1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Sparse bit array
4 *
5 * Copyright (C) 2018, Google LLC.
6 * Copyright (C) 2018, Red Hat, Inc. (code style cleanup and fuzzing driver)
7 *
8 * This library provides functions to support a memory efficient bit array,
9 * with an index size of 2^64.  A sparsebit array is allocated through
10 * the use sparsebit_alloc() and free'd via sparsebit_free(),
11 * such as in the following:
12 *
13 *   struct sparsebit *s;
14 *   s = sparsebit_alloc();
15 *   sparsebit_free(&s);
16 *
17 * The struct sparsebit type resolves down to a struct sparsebit.
18 * Note that, sparsebit_free() takes a pointer to the sparsebit
19 * structure.  This is so that sparsebit_free() is able to poison
20 * the pointer (e.g. set it to NULL) to the struct sparsebit before
21 * returning to the caller.
22 *
23 * Between the return of sparsebit_alloc() and the call of
24 * sparsebit_free(), there are multiple query and modifying operations
25 * that can be performed on the allocated sparsebit array.  All of
26 * these operations take as a parameter the value returned from
27 * sparsebit_alloc() and most also take a bit index.  Frequently
28 * used routines include:
29 *
30 *  ---- Query Operations
31 *  sparsebit_is_set(s, idx)
32 *  sparsebit_is_clear(s, idx)
33 *  sparsebit_any_set(s)
34 *  sparsebit_first_set(s)
35 *  sparsebit_next_set(s, prev_idx)
36 *
37 *  ---- Modifying Operations
38 *  sparsebit_set(s, idx)
39 *  sparsebit_clear(s, idx)
40 *  sparsebit_set_num(s, idx, num);
41 *  sparsebit_clear_num(s, idx, num);
42 *
43 * A common operation, is to itterate over all the bits set in a test
44 * sparsebit array.  This can be done via code with the following structure:
45 *
46 *   sparsebit_idx_t idx;
47 *   if (sparsebit_any_set(s)) {
48 *     idx = sparsebit_first_set(s);
49 *     do {
50 *       ...
51 *       idx = sparsebit_next_set(s, idx);
52 *     } while (idx != 0);
53 *   }
54 *
55 * The index of the first bit set needs to be obtained via
56 * sparsebit_first_set(), because sparsebit_next_set(), needs
57 * the index of the previously set.  The sparsebit_idx_t type is
58 * unsigned, so there is no previous index before 0 that is available.
59 * Also, the call to sparsebit_first_set() is not made unless there
60 * is at least 1 bit in the array set.  This is because sparsebit_first_set()
61 * aborts if sparsebit_first_set() is called with no bits set.
62 * It is the callers responsibility to assure that the
63 * sparsebit array has at least a single bit set before calling
64 * sparsebit_first_set().
65 *
66 * ==== Implementation Overview ====
67 * For the most part the internal implementation of sparsebit is
68 * opaque to the caller.  One important implementation detail that the
69 * caller may need to be aware of is the spatial complexity of the
70 * implementation.  This implementation of a sparsebit array is not
71 * only sparse, in that it uses memory proportional to the number of bits
72 * set.  It is also efficient in memory usage when most of the bits are
73 * set.
74 *
75 * At a high-level the state of the bit settings are maintained through
76 * the use of a binary-search tree, where each node contains at least
77 * the following members:
78 *
79 *   typedef uint64_t sparsebit_idx_t;
80 *   typedef uint64_t sparsebit_num_t;
81 *
82 *   sparsebit_idx_t idx;
83 *   uint32_t mask;
84 *   sparsebit_num_t num_after;
85 *
86 * The idx member contains the bit index of the first bit described by this
87 * node, while the mask member stores the setting of the first 32-bits.
88 * The setting of the bit at idx + n, where 0 <= n < 32, is located in the
89 * mask member at 1 << n.
90 *
91 * Nodes are sorted by idx and the bits described by two nodes will never
92 * overlap. The idx member is always aligned to the mask size, i.e. a
93 * multiple of 32.
94 *
95 * Beyond a typical implementation, the nodes in this implementation also
96 * contains a member named num_after.  The num_after member holds the
97 * number of bits immediately after the mask bits that are contiguously set.
98 * The use of the num_after member allows this implementation to efficiently
99 * represent cases where most bits are set.  For example, the case of all
100 * but the last two bits set, is represented by the following two nodes:
101 *
102 *   node 0 - idx: 0x0 mask: 0xffffffff num_after: 0xffffffffffffffc0
103 *   node 1 - idx: 0xffffffffffffffe0 mask: 0x3fffffff num_after: 0
104 *
105 * ==== Invariants ====
106 * This implementation usses the following invariants:
107 *
108 *   + Node are only used to represent bits that are set.
109 *     Nodes with a mask of 0 and num_after of 0 are not allowed.
110 *
111 *   + Sum of bits set in all the nodes is equal to the value of
112 *     the struct sparsebit_pvt num_set member.
113 *
114 *   + The setting of at least one bit is always described in a nodes
115 *     mask (mask >= 1).
116 *
117 *   + A node with all mask bits set only occurs when the last bit
118 *     described by the previous node is not equal to this nodes
119 *     starting index - 1.  All such occurences of this condition are
120 *     avoided by moving the setting of the nodes mask bits into
121 *     the previous nodes num_after setting.
122 *
123 *   + Node starting index is evenly divisible by the number of bits
124 *     within a nodes mask member.
125 *
126 *   + Nodes never represent a range of bits that wrap around the
127 *     highest supported index.
128 *
129 *      (idx + MASK_BITS + num_after - 1) <= ((sparsebit_idx_t) 0) - 1)
130 *
131 *     As a consequence of the above, the num_after member of a node
132 *     will always be <=:
133 *
134 *       maximum_index - nodes_starting_index - number_of_mask_bits
135 *
136 *   + Nodes within the binary search tree are sorted based on each
137 *     nodes starting index.
138 *
139 *   + The range of bits described by any two nodes do not overlap.  The
140 *     range of bits described by a single node is:
141 *
142 *       start: node->idx
143 *       end (inclusive): node->idx + MASK_BITS + node->num_after - 1;
144 *
145 * Note, at times these invariants are temporarily violated for a
146 * specific portion of the code.  For example, when setting a mask
147 * bit, there is a small delay between when the mask bit is set and the
148 * value in the struct sparsebit_pvt num_set member is updated.  Other
149 * temporary violations occur when node_split() is called with a specified
150 * index and assures that a node where its mask represents the bit
151 * at the specified index exists.  At times to do this node_split()
152 * must split an existing node into two nodes or create a node that
153 * has no bits set.  Such temporary violations must be corrected before
154 * returning to the caller.  These corrections are typically performed
155 * by the local function node_reduce().
156 */
157
158#include "test_util.h"
159#include "sparsebit.h"
160#include <limits.h>
161#include <assert.h>
162
163#define DUMP_LINE_MAX 100 /* Does not include indent amount */
164
165typedef uint32_t mask_t;
166#define MASK_BITS (sizeof(mask_t) * CHAR_BIT)
167
168struct node {
169	struct node *parent;
170	struct node *left;
171	struct node *right;
172	sparsebit_idx_t idx; /* index of least-significant bit in mask */
173	sparsebit_num_t num_after; /* num contiguously set after mask */
174	mask_t mask;
175};
176
177struct sparsebit {
178	/*
179	 * Points to root node of the binary search
180	 * tree.  Equal to NULL when no bits are set in
181	 * the entire sparsebit array.
182	 */
183	struct node *root;
184
185	/*
186	 * A redundant count of the total number of bits set.  Used for
187	 * diagnostic purposes and to change the time complexity of
188	 * sparsebit_num_set() from O(n) to O(1).
189	 * Note: Due to overflow, a value of 0 means none or all set.
190	 */
191	sparsebit_num_t num_set;
192};
193
194/* Returns the number of set bits described by the settings
195 * of the node pointed to by nodep.
196 */
197static sparsebit_num_t node_num_set(struct node *nodep)
198{
199	return nodep->num_after + __builtin_popcount(nodep->mask);
200}
201
202/* Returns a pointer to the node that describes the
203 * lowest bit index.
204 */
205static struct node *node_first(struct sparsebit *s)
206{
207	struct node *nodep;
208
209	for (nodep = s->root; nodep && nodep->left; nodep = nodep->left)
210		;
211
212	return nodep;
213}
214
215/* Returns a pointer to the node that describes the
216 * lowest bit index > the index of the node pointed to by np.
217 * Returns NULL if no node with a higher index exists.
218 */
219static struct node *node_next(struct sparsebit *s, struct node *np)
220{
221	struct node *nodep = np;
222
223	/*
224	 * If current node has a right child, next node is the left-most
225	 * of the right child.
226	 */
227	if (nodep->right) {
228		for (nodep = nodep->right; nodep->left; nodep = nodep->left)
229			;
230		return nodep;
231	}
232
233	/*
234	 * No right child.  Go up until node is left child of a parent.
235	 * That parent is then the next node.
