty bitmap as needed */
1447	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1448		new.dirty_bitmap = NULL;
1449	else if (!new.dirty_bitmap) {
1450		r = kvm_alloc_dirty_bitmap(&new);
1451		if (r)
1452			return r;
1453
1454		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1455			bitmap_set(new.dirty_bitmap, 0, new.npages);
1456	}
1457
1458	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1459	if (r)
1460		goto out_bitmap;
1461
1462	if (old.dirty_bitmap && !new.dirty_bitmap)
1463		kvm_destroy_dirty_bitmap(&old);
1464	return 0;
1465
1466out_bitmap:
1467	if (new.dirty_bitmap && !old.dirty_bitmap)
1468		kvm_destroy_dirty_bitmap(&new);
1469	return r;
1470}
1471EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1472
1473int kvm_set_memory_region(struct kvm *kvm,
1474			  const struct kvm_userspace_memory_region *mem)
1475{
1476	int r;
1477
1478	mutex_lock(&kvm->slots_lock);
1479	r = __kvm_set_memory_region(kvm, mem);
1480	mutex_unlock(&kvm->slots_lock);
1481	return r;
1482}
1483EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1484
1485static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1486					  struct kvm_userspace_memory_region *mem)
1487{
1488	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1489		return -EINVAL;
1490
1491	return kvm_set_memory_region(kvm, mem);
1492}
1493
1494#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1495/**
1496 * kvm_get_dirty_log - get a snapshot of dirty pages
1497 * @kvm:	pointer to kvm instance
1498 * @log:	slot id and address to which we copy the log
1499 * @is_dirty:	set to '1' if any dirty pages were found
1500 * @memslot:	set to the associated memslot, always valid on success
1501 */
1502int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1503		      int *is_dirty, struct kvm_memory_slot **memslot)
1504{
1505	struct kvm_memslots *slots;
1506	int i, as_id, id;
1507	unsigned long n;
1508	unsigned long any = 0;
1509
1510	*memslot = NULL;
1511	*is_dirty = 0;
1512
1513	as_id = log->slot >> 16;
1514	id = (u16)log->slot;
1515	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1516		return -EINVAL;
1517
1518	slots = __kvm_memslots(kvm, as_id);
1519	*memslot = id_to_memslot(slots, id);
1520	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1521		return -ENOENT;
1522
1523	kvm_arch_sync_dirty_log(kvm, *memslot);
1524
1525	n = kvm_dirty_bitmap_bytes(*memslot);
1526
1527	for (i = 0; !any && i < n/sizeof(long); ++i)
1528		any = (*memslot)->dirty_bitmap[i];
1529
1530	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1531		return -EFAULT;
1532
1533	if (any)
1534		*is_dirty = 1;
1535	return 0;
1536}
1537EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1538
1539#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1540/**
1541 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1542 *	and reenable dirty page tracking for the corresponding pages.
1543 * @kvm:	pointer to kvm instance
1544 * @log:	slot id and address to which we copy the log
1545 *
1546 * We need to keep it in mind that VCPU threads can write to the bitmap
1547 * concurrently. So, to avoid losing track of dirty pages we keep the
1548 * following order:
1549 *
1550 *    1. Take a snapshot of the bit and clear it if needed.
1551 *    2. Write protect the corresponding page.
1552 *    3. Copy the snapshot to the userspace.
1553 *    4. Upon return caller flushes TLB's if needed.
1554 *
1555 * Between 2 and 4, the guest may write to the page using the remaining TLB
1556 * entry.  This is not a problem because the page is reported dirty using
1557 * the snapshot taken before and step 4 ensures that writes done after
1558 * exiting to userspace will be logged for the next call.
1559 *
1560 */
1561static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1562{
1563	struct kvm_memslots *slots;
1564	struct kvm_memory_slot *memslot;
1565	int i, as_id, id;
1566	unsigned long n;
1567	unsigned long *dirty_bitmap;
1568	unsigned long *dirty_bitmap_buffer;
1569	bool flush;
1570
1571	as_id = log->slot >> 16;
1572	id = (u16)log->slot;
1573	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1574		return -EINVAL;
1575
1576	slots = __kvm_memslots(kvm, as_id);
1577	memslot = id_to_memslot(slots, id);
1578	if (!memslot || !memslot->dirty_bitmap)
1579		return -ENOENT;
1580
1581	dirty_bitmap = memslot->dirty_bitmap;
1582
1583	kvm_arch_sync_dirty_log(kvm, memslot);
1584
1585	n = kvm_dirty_bitmap_bytes(memslot);
1586	flush = false;
1587	if (kvm->manual_dirty_log_protect) {
1588		/*
1589		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1590		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1591		 * is some code duplication between this function and
1592		 * kvm_get_dirty_log, but hopefully all architecture
1593		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1594		 * can be eliminated.
1595		 */
1596		dirty_bitmap_buffer = dirty_bitmap;
1597	} else {
1598		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1599		memset(dirty_bitmap_buffer, 0, n);
1600
1601		spin_lock(&kvm->mmu_lock);
1602		for (i = 0; i < n / sizeof(long); i++) {
1603			unsigned long mask;
1604			gfn_t offset;
1605
1606			if (!dirty_bitmap[i])
1607				continue;
1608
1609			flush = true;
1610			mask = xchg(&dirty_bitmap[i], 0);
1611			dirty_bitmap_buffer[i] = mask;
1612
1613			offset = i * BITS_PER_LONG;
1614			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1615								offset, mask);
1616		}
1617		spin_unlock(&kvm->mmu_lock);
1618	}
1619
1620	if (flush)
1621		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1622
1623	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1624		return -EFAULT;
1625	return 0;
1626}
1627
1628
1629/**
1630 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1631 * @kvm: kvm instance
1632 * @log: slot id and address to which we copy the log
1633 *
1634 * Steps 1-4 below provide general overview of dirty page logging. See
1635 * kvm_get_dirty_log_protect() function description for additional details.
1636 *
1637 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1638 * always flush the TLB (step 4) even if previous step failed  and the dirty
1639 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1640 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1641 * writes will be marked dirty for next log read.
1642 *
1643 *   1. Take a snapshot of the bit and clear it if needed.
1644 *   2. Write protect the corresponding page.
1645 *   3. Copy the snapshot to the userspace.
1646 *   4. Flush TLB's if needed.
1647 */
1648static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1649				      struct kvm_dirty_log *log)
1650{
1651	int r;
1652
1653	mutex_lock(&kvm->slots_lock);
1654
1655	r = kvm_get_dirty_log_protect(kvm, log);
1656
1657	mutex_unlock(&kvm->slots_lock);
1658	return r;
1659}
1660
1661/**
1662 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1663 *	and reenable dirty page tracking for the corresponding pages.
1664 * @kvm:	pointer to kvm instance
1665 * @log:	slot id and address from which to fetch the bitmap of dirty pages
1666 */
1667static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1668				       struct kvm_clear_dirty_log *log)
1669{
1670	struct kvm_memslots *slots;
1671	struct kvm_memory_slot *memslot;
1672	int as_id, id;
1673	gfn_t offset;
1674	unsigned long i, n;
1675	unsigned long *dirty_bitmap;
1676	unsigned long *dirty_bitmap_buffer;
1677	bool flush;
1678
1679	as_id = log->slot >> 16;
1680	id = (u16)log->slot;
1681	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1682		return -EINVAL;
1683
1684	if (log->first_page & 63)
1685		return -EINVAL;
1686
1687	slots = __kvm_memslots(kvm, as_id);
1688	memslot = id_to_memslot(slots, id);
1689	if (!memslot || !memslot->dirty_bitmap)
1690		return -ENOENT;
1691
1692	dirty_bitmap = memslot->dirty_bitmap;
1693
1694	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1695
1696	if (log->first_page > memslot->npages ||
1697	    log->num_pages > memslot->npages - log->first_page ||
1698	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1699	    return -EINVAL;
1700
1701	kvm_arch_sync_dirty_log(kvm, memslot);
1702
1703	flush = false;
1704	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1705	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1706		return -EFAULT;
1707
1708	spin_lock(&kvm->mmu_lock);
1709	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1710		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1711	     i++, offset += BITS_PER_LONG) {
1712		unsigned long mask = *dirty_bitmap_buffer++;
1713		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1714		if (!mask)
1715			continue;
1716
1717		mask &= atomic_long_fetch_andnot(mask, p);
1718
1719		/*
1720		 * mask contains the bits that really have been cleared.  This
1721		 * never includes any bits beyond the length of the memslot (if
1722		 * the length is not aligned to 64 pages), therefore it is not
1723		 * a problem if userspace sets them in log->dirty_bitmap.
1724		*/
1725		if (mask) {
1726			flush = true;
1727			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1728								offset, mask);
1729		}
1730	}
1731	spin_unlock(&kvm->mmu_lock);
1732
1733	if (flush)
1734		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1735
1736	return 0;
1737}
1738
1739static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1740					struct kvm_clear_dirty_log *log)
1741{
1742	int r;
1743
1744	mutex_lock(&kvm->slots_lock);
1745
1746	r = kvm_clear_dirty_log_protect(kvm, log);
1747
1748	mutex_unlock(&kvm->slots_lock);
1749	return r;
1750}
1751#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1752
1753struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1754{
1755	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1756}
1757EXPORT_SYMBOL_GPL(gfn_to_memslot);
1758
1759struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1760{
1761	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1762}
1763
1764bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1765{
1766	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1767
1768	return kvm_is_visible_memslot(memslot);
1769}
1770EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1771
1772bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1773{
1774	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1775
1776	return kvm_is_visible_memslot(memslot);
1777}
1778EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1779
1780unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1781{
1782	struct vm_area_struct *vma;
1783	unsigned long addr, size;
1784
1785	size = PAGE_SIZE;
1786
1787	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1788	if (kvm_is_error_hva(addr))
1789		return PAGE_SIZE;
1790
1791	mmap_read_lock(current->mm);
1792	vma = find_vma(current->mm, addr);
1793	if (!vma)
1794		goto out;
1795
1796	size = vma_kernel_pagesize(vma);
1797
1798out:
1799	mmap_read_unlock(current->mm);
1800
1801	return size;
1802}
1803
1804static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1805{
1806	return slot->flags & KVM_MEM_READONLY;
1807}
1808
1809static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1810				       gfn_t *nr_pages, bool write)
1811{
1812	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1813		return KVM_HVA_ERR_BAD;
1814
1815	if (memslot_is_readonly(slot) && write)
1816		return KVM_HVA_ERR_RO_BAD;
1817
1818	if (nr_pages)
1819		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1820
1821	return __gfn_to_hva_memslot(slot, gfn);
1822}
1823
1824static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1825				     gfn_t *nr_pages)
1826{
1827	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1828}
1829
1830unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1831					gfn_t gfn)
1832{
1833	return gfn_to_hva_many(slot, gfn, NULL);
1834}
1835EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1836
1837unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1838{
1839	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1840}
1841EXPORT_SYMBOL_GPL(gfn_to_hva);
1842
1843unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1844{
1845	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1846}
1847EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1848
1849/*
1850 * Return the hva of a @gfn and the R/W attribute if possible.
1851 *
1852 * @slot: the kvm_memory_slot which contains @gfn
1853 * @gfn: the gfn to be translated
1854 * @writable: used to return the read/write attribute of the @slot if the hva
1855 * is valid and @writable is not NULL
1856 */
1857unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1858				      gfn_t gfn, bool *writable)
1859{
1860	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1861
1862	if (!kvm_is_error_hva(hva) && writable)
1863		*writable = !memslot_is_readonly(slot);
1864
1865	return hva;
1866}
1867
1868unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1869{
1870	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1871
1872	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1873}
1874
1875unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1876{
1877	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1878
1879	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1880}
1881
1882static inline int check_user_page_hwpoison(unsigned long addr)
1883{
1884	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1885
1886	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1887	return rc == -EHWPOISON;
1888}
1889
1890/*
1891 * The fast path to get the writable pfn which will be stored in @pfn,
1892 * true indicates success, otherwise false is returned.  It's also the
1893 * only part that runs if we can in atomic context.
1894 */
1895static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1896			    bool *writable, kvm_pfn_t *pfn)
1897{
1898	struct page *page[1];
1899
1900	/*
1901	 * Fast pin a writable pfn only if it is a write fault request
1902	 * or the caller allows to map a writable pfn for a read fault
1903	 * request.
1904	 */
1905	if (!(write_fault || writable))
1906		return false;
1907
1908	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1909		*pfn = page_to_pfn(page[0]);
1910
1911		if (writable)
1912			*writable = true;
1913		return true;
1914	}
1915
1916	return false;
1917}
1918
1919/*
1920 * The slow path to get the pfn of the specified host virtual address,
1921 * 1 indicates success, -errno is returned if error is detected.
