18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * tools/testing/selftests/kvm/lib/kvm_util.c
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci * Copyright (C) 2018, Google LLC.
68c2ecf20Sopenharmony_ci */
78c2ecf20Sopenharmony_ci
88c2ecf20Sopenharmony_ci#include "test_util.h"
98c2ecf20Sopenharmony_ci#include "kvm_util.h"
108c2ecf20Sopenharmony_ci#include "kvm_util_internal.h"
118c2ecf20Sopenharmony_ci#include "processor.h"
128c2ecf20Sopenharmony_ci
138c2ecf20Sopenharmony_ci#include <assert.h>
148c2ecf20Sopenharmony_ci#include <sys/mman.h>
158c2ecf20Sopenharmony_ci#include <sys/types.h>
168c2ecf20Sopenharmony_ci#include <sys/stat.h>
178c2ecf20Sopenharmony_ci#include <unistd.h>
188c2ecf20Sopenharmony_ci#include <linux/kernel.h>
198c2ecf20Sopenharmony_ci
208c2ecf20Sopenharmony_ci#define KVM_UTIL_PGS_PER_HUGEPG 512
218c2ecf20Sopenharmony_ci#define KVM_UTIL_MIN_PFN	2
228c2ecf20Sopenharmony_ci
238c2ecf20Sopenharmony_ci/* Aligns x up to the next multiple of size. Size must be a power of 2. */
248c2ecf20Sopenharmony_cistatic void *align(void *x, size_t size)
258c2ecf20Sopenharmony_ci{
268c2ecf20Sopenharmony_ci	size_t mask = size - 1;
278c2ecf20Sopenharmony_ci	TEST_ASSERT(size != 0 && !(size & (size - 1)),
288c2ecf20Sopenharmony_ci		    "size not a power of 2: %lu", size);
298c2ecf20Sopenharmony_ci	return (void *) (((size_t) x + mask) & ~mask);
308c2ecf20Sopenharmony_ci}
318c2ecf20Sopenharmony_ci
328c2ecf20Sopenharmony_ci/*
338c2ecf20Sopenharmony_ci * Capability
348c2ecf20Sopenharmony_ci *
358c2ecf20Sopenharmony_ci * Input Args:
368c2ecf20Sopenharmony_ci *   cap - Capability
378c2ecf20Sopenharmony_ci *
388c2ecf20Sopenharmony_ci * Output Args: None
398c2ecf20Sopenharmony_ci *
408c2ecf20Sopenharmony_ci * Return:
418c2ecf20Sopenharmony_ci *   On success, the Value corresponding to the capability (KVM_CAP_*)
428c2ecf20Sopenharmony_ci *   specified by the value of cap.  On failure a TEST_ASSERT failure
438c2ecf20Sopenharmony_ci *   is produced.
448c2ecf20Sopenharmony_ci *
458c2ecf20Sopenharmony_ci * Looks up and returns the value corresponding to the capability
468c2ecf20Sopenharmony_ci * (KVM_CAP_*) given by cap.
478c2ecf20Sopenharmony_ci */
488c2ecf20Sopenharmony_ciint kvm_check_cap(long cap)
498c2ecf20Sopenharmony_ci{
508c2ecf20Sopenharmony_ci	int ret;
518c2ecf20Sopenharmony_ci	int kvm_fd;
528c2ecf20Sopenharmony_ci
538c2ecf20Sopenharmony_ci	kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
548c2ecf20Sopenharmony_ci	if (kvm_fd < 0)
558c2ecf20Sopenharmony_ci		exit(KSFT_SKIP);
568c2ecf20Sopenharmony_ci
578c2ecf20Sopenharmony_ci	ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
588c2ecf20Sopenharmony_ci	TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION IOCTL failed,\n"
598c2ecf20Sopenharmony_ci		"  rc: %i errno: %i", ret, errno);
608c2ecf20Sopenharmony_ci
618c2ecf20Sopenharmony_ci	close(kvm_fd);
628c2ecf20Sopenharmony_ci
638c2ecf20Sopenharmony_ci	return ret;
648c2ecf20Sopenharmony_ci}
658c2ecf20Sopenharmony_ci
668c2ecf20Sopenharmony_ci/* VM Enable Capability
678c2ecf20Sopenharmony_ci *
688c2ecf20Sopenharmony_ci * Input Args:
698c2ecf20Sopenharmony_ci *   vm - Virtual Machine
708c2ecf20Sopenharmony_ci *   cap - Capability
718c2ecf20Sopenharmony_ci *
728c2ecf20Sopenharmony_ci * Output Args: None
738c2ecf20Sopenharmony_ci *
748c2ecf20Sopenharmony_ci * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
758c2ecf20Sopenharmony_ci *
768c2ecf20Sopenharmony_ci * Enables a capability (KVM_CAP_*) on the VM.