236	 */
237	while (nodep->parent && nodep == nodep->parent->right)
238		nodep = nodep->parent;
239
240	return nodep->parent;
241}
242
243/* Searches for and returns a pointer to the node that describes the
244 * highest index < the index of the node pointed to by np.
245 * Returns NULL if no node with a lower index exists.
246 */
247static struct node *node_prev(struct sparsebit *s, struct node *np)
248{
249	struct node *nodep = np;
250
251	/*
252	 * If current node has a left child, next node is the right-most
253	 * of the left child.
254	 */
255	if (nodep->left) {
256		for (nodep = nodep->left; nodep->right; nodep = nodep->right)
257			;
258		return (struct node *) nodep;
259	}
260
261	/*
262	 * No left child.  Go up until node is right child of a parent.
263	 * That parent is then the next node.
264	 */
265	while (nodep->parent && nodep == nodep->parent->left)
266		nodep = nodep->parent;
267
268	return (struct node *) nodep->parent;
269}
270
271
272/* Allocates space to hold a copy of the node sub-tree pointed to by
273 * subtree and duplicates the bit settings to the newly allocated nodes.
274 * Returns the newly allocated copy of subtree.
275 */
276static struct node *node_copy_subtree(struct node *subtree)
277{
278	struct node *root;
279
280	/* Duplicate the node at the root of the subtree */
281	root = calloc(1, sizeof(*root));
282	if (!root) {
283		perror("calloc");
284		abort();
285	}
286
287	root->idx = subtree->idx;
288	root->mask = subtree->mask;
289	root->num_after = subtree->num_after;
290
291	/* As needed, recursively duplicate the left and right subtrees */
292	if (subtree->left) {
293		root->left = node_copy_subtree(subtree->left);
294		root->left->parent = root;
295	}
296
297	if (subtree->right) {
298		root->right = node_copy_subtree(subtree->right);
299		root->right->parent = root;
300	}
301
302	return root;
303}
304
305/* Searches for and returns a pointer to the node that describes the setting
306 * of the bit given by idx.  A node describes the setting of a bit if its
307 * index is within the bits described by the mask bits or the number of
308 * contiguous bits set after the mask.  Returns NULL if there is no such node.
309 */
310static struct node *node_find(struct sparsebit *s, sparsebit_idx_t idx)
311{
312	struct node *nodep;
313
314	/* Find the node that describes the setting of the bit at idx */
315	for (nodep = s->root; nodep;
316	     nodep = nodep->idx > idx ? nodep->left : nodep->right) {
317		if (idx >= nodep->idx &&
318		    idx <= nodep->idx + MASK_BITS + nodep->num_after - 1)
319			break;
320	}
321
322	return nodep;
323}
324
325/* Entry Requirements:
326 *   + A node that describes the setting of idx is not already present.
327 *
328 * Adds a new node to describe the setting of the bit at the index given
329 * by idx.  Returns a pointer to the newly added node.
330 *
331 * TODO(lhuemill): Degenerate cases causes the tree to get unbalanced.
332 */
333static struct node *node_add(struct sparsebit *s, sparsebit_idx_t idx)
334{
335	struct node *nodep, *parentp, *prev;
336
337	/* Allocate and initialize the new node. */
338	nodep = calloc(1, sizeof(*nodep));
339	if (!nodep) {
340		perror("calloc");
341		abort();
342	}
343
344	nodep->idx = idx & -MASK_BITS;
345
346	/* If no nodes, set it up as the root node. */
347	if (!s->root) {
348		s->root = nodep;
349		return nodep;
350	}
351
352	/*
353	 * Find the parent where the new node should be attached
354	 * and add the node there.
355	 */
356	parentp = s->root;
357	while (true) {
358		if (idx < parentp->idx) {
359			if (!parentp->left) {
360				parentp->left = nodep;
361				nodep->parent = parentp;
362				break;
363			}
364			parentp = parentp->left;
365		} else {
366			assert(idx > parentp->idx + MASK_BITS + parentp->num_after - 1);
367			if (!parentp->right) {
368				parentp->right = nodep;
369				nodep->parent = parentp;
370				break;
371			}
372			parentp = parentp->right;
373		}
374	}
375
376	/*
377	 * Does num_after bits of previous node overlap with the mask
378	 * of the new node?  If so set the bits in the new nodes mask
379	 * and reduce the previous nodes num_after.
380	 */
381	prev = node_prev(s, nodep);
382	while (prev && prev->idx + MASK_BITS + prev->num_after - 1 >= nodep->idx) {
383		unsigned int n1 = (prev->idx + MASK_BITS + prev->num_after - 1)
384			- nodep->idx;
385		assert(prev->num_after > 0);
386		assert(n1 < MASK_BITS);
387		assert(!(nodep->mask & (1 << n1)));
388		nodep->mask |= (1 << n1);
389		prev->num_after--;
390	}
391
392	return nodep;
393}
394
395/* Returns whether all the bits in the sparsebit array are set.  */
396bool sparsebit_all_set(struct sparsebit *s)
397{
398	/*
399	 * If any nodes there must be at least one bit set.  Only case
400	 * where a bit is set and total num set is 0, is when all bits
401	 * are set.
402	 */
403	return s->root && s->num_set == 0;
404}
405
406/* Clears all bits described by the node pointed to by nodep, then
407 * removes the node.
408 */
409static void node_rm(struct sparsebit *s, struct node *nodep)
410{
411	struct node *tmp;
412	sparsebit_num_t num_set;
413
414	num_set = node_num_set(nodep);
415	assert(s->num_set >= num_set || sparsebit_all_set(s));
416	s->num_set -= node_num_set(nodep);
417
418	/* Have both left and right child */
419	if (nodep->left && nodep->right) {
420		/*
421		 * Move left children to the leftmost leaf node
422		 * of the right child.
423		 */
424		for (tmp = nodep->right; tmp->left; tmp = tmp->left)
425			;
426		tmp->left = nodep->left;
427		nodep->left = NULL;
428		tmp->left->parent = tmp;
429	}
430
431	/* Left only child */
432	if (nodep->left) {
433		if (!nodep->parent) {
434			s->root = nodep->left;
435			nodep->left->parent = NULL;
436		} else {
437			nodep->left->parent = nodep->parent;
438			if (nodep == nodep->parent->left)
439				nodep->parent->left = nodep->left;
440			else {
441				assert(nodep == nodep->parent->right);
442				nodep->parent->right = nodep->left;
443			}
444		}
445
446		nodep->parent = nodep->left = nodep->right = NULL;
447		free(nodep);
448
449		return;
450	}
451
452
453	/* Right only child */
454	if (nodep->right) {
455		if (!nodep->parent) {
456			s->root = nodep->right;
457			nodep->right->parent = NULL;
458		} else {
459			nodep->right->parent = nodep->parent;
460			if (nodep == nodep->parent->left)
461				nodep->parent->left = nodep->right;
462			else {
463				assert(nodep == nodep->parent->right);
464				nodep->parent->right = nodep->right;
465			}
466		}
467
468		nodep->parent = nodep->left = nodep->right = NULL;
469		free(nodep);
470
471		return;
472	}
473
474	/* Leaf Node */
475	if (!nodep->parent) {
476		s->root = NULL;
477	} else {
478		if (nodep->parent->left == nodep)
479			nodep->parent->left = NULL;
480		else {
481			assert(nodep == nodep->parent->right);
482			nodep->parent->right = NULL;
483		}
484	}
485
486	nodep->parent = nodep->left = nodep->right = NULL;
487	free(nodep);
488
489	return;
490}
491
492/* Splits the node containing the bit at idx so that there is a node
493 * that starts at the specified index.  If no such node exists, a new
494 * node at the specified index is created.  Returns the new node.
495 *
496 * idx must start of a mask boundary.
497 */
498static struct node *node_split(struct sparsebit *s, sparsebit_idx_t idx)
499{
500	struct node *nodep1, *nodep2;
501	sparsebit_idx_t offset;
502	sparsebit_num_t orig_num_after;
503
504	assert(!(idx % MASK_BITS));
505
506	/*
507	 * Is there a node that describes the setting of idx?
508	 * If not, add it.
509	 */
510	nodep1 = node_find(s, idx);
511	if (!nodep1)
512		return node_add(s, idx);
513
514	/*
515	 * All done if the starting index of the node is where the
516	 * split should occur.
517	 */
518	if (nodep1->idx == idx)
519		return nodep1;
520
521	/*
522	 * Split point not at start of mask, so it must be part of
523	 * bits described by num_after.
524	 */
525
526	/*
527	 * Calculate offset within num_after for where the split is
528	 * to occur.
529	 */
530	offset = idx - (nodep1->idx + MASK_BITS);
531	orig_num_after = nodep1->num_after;
532
533	/*
534	 * Add a new node to describe the bits starting at
535	 * the split point.