1922 */
1923static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1924			   bool *writable, kvm_pfn_t *pfn)
1925{
1926	unsigned int flags = FOLL_HWPOISON;
1927	struct page *page;
1928	int npages = 0;
1929
1930	might_sleep();
1931
1932	if (writable)
1933		*writable = write_fault;
1934
1935	if (write_fault)
1936		flags |= FOLL_WRITE;
1937	if (async)
1938		flags |= FOLL_NOWAIT;
1939
1940	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1941	if (npages != 1)
1942		return npages;
1943
1944	/* map read fault as writable if possible */
1945	if (unlikely(!write_fault) && writable) {
1946		struct page *wpage;
1947
1948		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1949			*writable = true;
1950			put_page(page);
1951			page = wpage;
1952		}
1953	}
1954	*pfn = page_to_pfn(page);
1955	return npages;
1956}
1957
1958static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1959{
1960	if (unlikely(!(vma->vm_flags & VM_READ)))
1961		return false;
1962
1963	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1964		return false;
1965
1966	return true;
1967}
1968
1969static int kvm_try_get_pfn(kvm_pfn_t pfn)
1970{
1971	if (kvm_is_reserved_pfn(pfn))
1972		return 1;
1973	return get_page_unless_zero(pfn_to_page(pfn));
1974}
1975
1976static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1977			       unsigned long addr, bool *async,
1978			       bool write_fault, bool *writable,
1979			       kvm_pfn_t *p_pfn)
1980{
1981	kvm_pfn_t pfn;
1982	pte_t *ptep;
1983	spinlock_t *ptl;
1984	int r;
1985
1986	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
1987	if (r) {
1988		/*
1989		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1990		 * not call the fault handler, so do it here.
1991		 */
1992		bool unlocked = false;
1993		r = fixup_user_fault(current->mm, addr,
1994				     (write_fault ? FAULT_FLAG_WRITE : 0),
1995				     &unlocked);
1996		if (unlocked)
1997			return -EAGAIN;
1998		if (r)
1999			return r;
2000
2001		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2002		if (r)
2003			return r;
2004	}
2005
2006	if (write_fault && !pte_write(*ptep)) {
2007		pfn = KVM_PFN_ERR_RO_FAULT;
2008		goto out;
2009	}
2010
2011	if (writable)
2012		*writable = pte_write(*ptep);
2013	pfn = pte_pfn(*ptep);
2014
2015	/*
2016	 * Get a reference here because callers of *hva_to_pfn* and
2017	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2018	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2019	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
2020	 * simply do nothing for reserved pfns.
2021	 *
2022	 * Whoever called remap_pfn_range is also going to call e.g.
2023	 * unmap_mapping_range before the underlying pages are freed,
2024	 * causing a call to our MMU notifier.
2025	 *
2026	 * Certain IO or PFNMAP mappings can be backed with valid
2027	 * struct pages, but be allocated without refcounting e.g.,
2028	 * tail pages of non-compound higher order allocations, which
2029	 * would then underflow the refcount when the caller does the
2030	 * required put_page. Don't allow those pages here.
2031	 */
2032	if (!kvm_try_get_pfn(pfn))
2033		r = -EFAULT;
2034
2035out:
2036	pte_unmap_unlock(ptep, ptl);
2037	*p_pfn = pfn;
2038
2039	return r;
2040}
2041
2042/*
2043 * Pin guest page in memory and return its pfn.
2044 * @addr: host virtual address which maps memory to the guest
2045 * @atomic: whether this function can sleep
2046 * @async: whether this function need to wait IO complete if the
2047 *         host page is not in the memory
2048 * @write_fault: whether we should get a writable host page
2049 * @writable: whether it allows to map a writable host page for !@write_fault
2050 *
2051 * The function will map a writable host page for these two cases:
2052 * 1): @write_fault = true
2053 * 2): @write_fault = false && @writable, @writable will tell the caller
2054 *     whether the mapping is writable.
2055 */
2056static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2057			bool write_fault, bool *writable)
2058{
2059	struct vm_area_struct *vma;
2060	kvm_pfn_t pfn = 0;
2061	int npages, r;
2062
2063	/* we can do it either atomically or asynchronously, not both */
2064	BUG_ON(atomic && async);
2065
2066	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2067		return pfn;
2068
2069	if (atomic)
2070		return KVM_PFN_ERR_FAULT;
2071
2072	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2073	if (npages == 1)
2074		return pfn;
2075
2076	mmap_read_lock(current->mm);
2077	if (npages == -EHWPOISON ||
2078	      (!async && check_user_page_hwpoison(addr))) {
2079		pfn = KVM_PFN_ERR_HWPOISON;
2080		goto exit;
2081	}
2082
2083retry:
2084	vma = find_vma_intersection(current->mm, addr, addr + 1);
2085
2086	if (vma == NULL)
2087		pfn = KVM_PFN_ERR_FAULT;
2088	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2089		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2090		if (r == -EAGAIN)
2091			goto retry;
2092		if (r < 0)
2093			pfn = KVM_PFN_ERR_FAULT;
2094	} else {
2095		if (async && vma_is_valid(vma, write_fault))
2096			*async = true;
2097		pfn = KVM_PFN_ERR_FAULT;
2098	}
2099exit:
2100	mmap_read_unlock(current->mm);
2101	return pfn;
2102}
2103
2104kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2105			       bool atomic, bool *async, bool write_fault,
2106			       bool *writable)
2107{
2108	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2109
2110	if (addr == KVM_HVA_ERR_RO_BAD) {
2111		if (writable)
2112			*writable = false;
2113		return KVM_PFN_ERR_RO_FAULT;
2114	}
2115
2116	if (kvm_is_error_hva(addr)) {
2117		if (writable)
2118			*writable = false;
2119		return KVM_PFN_NOSLOT;
2120	}
2121
2122	/* Do not map writable pfn in the readonly memslot. */
2123	if (writable && memslot_is_readonly(slot)) {
2124		*writable = false;
2125		writable = NULL;
2126	}
2127
2128	return hva_to_pfn(addr, atomic, async, write_fault,
2129			  writable);
2130}
2131EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2132
2133kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2134		      bool *writable)
2135{
2136	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2137				    write_fault, writable);
2138}
2139EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2140
2141kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2142{
2143	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2144}
2145EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2146
2147kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2148{
2149	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2150}
2151EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2152
2153kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2154{
2155	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2156}
2157EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2158
2159kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2160{
2161	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2162}
2163EXPORT_SYMBOL_GPL(gfn_to_pfn);
2164
2165kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2166{
2167	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2168}
2169EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2170
2171int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2172			    struct page **pages, int nr_pages)
2173{
2174	unsigned long addr;
2175	gfn_t entry = 0;
2176
2177	addr = gfn_to_hva_many(slot, gfn, &entry);
2178	if (kvm_is_error_hva(addr))
2179		return -1;
2180
2181	if (entry < nr_pages)
2182		return 0;
2183
2184	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2185}
2186EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2187
2188static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2189{
2190	if (is_error_noslot_pfn(pfn))
2191		return KVM_ERR_PTR_BAD_PAGE;
2192
2193	if (kvm_is_reserved_pfn(pfn)) {
2194		WARN_ON(1);
2195		return KVM_ERR_PTR_BAD_PAGE;
2196	}
2197
2198	return pfn_to_page(pfn);
2199}
2200
2201struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2202{
2203	kvm_pfn_t pfn;
2204
2205	pfn = gfn_to_pfn(kvm, gfn);
2206
2207	return kvm_pfn_to_page(pfn);
2208}
2209EXPORT_SYMBOL_GPL(gfn_to_page);
2210
2211void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2212{
2213	if (pfn == 0)
2214		return;
2215
2216	if (cache)
2217		cache->pfn = cache->gfn = 0;
2218
2219	if (dirty)
2220		kvm_release_pfn_dirty(pfn);
2221	else
2222		kvm_release_pfn_clean(pfn);
2223}
2224
2225static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2226				 struct gfn_to_pfn_cache *cache, u64 gen)
2227{
2228	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2229
2230	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2231	cache->gfn = gfn;
2232	cache->dirty = false;
2233	cache->generation = gen;
2234}
2235
2236static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2237			 struct kvm_host_map *map,
2238			 struct gfn_to_pfn_cache *cache,
2239			 bool atomic)
2240{
2241	kvm_pfn_t pfn;
2242	void *hva = NULL;
2243	struct page *page = KVM_UNMAPPED_PAGE;
2244	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2245	u64 gen = slots->generation;
2246
2247	if (!map)
2248		return -EINVAL;
2249
2250	if (cache) {
2251		if (!cache->pfn || cache->gfn != gfn ||
2252			cache->generation != gen) {
2253			if (atomic)
2254				return -EAGAIN;
2255			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2256		}
2257		pfn = cache->pfn;
2258	} else {
2259		if (atomic)
2260			return -EAGAIN;
2261		pfn = gfn_to_pfn_memslot(slot, gfn);
2262	}
2263	if (is_error_noslot_pfn(pfn))
2264		return -EINVAL;
2265
2266	if (pfn_valid(pfn)) {
2267		page = pfn_to_page(pfn);
2268		if (atomic)
2269			hva = kmap_atomic(page);
2270		else
2271			hva = kmap(page);
2272#ifdef CONFIG_HAS_IOMEM
2273	} else if (!atomic) {
2274		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2275	} else {
2276		return -EINVAL;
2277#endif
2278	}
2279
2280	if (!hva)
2281		return -EFAULT;
2282
2283	map->page = page;
2284	map->hva = hva;
2285	map->pfn = pfn;
2286	map->gfn = gfn;
2287
2288	return 0;
2289}
2290
2291int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2292		struct gfn_to_pfn_cache *cache, bool atomic)
2293{
2294	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2295			cache, atomic);
2296}
2297EXPORT_SYMBOL_GPL(kvm_map_gfn);
2298
2299int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2300{
2301	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2302		NULL, false);
2303}
2304EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2305
2306static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2307			struct kvm_host_map *map,
2308			struct gfn_to_pfn_cache *cache,
2309			bool dirty, bool atomic)
2310{
2311	if (!map)
2312		return;
2313
2314	if (!map->hva)
2315		return;
2316
2317	if (map->page != KVM_UNMAPPED_PAGE) {
2318		if (atomic)
2319			kunmap_atomic(map->hva);
2320		else
2321			kunmap(map->page);
2322	}
2323#ifdef CONFIG_HAS_IOMEM
2324	else if (!atomic)
2325		memunmap(map->hva);
2326	else
2327		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2328#endif
2329
2330	if (dirty)
2331		mark_page_dirty_in_slot(memslot, map->gfn);
2332
2333	if (cache)
2334		cache->dirty |= dirty;
2335	else
2336		kvm_release_pfn(map->pfn, dirty, NULL);
2337
2338	map->hva = NULL;
2339	map->page = NULL;
2340}
2341
2342int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2343		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2344{
2345	__kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2346			cache, dirty, atomic);
2347	return 0;
2348}
2349EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2350
2351void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2352{
2353	__kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2354			dirty, false);
2355}
2356EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2357
2358struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2359{
2360	kvm_pfn_t pfn;
2361
2362	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2363
2364	return kvm_pfn_to_page(pfn);
2365}
2366EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2367
2368void kvm_release_page_clean(struct page *page)
2369{
2370	WARN_ON(is_error_page(page));
2371
2372	kvm_release_pfn_clean(page_to_pfn(page));
2373}
2374EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2375
2376void kvm_release_pfn_clean(kvm_pfn_t pfn)
2377{
2378	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2379		put_page(pfn_to_page(pfn));
2380}
2381EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2382
2383void kvm_release_page_dirty(struct page *page)
2384{
2385	WARN_ON(is_error_page(page));
2386
2387	kvm_release_pfn_dirty(page_to_pfn(page));
2388}
2389EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2390
2391void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2392{
2393	kvm_set_pfn_dirty(pfn);
2394	kvm_release_pfn_clean(pfn);
2395}
2396EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2397
2398static bool kvm_is_ad_tracked_pfn(kvm_pfn_t pfn)
2399{
2400	if (!pfn_valid(pfn))
2401		return false;
2402
2403	/*
2404	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2405	 * touched (e.g. set dirty) except by its owner".