778c2ecf20Sopenharmony_ci */
788c2ecf20Sopenharmony_ciint vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
798c2ecf20Sopenharmony_ci{
808c2ecf20Sopenharmony_ci	int ret;
818c2ecf20Sopenharmony_ci
828c2ecf20Sopenharmony_ci	ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
838c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
848c2ecf20Sopenharmony_ci		"  rc: %i errno: %i", ret, errno);
858c2ecf20Sopenharmony_ci
868c2ecf20Sopenharmony_ci	return ret;
878c2ecf20Sopenharmony_ci}
888c2ecf20Sopenharmony_ci
898c2ecf20Sopenharmony_ci/* VCPU Enable Capability
908c2ecf20Sopenharmony_ci *
918c2ecf20Sopenharmony_ci * Input Args:
928c2ecf20Sopenharmony_ci *   vm - Virtual Machine
938c2ecf20Sopenharmony_ci *   vcpu_id - VCPU
948c2ecf20Sopenharmony_ci *   cap - Capability
958c2ecf20Sopenharmony_ci *
968c2ecf20Sopenharmony_ci * Output Args: None
978c2ecf20Sopenharmony_ci *
988c2ecf20Sopenharmony_ci * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
998c2ecf20Sopenharmony_ci *
1008c2ecf20Sopenharmony_ci * Enables a capability (KVM_CAP_*) on the VCPU.
1018c2ecf20Sopenharmony_ci */
1028c2ecf20Sopenharmony_ciint vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id,
1038c2ecf20Sopenharmony_ci		    struct kvm_enable_cap *cap)
1048c2ecf20Sopenharmony_ci{
1058c2ecf20Sopenharmony_ci	struct vcpu *vcpu = vcpu_find(vm, vcpu_id);
1068c2ecf20Sopenharmony_ci	int r;
1078c2ecf20Sopenharmony_ci
1088c2ecf20Sopenharmony_ci	TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id);
1098c2ecf20Sopenharmony_ci
1108c2ecf20Sopenharmony_ci	r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap);
1118c2ecf20Sopenharmony_ci	TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n"
1128c2ecf20Sopenharmony_ci			"  rc: %i, errno: %i", r, errno);
1138c2ecf20Sopenharmony_ci
1148c2ecf20Sopenharmony_ci	return r;
1158c2ecf20Sopenharmony_ci}
1168c2ecf20Sopenharmony_ci
1178c2ecf20Sopenharmony_cistatic void vm_open(struct kvm_vm *vm, int perm)
1188c2ecf20Sopenharmony_ci{
1198c2ecf20Sopenharmony_ci	vm->kvm_fd = open(KVM_DEV_PATH, perm);
1208c2ecf20Sopenharmony_ci	if (vm->kvm_fd < 0)
1218c2ecf20Sopenharmony_ci		exit(KSFT_SKIP);
1228c2ecf20Sopenharmony_ci
1238c2ecf20Sopenharmony_ci	if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
1248c2ecf20Sopenharmony_ci		print_skip("immediate_exit not available");
1258c2ecf20Sopenharmony_ci		exit(KSFT_SKIP);
1268c2ecf20Sopenharmony_ci	}
1278c2ecf20Sopenharmony_ci
1288c2ecf20Sopenharmony_ci	vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type);
1298c2ecf20Sopenharmony_ci	TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
1308c2ecf20Sopenharmony_ci		"rc: %i errno: %i", vm->fd, errno);
1318c2ecf20Sopenharmony_ci}
1328c2ecf20Sopenharmony_ci
1338c2ecf20Sopenharmony_ciconst char * const vm_guest_mode_string[] = {
1348c2ecf20Sopenharmony_ci	"PA-bits:52,  VA-bits:48,  4K pages",
1358c2ecf20Sopenharmony_ci	"PA-bits:52,  VA-bits:48, 64K pages",
1368c2ecf20Sopenharmony_ci	"PA-bits:48,  VA-bits:48,  4K pages",
1378c2ecf20Sopenharmony_ci	"PA-bits:48,  VA-bits:48, 64K pages",
1388c2ecf20Sopenharmony_ci	"PA-bits:40,  VA-bits:48,  4K pages",
1398c2ecf20Sopenharmony_ci	"PA-bits:40,  VA-bits:48, 64K pages",
1408c2ecf20Sopenharmony_ci	"PA-bits:ANY, VA-bits:48,  4K pages",
1418c2ecf20Sopenharmony_ci};
1428c2ecf20Sopenharmony_ci_Static_assert(sizeof(vm_guest_mode_string)/sizeof(char *) == NUM_VM_MODES,
1438c2ecf20Sopenharmony_ci	       "Missing new mode strings?");
1448c2ecf20Sopenharmony_ci
1458c2ecf20Sopenharmony_cistruct vm_guest_mode_params {
1468c2ecf20Sopenharmony_ci	unsigned int pa_bits;
1478c2ecf20Sopenharmony_ci	unsigned int va_bits;
1488c2ecf20Sopenharmony_ci	unsigned int page_size;
1498c2ecf20Sopenharmony_ci	unsigned int page_shift;
1508c2ecf20Sopenharmony_ci};
1518c2ecf20Sopenharmony_ci
1528c2ecf20Sopenharmony_cistatic const struct vm_guest_mode_params vm_guest_mode_params[] = {
1538c2ecf20Sopenharmony_ci	{ 52, 48,  0x1000, 12 },
1548c2ecf20Sopenharmony_ci	{ 52, 48, 0x10000, 16 },
1558c2ecf20Sopenharmony_ci	{ 48, 48,  0x1000, 12 },