536	 */
537	nodep1->num_after = offset;
538	nodep2 = node_add(s, idx);
539
540	/* Move bits after the split point into the new node */
541	nodep2->num_after = orig_num_after - offset;
542	if (nodep2->num_after >= MASK_BITS) {
543		nodep2->mask = ~(mask_t) 0;
544		nodep2->num_after -= MASK_BITS;
545	} else {
546		nodep2->mask = (1 << nodep2->num_after) - 1;
547		nodep2->num_after = 0;
548	}
549
550	return nodep2;
551}
552
553/* Iteratively reduces the node pointed to by nodep and its adjacent
554 * nodes into a more compact form.  For example, a node with a mask with
555 * all bits set adjacent to a previous node, will get combined into a
556 * single node with an increased num_after setting.
557 *
558 * After each reduction, a further check is made to see if additional
559 * reductions are possible with the new previous and next nodes.  Note,
560 * a search for a reduction is only done across the nodes nearest nodep
561 * and those that became part of a reduction.  Reductions beyond nodep
562 * and the adjacent nodes that are reduced are not discovered.  It is the
563 * responsibility of the caller to pass a nodep that is within one node
564 * of each possible reduction.
565 *
566 * This function does not fix the temporary violation of all invariants.
567 * For example it does not fix the case where the bit settings described
568 * by two or more nodes overlap.  Such a violation introduces the potential
569 * complication of a bit setting for a specific index having different settings
570 * in different nodes.  This would then introduce the further complication
571 * of which node has the correct setting of the bit and thus such conditions
572 * are not allowed.
573 *
574 * This function is designed to fix invariant violations that are introduced
575 * by node_split() and by changes to the nodes mask or num_after members.
576 * For example, when setting a bit within a nodes mask, the function that
577 * sets the bit doesn't have to worry about whether the setting of that
578 * bit caused the mask to have leading only or trailing only bits set.
579 * Instead, the function can call node_reduce(), with nodep equal to the
580 * node address that it set a mask bit in, and node_reduce() will notice
581 * the cases of leading or trailing only bits and that there is an
582 * adjacent node that the bit settings could be merged into.
583 *
584 * This implementation specifically detects and corrects violation of the
585 * following invariants:
586 *
587 *   + Node are only used to represent bits that are set.
588 *     Nodes with a mask of 0 and num_after of 0 are not allowed.
589 *
590 *   + The setting of at least one bit is always described in a nodes
591 *     mask (mask >= 1).
592 *
593 *   + A node with all mask bits set only occurs when the last bit
594 *     described by the previous node is not equal to this nodes
595 *     starting index - 1.  All such occurences of this condition are
596 *     avoided by moving the setting of the nodes mask bits into
597 *     the previous nodes num_after setting.
598 */
599static void node_reduce(struct sparsebit *s, struct node *nodep)
600{
601	bool reduction_performed;
602
603	do {
604		reduction_performed = false;
605		struct node *prev, *next, *tmp;
606
607		/* 1) Potential reductions within the current node. */
608
609		/* Nodes with all bits cleared may be removed. */
610		if (nodep->mask == 0 && nodep->num_after == 0) {
611			/*
612			 * About to remove the node pointed to by
613			 * nodep, which normally would cause a problem
614			 * for the next pass through the reduction loop,
615			 * because the node at the starting point no longer
616			 * exists.  This potential problem is handled
617			 * by first remembering the location of the next
618			 * or previous nodes.  Doesn't matter which, because
619			 * once the node at nodep is removed, there will be
620			 * no other nodes between prev and next.
621			 *
622			 * Note, the checks performed on nodep against both
623			 * both prev and next both check for an adjacent
624			 * node that can be reduced into a single node.  As
625			 * such, after removing the node at nodep, doesn't
626			 * matter whether the nodep for the next pass
627			 * through the loop is equal to the previous pass
628			 * prev or next node.  Either way, on the next pass
629			 * the one not selected will become either the
630			 * prev or next node.
631			 */
632			tmp = node_next(s, nodep);
633			if (!tmp)
634				tmp = node_prev(s, nodep);
635
636			node_rm(s, nodep);
637			nodep = NULL;
638
639			nodep = tmp;
640			reduction_performed = true;
641			continue;
642		}
643
644		/*
645		 * When the mask is 0, can reduce the amount of num_after
646		 * bits by moving the initial num_after bits into the mask.
647		 */
648		if (nodep->mask == 0) {
649			assert(nodep->num_after != 0);
650			assert(nodep->idx + MASK_BITS > nodep->idx);
651
652			nodep->idx += MASK_BITS;
653
654			if (nodep->num_after >= MASK_BITS) {
655				nodep->mask = ~0;
656				nodep->num_after -= MASK_BITS;
657			} else {
658				nodep->mask = (1u << nodep->num_after) - 1;
659				nodep->num_after = 0;
660			}
661
662			reduction_performed = true;
663			continue;
664		}
665
666		/*
667		 * 2) Potential reductions between the current and
668		 * previous nodes.
669		 */
670		prev = node_prev(s, nodep);
671		if (prev) {
672			sparsebit_idx_t prev_highest_bit;
673
674			/* Nodes with no bits set can be removed. */
675			if (prev->mask == 0 && prev->num_after == 0) {
676				node_rm(s, prev);
677
678				reduction_performed = true;
679				continue;
680			}
681
682			/*
683			 * All mask bits set and previous node has
684			 * adjacent index.
685			 */
686			if (nodep->mask + 1 == 0 &&
687			    prev->idx + MASK_BITS == nodep->idx) {
688				prev->num_after += MASK_BITS + nodep->num_after;
689				nodep->mask = 0;
690				nodep->num_after = 0;
691
692				reduction_performed = true;
693				continue;
694			}
695
696			/*
697			 * Is node adjacent to previous node and the node
698			 * contains a single contiguous range of bits
699			 * starting from the beginning of the mask?
700			 */
701			prev_highest_bit = prev->idx + MASK_BITS - 1 + prev->num_after;
702			if (prev_highest_bit + 1 == nodep->idx &&
703			    (nodep->mask | (nodep->mask >> 1)) == nodep->mask) {
704				/*
705				 * How many contiguous bits are there?
706				 * Is equal to the total number of set
707				 * bits, due to an earlier check that
708				 * there is a single contiguous range of
709				 * set bits.
710				 */
711				unsigned int num_contiguous
712					= __builtin_popcount(nodep->mask);
713				assert((num_contiguous > 0) &&
714				       ((1ULL << num_contiguous) - 1) == nodep->mask);
715
716				prev->num_after += num_contiguous;
717				nodep->mask = 0;
718
719				/*
720				 * For predictable performance, handle special
721				 * case where all mask bits are set and there
722				 * is a non-zero num_after setting.  This code
723				 * is functionally correct without the following
724				 * conditionalized statements, but without them
725				 * the value of num_after is only reduced by
726				 * the number of mask bits per pass.  There are
727				 * cases where num_after can be close to 2^64.
728				 * Without this code it could take nearly
729				 * (2^64) / 32 passes to perform the full
730				 * reduction.
731				 */
732				if (num_contiguous == MASK_BITS) {
733					prev->num_after += nodep->num_after;
734					nodep->num_after = 0;
735				}
736
737				reduction_performed = true;
738				continue;
739			}
740		}
741
742		/*
743		 * 3) Potential reductions between the current and
744		 * next nodes.
745		 */
746		next = node_next(s, nodep);
747		if (next) {
748			/* Nodes with no bits set can be removed. */
749			if (next->mask == 0 && next->num_after == 0) {
750				node_rm(s, next);
751				reduction_performed = true;
752				continue;
753			}
754
755			/*
756			 * Is next node index adjacent to current node
757			 * and has a mask with all bits set?
758			 */
759			if (next->idx == nodep->idx + MASK_BITS + nodep->num_after &&
760			    next->mask == ~(mask_t) 0) {
761				nodep->num_after += MASK_BITS;
762				next->mask = 0;
763				nodep->num_after += next->num_after;
764				next->num_after = 0;
765
766				node_rm(s, next);
767				next = NULL;
768
769				reduction_performed = true;
770				continue;
771			}
772		}
773	} while (nodep && reduction_performed);
774}
775
776/* Returns whether the bit at the index given by idx, within the
777 * sparsebit array is set or not.
778 */
779bool sparsebit_is_set(struct sparsebit *s, sparsebit_idx_t idx)
780{
781	struct node *nodep;
782
783	/* Find the node that describes the setting of the bit at idx */
784	for (nodep = s->root; nodep;
785	     nodep = nodep->idx > idx ? nodep->left : nodep->right)
786		if (idx >= nodep->idx &&
787		    idx <= nodep->idx + MASK_BITS + nodep->num_after - 1)
788			goto have_node;
789
790	return false;
791
792have_node:
793	/* Bit is set if it is any of the bits described by num_after */
794	if (nodep->num_after && idx >= nodep->idx + MASK_BITS)
795		return true;
796
797	/* Is the corresponding mask bit set */
798	assert(idx >= nodep->idx && idx - nodep->idx < MASK_BITS);
799	return !!(nodep->mask & (1 << (idx - nodep->idx)));
800}
801
802/* Within the sparsebit array pointed to by s, sets the bit
803 * at the index given by idx.