2406	 */
2407	return !PageReserved(pfn_to_page(pfn));
2408}
2409
2410void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2411{
2412	if (kvm_is_ad_tracked_pfn(pfn))
2413		SetPageDirty(pfn_to_page(pfn));
2414}
2415EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2416
2417void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2418{
2419	if (kvm_is_ad_tracked_pfn(pfn))
2420		mark_page_accessed(pfn_to_page(pfn));
2421}
2422EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2423
2424void kvm_get_pfn(kvm_pfn_t pfn)
2425{
2426	if (!kvm_is_reserved_pfn(pfn))
2427		get_page(pfn_to_page(pfn));
2428}
2429EXPORT_SYMBOL_GPL(kvm_get_pfn);
2430
2431static int next_segment(unsigned long len, int offset)
2432{
2433	if (len > PAGE_SIZE - offset)
2434		return PAGE_SIZE - offset;
2435	else
2436		return len;
2437}
2438
2439static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2440				 void *data, int offset, int len)
2441{
2442	int r;
2443	unsigned long addr;
2444
2445	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2446	if (kvm_is_error_hva(addr))
2447		return -EFAULT;
2448	r = __copy_from_user(data, (void __user *)addr + offset, len);
2449	if (r)
2450		return -EFAULT;
2451	return 0;
2452}
2453
2454int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2455			int len)
2456{
2457	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2458
2459	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2460}
2461EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2462
2463int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2464			     int offset, int len)
2465{
2466	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2467
2468	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2469}
2470EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2471
2472int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2473{
2474	gfn_t gfn = gpa >> PAGE_SHIFT;
2475	int seg;
2476	int offset = offset_in_page(gpa);
2477	int ret;
2478
2479	while ((seg = next_segment(len, offset)) != 0) {
2480		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2481		if (ret < 0)
2482			return ret;
2483		offset = 0;
2484		len -= seg;
2485		data += seg;
2486		++gfn;
2487	}
2488	return 0;
2489}
2490EXPORT_SYMBOL_GPL(kvm_read_guest);
2491
2492int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2493{
2494	gfn_t gfn = gpa >> PAGE_SHIFT;
2495	int seg;
2496	int offset = offset_in_page(gpa);
2497	int ret;
2498
2499	while ((seg = next_segment(len, offset)) != 0) {
2500		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2501		if (ret < 0)
2502			return ret;
2503		offset = 0;
2504		len -= seg;
2505		data += seg;
2506		++gfn;
2507	}
2508	return 0;
2509}
2510EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2511
2512static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2513			           void *data, int offset, unsigned long len)
2514{
2515	int r;
2516	unsigned long addr;
2517
2518	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2519	if (kvm_is_error_hva(addr))
2520		return -EFAULT;
2521	pagefault_disable();
2522	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2523	pagefault_enable();
2524	if (r)
2525		return -EFAULT;
2526	return 0;
2527}
2528
2529int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2530			       void *data, unsigned long len)
2531{
2532	gfn_t gfn = gpa >> PAGE_SHIFT;
2533	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2534	int offset = offset_in_page(gpa);
2535
2536	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2537}
2538EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2539
2540static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2541			          const void *data, int offset, int len)
2542{
2543	int r;
2544	unsigned long addr;
2545
2546	addr = gfn_to_hva_memslot(memslot, gfn);
2547	if (kvm_is_error_hva(addr))
2548		return -EFAULT;
2549	r = __copy_to_user((void __user *)addr + offset, data, len);
2550	if (r)
2551		return -EFAULT;
2552	mark_page_dirty_in_slot(memslot, gfn);
2553	return 0;
2554}
2555
2556int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2557			 const void *data, int offset, int len)
2558{
2559	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2560
2561	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2562}
2563EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2564
2565int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2566			      const void *data, int offset, int len)
2567{
2568	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2569
2570	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2571}
2572EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2573
2574int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2575		    unsigned long len)
2576{
2577	gfn_t gfn = gpa >> PAGE_SHIFT;
2578	int seg;
2579	int offset = offset_in_page(gpa);
2580	int ret;
2581
2582	while ((seg = next_segment(len, offset)) != 0) {
2583		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2584		if (ret < 0)
2585			return ret;
2586		offset = 0;
2587		len -= seg;
2588		data += seg;
2589		++gfn;
2590	}
2591	return 0;
2592}
2593EXPORT_SYMBOL_GPL(kvm_write_guest);
2594
2595int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2596		         unsigned long len)
2597{
2598	gfn_t gfn = gpa >> PAGE_SHIFT;
2599	int seg;
2600	int offset = offset_in_page(gpa);
2601	int ret;
2602
2603	while ((seg = next_segment(len, offset)) != 0) {
2604		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2605		if (ret < 0)
2606			return ret;
2607		offset = 0;
2608		len -= seg;
2609		data += seg;
2610		++gfn;
2611	}
2612	return 0;
2613}
2614EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2615
2616static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2617				       struct gfn_to_hva_cache *ghc,
2618				       gpa_t gpa, unsigned long len)
2619{
2620	int offset = offset_in_page(gpa);
2621	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2622	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2623	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2624	gfn_t nr_pages_avail;
2625
2626	/* Update ghc->generation before performing any error checks. */
2627	ghc->generation = slots->generation;
2628
2629	if (start_gfn > end_gfn) {
2630		ghc->hva = KVM_HVA_ERR_BAD;
2631		return -EINVAL;
2632	}
2633
2634	/*
2635	 * If the requested region crosses two memslots, we still
2636	 * verify that the entire region is valid here.
2637	 */
2638	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2639		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2640		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2641					   &nr_pages_avail);
2642		if (kvm_is_error_hva(ghc->hva))
2643			return -EFAULT;
2644	}
2645
2646	/* Use the slow path for cross page reads and writes. */
2647	if (nr_pages_needed == 1)
2648		ghc->hva += offset;
2649	else
2650		ghc->memslot = NULL;
2651
2652	ghc->gpa = gpa;
2653	ghc->len = len;
2654	return 0;
2655}
2656
2657int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2658			      gpa_t gpa, unsigned long len)
2659{
2660	struct kvm_memslots *slots = kvm_memslots(kvm);
2661	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2662}
2663EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2664
2665int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2666				  void *data, unsigned int offset,
2667				  unsigned long len)
2668{
2669	struct kvm_memslots *slots = kvm_memslots(kvm);
2670	int r;
2671	gpa_t gpa = ghc->gpa + offset;
2672
2673	if (WARN_ON_ONCE(len + offset > ghc->len))
2674		return -EINVAL;
2675
2676	if (slots->generation != ghc->generation) {
2677		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2678			return -EFAULT;
2679	}
2680
2681	if (kvm_is_error_hva(ghc->hva))
2682		return -EFAULT;
2683
2684	if (unlikely(!ghc->memslot))
2685		return kvm_write_guest(kvm, gpa, data, len);
2686
2687	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2688	if (r)
2689		return -EFAULT;
2690	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2691
2692	return 0;
2693}
2694EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2695
2696int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2697			   void *data, unsigned long len)
2698{
2699	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2700}
2701EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2702
2703int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2704				 void *data, unsigned int offset,
2705				 unsigned long len)
2706{
2707	struct kvm_memslots *slots = kvm_memslots(kvm);
2708	int r;
2709	gpa_t gpa = ghc->gpa + offset;
2710
2711	if (WARN_ON_ONCE(len + offset > ghc->len))
2712		return -EINVAL;
2713
2714	if (slots->generation != ghc->generation) {
2715		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2716			return -EFAULT;
2717	}
2718
2719	if (kvm_is_error_hva(ghc->hva))
2720		return -EFAULT;
2721
2722	if (unlikely(!ghc->memslot))
2723		return kvm_read_guest(kvm, gpa, data, len);
2724
2725	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2726	if (r)
2727		return -EFAULT;
2728
2729	return 0;
2730}
2731EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2732
2733int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2734			  void *data, unsigned long len)
2735{
2736	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2737}
2738EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2739
2740int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2741{
2742	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2743
2744	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2745}
2746EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2747
2748int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2749{
2750	gfn_t gfn = gpa >> PAGE_SHIFT;
2751	int seg;
2752	int offset = offset_in_page(gpa);
2753	int ret;
2754
2755	while ((seg = next_segment(len, offset)) != 0) {
2756		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2757		if (ret < 0)
2758			return ret;
2759		offset = 0;
2760		len -= seg;
2761		++gfn;
2762	}
2763	return 0;
2764}
2765EXPORT_SYMBOL_GPL(kvm_clear_guest);
2766
2767void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn)
2768{
2769	if (memslot && memslot->dirty_bitmap) {
2770		unsigned long rel_gfn = gfn - memslot->base_gfn;
2771
2772		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2773	}
2774}
2775EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2776
2777void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2778{
2779	struct kvm_memory_slot *memslot;
2780
2781	memslot = gfn_to_memslot(kvm, gfn);
2782	mark_page_dirty_in_slot(memslot, gfn);
2783}
2784EXPORT_SYMBOL_GPL(mark_page_dirty);
2785
2786void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2787{
2788	struct kvm_memory_slot *memslot;
2789
2790	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2791	mark_page_dirty_in_slot(memslot, gfn);
2792}
2793EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2794
2795void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2796{
2797	if (!vcpu->sigset_active)
2798		return;
2799
2800	/*
2801	 * This does a lockless modification of ->real_blocked, which is fine
2802	 * because, only current can change ->real_blocked and all readers of
2803	 * ->real_blocked don't care as long ->real_blocked is always a subset
2804	 * of ->blocked.
2805	 */
2806	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2807}
2808
2809void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2810{
2811	if (!vcpu->sigset_active)
2812		return;
2813
2814	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2815	sigemptyset(&current->real_blocked);
2816}
2817
2818static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2819{
2820	unsigned int old, val, grow, grow_start;
2821
2822	old = val = vcpu->halt_poll_ns;
2823	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2824	grow = READ_ONCE(halt_poll_ns_grow);
2825	if (!grow)
2826		goto out;
2827
2828	val *= grow;
2829	if (val < grow_start)
2830		val = grow_start;
2831
2832	if (val > vcpu->kvm->max_halt_poll_ns)
2833		val = vcpu->kvm->max_halt_poll_ns;
2834
2835	vcpu->halt_poll_ns = val;
2836out:
2837	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2838}
2839
2840static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2841{
2842	unsigned int old, val, shrink, grow_start;
2843
2844	old = val = vcpu->halt_poll_ns;
2845	shrink = READ_ONCE(halt_poll_ns_shrink);
2846	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2847	if (shrink == 0)
2848		val = 0;
2849	else
2850		val /= shrink;
2851
2852	if (val < grow_start)
2853		val = 0;
2854
2855	vcpu->halt_poll_ns = val;
2856	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2857}
2858
2859static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2860{
2861	int ret = -EINTR;
2862	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2863
2864	if (kvm_arch_vcpu_runnable(vcpu)) {
2865		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2866		goto out;
2867	}
2868	if (kvm_cpu_has_pending_timer(vcpu))
2869		goto out;
2870	if (signal_pending(current))
2871		goto out;
2872
2873	ret = 0;
2874out:
2875	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2876	return ret;
2877}
2878
2879static inline void
2880update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2881{
2882	if (waited)
2883		vcpu->stat.halt_poll_fail_ns += poll_ns;
2884	else
2885		vcpu->stat.halt_poll_success_ns += poll_ns;
2886}
2887
2888/*
2889 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2890 */
2891void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2892{
2893	ktime_t start, cur, poll_end;
2894	bool waited = false;
2895	u64 block_ns;
2896
2897	kvm_arch_vcpu_blocking(vcpu);
2898
2899	start = cur = poll_end = ktime_get();
2900	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2901		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2902
2903		++vcpu->stat.halt_attempted_poll;
2904		do {
2905			/*
2906			 * This sets KVM_REQ_UNHALT if an interrupt
2907			 * arrives.