1568c2ecf20Sopenharmony_ci	{ 48, 48, 0x10000, 16 },
1578c2ecf20Sopenharmony_ci	{ 40, 48,  0x1000, 12 },
1588c2ecf20Sopenharmony_ci	{ 40, 48, 0x10000, 16 },
1598c2ecf20Sopenharmony_ci	{  0,  0,  0x1000, 12 },
1608c2ecf20Sopenharmony_ci};
1618c2ecf20Sopenharmony_ci_Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
1628c2ecf20Sopenharmony_ci	       "Missing new mode params?");
1638c2ecf20Sopenharmony_ci
1648c2ecf20Sopenharmony_ci/*
1658c2ecf20Sopenharmony_ci * VM Create
1668c2ecf20Sopenharmony_ci *
1678c2ecf20Sopenharmony_ci * Input Args:
1688c2ecf20Sopenharmony_ci *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
1698c2ecf20Sopenharmony_ci *   phy_pages - Physical memory pages
1708c2ecf20Sopenharmony_ci *   perm - permission
1718c2ecf20Sopenharmony_ci *
1728c2ecf20Sopenharmony_ci * Output Args: None
1738c2ecf20Sopenharmony_ci *
1748c2ecf20Sopenharmony_ci * Return:
1758c2ecf20Sopenharmony_ci *   Pointer to opaque structure that describes the created VM.
1768c2ecf20Sopenharmony_ci *
1778c2ecf20Sopenharmony_ci * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
1788c2ecf20Sopenharmony_ci * When phy_pages is non-zero, a memory region of phy_pages physical pages
1798c2ecf20Sopenharmony_ci * is created and mapped starting at guest physical address 0.  The file
1808c2ecf20Sopenharmony_ci * descriptor to control the created VM is created with the permissions
1818c2ecf20Sopenharmony_ci * given by perm (e.g. O_RDWR).
1828c2ecf20Sopenharmony_ci */
1838c2ecf20Sopenharmony_cistruct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
1848c2ecf20Sopenharmony_ci{
1858c2ecf20Sopenharmony_ci	struct kvm_vm *vm;
1868c2ecf20Sopenharmony_ci
1878c2ecf20Sopenharmony_ci	pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__,
1888c2ecf20Sopenharmony_ci		 vm_guest_mode_string(mode), phy_pages, perm);
1898c2ecf20Sopenharmony_ci
1908c2ecf20Sopenharmony_ci	vm = calloc(1, sizeof(*vm));
1918c2ecf20Sopenharmony_ci	TEST_ASSERT(vm != NULL, "Insufficient Memory");
1928c2ecf20Sopenharmony_ci
1938c2ecf20Sopenharmony_ci	INIT_LIST_HEAD(&vm->vcpus);
1948c2ecf20Sopenharmony_ci	INIT_LIST_HEAD(&vm->userspace_mem_regions);
1958c2ecf20Sopenharmony_ci
1968c2ecf20Sopenharmony_ci	vm->mode = mode;
1978c2ecf20Sopenharmony_ci	vm->type = 0;
1988c2ecf20Sopenharmony_ci
1998c2ecf20Sopenharmony_ci	vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
2008c2ecf20Sopenharmony_ci	vm->va_bits = vm_guest_mode_params[mode].va_bits;
2018c2ecf20Sopenharmony_ci	vm->page_size = vm_guest_mode_params[mode].page_size;
2028c2ecf20Sopenharmony_ci	vm->page_shift = vm_guest_mode_params[mode].page_shift;
2038c2ecf20Sopenharmony_ci
2048c2ecf20Sopenharmony_ci	/* Setup mode specific traits. */
2058c2ecf20Sopenharmony_ci	switch (vm->mode) {
2068c2ecf20Sopenharmony_ci	case VM_MODE_P52V48_4K:
2078c2ecf20Sopenharmony_ci		vm->pgtable_levels = 4;
2088c2ecf20Sopenharmony_ci		break;
2098c2ecf20Sopenharmony_ci	case VM_MODE_P52V48_64K:
2108c2ecf20Sopenharmony_ci		vm->pgtable_levels = 3;
2118c2ecf20Sopenharmony_ci		break;
2128c2ecf20Sopenharmony_ci	case VM_MODE_P48V48_4K:
2138c2ecf20Sopenharmony_ci		vm->pgtable_levels = 4;
2148c2ecf20Sopenharmony_ci		break;
2158c2ecf20Sopenharmony_ci	case VM_MODE_P48V48_64K:
2168c2ecf20Sopenharmony_ci		vm->pgtable_levels = 3;
2178c2ecf20Sopenharmony_ci		break;
2188c2ecf20Sopenharmony_ci	case VM_MODE_P40V48_4K:
2198c2ecf20Sopenharmony_ci		vm->pgtable_levels = 4;
2208c2ecf20Sopenharmony_ci		break;
2218c2ecf20Sopenharmony_ci	case VM_MODE_P40V48_64K:
2228c2ecf20Sopenharmony_ci		vm->pgtable_levels = 3;
2238c2ecf20Sopenharmony_ci		break;
2248c2ecf20Sopenharmony_ci	case VM_MODE_PXXV48_4K:
2258c2ecf20Sopenharmony_ci#ifdef __x86_64__
2268c2ecf20Sopenharmony_ci		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
2278c2ecf20Sopenharmony_ci		/*
2288c2ecf20Sopenharmony_ci		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
2298c2ecf20Sopenharmony_ci		 * it doesn't take effect unless a CR4.LA57 is set, which it
2308c2ecf20Sopenharmony_ci		 * isn't for this VM_MODE.