804 */
805static void bit_set(struct sparsebit *s, sparsebit_idx_t idx)
806{
807	struct node *nodep;
808
809	/* Skip bits that are already set */
810	if (sparsebit_is_set(s, idx))
811		return;
812
813	/*
814	 * Get a node where the bit at idx is described by the mask.
815	 * The node_split will also create a node, if there isn't
816	 * already a node that describes the setting of bit.
817	 */
818	nodep = node_split(s, idx & -MASK_BITS);
819
820	/* Set the bit within the nodes mask */
821	assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1);
822	assert(!(nodep->mask & (1 << (idx - nodep->idx))));
823	nodep->mask |= 1 << (idx - nodep->idx);
824	s->num_set++;
825
826	node_reduce(s, nodep);
827}
828
829/* Within the sparsebit array pointed to by s, clears the bit
830 * at the index given by idx.
831 */
832static void bit_clear(struct sparsebit *s, sparsebit_idx_t idx)
833{
834	struct node *nodep;
835
836	/* Skip bits that are already cleared */
837	if (!sparsebit_is_set(s, idx))
838		return;
839
840	/* Is there a node that describes the setting of this bit? */
841	nodep = node_find(s, idx);
842	if (!nodep)
843		return;
844
845	/*
846	 * If a num_after bit, split the node, so that the bit is
847	 * part of a node mask.
848	 */
849	if (idx >= nodep->idx + MASK_BITS)
850		nodep = node_split(s, idx & -MASK_BITS);
851
852	/*
853	 * After node_split above, bit at idx should be within the mask.
854	 * Clear that bit.
855	 */
856	assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1);
857	assert(nodep->mask & (1 << (idx - nodep->idx)));
858	nodep->mask &= ~(1 << (idx - nodep->idx));
859	assert(s->num_set > 0 || sparsebit_all_set(s));
860	s->num_set--;
861
862	node_reduce(s, nodep);
863}
864
865/* Recursively dumps to the FILE stream given by stream the contents
866 * of the sub-tree of nodes pointed to by nodep.  Each line of output
867 * is prefixed by the number of spaces given by indent.  On each
868 * recursion, the indent amount is increased by 2.  This causes nodes
869 * at each level deeper into the binary search tree to be displayed
870 * with a greater indent.
871 */
872static void dump_nodes(FILE *stream, struct node *nodep,
873	unsigned int indent)
874{
875	char *node_type;
876
877	/* Dump contents of node */
878	if (!nodep->parent)
879		node_type = "root";
880	else if (nodep == nodep->parent->left)
881		node_type = "left";
882	else {
883		assert(nodep == nodep->parent->right);
884		node_type = "right";
885	}
886	fprintf(stream, "%*s---- %s nodep: %p\n", indent, "", node_type, nodep);
887	fprintf(stream, "%*s  parent: %p left: %p right: %p\n", indent, "",
888		nodep->parent, nodep->left, nodep->right);
889	fprintf(stream, "%*s  idx: 0x%lx mask: 0x%x num_after: 0x%lx\n",
890		indent, "", nodep->idx, nodep->mask, nodep->num_after);
891
892	/* If present, dump contents of left child nodes */
893	if (nodep->left)
894		dump_nodes(stream, nodep->left, indent + 2);
895
896	/* If present, dump contents of right child nodes */
897	if (nodep->right)
898		dump_nodes(stream, nodep->right, indent + 2);
899}
900
901static inline sparsebit_idx_t node_first_set(struct node *nodep, int start)
902{
903	mask_t leading = (mask_t)1 << start;
904	int n1 = __builtin_ctz(nodep->mask & -leading);
905
906	return nodep->idx + n1;
907}
908
909static inline sparsebit_idx_t node_first_clear(struct node *nodep, int start)
910{
911	mask_t leading = (mask_t)1 << start;
912	int n1 = __builtin_ctz(~nodep->mask & -leading);
913
914	return nodep->idx + n1;
915}
916
917/* Dumps to the FILE stream specified by stream, the implementation dependent
918 * internal state of s.  Each line of output is prefixed with the number
919 * of spaces given by indent.  The output is completely implementation
920 * dependent and subject to change.  Output from this function should only
921 * be used for diagnostic purposes.  For example, this function can be
922 * used by test cases after they detect an unexpected condition, as a means
923 * to capture diagnostic information.
924 */
925static void sparsebit_dump_internal(FILE *stream, struct sparsebit *s,
926	unsigned int indent)
927{
928	/* Dump the contents of s */
929	fprintf(stream, "%*sroot: %p\n", indent, "", s->root);
930	fprintf(stream, "%*snum_set: 0x%lx\n", indent, "", s->num_set);
931
932	if (s->root)
933		dump_nodes(stream, s->root, indent);
934}
935
936/* Allocates and returns a new sparsebit array. The initial state
937 * of the newly allocated sparsebit array has all bits cleared.
938 */
939struct sparsebit *sparsebit_alloc(void)
940{
941	struct sparsebit *s;
942
943	/* Allocate top level structure. */
944	s = calloc(1, sizeof(*s));
945	if (!s) {
946		perror("calloc");
947		abort();
948	}
949
950	return s;
951}
952
953/* Frees the implementation dependent data for the sparsebit array
954 * pointed to by s and poisons the pointer to that data.
955 */
956void sparsebit_free(struct sparsebit **sbitp)
957{
958	struct sparsebit *s = *sbitp;
959
960	if (!s)
961		return;
962
963	sparsebit_clear_all(s);
964	free(s);
965	*sbitp = NULL;
966}
967
968/* Makes a copy of the sparsebit array given by s, to the sparsebit
969 * array given by d.  Note, d must have already been allocated via
970 * sparsebit_alloc().  It can though already have bits set, which
971 * if different from src will be cleared.
972 */
973void sparsebit_copy(struct sparsebit *d, struct sparsebit *s)
974{
975	/* First clear any bits already set in the destination */
976	sparsebit_clear_all(d);
977
978	if (s->root) {
979		d->root = node_copy_subtree(s->root);
980		d->num_set = s->num_set;
981	}
982}
983
984/* Returns whether num consecutive bits starting at idx are all set.  */
985bool sparsebit_is_set_num(struct sparsebit *s,
986	sparsebit_idx_t idx, sparsebit_num_t num)
987{
988	sparsebit_idx_t next_cleared;
989
990	assert(num > 0);
991	assert(idx + num - 1 >= idx);
992
993	/* With num > 0, the first bit must be set. */
994	if (!sparsebit_is_set(s, idx))
995		return false;
996
997	/* Find the next cleared bit */
998	next_cleared = sparsebit_next_clear(s, idx);
999
1000	/*
1001	 * If no cleared bits beyond idx, then there are at least num
1002	 * set bits. idx + num doesn't wrap.  Otherwise check if
1003	 * there are enough set bits between idx and the next cleared bit.
1004	 */
1005	return next_cleared == 0 || next_cleared - idx >= num;
1006}
1007
1008/* Returns whether the bit at the index given by idx.  */
1009bool sparsebit_is_clear(struct sparsebit *s,
1010	sparsebit_idx_t idx)
1011{
1012	return !sparsebit_is_set(s, idx);
1013}
1014
1015/* Returns whether num consecutive bits starting at idx are all cleared.  */
1016bool sparsebit_is_clear_num(struct sparsebit *s,
1017	sparsebit_idx_t idx, sparsebit_num_t num)
1018{
1019	sparsebit_idx_t next_set;
1020
1021	assert(num > 0);
1022	assert(idx + num - 1 >= idx);
1023
1024	/* With num > 0, the first bit must be cleared. */
1025	if (!sparsebit_is_clear(s, idx))
1026		return false;
1027
1028	/* Find the next set bit */
1029	next_set = sparsebit_next_set(s, idx);
1030
1031	/*
1032	 * If no set bits beyond idx, then there are at least num
1033	 * cleared bits. idx + num doesn't wrap.  Otherwise check if
1034	 * there are enough cleared bits between idx and the next set bit.
1035	 */
1036	return next_set == 0 || next_set - idx >= num;
1037}
1038
1039/* Returns the total number of bits set.  Note: 0 is also returned for
1040 * the case of all bits set.  This is because with all bits set, there
1041 * is 1 additional bit set beyond what can be represented in the return
1042 * value.  Use sparsebit_any_set(), instead of sparsebit_num_set() > 0,
1043 * to determine if the sparsebit array has any bits set.
1044 */
1045sparsebit_num_t sparsebit_num_set(struct sparsebit *s)
1046{
1047	return s->num_set;
1048}
1049
1050/* Returns whether any bit is set in the sparsebit array.  */
1051bool sparsebit_any_set(struct sparsebit *s)
1052{
1053	/*
1054	 * Nodes only describe set bits.  If any nodes then there
1055	 * is at least 1 bit set.
1056	 */
1057	if (!s->root)
1058		return false;
1059
1060	/*
1061	 * Every node should have a non-zero mask.  For now will
1062	 * just assure that the root node has a non-zero mask,
1063	 * which is a quick check that at least 1 bit is set.