2908			 */
2909			if (kvm_vcpu_check_block(vcpu) < 0) {
2910				++vcpu->stat.halt_successful_poll;
2911				if (!vcpu_valid_wakeup(vcpu))
2912					++vcpu->stat.halt_poll_invalid;
2913				goto out;
2914			}
2915			poll_end = cur = ktime_get();
2916		} while (single_task_running() && !need_resched() &&
2917			 ktime_before(cur, stop));
2918	}
2919
2920	prepare_to_rcuwait(&vcpu->wait);
2921	for (;;) {
2922		set_current_state(TASK_INTERRUPTIBLE);
2923
2924		if (kvm_vcpu_check_block(vcpu) < 0)
2925			break;
2926
2927		waited = true;
2928		schedule();
2929	}
2930	finish_rcuwait(&vcpu->wait);
2931	cur = ktime_get();
2932out:
2933	kvm_arch_vcpu_unblocking(vcpu);
2934	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2935
2936	update_halt_poll_stats(
2937		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2938
2939	if (!kvm_arch_no_poll(vcpu)) {
2940		if (!vcpu_valid_wakeup(vcpu)) {
2941			shrink_halt_poll_ns(vcpu);
2942		} else if (vcpu->kvm->max_halt_poll_ns) {
2943			if (block_ns <= vcpu->halt_poll_ns)
2944				;
2945			/* we had a long block, shrink polling */
2946			else if (vcpu->halt_poll_ns &&
2947					block_ns > vcpu->kvm->max_halt_poll_ns)
2948				shrink_halt_poll_ns(vcpu);
2949			/* we had a short halt and our poll time is too small */
2950			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2951					block_ns < vcpu->kvm->max_halt_poll_ns)
2952				grow_halt_poll_ns(vcpu);
2953		} else {
2954			vcpu->halt_poll_ns = 0;
2955		}
2956	}
2957
2958	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2959	kvm_arch_vcpu_block_finish(vcpu);
2960}
2961EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2962
2963bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2964{
2965	struct rcuwait *waitp;
2966
2967	waitp = kvm_arch_vcpu_get_wait(vcpu);
2968	if (rcuwait_wake_up(waitp)) {
2969		WRITE_ONCE(vcpu->ready, true);
2970		++vcpu->stat.halt_wakeup;
2971		return true;
2972	}
2973
2974	return false;
2975}
2976EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2977
2978#ifndef CONFIG_S390
2979/*
2980 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2981 */
2982void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2983{
2984	int me, cpu;
2985
2986	if (kvm_vcpu_wake_up(vcpu))
2987		return;
2988
2989	/*
2990	 * Note, the vCPU could get migrated to a different pCPU at any point
2991	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
2992	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
2993	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
2994	 * vCPU also requires it to leave IN_GUEST_MODE.
2995	 */
2996	me = get_cpu();
2997	if (kvm_arch_vcpu_should_kick(vcpu)) {
2998		cpu = READ_ONCE(vcpu->cpu);
2999		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3000			smp_send_reschedule(cpu);
3001	}
3002	put_cpu();
3003}
3004EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3005#endif /* !CONFIG_S390 */
3006
3007int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3008{
3009	struct pid *pid;
3010	struct task_struct *task = NULL;
3011	int ret = 0;
3012
3013	rcu_read_lock();
3014	pid = rcu_dereference(target->pid);
3015	if (pid)
3016		task = get_pid_task(pid, PIDTYPE_PID);
3017	rcu_read_unlock();
3018	if (!task)
3019		return ret;
3020	ret = yield_to(task, 1);
3021	put_task_struct(task);
3022
3023	return ret;
3024}
3025EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3026
3027/*
3028 * Helper that checks whether a VCPU is eligible for directed yield.
3029 * Most eligible candidate to yield is decided by following heuristics:
3030 *
3031 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3032 *  (preempted lock holder), indicated by @in_spin_loop.
3033 *  Set at the beginning and cleared at the end of interception/PLE handler.
3034 *
3035 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3036 *  chance last time (mostly it has become eligible now since we have probably
3037 *  yielded to lockholder in last iteration. This is done by toggling
3038 *  @dy_eligible each time a VCPU checked for eligibility.)
3039 *
3040 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3041 *  to preempted lock-holder could result in wrong VCPU selection and CPU
3042 *  burning. Giving priority for a potential lock-holder increases lock
3043 *  progress.
3044 *
3045 *  Since algorithm is based on heuristics, accessing another VCPU data without
3046 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3047 *  and continue with next VCPU and so on.
3048 */
3049static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3050{
3051#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3052	bool eligible;
3053
3054	eligible = !vcpu->spin_loop.in_spin_loop ||
3055		    vcpu->spin_loop.dy_eligible;
3056
3057	if (vcpu->spin_loop.in_spin_loop)
3058		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3059
3060	return eligible;
3061#else
3062	return true;
3063#endif
3064}
3065
3066/*
3067 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3068 * a vcpu_load/vcpu_put pair.  However, for most architectures
3069 * kvm_arch_vcpu_runnable does not require vcpu_load.
3070 */
3071bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3072{
3073	return kvm_arch_vcpu_runnable(vcpu);
3074}
3075
3076static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3077{
3078	if (kvm_arch_dy_runnable(vcpu))
3079		return true;
3080
3081#ifdef CONFIG_KVM_ASYNC_PF
3082	if (!list_empty_careful(&vcpu->async_pf.done))
3083		return true;
3084#endif
3085
3086	return false;
3087}
3088
3089void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3090{
3091	struct kvm *kvm = me->kvm;
3092	struct kvm_vcpu *vcpu;
3093	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3094	int yielded = 0;
3095	int try = 3;
3096	int pass;
3097	int i;
3098
3099	kvm_vcpu_set_in_spin_loop(me, true);
3100	/*
3101	 * We boost the priority of a VCPU that is runnable but not
3102	 * currently running, because it got preempted by something
3103	 * else and called schedule in __vcpu_run.  Hopefully that
3104	 * VCPU is holding the lock that we need and will release it.
3105	 * We approximate round-robin by starting at the last boosted VCPU.
3106	 */
3107	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3108		kvm_for_each_vcpu(i, vcpu, kvm) {
3109			if (!pass && i <= last_boosted_vcpu) {
3110				i = last_boosted_vcpu;
3111				continue;
3112			} else if (pass && i > last_boosted_vcpu)
3113				break;
3114			if (!READ_ONCE(vcpu->ready))
3115				continue;
3116			if (vcpu == me)
3117				continue;
3118			if (rcuwait_active(&vcpu->wait) &&
3119			    !vcpu_dy_runnable(vcpu))
3120				continue;
3121			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3122				!kvm_arch_vcpu_in_kernel(vcpu))
3123				continue;
3124			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3125				continue;
3126
3127			yielded = kvm_vcpu_yield_to(vcpu);
3128			if (yielded > 0) {
3129				kvm->last_boosted_vcpu = i;
3130				break;
3131			} else if (yielded < 0) {
3132				try--;
3133				if (!try)
3134					break;
3135			}
3136		}
3137	}
3138	kvm_vcpu_set_in_spin_loop(me, false);
3139
3140	/* Ensure vcpu is not eligible during next spinloop */
3141	kvm_vcpu_set_dy_eligible(me, false);
3142}
3143EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3144
3145static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3146{
3147	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3148	struct page *page;
3149
3150	if (vmf->pgoff == 0)
3151		page = virt_to_page(vcpu->run);
3152#ifdef CONFIG_X86
3153	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3154		page = virt_to_page(vcpu->arch.pio_data);
3155#endif
3156#ifdef CONFIG_KVM_MMIO
3157	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3158		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3159#endif
3160	else
3161		return kvm_arch_vcpu_fault(vcpu, vmf);
3162	get_page(page);
3163	vmf->page = page;
3164	return 0;
3165}
3166
3167static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3168	.fault = kvm_vcpu_fault,
3169};
3170
3171static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3172{
3173	vma->vm_ops = &kvm_vcpu_vm_ops;
3174	return 0;
3175}
3176
3177static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3178{
3179	struct kvm_vcpu *vcpu = filp->private_data;
3180
3181	kvm_put_kvm(vcpu->kvm);
3182	return 0;
3183}
3184
3185static struct file_operations kvm_vcpu_fops = {
3186	.release        = kvm_vcpu_release,
3187	.unlocked_ioctl = kvm_vcpu_ioctl,
3188	.mmap           = kvm_vcpu_mmap,
3189	.llseek		= noop_llseek,
3190	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3191};
3192
3193/*
3194 * Allocates an inode for the vcpu.
3195 */
3196static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3197{
3198	char name[8 + 1 + ITOA_MAX_LEN + 1];
3199
3200	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3201	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3202}
3203
3204static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3205{
3206#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3207	struct dentry *debugfs_dentry;
3208	char dir_name[ITOA_MAX_LEN * 2];
3209
3210	if (!debugfs_initialized())
3211		return;
3212
3213	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3214	debugfs_dentry = debugfs_create_dir(dir_name,
3215					    vcpu->kvm->debugfs_dentry);
3216
3217	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3218#endif
3219}
3220
3221/*
3222 * Creates some virtual cpus.  Good luck creating more than one.
3223 */
3224static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3225{
3226	int r;
3227	struct kvm_vcpu *vcpu;
3228	struct page *page;
3229
3230	if (id >= KVM_MAX_VCPU_ID)
3231		return -EINVAL;
3232
3233	mutex_lock(&kvm->lock);
3234	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3235		mutex_unlock(&kvm->lock);
3236		return -EINVAL;
3237	}
3238
3239	kvm->created_vcpus++;
3240	mutex_unlock(&kvm->lock);
3241
3242	r = kvm_arch_vcpu_precreate(kvm, id);
3243	if (r)
3244		goto vcpu_decrement;
3245
3246	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3247	if (!vcpu) {
3248		r = -ENOMEM;
3249		goto vcpu_decrement;
3250	}
3251
3252	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3253	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3254	if (!page) {
3255		r = -ENOMEM;
3256		goto vcpu_free;
3257	}
3258	vcpu->run = page_address(page);
3259
3260	kvm_vcpu_init(vcpu, kvm, id);
3261
3262	r = kvm_arch_vcpu_create(vcpu);
3263	if (r)
3264		goto vcpu_free_run_page;
3265
3266	mutex_lock(&kvm->lock);
3267	if (kvm_get_vcpu_by_id(kvm, id)) {
3268		r = -EEXIST;
3269		goto unlock_vcpu_destroy;
3270	}
3271
3272	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3273	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3274
3275	/* Now it's all set up, let userspace reach it */
3276	kvm_get_kvm(kvm);
3277	r = create_vcpu_fd(vcpu);
3278	if (r < 0) {
3279		kvm_put_kvm_no_destroy(kvm);
3280		goto unlock_vcpu_destroy;
3281	}
3282
3283	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3284
3285	/*
3286	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3287	 * before kvm->online_vcpu's incremented value.
3288	 */
3289	smp_wmb();
3290	atomic_inc(&kvm->online_vcpus);
3291
3292	mutex_unlock(&kvm->lock);
3293	kvm_arch_vcpu_postcreate(vcpu);
3294	kvm_create_vcpu_debugfs(vcpu);
3295	return r;
3296
3297unlock_vcpu_destroy:
3298	mutex_unlock(&kvm->lock);
3299	kvm_arch_vcpu_destroy(vcpu);
3300vcpu_free_run_page:
3301	free_page((unsigned long)vcpu->run);
3302vcpu_free:
3303	kmem_cache_free(kvm_vcpu_cache, vcpu);
3304vcpu_decrement:
3305	mutex_lock(&kvm->lock);
3306	kvm->created_vcpus--;
3307	mutex_unlock(&kvm->lock);
3308	return r;
3309}
3310
3311static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3312{
3313	if (sigset) {
3314		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3315		vcpu->sigset_active = 1;
3316		vcpu->sigset = *sigset;
3317	} else
3318		vcpu->sigset_active = 0;
3319	return 0;
3320}
3321
3322static long kvm_vcpu_ioctl(struct file *filp,
3323			   unsigned int ioctl, unsigned long arg)
3324{
3325	struct kvm_vcpu *vcpu = filp->private_data;
3326	void __user *argp = (void __user *)arg;
3327	int r;
3328	struct kvm_fpu *fpu = NULL;
3329	struct kvm_sregs *kvm_sregs = NULL;
3330
3331	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3332		return -EIO;
3333
3334	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3335		return -EINVAL;
3336
3337	/*
3338	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3339	 * execution; mutex_lock() would break them.