2318c2ecf20Sopenharmony_ci		 */
2328c2ecf20Sopenharmony_ci		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
2338c2ecf20Sopenharmony_ci			    "Linear address width (%d bits) not supported",
2348c2ecf20Sopenharmony_ci			    vm->va_bits);
2358c2ecf20Sopenharmony_ci		pr_debug("Guest physical address width detected: %d\n",
2368c2ecf20Sopenharmony_ci			 vm->pa_bits);
2378c2ecf20Sopenharmony_ci		vm->pgtable_levels = 4;
2388c2ecf20Sopenharmony_ci		vm->va_bits = 48;
2398c2ecf20Sopenharmony_ci#else
2408c2ecf20Sopenharmony_ci		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
2418c2ecf20Sopenharmony_ci#endif
2428c2ecf20Sopenharmony_ci		break;
2438c2ecf20Sopenharmony_ci	default:
2448c2ecf20Sopenharmony_ci		TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
2458c2ecf20Sopenharmony_ci	}
2468c2ecf20Sopenharmony_ci
2478c2ecf20Sopenharmony_ci#ifdef __aarch64__
2488c2ecf20Sopenharmony_ci	if (vm->pa_bits != 40)
2498c2ecf20Sopenharmony_ci		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
2508c2ecf20Sopenharmony_ci#endif
2518c2ecf20Sopenharmony_ci
2528c2ecf20Sopenharmony_ci	vm_open(vm, perm);
2538c2ecf20Sopenharmony_ci
2548c2ecf20Sopenharmony_ci	/* Limit to VA-bit canonical virtual addresses. */
2558c2ecf20Sopenharmony_ci	vm->vpages_valid = sparsebit_alloc();
2568c2ecf20Sopenharmony_ci	sparsebit_set_num(vm->vpages_valid,
2578c2ecf20Sopenharmony_ci		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
2588c2ecf20Sopenharmony_ci	sparsebit_set_num(vm->vpages_valid,
2598c2ecf20Sopenharmony_ci		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
2608c2ecf20Sopenharmony_ci		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
2618c2ecf20Sopenharmony_ci
2628c2ecf20Sopenharmony_ci	/* Limit physical addresses to PA-bits. */
2638c2ecf20Sopenharmony_ci	vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2648c2ecf20Sopenharmony_ci
2658c2ecf20Sopenharmony_ci	/* Allocate and setup memory for guest. */
2668c2ecf20Sopenharmony_ci	vm->vpages_mapped = sparsebit_alloc();
2678c2ecf20Sopenharmony_ci	if (phy_pages != 0)
2688c2ecf20Sopenharmony_ci		vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
2698c2ecf20Sopenharmony_ci					    0, 0, phy_pages, 0);
2708c2ecf20Sopenharmony_ci
2718c2ecf20Sopenharmony_ci	return vm;
2728c2ecf20Sopenharmony_ci}
2738c2ecf20Sopenharmony_ci
2748c2ecf20Sopenharmony_ci/*
2758c2ecf20Sopenharmony_ci * VM Restart
2768c2ecf20Sopenharmony_ci *
2778c2ecf20Sopenharmony_ci * Input Args:
2788c2ecf20Sopenharmony_ci *   vm - VM that has been released before
2798c2ecf20Sopenharmony_ci *   perm - permission
2808c2ecf20Sopenharmony_ci *
2818c2ecf20Sopenharmony_ci * Output Args: None
2828c2ecf20Sopenharmony_ci *
2838c2ecf20Sopenharmony_ci * Reopens the file descriptors associated to the VM and reinstates the
2848c2ecf20Sopenharmony_ci * global state, such as the irqchip and the memory regions that are mapped
2858c2ecf20Sopenharmony_ci * into the guest.