1064	 */
1065	assert(s->root->mask != 0);
1066	assert(s->num_set > 0 ||
1067	       (s->root->num_after == ((sparsebit_num_t) 0) - MASK_BITS &&
1068		s->root->mask == ~(mask_t) 0));
1069
1070	return true;
1071}
1072
1073/* Returns whether all the bits in the sparsebit array are cleared.  */
1074bool sparsebit_all_clear(struct sparsebit *s)
1075{
1076	return !sparsebit_any_set(s);
1077}
1078
1079/* Returns whether all the bits in the sparsebit array are set.  */
1080bool sparsebit_any_clear(struct sparsebit *s)
1081{
1082	return !sparsebit_all_set(s);
1083}
1084
1085/* Returns the index of the first set bit.  Abort if no bits are set.
1086 */
1087sparsebit_idx_t sparsebit_first_set(struct sparsebit *s)
1088{
1089	struct node *nodep;
1090
1091	/* Validate at least 1 bit is set */
1092	assert(sparsebit_any_set(s));
1093
1094	nodep = node_first(s);
1095	return node_first_set(nodep, 0);
1096}
1097
1098/* Returns the index of the first cleared bit.  Abort if
1099 * no bits are cleared.
1100 */
1101sparsebit_idx_t sparsebit_first_clear(struct sparsebit *s)
1102{
1103	struct node *nodep1, *nodep2;
1104
1105	/* Validate at least 1 bit is cleared. */
1106	assert(sparsebit_any_clear(s));
1107
1108	/* If no nodes or first node index > 0 then lowest cleared is 0 */
1109	nodep1 = node_first(s);
1110	if (!nodep1 || nodep1->idx > 0)
1111		return 0;
1112
1113	/* Does the mask in the first node contain any cleared bits. */
1114	if (nodep1->mask != ~(mask_t) 0)
1115		return node_first_clear(nodep1, 0);
1116
1117	/*
1118	 * All mask bits set in first node.  If there isn't a second node
1119	 * then the first cleared bit is the first bit after the bits
1120	 * described by the first node.
1121	 */
1122	nodep2 = node_next(s, nodep1);
1123	if (!nodep2) {
1124		/*
1125		 * No second node.  First cleared bit is first bit beyond
1126		 * bits described by first node.
1127		 */
1128		assert(nodep1->mask == ~(mask_t) 0);
1129		assert(nodep1->idx + MASK_BITS + nodep1->num_after != (sparsebit_idx_t) 0);
1130		return nodep1->idx + MASK_BITS + nodep1->num_after;
1131	}
1132
1133	/*
1134	 * There is a second node.
1135	 * If it is not adjacent to the first node, then there is a gap
1136	 * of cleared bits between the nodes, and the first cleared bit
1137	 * is the first bit within the gap.
1138	 */
1139	if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx)
1140		return nodep1->idx + MASK_BITS + nodep1->num_after;
1141
1142	/*
1143	 * Second node is adjacent to the first node.
1144	 * Because it is adjacent, its mask should be non-zero.  If all
1145	 * its mask bits are set, then with it being adjacent, it should
1146	 * have had the mask bits moved into the num_after setting of the
1147	 * previous node.
1148	 */
1149	return node_first_clear(nodep2, 0);
1150}
1151
1152/* Returns index of next bit set within s after the index given by prev.
1153 * Returns 0 if there are no bits after prev that are set.
1154 */
1155sparsebit_idx_t sparsebit_next_set(struct sparsebit *s,
1156	sparsebit_idx_t prev)
1157{
1158	sparsebit_idx_t lowest_possible = prev + 1;
1159	sparsebit_idx_t start;
1160	struct node *nodep;
1161
1162	/* A bit after the highest index can't be set. */
1163	if (lowest_possible == 0)
1164		return 0;
1165
1166	/*
1167	 * Find the leftmost 'candidate' overlapping or to the right
1168	 * of lowest_possible.
1169	 */
1170	struct node *candidate = NULL;
1171
1172	/* True iff lowest_possible is within candidate */
1173	bool contains = false;
1174
1175	/*
1176	 * Find node that describes setting of bit at lowest_possible.
1177	 * If such a node doesn't exist, find the node with the lowest
1178	 * starting index that is > lowest_possible.
1179	 */
1180	for (nodep = s->root; nodep;) {
1181		if ((nodep->idx + MASK_BITS + nodep->num_after - 1)
1182			>= lowest_possible) {
1183			candidate = nodep;
1184			if (candidate->idx <= lowest_possible) {
1185				contains = true;
1186				break;
1187			}
1188			nodep = nodep->left;
1189		} else {
1190			nodep = nodep->right;
1191		}
1192	}
1193	if (!candidate)
1194		return 0;
1195
1196	assert(candidate->mask != 0);
1197
1198	/* Does the candidate node describe the setting of lowest_possible? */
1199	if (!contains) {
1200		/*
1201		 * Candidate doesn't describe setting of bit at lowest_possible.
1202		 * Candidate points to the first node with a starting index
1203		 * > lowest_possible.
1204		 */
1205		assert(candidate->idx > lowest_possible);
1206
1207		return node_first_set(candidate, 0);
1208	}
1209
1210	/*
1211	 * Candidate describes setting of bit at lowest_possible.
1212	 * Note: although the node describes the setting of the bit
1213	 * at lowest_possible, its possible that its setting and the
1214	 * setting of all latter bits described by this node are 0.
1215	 * For now, just handle the cases where this node describes
1216	 * a bit at or after an index of lowest_possible that is set.
1217	 */
1218	start = lowest_possible - candidate->idx;
1219
1220	if (start < MASK_BITS && candidate->mask >= (1 << start))
1221		return node_first_set(candidate, start);
1222
1223	if (candidate->num_after) {
1224		sparsebit_idx_t first_num_after_idx = candidate->idx + MASK_BITS;
1225
1226		return lowest_possible < first_num_after_idx
1227			? first_num_after_idx : lowest_possible;
1228	}
1229
1230	/*
1231	 * Although candidate node describes setting of bit at
1232	 * the index of lowest_possible, all bits at that index and
1233	 * latter that are described by candidate are cleared.  With
1234	 * this, the next bit is the first bit in the next node, if
1235	 * such a node exists.  If a next node doesn't exist, then
1236	 * there is no next set bit.
1237	 */
1238	candidate = node_next(s, candidate);
1239	if (!candidate)
1240		return 0;
1241
1242	return node_first_set(candidate, 0);
1243}
1244
1245/* Returns index of next bit cleared within s after the index given by prev.
1246 * Returns 0 if there are no bits after prev that are cleared.
1247 */
1248sparsebit_idx_t sparsebit_next_clear(struct sparsebit *s,
1249	sparsebit_idx_t prev)
1250{
1251	sparsebit_idx_t lowest_possible = prev + 1;
1252	sparsebit_idx_t idx;
1253	struct node *nodep1, *nodep2;
1254
1255	/* A bit after the highest index can't be set. */
1256	if (lowest_possible == 0)
1257		return 0;
1258
1259	/*
1260	 * Does a node describing the setting of lowest_possible exist?
1261	 * If not, the bit at lowest_possible is cleared.
1262	 */
1263	nodep1 = node_find(s, lowest_possible);
1264	if (!nodep1)
1265		return lowest_possible;
1266
1267	/* Does a mask bit in node 1 describe the next cleared bit. */
1268	for (idx = lowest_possible - nodep1->idx; idx < MASK_BITS; idx++)
1269		if (!(nodep1->mask & (1 << idx)))
1270			return nodep1->idx + idx;
1271
1272	/*
1273	 * Next cleared bit is not described by node 1.  If there
1274	 * isn't a next node, then next cleared bit is described
1275	 * by bit after the bits described by the first node.
1276	 */
1277	nodep2 = node_next(s, nodep1);
1278	if (!nodep2)
1279		return nodep1->idx + MASK_BITS + nodep1->num_after;
1280
1281	/*
1282	 * There is a second node.
1283	 * If it is not adjacent to the first node, then there is a gap
1284	 * of cleared bits between the nodes, and the next cleared bit
1285	 * is the first bit within the gap.
1286	 */
1287	if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx)
1288		return nodep1->idx + MASK_BITS + nodep1->num_after;
1289
1290	/*
1291	 * Second node is adjacent to the first node.
1292	 * Because it is adjacent, its mask should be non-zero.  If all
1293	 * its mask bits are set, then with it being adjacent, it should
1294	 * have had the mask bits moved into the num_after setting of the
1295	 * previous node.
1296	 */
1297	return node_first_clear(nodep2, 0);
1298}
1299
1300/* Starting with the index 1 greater than the index given by start, finds
1301 * and returns the index of the first sequence of num consecutively set
1302 * bits.  Returns a value of 0 of no such sequence exists.
1303 */
1304sparsebit_idx_t sparsebit_next_set_num(struct sparsebit *s,
1305	sparsebit_idx_t start, sparsebit_num_t num)
1306{
1307	sparsebit_idx_t idx;
1308
1309	assert(num >= 1);
1310
1311	for (idx = sparsebit_next_set(s, start);
1312		idx != 0 && idx + num - 1 >= idx;
1313		idx = sparsebit_next_set(s, idx)) {
1314		assert(sparsebit_is_set(s, idx));
1315
1316		/*
1317		 * Does the sequence of bits starting at idx consist of
1318		 * num set bits?