3340	 */
3341	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3342	if (r != -ENOIOCTLCMD)
3343		return r;
3344
3345	if (mutex_lock_killable(&vcpu->mutex))
3346		return -EINTR;
3347	switch (ioctl) {
3348	case KVM_RUN: {
3349		struct pid *oldpid;
3350		r = -EINVAL;
3351		if (arg)
3352			goto out;
3353		oldpid = rcu_access_pointer(vcpu->pid);
3354		if (unlikely(oldpid != task_pid(current))) {
3355			/* The thread running this VCPU changed. */
3356			struct pid *newpid;
3357
3358			r = kvm_arch_vcpu_run_pid_change(vcpu);
3359			if (r)
3360				break;
3361
3362			newpid = get_task_pid(current, PIDTYPE_PID);
3363			rcu_assign_pointer(vcpu->pid, newpid);
3364			if (oldpid)
3365				synchronize_rcu();
3366			put_pid(oldpid);
3367		}
3368		r = kvm_arch_vcpu_ioctl_run(vcpu);
3369		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3370		break;
3371	}
3372	case KVM_GET_REGS: {
3373		struct kvm_regs *kvm_regs;
3374
3375		r = -ENOMEM;
3376		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3377		if (!kvm_regs)
3378			goto out;
3379		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3380		if (r)
3381			goto out_free1;
3382		r = -EFAULT;
3383		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3384			goto out_free1;
3385		r = 0;
3386out_free1:
3387		kfree(kvm_regs);
3388		break;
3389	}
3390	case KVM_SET_REGS: {
3391		struct kvm_regs *kvm_regs;
3392
3393		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3394		if (IS_ERR(kvm_regs)) {
3395			r = PTR_ERR(kvm_regs);
3396			goto out;
3397		}
3398		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3399		kfree(kvm_regs);
3400		break;
3401	}
3402	case KVM_GET_SREGS: {
3403		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3404				    GFP_KERNEL_ACCOUNT);
3405		r = -ENOMEM;
3406		if (!kvm_sregs)
3407			goto out;
3408		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3409		if (r)
3410			goto out;
3411		r = -EFAULT;
3412		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3413			goto out;
3414		r = 0;
3415		break;
3416	}
3417	case KVM_SET_SREGS: {
3418		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3419		if (IS_ERR(kvm_sregs)) {
3420			r = PTR_ERR(kvm_sregs);
3421			kvm_sregs = NULL;
3422			goto out;
3423		}
3424		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3425		break;
3426	}
3427	case KVM_GET_MP_STATE: {
3428		struct kvm_mp_state mp_state;
3429
3430		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3431		if (r)
3432			goto out;
3433		r = -EFAULT;
3434		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3435			goto out;
3436		r = 0;
3437		break;
3438	}
3439	case KVM_SET_MP_STATE: {
3440		struct kvm_mp_state mp_state;
3441
3442		r = -EFAULT;
3443		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3444			goto out;
3445		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3446		break;
3447	}
3448	case KVM_TRANSLATE: {
3449		struct kvm_translation tr;
3450
3451		r = -EFAULT;
3452		if (copy_from_user(&tr, argp, sizeof(tr)))
3453			goto out;
3454		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3455		if (r)
3456			goto out;
3457		r = -EFAULT;
3458		if (copy_to_user(argp, &tr, sizeof(tr)))
3459			goto out;
3460		r = 0;
3461		break;
3462	}
3463	case KVM_SET_GUEST_DEBUG: {
3464		struct kvm_guest_debug dbg;
3465
3466		r = -EFAULT;
3467		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3468			goto out;
3469		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3470		break;
3471	}
3472	case KVM_SET_SIGNAL_MASK: {
3473		struct kvm_signal_mask __user *sigmask_arg = argp;
3474		struct kvm_signal_mask kvm_sigmask;
3475		sigset_t sigset, *p;
3476
3477		p = NULL;
3478		if (argp) {
3479			r = -EFAULT;
3480			if (copy_from_user(&kvm_sigmask, argp,
3481					   sizeof(kvm_sigmask)))
3482				goto out;
3483			r = -EINVAL;
3484			if (kvm_sigmask.len != sizeof(sigset))
3485				goto out;
3486			r = -EFAULT;
3487			if (copy_from_user(&sigset, sigmask_arg->sigset,
3488					   sizeof(sigset)))
3489				goto out;
3490			p = &sigset;
3491		}
3492		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3493		break;
3494	}
3495	case KVM_GET_FPU: {
3496		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3497		r = -ENOMEM;
3498		if (!fpu)
3499			goto out;
3500		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3501		if (r)
3502			goto out;
3503		r = -EFAULT;
3504		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3505			goto out;
3506		r = 0;
3507		break;
3508	}
3509	case KVM_SET_FPU: {
3510		fpu = memdup_user(argp, sizeof(*fpu));
3511		if (IS_ERR(fpu)) {
3512			r = PTR_ERR(fpu);
3513			fpu = NULL;
3514			goto out;
3515		}
3516		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3517		break;
3518	}
3519	default:
3520		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3521	}
3522out:
3523	mutex_unlock(&vcpu->mutex);
3524	kfree(fpu);
3525	kfree(kvm_sregs);
3526	return r;
3527}
3528
3529#ifdef CONFIG_KVM_COMPAT
3530static long kvm_vcpu_compat_ioctl(struct file *filp,
3531				  unsigned int ioctl, unsigned long arg)
3532{
3533	struct kvm_vcpu *vcpu = filp->private_data;
3534	void __user *argp = compat_ptr(arg);
3535	int r;
3536
3537	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3538		return -EIO;
3539
3540	switch (ioctl) {
3541	case KVM_SET_SIGNAL_MASK: {
3542		struct kvm_signal_mask __user *sigmask_arg = argp;
3543		struct kvm_signal_mask kvm_sigmask;
3544		sigset_t sigset;
3545
3546		if (argp) {
3547			r = -EFAULT;
3548			if (copy_from_user(&kvm_sigmask, argp,
3549					   sizeof(kvm_sigmask)))
3550				goto out;
3551			r = -EINVAL;
3552			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3553				goto out;
3554			r = -EFAULT;
3555			if (get_compat_sigset(&sigset,
3556					      (compat_sigset_t __user *)sigmask_arg->sigset))
3557				goto out;
3558			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3559		} else
3560			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3561		break;
3562	}
3563	default:
3564		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3565	}
3566
3567out:
3568	return r;
3569}
3570#endif
3571
3572static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3573{
3574	struct kvm_device *dev = filp->private_data;
3575
3576	if (dev->ops->mmap)
3577		return dev->ops->mmap(dev, vma);
3578
3579	return -ENODEV;
3580}
3581
3582static int kvm_device_ioctl_attr(struct kvm_device *dev,
3583				 int (*accessor)(struct kvm_device *dev,
3584						 struct kvm_device_attr *attr),
3585				 unsigned long arg)
3586{
3587	struct kvm_device_attr attr;
3588
3589	if (!accessor)
3590		return -EPERM;
3591
3592	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3593		return -EFAULT;
3594
3595	return accessor(dev, &attr);
3596}
3597
3598static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3599			     unsigned long arg)
3600{
3601	struct kvm_device *dev = filp->private_data;
3602
3603	if (dev->kvm->mm != current->mm || dev->kvm->vm_bugged)
3604		return -EIO;
3605
3606	switch (ioctl) {
3607	case KVM_SET_DEVICE_ATTR:
3608		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3609	case KVM_GET_DEVICE_ATTR:
3610		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3611	case KVM_HAS_DEVICE_ATTR:
3612		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3613	default:
3614		if (dev->ops->ioctl)
3615			return dev->ops->ioctl(dev, ioctl, arg);
3616
3617		return -ENOTTY;
3618	}
3619}
3620
3621static int kvm_device_release(struct inode *inode, struct file *filp)
3622{
3623	struct kvm_device *dev = filp->private_data;
3624	struct kvm *kvm = dev->kvm;
3625
3626	if (dev->ops->release) {
3627		mutex_lock(&kvm->lock);
3628		list_del(&dev->vm_node);
3629		dev->ops->release(dev);
3630		mutex_unlock(&kvm->lock);
3631	}
3632
3633	kvm_put_kvm(kvm);
3634	return 0;
3635}
3636
3637static const struct file_operations kvm_device_fops = {
3638	.unlocked_ioctl = kvm_device_ioctl,
3639	.release = kvm_device_release,
3640	KVM_COMPAT(kvm_device_ioctl),
3641	.mmap = kvm_device_mmap,
3642};
3643
3644struct kvm_device *kvm_device_from_filp(struct file *filp)
3645{
3646	if (filp->f_op != &kvm_device_fops)
3647		return NULL;
3648
3649	return filp->private_data;
3650}
3651
3652static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3653#ifdef CONFIG_KVM_MPIC
3654	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3655	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3656#endif
3657};
3658
3659int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3660{
3661	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3662		return -ENOSPC;
3663
3664	if (kvm_device_ops_table[type] != NULL)
3665		return -EEXIST;
3666
3667	kvm_device_ops_table[type] = ops;
3668	return 0;
3669}
3670
3671void kvm_unregister_device_ops(u32 type)
3672{
3673	if (kvm_device_ops_table[type] != NULL)
3674		kvm_device_ops_table[type] = NULL;
3675}
3676
3677static int kvm_ioctl_create_device(struct kvm *kvm,
3678				   struct kvm_create_device *cd)
3679{
3680	const struct kvm_device_ops *ops = NULL;
3681	struct kvm_device *dev;
3682	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3683	int type;
3684	int ret;
3685
3686	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3687		return -ENODEV;
3688
3689	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3690	ops = kvm_device_ops_table[type];
3691	if (ops == NULL)
3692		return -ENODEV;
3693
3694	if (test)
3695		return 0;
3696
3697	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3698	if (!dev)
3699		return -ENOMEM;
3700
3701	dev->ops = ops;
3702	dev->kvm = kvm;
3703
3704	mutex_lock(&kvm->lock);
3705	ret = ops->create(dev, type);
3706	if (ret < 0) {
3707		mutex_unlock(&kvm->lock);
3708		kfree(dev);
3709		return ret;
3710	}
3711	list_add(&dev->vm_node, &kvm->devices);
3712	mutex_unlock(&kvm->lock);
3713
3714	if (ops->init)
3715		ops->init(dev);
3716
3717	kvm_get_kvm(kvm);
3718	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3719	if (ret < 0) {
3720		kvm_put_kvm_no_destroy(kvm);
3721		mutex_lock(&kvm->lock);
3722		list_del(&dev->vm_node);
3723		if (ops->release)
3724			ops->release(dev);
3725		mutex_unlock(&kvm->lock);
3726		if (ops->destroy)
3727			ops->destroy(dev);
3728		return ret;
3729	}
3730
3731	cd->fd = ret;
3732	return 0;
3733}
3734
3735static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3736{
3737	switch (arg) {
3738	case KVM_CAP_USER_MEMORY:
3739	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3740	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3741	case KVM_CAP_INTERNAL_ERROR_DATA:
3742#ifdef CONFIG_HAVE_KVM_MSI
3743	case KVM_CAP_SIGNAL_MSI:
3744#endif
3745#ifdef CONFIG_HAVE_KVM_IRQFD
3746	case KVM_CAP_IRQFD:
3747	case KVM_CAP_IRQFD_RESAMPLE:
3748#endif
3749	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3750	case KVM_CAP_CHECK_EXTENSION_VM:
3751	case KVM_CAP_ENABLE_CAP_VM:
3752	case KVM_CAP_HALT_POLL:
3753		return 1;
3754#ifdef CONFIG_KVM_MMIO
3755	case KVM_CAP_COALESCED_MMIO:
3756		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3757	case KVM_CAP_COALESCED_PIO:
3758		return 1;
3759#endif
3760#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3761	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3762		return KVM_DIRTY_LOG_MANUAL_CAPS;
3763#endif
3764#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3765	case KVM_CAP_IRQ_ROUTING:
3766		return KVM_MAX_IRQ_ROUTES;
3767#endif
3768#if KVM_ADDRESS_SPACE_NUM > 1
3769	case KVM_CAP_MULTI_ADDRESS_SPACE:
3770		return KVM_ADDRESS_SPACE_NUM;
3771#endif
3772	case KVM_CAP_NR_MEMSLOTS:
3773		return KVM_USER_MEM_SLOTS;
3774	default:
3775		break;
3776	}
3777	return kvm_vm_ioctl_check_extension(kvm, arg);
3778}
3779
3780int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3781						  struct kvm_enable_cap *cap)
3782{
3783	return -EINVAL;
3784}
3785
3786static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3787					   struct kvm_enable_cap *cap)
3788{
3789	switch (cap->cap) {
3790#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3791	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3792		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3793
3794		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3795			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3796
3797		if (cap->flags || (cap->args[0] & ~allowed_options))