2868c2ecf20Sopenharmony_ci */
2878c2ecf20Sopenharmony_civoid kvm_vm_restart(struct kvm_vm *vmp, int perm)
2888c2ecf20Sopenharmony_ci{
2898c2ecf20Sopenharmony_ci	struct userspace_mem_region *region;
2908c2ecf20Sopenharmony_ci
2918c2ecf20Sopenharmony_ci	vm_open(vmp, perm);
2928c2ecf20Sopenharmony_ci	if (vmp->has_irqchip)
2938c2ecf20Sopenharmony_ci		vm_create_irqchip(vmp);
2948c2ecf20Sopenharmony_ci
2958c2ecf20Sopenharmony_ci	list_for_each_entry(region, &vmp->userspace_mem_regions, list) {
2968c2ecf20Sopenharmony_ci		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
2978c2ecf20Sopenharmony_ci		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
2988c2ecf20Sopenharmony_ci			    "  rc: %i errno: %i\n"
2998c2ecf20Sopenharmony_ci			    "  slot: %u flags: 0x%x\n"
3008c2ecf20Sopenharmony_ci			    "  guest_phys_addr: 0x%llx size: 0x%llx",
3018c2ecf20Sopenharmony_ci			    ret, errno, region->region.slot,
3028c2ecf20Sopenharmony_ci			    region->region.flags,
3038c2ecf20Sopenharmony_ci			    region->region.guest_phys_addr,
3048c2ecf20Sopenharmony_ci			    region->region.memory_size);
3058c2ecf20Sopenharmony_ci	}
3068c2ecf20Sopenharmony_ci}
3078c2ecf20Sopenharmony_ci
3088c2ecf20Sopenharmony_civoid kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
3098c2ecf20Sopenharmony_ci{
3108c2ecf20Sopenharmony_ci	struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
3118c2ecf20Sopenharmony_ci	int ret;
3128c2ecf20Sopenharmony_ci
3138c2ecf20Sopenharmony_ci	ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
3148c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
3158c2ecf20Sopenharmony_ci		    __func__, strerror(-ret));
3168c2ecf20Sopenharmony_ci}
3178c2ecf20Sopenharmony_ci
3188c2ecf20Sopenharmony_civoid kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
3198c2ecf20Sopenharmony_ci			    uint64_t first_page, uint32_t num_pages)
3208c2ecf20Sopenharmony_ci{
3218c2ecf20Sopenharmony_ci	struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot,
3228c2ecf20Sopenharmony_ci		                            .first_page = first_page,
3238c2ecf20Sopenharmony_ci	                                    .num_pages = num_pages };
3248c2ecf20Sopenharmony_ci	int ret;
3258c2ecf20Sopenharmony_ci
3268c2ecf20Sopenharmony_ci	ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
3278c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
3288c2ecf20Sopenharmony_ci		    __func__, strerror(-ret));
3298c2ecf20Sopenharmony_ci}
3308c2ecf20Sopenharmony_ci
3318c2ecf20Sopenharmony_ci/*
3328c2ecf20Sopenharmony_ci * Userspace Memory Region Find
3338c2ecf20Sopenharmony_ci *
3348c2ecf20Sopenharmony_ci * Input Args:
3358c2ecf20Sopenharmony_ci *   vm - Virtual Machine
3368c2ecf20Sopenharmony_ci *   start - Starting VM physical address
3378c2ecf20Sopenharmony_ci *   end - Ending VM physical address, inclusive.
3388c2ecf20Sopenharmony_ci *
3398c2ecf20Sopenharmony_ci * Output Args: None
3408c2ecf20Sopenharmony_ci *
3418c2ecf20Sopenharmony_ci * Return:
3428c2ecf20Sopenharmony_ci *   Pointer to overlapping region, NULL if no such region.
3438c2ecf20Sopenharmony_ci *
3448c2ecf20Sopenharmony_ci * Searches for a region with any physical memory that overlaps with
3458c2ecf20Sopenharmony_ci * any portion of the guest physical addresses from start to end
3468c2ecf20Sopenharmony_ci * inclusive.  If multiple overlapping regions exist, a pointer to any
3478c2ecf20Sopenharmony_ci * of the regions is returned.  Null is returned only when no overlapping
3488c2ecf20Sopenharmony_ci * region exists.
3498c2ecf20Sopenharmony_ci */
3508c2ecf20Sopenharmony_cistatic struct userspace_mem_region *
3518c2ecf20Sopenharmony_ciuserspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
3528c2ecf20Sopenharmony_ci{
3538c2ecf20Sopenharmony_ci	struct userspace_mem_region *region;
3548c2ecf20Sopenharmony_ci
3558c2ecf20Sopenharmony_ci	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
3568c2ecf20Sopenharmony_ci		uint64_t existing_start = region->region.guest_phys_addr;
3578c2ecf20Sopenharmony_ci		uint64_t existing_end = region->region.guest_phys_addr
3588c2ecf20Sopenharmony_ci			+ region->region.memory_size - 1;
3598c2ecf20Sopenharmony_ci		if (start <= existing_end && end >= existing_start)
3608c2ecf20Sopenharmony_ci			return region;
3618c2ecf20Sopenharmony_ci	}
3628c2ecf20Sopenharmony_ci
3638c2ecf20Sopenharmony_ci	return NULL;
3648c2ecf20Sopenharmony_ci}
3658c2ecf20Sopenharmony_ci
3668c2ecf20Sopenharmony_ci/*
3678c2ecf20Sopenharmony_ci * KVM Userspace Memory Region Find
3688c2ecf20Sopenharmony_ci *
3698c2ecf20Sopenharmony_ci * Input Args:
3708c2ecf20Sopenharmony_ci *   vm - Virtual Machine
3718c2ecf20Sopenharmony_ci *   start - Starting VM physical address
3728c2ecf20Sopenharmony_ci *   end - Ending VM physical address, inclusive.