1319		 */
1320		if (sparsebit_is_set_num(s, idx, num))
1321			return idx;
1322
1323		/*
1324		 * Sequence of set bits at idx isn't large enough.
1325		 * Skip this entire sequence of set bits.
1326		 */
1327		idx = sparsebit_next_clear(s, idx);
1328		if (idx == 0)
1329			return 0;
1330	}
1331
1332	return 0;
1333}
1334
1335/* Starting with the index 1 greater than the index given by start, finds
1336 * and returns the index of the first sequence of num consecutively cleared
1337 * bits.  Returns a value of 0 of no such sequence exists.
1338 */
1339sparsebit_idx_t sparsebit_next_clear_num(struct sparsebit *s,
1340	sparsebit_idx_t start, sparsebit_num_t num)
1341{
1342	sparsebit_idx_t idx;
1343
1344	assert(num >= 1);
1345
1346	for (idx = sparsebit_next_clear(s, start);
1347		idx != 0 && idx + num - 1 >= idx;
1348		idx = sparsebit_next_clear(s, idx)) {
1349		assert(sparsebit_is_clear(s, idx));
1350
1351		/*
1352		 * Does the sequence of bits starting at idx consist of
1353		 * num cleared bits?
1354		 */
1355		if (sparsebit_is_clear_num(s, idx, num))
1356			return idx;
1357
1358		/*
1359		 * Sequence of cleared bits at idx isn't large enough.
1360		 * Skip this entire sequence of cleared bits.
1361		 */
1362		idx = sparsebit_next_set(s, idx);
1363		if (idx == 0)
1364			return 0;
1365	}
1366
1367	return 0;
1368}
1369
1370/* Sets the bits * in the inclusive range idx through idx + num - 1.  */
1371void sparsebit_set_num(struct sparsebit *s,
1372	sparsebit_idx_t start, sparsebit_num_t num)
1373{
1374	struct node *nodep, *next;
1375	unsigned int n1;
1376	sparsebit_idx_t idx;
1377	sparsebit_num_t n;
1378	sparsebit_idx_t middle_start, middle_end;
1379
1380	assert(num > 0);
1381	assert(start + num - 1 >= start);
1382
1383	/*
1384	 * Leading - bits before first mask boundary.
1385	 *
1386	 * TODO(lhuemill): With some effort it may be possible to
1387	 *   replace the following loop with a sequential sequence
1388	 *   of statements.  High level sequence would be:
1389	 *
1390	 *     1. Use node_split() to force node that describes setting
1391	 *        of idx to be within the mask portion of a node.
1392	 *     2. Form mask of bits to be set.
1393	 *     3. Determine number of mask bits already set in the node
1394	 *        and store in a local variable named num_already_set.
1395	 *     4. Set the appropriate mask bits within the node.
1396	 *     5. Increment struct sparsebit_pvt num_set member
1397	 *        by the number of bits that were actually set.
1398	 *        Exclude from the counts bits that were already set.
1399	 *     6. Before returning to the caller, use node_reduce() to
1400	 *        handle the multiple corner cases that this method
1401	 *        introduces.
1402	 */
1403	for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--)
1404		bit_set(s, idx);
1405
1406	/* Middle - bits spanning one or more entire mask */
1407	middle_start = idx;
1408	middle_end = middle_start + (n & -MASK_BITS) - 1;
1409	if (n >= MASK_BITS) {
1410		nodep = node_split(s, middle_start);
1411
1412		/*
1413		 * As needed, split just after end of middle bits.
1414		 * No split needed if end of middle bits is at highest
1415		 * supported bit index.
1416		 */
1417		if (middle_end + 1 > middle_end)
1418			(void) node_split(s, middle_end + 1);
1419
1420		/* Delete nodes that only describe bits within the middle. */
1421		for (next = node_next(s, nodep);
1422			next && (next->idx < middle_end);
1423			next = node_next(s, nodep)) {
1424			assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end);
1425			node_rm(s, next);
1426			next = NULL;
1427		}
1428
1429		/* As needed set each of the mask bits */
1430		for (n1 = 0; n1 < MASK_BITS; n1++) {
1431			if (!(nodep->mask & (1 << n1))) {
1432				nodep->mask |= 1 << n1;
1433				s->num_set++;
1434			}
1435		}
1436
1437		s->num_set -= nodep->num_after;
1438		nodep->num_after = middle_end - middle_start + 1 - MASK_BITS;
1439		s->num_set += nodep->num_after;
1440
1441		node_reduce(s, nodep);
1442	}
1443	idx = middle_end + 1;
1444	n -= middle_end - middle_start + 1;
1445
1446	/* Trailing - bits at and beyond last mask boundary */
1447	assert(n < MASK_BITS);
1448	for (; n > 0; idx++, n--)
1449		bit_set(s, idx);
1450}
1451
1452/* Clears the bits * in the inclusive range idx through idx + num - 1.  */
1453void sparsebit_clear_num(struct sparsebit *s,
1454	sparsebit_idx_t start, sparsebit_num_t num)
1455{
1456	struct node *nodep, *next;
1457	unsigned int n1;
1458	sparsebit_idx_t idx;
1459	sparsebit_num_t n;
1460	sparsebit_idx_t middle_start, middle_end;
1461
1462	assert(num > 0);
1463	assert(start + num - 1 >= start);
1464
1465	/* Leading - bits before first mask boundary */
1466	for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--)
1467		bit_clear(s, idx);
1468
1469	/* Middle - bits spanning one or more entire mask */
1470	middle_start = idx;
1471	middle_end = middle_start + (n & -MASK_BITS) - 1;
1472	if (n >= MASK_BITS) {
1473		nodep = node_split(s, middle_start);
1474
1475		/*
1476		 * As needed, split just after end of middle bits.
1477		 * No split needed if end of middle bits is at highest
1478		 * supported bit index.
1479		 */
1480		if (middle_end + 1 > middle_end)
1481			(void) node_split(s, middle_end + 1);
1482
1483		/* Delete nodes that only describe bits within the middle. */
1484		for (next = node_next(s, nodep);
1485			next && (next->idx < middle_end);
1486			next = node_next(s, nodep)) {
1487			assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end);
1488			node_rm(s, next);
1489			next = NULL;
1490		}
1491
1492		/* As needed clear each of the mask bits */
1493		for (n1 = 0; n1 < MASK_BITS; n1++) {
1494			if (nodep->mask & (1 << n1)) {
1495				nodep->mask &= ~(1 << n1);
1496				s->num_set--;
1497			}
1498		}
1499
1500		/* Clear any bits described by num_after */
1501		s->num_set -= nodep->num_after;
1502		nodep->num_after = 0;
1503
1504		/*
1505		 * Delete the node that describes the beginning of
1506		 * the middle bits and perform any allowed reductions
1507		 * with the nodes prev or next of nodep.
1508		 */
1509		node_reduce(s, nodep);
1510		nodep = NULL;
1511	}
1512	idx = middle_end + 1;
1513	n -= middle_end - middle_start + 1;
1514
1515	/* Trailing - bits at and beyond last mask boundary */
1516	assert(n < MASK_BITS);
1517	for (; n > 0; idx++, n--)
1518		bit_clear(s, idx);
1519}
1520
1521/* Sets the bit at the index given by idx.  */
1522void sparsebit_set(struct sparsebit *s, sparsebit_idx_t idx)
1523{
1524	sparsebit_set_num(s, idx, 1);
1525}
1526
1527/* Clears the bit at the index given by idx.  */
1528void sparsebit_clear(struct sparsebit *s, sparsebit_idx_t idx)
1529{
1530	sparsebit_clear_num(s, idx, 1);
1531}
1532
1533/* Sets the bits in the entire addressable range of the sparsebit array.  */
1534void sparsebit_set_all(struct sparsebit *s)
1535{
1536	sparsebit_set(s, 0);
1537	sparsebit_set_num(s, 1, ~(sparsebit_idx_t) 0);
1538	assert(sparsebit_all_set(s));
1539}
1540
1541/* Clears the bits in the entire addressable range of the sparsebit array.  */
1542void sparsebit_clear_all(struct sparsebit *s)
1543{
1544	sparsebit_clear(s, 0);
1545	sparsebit_clear_num(s, 1, ~(sparsebit_idx_t) 0);
1546	assert(!sparsebit_any_set(s));
1547}
1548
1549static size_t display_range(FILE *stream, sparsebit_idx_t low,
1550	sparsebit_idx_t high, bool prepend_comma_space)
1551{
1552	char *fmt_str;
1553	size_t sz;
1554
1555	/* Determine the printf format string */
1556	if (low == high)
1557		fmt_str = prepend_comma_space ? ", 0x%lx" : "0x%lx";
1558	else
1559		fmt_str = prepend_comma_space ? ", 0x%lx:0x%lx" : "0x%lx:0x%lx";
1560
1561	/*
1562	 * When stream is NULL, just determine the size of what would
1563	 * have been printed, else print the range.