3798			return -EINVAL;
3799		kvm->manual_dirty_log_protect = cap->args[0];
3800		return 0;
3801	}
3802#endif
3803	case KVM_CAP_HALT_POLL: {
3804		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3805			return -EINVAL;
3806
3807		kvm->max_halt_poll_ns = cap->args[0];
3808		return 0;
3809	}
3810	default:
3811		return kvm_vm_ioctl_enable_cap(kvm, cap);
3812	}
3813}
3814
3815static long kvm_vm_ioctl(struct file *filp,
3816			   unsigned int ioctl, unsigned long arg)
3817{
3818	struct kvm *kvm = filp->private_data;
3819	void __user *argp = (void __user *)arg;
3820	int r;
3821
3822	if (kvm->mm != current->mm || kvm->vm_bugged)
3823		return -EIO;
3824	switch (ioctl) {
3825	case KVM_CREATE_VCPU:
3826		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3827		break;
3828	case KVM_ENABLE_CAP: {
3829		struct kvm_enable_cap cap;
3830
3831		r = -EFAULT;
3832		if (copy_from_user(&cap, argp, sizeof(cap)))
3833			goto out;
3834		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3835		break;
3836	}
3837	case KVM_SET_USER_MEMORY_REGION: {
3838		struct kvm_userspace_memory_region kvm_userspace_mem;
3839
3840		r = -EFAULT;
3841		if (copy_from_user(&kvm_userspace_mem, argp,
3842						sizeof(kvm_userspace_mem)))
3843			goto out;
3844
3845		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3846		break;
3847	}
3848	case KVM_GET_DIRTY_LOG: {
3849		struct kvm_dirty_log log;
3850
3851		r = -EFAULT;
3852		if (copy_from_user(&log, argp, sizeof(log)))
3853			goto out;
3854		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3855		break;
3856	}
3857#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3858	case KVM_CLEAR_DIRTY_LOG: {
3859		struct kvm_clear_dirty_log log;
3860
3861		r = -EFAULT;
3862		if (copy_from_user(&log, argp, sizeof(log)))
3863			goto out;
3864		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3865		break;
3866	}
3867#endif
3868#ifdef CONFIG_KVM_MMIO
3869	case KVM_REGISTER_COALESCED_MMIO: {
3870		struct kvm_coalesced_mmio_zone zone;
3871
3872		r = -EFAULT;
3873		if (copy_from_user(&zone, argp, sizeof(zone)))
3874			goto out;
3875		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3876		break;
3877	}
3878	case KVM_UNREGISTER_COALESCED_MMIO: {
3879		struct kvm_coalesced_mmio_zone zone;
3880
3881		r = -EFAULT;
3882		if (copy_from_user(&zone, argp, sizeof(zone)))
3883			goto out;
3884		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3885		break;
3886	}
3887#endif
3888	case KVM_IRQFD: {
3889		struct kvm_irqfd data;
3890
3891		r = -EFAULT;
3892		if (copy_from_user(&data, argp, sizeof(data)))
3893			goto out;
3894		r = kvm_irqfd(kvm, &data);
3895		break;
3896	}
3897	case KVM_IOEVENTFD: {
3898		struct kvm_ioeventfd data;
3899
3900		r = -EFAULT;
3901		if (copy_from_user(&data, argp, sizeof(data)))
3902			goto out;
3903		r = kvm_ioeventfd(kvm, &data);
3904		break;
3905	}
3906#ifdef CONFIG_HAVE_KVM_MSI
3907	case KVM_SIGNAL_MSI: {
3908		struct kvm_msi msi;
3909
3910		r = -EFAULT;
3911		if (copy_from_user(&msi, argp, sizeof(msi)))
3912			goto out;
3913		r = kvm_send_userspace_msi(kvm, &msi);
3914		break;
3915	}
3916#endif
3917#ifdef __KVM_HAVE_IRQ_LINE
3918	case KVM_IRQ_LINE_STATUS:
3919	case KVM_IRQ_LINE: {
3920		struct kvm_irq_level irq_event;
3921
3922		r = -EFAULT;
3923		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3924			goto out;
3925
3926		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3927					ioctl == KVM_IRQ_LINE_STATUS);
3928		if (r)
3929			goto out;
3930
3931		r = -EFAULT;
3932		if (ioctl == KVM_IRQ_LINE_STATUS) {
3933			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3934				goto out;
3935		}
3936
3937		r = 0;
3938		break;
3939	}
3940#endif
3941#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3942	case KVM_SET_GSI_ROUTING: {
3943		struct kvm_irq_routing routing;
3944		struct kvm_irq_routing __user *urouting;
3945		struct kvm_irq_routing_entry *entries = NULL;
3946
3947		r = -EFAULT;
3948		if (copy_from_user(&routing, argp, sizeof(routing)))
3949			goto out;
3950		r = -EINVAL;
3951		if (!kvm_arch_can_set_irq_routing(kvm))
3952			goto out;
3953		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3954			goto out;
3955		if (routing.flags)
3956			goto out;
3957		if (routing.nr) {
3958			urouting = argp;
3959			entries = vmemdup_user(urouting->entries,
3960					       array_size(sizeof(*entries),
3961							  routing.nr));
3962			if (IS_ERR(entries)) {
3963				r = PTR_ERR(entries);
3964				goto out;
3965			}
3966		}
3967		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3968					routing.flags);
3969		kvfree(entries);
3970		break;
3971	}
3972#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3973	case KVM_CREATE_DEVICE: {
3974		struct kvm_create_device cd;
3975
3976		r = -EFAULT;
3977		if (copy_from_user(&cd, argp, sizeof(cd)))
3978			goto out;
3979
3980		r = kvm_ioctl_create_device(kvm, &cd);
3981		if (r)
3982			goto out;
3983
3984		r = -EFAULT;
3985		if (copy_to_user(argp, &cd, sizeof(cd)))
3986			goto out;
3987
3988		r = 0;
3989		break;
3990	}
3991	case KVM_CHECK_EXTENSION:
3992		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3993		break;
3994	default:
3995		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3996	}
3997out:
3998	return r;
3999}
4000
4001#ifdef CONFIG_KVM_COMPAT
4002struct compat_kvm_dirty_log {
4003	__u32 slot;
4004	__u32 padding1;
4005	union {
4006		compat_uptr_t dirty_bitmap; /* one bit per page */
4007		__u64 padding2;
4008	};
4009};
4010
4011struct compat_kvm_clear_dirty_log {
4012	__u32 slot;
4013	__u32 num_pages;
4014	__u64 first_page;
4015	union {
4016		compat_uptr_t dirty_bitmap; /* one bit per page */
4017		__u64 padding2;
4018	};
4019};
4020
4021long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4022				     unsigned long arg)
4023{
4024	return -ENOTTY;
4025}
4026
4027static long kvm_vm_compat_ioctl(struct file *filp,
4028			   unsigned int ioctl, unsigned long arg)
4029{
4030	struct kvm *kvm = filp->private_data;
4031	int r;
4032
4033	if (kvm->mm != current->mm || kvm->vm_bugged)
4034		return -EIO;
4035
4036	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4037	if (r != -ENOTTY)
4038		return r;
4039
4040	switch (ioctl) {
4041#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4042	case KVM_CLEAR_DIRTY_LOG: {
4043		struct compat_kvm_clear_dirty_log compat_log;
4044		struct kvm_clear_dirty_log log;
4045
4046		if (copy_from_user(&compat_log, (void __user *)arg,
4047				   sizeof(compat_log)))
4048			return -EFAULT;
4049		log.slot	 = compat_log.slot;
4050		log.num_pages	 = compat_log.num_pages;
4051		log.first_page	 = compat_log.first_page;
4052		log.padding2	 = compat_log.padding2;
4053		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4054
4055		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4056		break;
4057	}
4058#endif
4059	case KVM_GET_DIRTY_LOG: {
4060		struct compat_kvm_dirty_log compat_log;
4061		struct kvm_dirty_log log;
4062
4063		if (copy_from_user(&compat_log, (void __user *)arg,
4064				   sizeof(compat_log)))
4065			return -EFAULT;
4066		log.slot	 = compat_log.slot;
4067		log.padding1	 = compat_log.padding1;
4068		log.padding2	 = compat_log.padding2;
4069		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4070
4071		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4072		break;
4073	}
4074	default:
4075		r = kvm_vm_ioctl(filp, ioctl, arg);
4076	}
4077	return r;
4078}
4079#endif
4080
4081static struct file_operations kvm_vm_fops = {
4082	.release        = kvm_vm_release,
4083	.unlocked_ioctl = kvm_vm_ioctl,
4084	.llseek		= noop_llseek,
4085	KVM_COMPAT(kvm_vm_compat_ioctl),
4086};
4087
4088static int kvm_dev_ioctl_create_vm(unsigned long type)
4089{
4090	int r;
4091	struct kvm *kvm;
4092	struct file *file;
4093
4094	kvm = kvm_create_vm(type);
4095	if (IS_ERR(kvm))
4096		return PTR_ERR(kvm);
4097#ifdef CONFIG_KVM_MMIO
4098	r = kvm_coalesced_mmio_init(kvm);
4099	if (r < 0)
4100		goto put_kvm;
4101#endif
4102	r = get_unused_fd_flags(O_CLOEXEC);
4103	if (r < 0)
4104		goto put_kvm;
4105
4106	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4107	if (IS_ERR(file)) {
4108		put_unused_fd(r);
4109		r = PTR_ERR(file);
4110		goto put_kvm;
4111	}
4112
4113	/*
4114	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4115	 * already set, with ->release() being kvm_vm_release().  In error
4116	 * cases it will be called by the final fput(file) and will take
4117	 * care of doing kvm_put_kvm(kvm).
4118	 */
4119	if (kvm_create_vm_debugfs(kvm, r) < 0) {
4120		put_unused_fd(r);
4121		fput(file);
4122		return -ENOMEM;
4123	}
4124	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4125
4126	fd_install(r, file);
4127	return r;
4128
4129put_kvm:
4130	kvm_put_kvm(kvm);
4131	return r;
4132}
4133
4134static long kvm_dev_ioctl(struct file *filp,
4135			  unsigned int ioctl, unsigned long arg)
4136{
4137	long r = -EINVAL;
4138
4139	switch (ioctl) {
4140	case KVM_GET_API_VERSION:
4141		if (arg)
4142			goto out;
4143		r = KVM_API_VERSION;
4144		break;
4145	case KVM_CREATE_VM:
4146		r = kvm_dev_ioctl_create_vm(arg);
4147		break;
4148	case KVM_CHECK_EXTENSION:
4149		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4150		break;
4151	case KVM_GET_VCPU_MMAP_SIZE:
4152		if (arg)
4153			goto out;
4154		r = PAGE_SIZE;     /* struct kvm_run */
4155#ifdef CONFIG_X86
4156		r += PAGE_SIZE;    /* pio data page */
4157#endif
4158#ifdef CONFIG_KVM_MMIO
4159		r += PAGE_SIZE;    /* coalesced mmio ring page */
4160#endif
4161		break;
4162	case KVM_TRACE_ENABLE:
4163	case KVM_TRACE_PAUSE:
4164	case KVM_TRACE_DISABLE:
4165		r = -EOPNOTSUPP;
4166		break;
4167	default:
4168		return kvm_arch_dev_ioctl(filp, ioctl, arg);
4169	}
4170out:
4171	return r;
4172}
4173
4174static struct file_operations kvm_chardev_ops = {
4175	.unlocked_ioctl = kvm_dev_ioctl,
4176	.llseek		= noop_llseek,
4177	KVM_COMPAT(kvm_dev_ioctl),
4178};
4179
4180static struct miscdevice kvm_dev = {
4181	KVM_MINOR,
4182	"kvm",
4183	&kvm_chardev_ops,
4184};
4185
4186static void hardware_enable_nolock(void *junk)
4187{
4188	int cpu = raw_smp_processor_id();
4189	int r;
4190
4191	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4192		return;
4193
4194	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4195
4196	r = kvm_arch_hardware_enable();
4197
4198	if (r) {
4199		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4200		atomic_inc(&hardware_enable_failed);
4201		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4202	}
4203}
4204
4205static int kvm_starting_cpu(unsigned int cpu)
4206{
4207	raw_spin_lock(&kvm_count_lock);
4208	if (kvm_usage_count)
4209		hardware_enable_nolock(NULL);
4210	raw_spin_unlock(&kvm_count_lock);
4211	return 0;
4212}
4213
4214static void hardware_disable_nolock(void *junk)
4215{
4216	int cpu = raw_smp_processor_id();
4217
4218	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4219		return;
4220	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4221	kvm_arch_hardware_disable();
4222}
4223
4224static int kvm_dying_cpu(unsigned int cpu)
4225{
4226	raw_spin_lock(&kvm_count_lock);
4227	if (kvm_usage_count)
4228		hardware_disable_nolock(NULL);
4229	raw_spin_unlock(&kvm_count_lock);
4230	return 0;
4231}
4232
4233static void hardware_disable_all_nolock(void)
4234{
4235	BUG_ON(!kvm_usage_count);
4236
4237	kvm_usage_count--;
4238	if (!kvm_usage_count)
4239		on_each_cpu(hardware_disable_nolock, NULL, 1);
4240}
4241
4242static void hardware_disable_all(void)
4243{
4244	raw_spin_lock(&kvm_count_lock);
4245	hardware_disable_all_nolock();
4246	raw_spin_unlock(&kvm_count_lock);
4247}
4248
4249static int hardware_enable_all(void)
4250{
4251	int r = 0;
4252
4253	raw_spin_lock(&kvm_count_lock);
4254
4255	kvm_usage_count++;
4256	if (kvm_usage_count == 1) {
4257		atomic_set(&hardware_enable_failed, 0);
4258		on_each_cpu(hardware_enable_nolock, NULL, 1);
4259
4260		if (atomic_read(&hardware_enable_failed)) {
4261			hardware_disable_all_nolock();
4262			r = -EBUSY;
4263		}
4264	}
4265
4266	raw_spin_unlock(&kvm_count_lock);
4267
4268	return r;
4269}
4270
4271static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4272		      void *v)
4273{
4274	/*
4275	 * Some (well, at least mine) BIOSes hang on reboot if
4276	 * in vmx root mode.