3738c2ecf20Sopenharmony_ci *
3748c2ecf20Sopenharmony_ci * Output Args: None
3758c2ecf20Sopenharmony_ci *
3768c2ecf20Sopenharmony_ci * Return:
3778c2ecf20Sopenharmony_ci *   Pointer to overlapping region, NULL if no such region.
3788c2ecf20Sopenharmony_ci *
3798c2ecf20Sopenharmony_ci * Public interface to userspace_mem_region_find. Allows tests to look up
3808c2ecf20Sopenharmony_ci * the memslot datastructure for a given range of guest physical memory.
3818c2ecf20Sopenharmony_ci */
3828c2ecf20Sopenharmony_cistruct kvm_userspace_memory_region *
3838c2ecf20Sopenharmony_cikvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
3848c2ecf20Sopenharmony_ci				 uint64_t end)
3858c2ecf20Sopenharmony_ci{
3868c2ecf20Sopenharmony_ci	struct userspace_mem_region *region;
3878c2ecf20Sopenharmony_ci
3888c2ecf20Sopenharmony_ci	region = userspace_mem_region_find(vm, start, end);
3898c2ecf20Sopenharmony_ci	if (!region)
3908c2ecf20Sopenharmony_ci		return NULL;
3918c2ecf20Sopenharmony_ci
3928c2ecf20Sopenharmony_ci	return &region->region;
3938c2ecf20Sopenharmony_ci}
3948c2ecf20Sopenharmony_ci
3958c2ecf20Sopenharmony_ci/*
3968c2ecf20Sopenharmony_ci * VCPU Find
3978c2ecf20Sopenharmony_ci *
3988c2ecf20Sopenharmony_ci * Input Args:
3998c2ecf20Sopenharmony_ci *   vm - Virtual Machine
4008c2ecf20Sopenharmony_ci *   vcpuid - VCPU ID
4018c2ecf20Sopenharmony_ci *
4028c2ecf20Sopenharmony_ci * Output Args: None
4038c2ecf20Sopenharmony_ci *
4048c2ecf20Sopenharmony_ci * Return:
4058c2ecf20Sopenharmony_ci *   Pointer to VCPU structure
4068c2ecf20Sopenharmony_ci *
4078c2ecf20Sopenharmony_ci * Locates a vcpu structure that describes the VCPU specified by vcpuid and
4088c2ecf20Sopenharmony_ci * returns a pointer to it.  Returns NULL if the VM doesn't contain a VCPU
4098c2ecf20Sopenharmony_ci * for the specified vcpuid.
4108c2ecf20Sopenharmony_ci */
4118c2ecf20Sopenharmony_cistruct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
4128c2ecf20Sopenharmony_ci{
4138c2ecf20Sopenharmony_ci	struct vcpu *vcpu;
4148c2ecf20Sopenharmony_ci
4158c2ecf20Sopenharmony_ci	list_for_each_entry(vcpu, &vm->vcpus, list) {
4168c2ecf20Sopenharmony_ci		if (vcpu->id == vcpuid)
4178c2ecf20Sopenharmony_ci			return vcpu;
4188c2ecf20Sopenharmony_ci	}
4198c2ecf20Sopenharmony_ci
4208c2ecf20Sopenharmony_ci	return NULL;
4218c2ecf20Sopenharmony_ci}
4228c2ecf20Sopenharmony_ci
4238c2ecf20Sopenharmony_ci/*
4248c2ecf20Sopenharmony_ci * VM VCPU Remove
4258c2ecf20Sopenharmony_ci *
4268c2ecf20Sopenharmony_ci * Input Args:
4278c2ecf20Sopenharmony_ci *   vcpu - VCPU to remove
4288c2ecf20Sopenharmony_ci *
4298c2ecf20Sopenharmony_ci * Output Args: None
4308c2ecf20Sopenharmony_ci *
4318c2ecf20Sopenharmony_ci * Return: None, TEST_ASSERT failures for all error conditions
4328c2ecf20Sopenharmony_ci *
4338c2ecf20Sopenharmony_ci * Removes a vCPU from a VM and frees its resources.