1564	 */
1565	if (!stream)
1566		sz = snprintf(NULL, 0, fmt_str, low, high);
1567	else
1568		sz = fprintf(stream, fmt_str, low, high);
1569
1570	return sz;
1571}
1572
1573
1574/* Dumps to the FILE stream given by stream, the bit settings
1575 * of s.  Each line of output is prefixed with the number of
1576 * spaces given by indent.  The length of each line is implementation
1577 * dependent and does not depend on the indent amount.  The following
1578 * is an example output of a sparsebit array that has bits:
1579 *
1580 *   0x5, 0x8, 0xa:0xe, 0x12
1581 *
1582 * This corresponds to a sparsebit whose bits 5, 8, 10, 11, 12, 13, 14, 18
1583 * are set.  Note that a ':', instead of a '-' is used to specify a range of
1584 * contiguous bits.  This is done because '-' is used to specify command-line
1585 * options, and sometimes ranges are specified as command-line arguments.
1586 */
1587void sparsebit_dump(FILE *stream, struct sparsebit *s,
1588	unsigned int indent)
1589{
1590	size_t current_line_len = 0;
1591	size_t sz;
1592	struct node *nodep;
1593
1594	if (!sparsebit_any_set(s))
1595		return;
1596
1597	/* Display initial indent */
1598	fprintf(stream, "%*s", indent, "");
1599
1600	/* For each node */
1601	for (nodep = node_first(s); nodep; nodep = node_next(s, nodep)) {
1602		unsigned int n1;
1603		sparsebit_idx_t low, high;
1604
1605		/* For each group of bits in the mask */
1606		for (n1 = 0; n1 < MASK_BITS; n1++) {
1607			if (nodep->mask & (1 << n1)) {
1608				low = high = nodep->idx + n1;
1609
1610				for (; n1 < MASK_BITS; n1++) {
1611					if (nodep->mask & (1 << n1))
1612						high = nodep->idx + n1;
1613					else
1614						break;
1615				}
1616
1617				if ((n1 == MASK_BITS) && nodep->num_after)
1618					high += nodep->num_after;
1619
1620				/*
1621				 * How much room will it take to display
1622				 * this range.
1623				 */
1624				sz = display_range(NULL, low, high,
1625					current_line_len != 0);
1626
1627				/*
1628				 * If there is not enough room, display
1629				 * a newline plus the indent of the next
1630				 * line.
1631				 */
1632				if (current_line_len + sz > DUMP_LINE_MAX) {
1633					fputs("\n", stream);
1634					fprintf(stream, "%*s", indent, "");
1635					current_line_len = 0;
1636				}
1637
1638				/* Display the range */
1639				sz = display_range(stream, low, high,
1640					current_line_len != 0);
1641				current_line_len += sz;
1642			}
1643		}
1644
1645		/*
1646		 * If num_after and most significant-bit of mask is not
1647		 * set, then still need to display a range for the bits
1648		 * described by num_after.
1649		 */
1650		if (!(nodep->mask & (1 << (MASK_BITS - 1))) && nodep->num_after) {
1651			low = nodep->idx + MASK_BITS;
1652			high = nodep->idx + MASK_BITS + nodep->num_after - 1;
1653
1654			/*
1655			 * How much room will it take to display
1656			 * this range.
1657			 */
1658			sz = display_range(NULL, low, high,
1659				current_line_len != 0);
1660
1661			/*
1662			 * If there is not enough room, display
1663			 * a newline plus the indent of the next
1664			 * line.
1665			 */
1666			if (current_line_len + sz > DUMP_LINE_MAX) {
1667				fputs("\n", stream);
1668				fprintf(stream, "%*s", indent, "");
1669				current_line_len = 0;
1670			}
1671
1672			/* Display the range */
1673			sz = display_range(stream, low, high,
1674				current_line_len != 0);
1675			current_line_len += sz;
1676		}
1677	}
1678	fputs("\n", stream);
1679}
1680
1681/* Validates the internal state of the sparsebit array given by
1682 * s.  On error, diagnostic information is printed to stderr and
1683 * abort is called.
1684 */
1685void sparsebit_validate_internal(struct sparsebit *s)
1686{
1687	bool error_detected = false;
1688	struct node *nodep, *prev = NULL;
1689	sparsebit_num_t total_bits_set = 0;
1690	unsigned int n1;
1691
1692	/* For each node */
1693	for (nodep = node_first(s); nodep;
1694		prev = nodep, nodep = node_next(s, nodep)) {
1695
1696		/*
1697		 * Increase total bits set by the number of bits set
1698		 * in this node.
1699		 */
1700		for (n1 = 0; n1 < MASK_BITS; n1++)
1701			if (nodep->mask & (1 << n1))
1702				total_bits_set++;
1703
1704		total_bits_set += nodep->num_after;
1705
1706		/*
1707		 * Arbitrary choice as to whether a mask of 0 is allowed
1708		 * or not.  For diagnostic purposes it is beneficial to
1709		 * have only one valid means to represent a set of bits.
1710		 * To support this an arbitrary choice has been made
1711		 * to not allow a mask of zero.
1712		 */
1713		if (nodep->mask == 0) {
1714			fprintf(stderr, "Node mask of zero, "
1715				"nodep: %p nodep->mask: 0x%x",
1716				nodep, nodep->mask);
1717			error_detected = true;
1718			break;
1719		}
1720
1721		/*
1722		 * Validate num_after is not greater than the max index
1723		 * - the number of mask bits.  The num_after member
1724		 * uses 0-based indexing and thus has no value that
1725		 * represents all bits set.  This limitation is handled
1726		 * by requiring a non-zero mask.  With a non-zero mask,
1727		 * MASK_BITS worth of bits are described by the mask,
1728		 * which makes the largest needed num_after equal to:
1729		 *
1730		 *    (~(sparsebit_num_t) 0) - MASK_BITS + 1
1731		 */
1732		if (nodep->num_after
1733			> (~(sparsebit_num_t) 0) - MASK_BITS + 1) {
1734			fprintf(stderr, "num_after too large, "
1735				"nodep: %p nodep->num_after: 0x%lx",
1736				nodep, nodep->num_after);
1737			error_detected = true;
1738			break;
1739		}
1740
1741		/* Validate node index is divisible by the mask size */
1742		if (nodep->idx % MASK_BITS) {
1743			fprintf(stderr, "Node index not divisible by "
1744				"mask size,\n"
1745				"  nodep: %p nodep->idx: 0x%lx "
1746				"MASK_BITS: %lu\n",
1747				nodep, nodep->idx, MASK_BITS);
1748			error_detected = true;
1749			break;
1750		}
1751
1752		/*
1753		 * Validate bits described by node don't wrap beyond the
1754		 * highest supported index.
1755		 */
1756		if ((nodep->idx + MASK_BITS + nodep->num_after - 1) < nodep->idx) {
1757			fprintf(stderr, "Bits described by node wrap "
1758				"beyond highest supported index,\n"
1759				"  nodep: %p nodep->idx: 0x%lx\n"
1760				"  MASK_BITS: %lu nodep->num_after: 0x%lx",
1761				nodep, nodep->idx, MASK_BITS, nodep->num_after);
1762			error_detected = true;
1763			break;
1764		}
1765
1766		/* Check parent pointers. */
1767		if (nodep->left) {
1768			if (nodep->left->parent != nodep) {
1769				fprintf(stderr, "Left child parent pointer "
1770					"doesn't point to this node,\n"
1771					"  nodep: %p nodep->left: %p "
1772					"nodep->left->parent: %p",
1773					nodep, nodep->left,
1774					nodep->left->parent);
1775				error_detected = true;
1776				break;
1777			}
1778		}
1779
1780		if (nodep->right) {
1781			if (nodep->right->parent != nodep) {
1782				fprintf(stderr, "Right child parent pointer "
1783					"doesn't point to this node,\n"
1784					"  nodep: %p nodep->right: %p "
1785					"nodep->right->parent: %p",
1786					nodep, nodep->right,
1787					nodep->right->parent);
1788				error_detected = true;
1789				break;
1790			}
1791		}
1792
1793		if (!nodep->parent) {
1794			if (s->root != nodep) {
1795				fprintf(stderr, "Unexpected root node, "
1796					"s->root: %p nodep: %p",
1797					s->root, nodep);
1798				error_detected = true;
1799				break;
1800			}
1801		}
1802
1803		if (prev) {
1804			/*
1805			 * Is index of previous node before index of
1806			 * current node?
1807			 */
1808			if (prev->idx >= nodep->idx) {
1809				fprintf(stderr, "Previous node index "
1810					">= current node index,\n"
1811					"  prev: %p prev->idx: 0x%lx\n"
1812					"  nodep: %p nodep->idx: 0x%lx",
1813					prev, prev->idx, nodep, nodep->idx);
1814				error_detected = true;
1815				break;
1816			}
1817
1818			/*
1819			 * Nodes occur in asscending order, based on each
1820			 * nodes starting index.