4277	 *
4278	 * And Intel TXT required VMX off for all cpu when system shutdown.
4279	 */
4280	pr_info("kvm: exiting hardware virtualization\n");
4281	kvm_rebooting = true;
4282	on_each_cpu(hardware_disable_nolock, NULL, 1);
4283	return NOTIFY_OK;
4284}
4285
4286static struct notifier_block kvm_reboot_notifier = {
4287	.notifier_call = kvm_reboot,
4288	.priority = 0,
4289};
4290
4291static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4292{
4293	int i;
4294
4295	for (i = 0; i < bus->dev_count; i++) {
4296		struct kvm_io_device *pos = bus->range[i].dev;
4297
4298		kvm_iodevice_destructor(pos);
4299	}
4300	kfree(bus);
4301}
4302
4303static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4304				 const struct kvm_io_range *r2)
4305{
4306	gpa_t addr1 = r1->addr;
4307	gpa_t addr2 = r2->addr;
4308
4309	if (addr1 < addr2)
4310		return -1;
4311
4312	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4313	 * accept any overlapping write.  Any order is acceptable for
4314	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4315	 * we process all of them.
4316	 */
4317	if (r2->len) {
4318		addr1 += r1->len;
4319		addr2 += r2->len;
4320	}
4321
4322	if (addr1 > addr2)
4323		return 1;
4324
4325	return 0;
4326}
4327
4328static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4329{
4330	return kvm_io_bus_cmp(p1, p2);
4331}
4332
4333static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4334			     gpa_t addr, int len)
4335{
4336	struct kvm_io_range *range, key;
4337	int off;
4338
4339	key = (struct kvm_io_range) {
4340		.addr = addr,
4341		.len = len,
4342	};
4343
4344	range = bsearch(&key, bus->range, bus->dev_count,
4345			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4346	if (range == NULL)
4347		return -ENOENT;
4348
4349	off = range - bus->range;
4350
4351	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4352		off--;
4353
4354	return off;
4355}
4356
4357static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4358			      struct kvm_io_range *range, const void *val)
4359{
4360	int idx;
4361
4362	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4363	if (idx < 0)
4364		return -EOPNOTSUPP;
4365
4366	while (idx < bus->dev_count &&
4367		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4368		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4369					range->len, val))
4370			return idx;
4371		idx++;
4372	}
4373
4374	return -EOPNOTSUPP;
4375}
4376
4377/* kvm_io_bus_write - called under kvm->slots_lock */
4378int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4379		     int len, const void *val)
4380{
4381	struct kvm_io_bus *bus;
4382	struct kvm_io_range range;
4383	int r;
4384
4385	range = (struct kvm_io_range) {
4386		.addr = addr,
4387		.len = len,
4388	};
4389
4390	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4391	if (!bus)
4392		return -ENOMEM;
4393	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4394	return r < 0 ? r : 0;
4395}
4396EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4397
4398/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4399int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4400			    gpa_t addr, int len, const void *val, long cookie)
4401{
4402	struct kvm_io_bus *bus;
4403	struct kvm_io_range range;
4404
4405	range = (struct kvm_io_range) {
4406		.addr = addr,
4407		.len = len,
4408	};
4409
4410	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4411	if (!bus)
4412		return -ENOMEM;
4413
4414	/* First try the device referenced by cookie. */
4415	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4416	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4417		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4418					val))
4419			return cookie;
4420
4421	/*
4422	 * cookie contained garbage; fall back to search and return the
4423	 * correct cookie value.
4424	 */
4425	return __kvm_io_bus_write(vcpu, bus, &range, val);
4426}
4427
4428static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4429			     struct kvm_io_range *range, void *val)
4430{
4431	int idx;
4432
4433	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4434	if (idx < 0)
4435		return -EOPNOTSUPP;
4436
4437	while (idx < bus->dev_count &&
4438		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4439		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4440				       range->len, val))
4441			return idx;
4442		idx++;
4443	}
4444
4445	return -EOPNOTSUPP;
4446}
4447
4448/* kvm_io_bus_read - called under kvm->slots_lock */
4449int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4450		    int len, void *val)
4451{
4452	struct kvm_io_bus *bus;
4453	struct kvm_io_range range;
4454	int r;
4455
4456	range = (struct kvm_io_range) {
4457		.addr = addr,
4458		.len = len,
4459	};
4460
4461	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4462	if (!bus)
4463		return -ENOMEM;
4464	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4465	return r < 0 ? r : 0;
4466}
4467
4468/* Caller must hold slots_lock. */
4469int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4470			    int len, struct kvm_io_device *dev)
4471{
4472	int i;
4473	struct kvm_io_bus *new_bus, *bus;
4474	struct kvm_io_range range;
4475
4476	bus = kvm_get_bus(kvm, bus_idx);
4477	if (!bus)
4478		return -ENOMEM;
4479
4480	/* exclude ioeventfd which is limited by maximum fd */
4481	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4482		return -ENOSPC;
4483
4484	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4485			  GFP_KERNEL_ACCOUNT);
4486	if (!new_bus)
4487		return -ENOMEM;
4488
4489	range = (struct kvm_io_range) {
4490		.addr = addr,
4491		.len = len,
4492		.dev = dev,
4493	};
4494
4495	for (i = 0; i < bus->dev_count; i++)
4496		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4497			break;
4498
4499	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4500	new_bus->dev_count++;
4501	new_bus->range[i] = range;
4502	memcpy(new_bus->range + i + 1, bus->range + i,
4503		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4504	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4505	synchronize_srcu_expedited(&kvm->srcu);
4506	kfree(bus);
4507
4508	return 0;
4509}
4510
4511/* Caller must hold slots_lock. */
4512int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4513			      struct kvm_io_device *dev)
4514{
4515	int i, j;
4516	struct kvm_io_bus *new_bus, *bus;
4517
4518	bus = kvm_get_bus(kvm, bus_idx);
4519	if (!bus)
4520		return 0;
4521
4522	for (i = 0; i < bus->dev_count; i++)
4523		if (bus->range[i].dev == dev) {
4524			break;
4525		}
4526
4527	if (i == bus->dev_count)
4528		return 0;
4529
4530	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4531			  GFP_KERNEL_ACCOUNT);
4532	if (new_bus) {
4533		memcpy(new_bus, bus, struct_size(bus, range, i));
4534		new_bus->dev_count--;
4535		memcpy(new_bus->range + i, bus->range + i + 1,
4536				flex_array_size(new_bus, range, new_bus->dev_count - i));
4537	}
4538
4539	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4540	synchronize_srcu_expedited(&kvm->srcu);
4541
4542	/* Destroy the old bus _after_ installing the (null) bus. */
4543	if (!new_bus) {
4544		pr_err("kvm: failed to shrink bus, removing it completely\n");
4545		for (j = 0; j < bus->dev_count; j++) {
4546			if (j == i)
4547				continue;
4548			kvm_iodevice_destructor(bus->range[j].dev);
4549		}
4550	}
4551
4552	kfree(bus);
4553	return new_bus ? 0 : -ENOMEM;
4554}
4555
4556struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4557					 gpa_t addr)
4558{
4559	struct kvm_io_bus *bus;
4560	int dev_idx, srcu_idx;
4561	struct kvm_io_device *iodev = NULL;
4562
4563	srcu_idx = srcu_read_lock(&kvm->srcu);
4564
4565	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4566	if (!bus)
4567		goto out_unlock;
4568
4569	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4570	if (dev_idx < 0)
4571		goto out_unlock;
4572
4573	iodev = bus->range[dev_idx].dev;
4574
4575out_unlock:
4576	srcu_read_unlock(&kvm->srcu, srcu_idx);
4577
4578	return iodev;
4579}
4580EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4581
4582static int kvm_debugfs_open(struct inode *inode, struct file *file,
4583			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4584			   const char *fmt)
4585{
4586	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4587					  inode->i_private;
4588
4589	/* The debugfs files are a reference to the kvm struct which
4590	 * is still valid when kvm_destroy_vm is called.
4591	 * To avoid the race between open and the removal of the debugfs
4592	 * directory we test against the users count.
4593	 */
4594	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4595		return -ENOENT;
4596
4597	if (simple_attr_open(inode, file, get,
4598		    KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4599		    ? set : NULL,
4600		    fmt)) {
4601		kvm_put_kvm(stat_data->kvm);
4602		return -ENOMEM;
4603	}
4604
4605	return 0;
4606}
4607
4608static int kvm_debugfs_release(struct inode *inode, struct file *file)
4609{
4610	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4611					  inode->i_private;
4612
4613	simple_attr_release(inode, file);
4614	kvm_put_kvm(stat_data->kvm);
4615
4616	return 0;
4617}
4618
4619static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4620{
4621	*val = *(ulong *)((void *)kvm + offset);
4622
4623	return 0;
4624}
4625
4626static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4627{
4628	*(ulong *)((void *)kvm + offset) = 0;
4629
4630	return 0;
4631}
4632
4633static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4634{
4635	int i;
4636	struct kvm_vcpu *vcpu;
4637
4638	*val = 0;
4639
4640	kvm_for_each_vcpu(i, vcpu, kvm)
4641		*val += *(u64 *)((void *)vcpu + offset);
4642
4643	return 0;
4644}
4645
4646static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4647{
4648	int i;
4649	struct kvm_vcpu *vcpu;
4650
4651	kvm_for_each_vcpu(i, vcpu, kvm)
4652		*(u64 *)((void *)vcpu + offset) = 0;
4653
4654	return 0;
4655}
4656
4657static int kvm_stat_data_get(void *data, u64 *val)
4658{
4659	int r = -EFAULT;
4660	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4661
4662	switch (stat_data->dbgfs_item->kind) {
4663	case KVM_STAT_VM:
4664		r = kvm_get_stat_per_vm(stat_data->kvm,
4665					stat_data->dbgfs_item->offset, val);
4666		break;
4667	case KVM_STAT_VCPU:
4668		r = kvm_get_stat_per_vcpu(stat_data->kvm,
4669					  stat_data->dbgfs_item->offset, val);
4670		break;
4671	}
4672
4673	return r;
4674}
4675
4676static int kvm_stat_data_clear(void *data, u64 val)
4677{
4678	int r = -EFAULT;
4679	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4680
4681	if (val)
4682		return -EINVAL;
4683
4684	switch (stat_data->dbgfs_item->kind) {
4685	case KVM_STAT_VM:
4686		r = kvm_clear_stat_per_vm(stat_data->kvm,
4687					  stat_data->dbgfs_item->offset);
4688		break;
4689	case KVM_STAT_VCPU:
4690		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4691					    stat_data->dbgfs_item->offset);
4692		break;
4693	}
4694
4695	return r;
4696}
4697
4698static int kvm_stat_data_open(struct inode *inode, struct file *file)
4699{
4700	__simple_attr_check_format("%llu\n", 0ull);
4701	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4702				kvm_stat_data_clear, "%llu\n");
4703}
4704
4705static const struct file_operations stat_fops_per_vm = {
4706	.owner = THIS_MODULE,
4707	.open = kvm_stat_data_open,
4708	.release = kvm_debugfs_release,
4709	.read = simple_attr_read,
4710	.write = simple_attr_write,
4711	.llseek = no_llseek,
4712};
4713
4714static int vm_stat_get(void *_offset, u64 *val)
4715{
4716	unsigned offset = (long)_offset;
4717	struct kvm *kvm;
4718	u64 tmp_val;
4719
4720	*val = 0;
4721	mutex_lock(&kvm_lock);
4722	list_for_each_entry(kvm, &vm_list, vm_list) {
4723		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4724		*val += tmp_val;
4725	}
4726	mutex_unlock(&kvm_lock);
4727	return 0;
4728}
4729
4730static int vm_stat_clear(void *_offset, u64 val)
4731{
4732	unsigned offset = (long)_offset;
4733	struct kvm *kvm;
4734
4735	if (val)
4736		return -EINVAL;
4737
4738	mutex_lock(&kvm_lock);