4348c2ecf20Sopenharmony_ci */
4358c2ecf20Sopenharmony_cistatic void vm_vcpu_rm(struct vcpu *vcpu)
4368c2ecf20Sopenharmony_ci{
4378c2ecf20Sopenharmony_ci	int ret;
4388c2ecf20Sopenharmony_ci
4398c2ecf20Sopenharmony_ci	ret = munmap(vcpu->state, sizeof(*vcpu->state));
4408c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
4418c2ecf20Sopenharmony_ci		"errno: %i", ret, errno);
4428c2ecf20Sopenharmony_ci	close(vcpu->fd);
4438c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
4448c2ecf20Sopenharmony_ci		"errno: %i", ret, errno);
4458c2ecf20Sopenharmony_ci
4468c2ecf20Sopenharmony_ci	list_del(&vcpu->list);
4478c2ecf20Sopenharmony_ci	free(vcpu);
4488c2ecf20Sopenharmony_ci}
4498c2ecf20Sopenharmony_ci
4508c2ecf20Sopenharmony_civoid kvm_vm_release(struct kvm_vm *vmp)
4518c2ecf20Sopenharmony_ci{
4528c2ecf20Sopenharmony_ci	struct vcpu *vcpu, *tmp;
4538c2ecf20Sopenharmony_ci	int ret;
4548c2ecf20Sopenharmony_ci
4558c2ecf20Sopenharmony_ci	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
4568c2ecf20Sopenharmony_ci		vm_vcpu_rm(vcpu);
4578c2ecf20Sopenharmony_ci
4588c2ecf20Sopenharmony_ci	ret = close(vmp->fd);
4598c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
4608c2ecf20Sopenharmony_ci		"  vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
4618c2ecf20Sopenharmony_ci
4628c2ecf20Sopenharmony_ci	close(vmp->kvm_fd);
4638c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
4648c2ecf20Sopenharmony_ci		"  vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
4658c2ecf20Sopenharmony_ci}
4668c2ecf20Sopenharmony_ci
4678c2ecf20Sopenharmony_cistatic void __vm_mem_region_delete(struct kvm_vm *vm,
4688c2ecf20Sopenharmony_ci				   struct userspace_mem_region *region)
4698c2ecf20Sopenharmony_ci{
4708c2ecf20Sopenharmony_ci	int ret;
4718c2ecf20Sopenharmony_ci
4728c2ecf20Sopenharmony_ci	list_del(&region->list);
4738c2ecf20Sopenharmony_ci
4748c2ecf20Sopenharmony_ci	region->region.memory_size = 0;
4758c2ecf20Sopenharmony_ci	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
4768c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
4778c2ecf20Sopenharmony_ci		    "rc: %i errno: %i", ret, errno);
4788c2ecf20Sopenharmony_ci
4798c2ecf20Sopenharmony_ci	sparsebit_free(&region->unused_phy_pages);
4808c2ecf20Sopenharmony_ci	ret = munmap(region->mmap_start, region->mmap_size);
4818c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno);
4828c2ecf20Sopenharmony_ci
4838c2ecf20Sopenharmony_ci	free(region);
4848c2ecf20Sopenharmony_ci}
4858c2ecf20Sopenharmony_ci
4868c2ecf20Sopenharmony_ci/*
4878c2ecf20Sopenharmony_ci * Destroys and frees the VM pointed to by vmp.
4888c2ecf20Sopenharmony_ci */
4898c2ecf20Sopenharmony_civoid kvm_vm_free(struct kvm_vm *vmp)
4908c2ecf20Sopenharmony_ci{
4918c2ecf20Sopenharmony_ci	struct userspace_mem_region *region, *tmp;
4928c2ecf20Sopenharmony_ci
4938c2ecf20Sopenharmony_ci	if (vmp == NULL)
4948c2ecf20Sopenharmony_ci		return;
4958c2ecf20Sopenharmony_ci
4968c2ecf20Sopenharmony_ci	/* Free userspace_mem_regions. */
4978c2ecf20Sopenharmony_ci	list_for_each_entry_safe(region, tmp, &vmp->userspace_mem_regions, list)
4988c2ecf20Sopenharmony_ci		__vm_mem_region_delete(vmp, region);
4998c2ecf20Sopenharmony_ci
5008c2ecf20Sopenharmony_ci	/* Free sparsebit arrays. */
5018c2ecf20Sopenharmony_ci	sparsebit_free(&vmp->vpages_valid);
5028c2ecf20Sopenharmony_ci	sparsebit_free(&vmp->vpages_mapped);
5038c2ecf20Sopenharmony_ci
5048c2ecf20Sopenharmony_ci	kvm_vm_release(vmp);
5058c2ecf20Sopenharmony_ci
5068c2ecf20Sopenharmony_ci	/* Free the structure describing the VM. */
5078c2ecf20Sopenharmony_ci	free(vmp);
5088c2ecf20Sopenharmony_ci}
5098c2ecf20Sopenharmony_ci
5108c2ecf20Sopenharmony_ci/*
5118c2ecf20Sopenharmony_ci * Memory Compare, host virtual to guest virtual
5128c2ecf20Sopenharmony_ci *
5138c2ecf20Sopenharmony_ci * Input Args:
5148c2ecf20Sopenharmony_ci *   hva - Starting host virtual address
5158c2ecf20Sopenharmony_ci *   vm - Virtual Machine
5168c2ecf20Sopenharmony_ci *   gva - Starting guest virtual address
5178c2ecf20Sopenharmony_ci *   len - number of bytes to compare
5188c2ecf20Sopenharmony_ci *
5198c2ecf20Sopenharmony_ci * Output Args: None
5208c2ecf20Sopenharmony_ci *
5218c2ecf20Sopenharmony_ci * Input/Output Args: None
5228c2ecf20Sopenharmony_ci *
5238c2ecf20Sopenharmony_ci * Return:
5248c2ecf20Sopenharmony_ci *   Returns 0 if the bytes starting at hva for a length of len
5258c2ecf20Sopenharmony_ci *   are equal the guest virtual bytes starting at gva.  Returns
5268c2ecf20Sopenharmony_ci *   a value < 0, if bytes at hva are less than those at gva.