1821			 */
1822			if ((prev->idx + MASK_BITS + prev->num_after - 1)
1823				>= nodep->idx) {
1824				fprintf(stderr, "Previous node bit range "
1825					"overlap with current node bit range,\n"
1826					"  prev: %p prev->idx: 0x%lx "
1827					"prev->num_after: 0x%lx\n"
1828					"  nodep: %p nodep->idx: 0x%lx "
1829					"nodep->num_after: 0x%lx\n"
1830					"  MASK_BITS: %lu",
1831					prev, prev->idx, prev->num_after,
1832					nodep, nodep->idx, nodep->num_after,
1833					MASK_BITS);
1834				error_detected = true;
1835				break;
1836			}
1837
1838			/*
1839			 * When the node has all mask bits set, it shouldn't
1840			 * be adjacent to the last bit described by the
1841			 * previous node.
1842			 */
1843			if (nodep->mask == ~(mask_t) 0 &&
1844			    prev->idx + MASK_BITS + prev->num_after == nodep->idx) {
1845				fprintf(stderr, "Current node has mask with "
1846					"all bits set and is adjacent to the "
1847					"previous node,\n"
1848					"  prev: %p prev->idx: 0x%lx "
1849					"prev->num_after: 0x%lx\n"
1850					"  nodep: %p nodep->idx: 0x%lx "
1851					"nodep->num_after: 0x%lx\n"
1852					"  MASK_BITS: %lu",
1853					prev, prev->idx, prev->num_after,
1854					nodep, nodep->idx, nodep->num_after,
1855					MASK_BITS);
1856
1857				error_detected = true;
1858				break;
1859			}
1860		}
1861	}
1862
1863	if (!error_detected) {
1864		/*
1865		 * Is sum of bits set in each node equal to the count
1866		 * of total bits set.
1867		 */
1868		if (s->num_set != total_bits_set) {
1869			fprintf(stderr, "Number of bits set missmatch,\n"
1870				"  s->num_set: 0x%lx total_bits_set: 0x%lx",
1871				s->num_set, total_bits_set);
1872
1873			error_detected = true;
1874		}
1875	}
1876
1877	if (error_detected) {
1878		fputs("  dump_internal:\n", stderr);
1879		sparsebit_dump_internal(stderr, s, 4);
1880		abort();
1881	}
1882}
1883
1884
1885#ifdef FUZZ
1886/* A simple but effective fuzzing driver.  Look for bugs with the help
1887 * of some invariants and of a trivial representation of sparsebit.
1888 * Just use 512 bytes of /dev/zero and /dev/urandom as inputs, and let
1889 * afl-fuzz do the magic. :)
1890 */
1891
1892#include <stdlib.h>
1893#include <assert.h>
1894
1895struct range {
1896	sparsebit_idx_t first, last;
1897	bool set;
1898};
1899
1900struct sparsebit *s;
1901struct range ranges[1000];
1902int num_ranges;
1903
1904static bool get_value(sparsebit_idx_t idx)
1905{
1906	int i;
1907
1908	for (i = num_ranges; --i >= 0; )
1909		if (ranges[i].first <= idx && idx <= ranges[i].last)
1910			return ranges[i].set;
1911
1912	return false;
1913}
1914
1915static void operate(int code, sparsebit_idx_t first, sparsebit_idx_t last)
1916{
1917	sparsebit_num_t num;
1918	sparsebit_idx_t next;
1919
1920	if (first < last) {
1921		num = last - first + 1;
1922	} else {
1923		num = first - last + 1;
1924		first = last;
1925		last = first + num - 1;
1926	}
1927
1928	switch (code) {
1929	case 0:
1930		sparsebit_set(s, first);
1931		assert(sparsebit_is_set(s, first));
1932		assert(!sparsebit_is_clear(s, first));
1933		assert(sparsebit_any_set(s));
1934		assert(!sparsebit_all_clear(s));
1935		if (get_value(first))
1936			return;
1937		if (num_ranges == 1000)
1938			exit(0);
1939		ranges[num_ranges++] = (struct range)
1940			{ .first = first, .last = first, .set = true };
1941		break;
1942	case 1:
1943		sparsebit_clear(s, first);
1944		assert(!sparsebit_is_set(s, first));
1945		assert(sparsebit_is_clear(s, first));
1946		assert(sparsebit_any_clear(s));
1947		assert(!sparsebit_all_set(s));
1948		if (!get_value(first))
1949			return;
1950		if (num_ranges == 1000)
1951			exit(0);
1952		ranges[num_ranges++] = (struct range)
1953			{ .first = first, .last = first, .set = false };
1954		break;
1955	case 2:
1956		assert(sparsebit_is_set(s, first) == get_value(first));
1957		assert(sparsebit_is_clear(s, first) == !get_value(first));
1958		break;
1959	case 3:
1960		if (sparsebit_any_set(s))
1961			assert(get_value(sparsebit_first_set(s)));
1962		if (sparsebit_any_clear(s))
1963			assert(!get_value(sparsebit_first_clear(s)));
1964		sparsebit_set_all(s);
1965		assert(!sparsebit_any_clear(s));
1966		assert(sparsebit_all_set(s));
1967		num_ranges = 0;
1968		ranges[num_ranges++] = (struct range)
1969			{ .first = 0, .last = ~(sparsebit_idx_t)0, .set = true };
1970		break;
1971	case 4:
1972		if (sparsebit_any_set(s))
1973			assert(get_value(sparsebit_first_set(s)));
1974		if (sparsebit_any_clear(s))
1975			assert(!get_value(sparsebit_first_clear(s)));
1976		sparsebit_clear_all(s);
1977		assert(!sparsebit_any_set(s));
1978		assert(sparsebit_all_clear(s));
1979		num_ranges = 0;
1980		break;
1981	case 5:
1982		next = sparsebit_next_set(s, first);
1983		assert(next == 0 || next > first);
1984		assert(next == 0 || get_value(next));
1985		break;
1986	case 6:
1987		next = sparsebit_next_clear(s, first);
1988		assert(next == 0 || next > first);
1989		assert(next == 0 || !get_value(next));
1990		break;
1991	case 7:
1992		next = sparsebit_next_clear(s, first);
1993		if (sparsebit_is_set_num(s, first, num)) {
1994			assert(next == 0 || next > last);
1995			if (first)
1996				next = sparsebit_next_set(s, first - 1);
1997			else if (sparsebit_any_set(s))
1998				next = sparsebit_first_set(s);
1999			else
2000				return;
2001			assert(next == first);
2002		} else {
2003			assert(sparsebit_is_clear(s, first) || next <= last);
2004		}
2005		break;
2006	case 8:
2007		next = sparsebit_next_set(s, first);
2008		if (sparsebit_is_clear_num(s, first, num)) {
2009			assert(next == 0 || next > last);
2010			if (first)
2011				next = sparsebit_next_clear(s, first - 1);
2012			else if (sparsebit_any_clear(s))
2013				next = sparsebit_first_clear(s);
2014			else
2015				return;
2016			assert(next == first);
2017		} else {
2018			assert(sparsebit_is_set(s, first) || next <= last);
2019		}
2020		break;
2021	case 9:
2022		sparsebit_set_num(s, first, num);
2023		assert(sparsebit_is_set_num(s, first, num));
2024		assert(!sparsebit_is_clear_num(s, first, num));
2025		assert(sparsebit_any_set(s));
2026		assert(!sparsebit_all_clear(s));
2027		if (num_ranges == 1000)
2028			exit(0);
2029		ranges[num_ranges++] = (struct range)
2030			{ .first = first, .last = last, .set = true };
2031		break;
2032	case 10:
2033		sparsebit_clear_num(s, first, num);
2034		assert(!sparsebit_is_set_num(s, first, num));
2035		assert(sparsebit_is_clear_num(s, first, num));
2036		assert(sparsebit_any_clear(s));
2037		assert(!sparsebit_all_set(s));
2038		if (num_ranges == 1000)
2039			exit(0);
2040		ranges[num_ranges++] = (struct range)
2041			{ .first = first, .last = last, .set = false };
2042		break;
2043	case 11:
2044		sparsebit_validate_internal(s);
2045		break;
2046	default:
2047		break;
2048	}
2049}
2050
2051unsigned char get8(void)
2052{
2053	int ch;
2054
2055	ch = getchar();
2056	if (ch == EOF)
2057		exit(0);
2058	return ch;
2059}
2060
2061uint64_t get64(void)
2062{
2063	uint64_t x;
2064
2065	x = get8();
2066	x = (x << 8) | get8();
2067	x = (x << 8) | get8();
2068	x = (x << 8) | get8();
2069	x = (x << 8) | get8();
2070	x = (x << 8) | get8();
2071	x = (x << 8) | get8();
2072	return (x << 8) | get8();
2073}
2074
2075int main(void)
2076{
2077	s = sparsebit_alloc();
2078	for (;;) {
2079		uint8_t op = get8() & 0xf;
2080		uint64_t first = get64();
2081		uint64_t last = get64();
2082
2083		operate(op, first, last);
2084	}
2085}
2086#endif
2087