4739	list_for_each_entry(kvm, &vm_list, vm_list) {
4740		kvm_clear_stat_per_vm(kvm, offset);
4741	}
4742	mutex_unlock(&kvm_lock);
4743
4744	return 0;
4745}
4746
4747DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4748
4749static int vcpu_stat_get(void *_offset, u64 *val)
4750{
4751	unsigned offset = (long)_offset;
4752	struct kvm *kvm;
4753	u64 tmp_val;
4754
4755	*val = 0;
4756	mutex_lock(&kvm_lock);
4757	list_for_each_entry(kvm, &vm_list, vm_list) {
4758		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4759		*val += tmp_val;
4760	}
4761	mutex_unlock(&kvm_lock);
4762	return 0;
4763}
4764
4765static int vcpu_stat_clear(void *_offset, u64 val)
4766{
4767	unsigned offset = (long)_offset;
4768	struct kvm *kvm;
4769
4770	if (val)
4771		return -EINVAL;
4772
4773	mutex_lock(&kvm_lock);
4774	list_for_each_entry(kvm, &vm_list, vm_list) {
4775		kvm_clear_stat_per_vcpu(kvm, offset);
4776	}
4777	mutex_unlock(&kvm_lock);
4778
4779	return 0;
4780}
4781
4782DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4783			"%llu\n");
4784
4785static const struct file_operations *stat_fops[] = {
4786	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4787	[KVM_STAT_VM]   = &vm_stat_fops,
4788};
4789
4790static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4791{
4792	struct kobj_uevent_env *env;
4793	unsigned long long created, active;
4794
4795	if (!kvm_dev.this_device || !kvm)
4796		return;
4797
4798	mutex_lock(&kvm_lock);
4799	if (type == KVM_EVENT_CREATE_VM) {
4800		kvm_createvm_count++;
4801		kvm_active_vms++;
4802	} else if (type == KVM_EVENT_DESTROY_VM) {
4803		kvm_active_vms--;
4804	}
4805	created = kvm_createvm_count;
4806	active = kvm_active_vms;
4807	mutex_unlock(&kvm_lock);
4808
4809	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4810	if (!env)
4811		return;
4812
4813	add_uevent_var(env, "CREATED=%llu", created);
4814	add_uevent_var(env, "COUNT=%llu", active);
4815
4816	if (type == KVM_EVENT_CREATE_VM) {
4817		add_uevent_var(env, "EVENT=create");
4818		kvm->userspace_pid = task_pid_nr(current);
4819	} else if (type == KVM_EVENT_DESTROY_VM) {
4820		add_uevent_var(env, "EVENT=destroy");
4821	}
4822	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4823
4824	if (kvm->debugfs_dentry) {
4825		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4826
4827		if (p) {
4828			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4829			if (!IS_ERR(tmp))
4830				add_uevent_var(env, "STATS_PATH=%s", tmp);
4831			kfree(p);
4832		}
4833	}
4834	/* no need for checks, since we are adding at most only 5 keys */
4835	env->envp[env->envp_idx++] = NULL;
4836	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4837	kfree(env);
4838}
4839
4840static void kvm_init_debug(void)
4841{
4842	struct kvm_stats_debugfs_item *p;
4843
4844	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4845
4846	kvm_debugfs_num_entries = 0;
4847	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4848		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4849				    kvm_debugfs_dir, (void *)(long)p->offset,
4850				    stat_fops[p->kind]);
4851	}
4852}
4853
4854static int kvm_suspend(void)
4855{
4856	if (kvm_usage_count)
4857		hardware_disable_nolock(NULL);
4858	return 0;
4859}
4860
4861static void kvm_resume(void)
4862{
4863	if (kvm_usage_count) {
4864#ifdef CONFIG_LOCKDEP
4865		WARN_ON(lockdep_is_held(&kvm_count_lock));
4866#endif
4867		hardware_enable_nolock(NULL);
4868	}
4869}
4870
4871static struct syscore_ops kvm_syscore_ops = {
4872	.suspend = kvm_suspend,
4873	.resume = kvm_resume,
4874};
4875
4876static inline
4877struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4878{
4879	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4880}
4881
4882static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4883{
4884	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4885
4886	WRITE_ONCE(vcpu->preempted, false);
4887	WRITE_ONCE(vcpu->ready, false);
4888
4889	__this_cpu_write(kvm_running_vcpu, vcpu);
4890	kvm_arch_sched_in(vcpu, cpu);
4891	kvm_arch_vcpu_load(vcpu, cpu);
4892}
4893
4894static void kvm_sched_out(struct preempt_notifier *pn,
4895			  struct task_struct *next)
4896{
4897	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4898
4899	if (current->state == TASK_RUNNING) {
4900		WRITE_ONCE(vcpu->preempted, true);
4901		WRITE_ONCE(vcpu->ready, true);
4902	}
4903	kvm_arch_vcpu_put(vcpu);
4904	__this_cpu_write(kvm_running_vcpu, NULL);
4905}
4906
4907/**
4908 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4909 *
4910 * We can disable preemption locally around accessing the per-CPU variable,
4911 * and use the resolved vcpu pointer after enabling preemption again,
4912 * because even if the current thread is migrated to another CPU, reading
4913 * the per-CPU value later will give us the same value as we update the
4914 * per-CPU variable in the preempt notifier handlers.
4915 */
4916struct kvm_vcpu *kvm_get_running_vcpu(void)
4917{
4918	struct kvm_vcpu *vcpu;
4919
4920	preempt_disable();
4921	vcpu = __this_cpu_read(kvm_running_vcpu);
4922	preempt_enable();
4923
4924	return vcpu;
4925}
4926EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4927
4928/**
4929 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4930 */
4931struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4932{
4933        return &kvm_running_vcpu;
4934}
4935
4936struct kvm_cpu_compat_check {
4937	void *opaque;
4938	int *ret;
4939};
4940
4941static void check_processor_compat(void *data)
4942{
4943	struct kvm_cpu_compat_check *c = data;
4944
4945	*c->ret = kvm_arch_check_processor_compat(c->opaque);
4946}
4947
4948int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4949		  struct module *module)
4950{
4951	struct kvm_cpu_compat_check c;
4952	int r;
4953	int cpu;
4954
4955	r = kvm_arch_init(opaque);
4956	if (r)
4957		goto out_fail;
4958
4959	/*
4960	 * kvm_arch_init makes sure there's at most one caller
4961	 * for architectures that support multiple implementations,
4962	 * like intel and amd on x86.
4963	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4964	 * conflicts in case kvm is already setup for another implementation.
4965	 */
4966	r = kvm_irqfd_init();
4967	if (r)
4968		goto out_irqfd;
4969
4970	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4971		r = -ENOMEM;
4972		goto out_free_0;
4973	}
4974
4975	r = kvm_arch_hardware_setup(opaque);
4976	if (r < 0)
4977		goto out_free_1;
4978
4979	c.ret = &r;
4980	c.opaque = opaque;
4981	for_each_online_cpu(cpu) {
4982		smp_call_function_single(cpu, check_processor_compat, &c, 1);
4983		if (r < 0)
4984			goto out_free_2;
4985	}
4986
4987	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4988				      kvm_starting_cpu, kvm_dying_cpu);
4989	if (r)
4990		goto out_free_2;
4991	register_reboot_notifier(&kvm_reboot_notifier);
4992
4993	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4994	if (!vcpu_align)
4995		vcpu_align = __alignof__(struct kvm_vcpu);
4996	kvm_vcpu_cache =
4997		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4998					   SLAB_ACCOUNT,
4999					   offsetof(struct kvm_vcpu, arch),
5000					   sizeof_field(struct kvm_vcpu, arch),
5001					   NULL);
5002	if (!kvm_vcpu_cache) {
5003		r = -ENOMEM;
5004		goto out_free_3;
5005	}
5006
5007	for_each_possible_cpu(cpu) {
5008		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5009					    GFP_KERNEL, cpu_to_node(cpu))) {
5010			r = -ENOMEM;
5011			goto out_free_4;
5012		}
5013	}
5014
5015	r = kvm_async_pf_init();
5016	if (r)
5017		goto out_free_4;
5018
5019	kvm_chardev_ops.owner = module;
5020	kvm_vm_fops.owner = module;
5021	kvm_vcpu_fops.owner = module;
5022
5023	register_syscore_ops(&kvm_syscore_ops);
5024
5025	kvm_preempt_ops.sched_in = kvm_sched_in;
5026	kvm_preempt_ops.sched_out = kvm_sched_out;
5027
5028	kvm_init_debug();
5029
5030	r = kvm_vfio_ops_init();
5031	if (WARN_ON_ONCE(r))
5032		goto err_vfio;
5033
5034	/*
5035	 * Registration _must_ be the very last thing done, as this exposes
5036	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
5037	 */
5038	r = misc_register(&kvm_dev);
5039	if (r) {
5040		pr_err("kvm: misc device register failed\n");
5041		goto err_register;
5042	}
5043
5044	return 0;
5045
5046err_register:
5047	kvm_vfio_ops_exit();
5048err_vfio:
5049	kvm_async_pf_deinit();
5050out_free_4:
5051	for_each_possible_cpu(cpu)
5052		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5053	kmem_cache_destroy(kvm_vcpu_cache);
5054out_free_3:
5055	unregister_reboot_notifier(&kvm_reboot_notifier);
5056	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5057out_free_2:
5058	kvm_arch_hardware_unsetup();
5059out_free_1:
5060	free_cpumask_var(cpus_hardware_enabled);
5061out_free_0:
5062	kvm_irqfd_exit();
5063out_irqfd:
5064	kvm_arch_exit();
5065out_fail:
5066	return r;
5067}
5068EXPORT_SYMBOL_GPL(kvm_init);
5069
5070void kvm_exit(void)
5071{
5072	int cpu;
5073
5074	/*
5075	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
5076	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
5077	 * to KVM while the module is being stopped.
5078	 */
5079	misc_deregister(&kvm_dev);
5080
5081	debugfs_remove_recursive(kvm_debugfs_dir);
5082	for_each_possible_cpu(cpu)
5083		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5084	kmem_cache_destroy(kvm_vcpu_cache);
5085	kvm_async_pf_deinit();
5086	unregister_syscore_ops(&kvm_syscore_ops);
5087	unregister_reboot_notifier(&kvm_reboot_notifier);
5088	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5089	on_each_cpu(hardware_disable_nolock, NULL, 1);
5090	kvm_arch_hardware_unsetup();
5091	kvm_arch_exit();
5092	kvm_irqfd_exit();
5093	free_cpumask_var(cpus_hardware_enabled);
5094	kvm_vfio_ops_exit();
5095}
5096EXPORT_SYMBOL_GPL(kvm_exit);
5097
5098struct kvm_vm_worker_thread_context {
5099	struct kvm *kvm;
5100	struct task_struct *parent;
5101	struct completion init_done;
5102	kvm_vm_thread_fn_t thread_fn;
5103	uintptr_t data;
5104	int err;
5105};
5106
5107static int kvm_vm_worker_thread(void *context)
5108{
5109	/*
5110	 * The init_context is allocated on the stack of the parent thread, so
5111	 * we have to locally copy anything that is needed beyond initialization
5112	 */
5113	struct kvm_vm_worker_thread_context *init_context = context;
5114	struct kvm *kvm = init_context->kvm;
5115	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5116	uintptr_t data = init_context->data;
5117	int err;
5118
5119	err = kthread_park(current);
5120	/* kthread_park(current) is never supposed to return an error */
5121	WARN_ON(err != 0);
5122	if (err)
5123		goto init_complete;
5124
5125	err = cgroup_attach_task_all(init_context->parent, current);
5126	if (err) {
5127		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5128			__func__, err);
5129		goto init_complete;
5130	}
5131
5132	set_user_nice(current, task_nice(init_context->parent));
5133
5134init_complete:
5135	init_context->err = err;
5136	complete(&init_context->init_done);
5137	init_context = NULL;
5138
5139	if (err)
5140		return err;
5141
5142	/* Wait to be woken up by the spawner before proceeding. */
5143	kthread_parkme();
5144
5145	if (!kthread_should_stop())
5146		err = thread_fn(kvm, data);
5147
5148	return err;
5149}
5150
5151int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5152				uintptr_t data, const char *name,
5153				struct task_struct **thread_ptr)
5154{
5155	struct kvm_vm_worker_thread_context init_context = {};
5156	struct task_struct *thread;
5157
5158	*thread_ptr = NULL;
5159	init_context.kvm = kvm;
5160	init_context.parent = current;
5161	init_context.thread_fn = thread_fn;
5162	init_context.data = data;
5163	init_completion(&init_context.init_done);
5164
5165	thread = kthread_run(kvm_vm_worker_thread, &init_context,
5166			     "%s-%d", name, task_pid_nr(current));
5167	if (IS_ERR(thread))
5168		return PTR_ERR(thread);
5169
5170	/* kthread_run is never supposed to return NULL */
5171	WARN_ON(thread == NULL);
5172
5173	wait_for_completion(&init_context.init_done);
5174
5175	if (!init_context.err)
5176		*thread_ptr = thread;
5177
5178	return init_context.err;
5179}
5180