5278c2ecf20Sopenharmony_ci *   Otherwise a value > 0 is returned.
5288c2ecf20Sopenharmony_ci *
5298c2ecf20Sopenharmony_ci * Compares the bytes starting at the host virtual address hva, for
5308c2ecf20Sopenharmony_ci * a length of len, to the guest bytes starting at the guest virtual
5318c2ecf20Sopenharmony_ci * address given by gva.
5328c2ecf20Sopenharmony_ci */
5338c2ecf20Sopenharmony_ciint kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
5348c2ecf20Sopenharmony_ci{
5358c2ecf20Sopenharmony_ci	size_t amt;
5368c2ecf20Sopenharmony_ci
5378c2ecf20Sopenharmony_ci	/*
5388c2ecf20Sopenharmony_ci	 * Compare a batch of bytes until either a match is found
5398c2ecf20Sopenharmony_ci	 * or all the bytes have been compared.
5408c2ecf20Sopenharmony_ci	 */
5418c2ecf20Sopenharmony_ci	for (uintptr_t offset = 0; offset < len; offset += amt) {
5428c2ecf20Sopenharmony_ci		uintptr_t ptr1 = (uintptr_t)hva + offset;
5438c2ecf20Sopenharmony_ci
5448c2ecf20Sopenharmony_ci		/*
5458c2ecf20Sopenharmony_ci		 * Determine host address for guest virtual address
5468c2ecf20Sopenharmony_ci		 * at offset.
5478c2ecf20Sopenharmony_ci		 */
5488c2ecf20Sopenharmony_ci		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
5498c2ecf20Sopenharmony_ci
5508c2ecf20Sopenharmony_ci		/*
5518c2ecf20Sopenharmony_ci		 * Determine amount to compare on this pass.
5528c2ecf20Sopenharmony_ci		 * Don't allow the comparsion to cross a page boundary.
5538c2ecf20Sopenharmony_ci		 */
5548c2ecf20Sopenharmony_ci		amt = len - offset;
5558c2ecf20Sopenharmony_ci		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
5568c2ecf20Sopenharmony_ci			amt = vm->page_size - (ptr1 % vm->page_size);
5578c2ecf20Sopenharmony_ci		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
5588c2ecf20Sopenharmony_ci			amt = vm->page_size - (ptr2 % vm->page_size);
5598c2ecf20Sopenharmony_ci
5608c2ecf20Sopenharmony_ci		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
5618c2ecf20Sopenharmony_ci		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
5628c2ecf20Sopenharmony_ci
5638c2ecf20Sopenharmony_ci		/*
5648c2ecf20Sopenharmony_ci		 * Perform the comparison.  If there is a difference
5658c2ecf20Sopenharmony_ci		 * return that result to the caller, otherwise need
5668c2ecf20Sopenharmony_ci		 * to continue on looking for a mismatch.
5678c2ecf20Sopenharmony_ci		 */
5688c2ecf20Sopenharmony_ci		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
5698c2ecf20Sopenharmony_ci		if (ret != 0)
5708c2ecf20Sopenharmony_ci			return ret;
5718c2ecf20Sopenharmony_ci	}
5728c2ecf20Sopenharmony_ci
5738c2ecf20Sopenharmony_ci	/*
5748c2ecf20Sopenharmony_ci	 * No mismatch found.  Let the caller know the two memory
5758c2ecf20Sopenharmony_ci	 * areas are equal.
5768c2ecf20Sopenharmony_ci	 */
5778c2ecf20Sopenharmony_ci	return 0;
5788c2ecf20Sopenharmony_ci}
5798c2ecf20Sopenharmony_ci
5808c2ecf20Sopenharmony_ci/*
5818c2ecf20Sopenharmony_ci * VM Userspace Memory Region Add
5828c2ecf20Sopenharmony_ci *
5838c2ecf20Sopenharmony_ci * Input Args:
5848c2ecf20Sopenharmony_ci *   vm - Virtual Machine
5858c2ecf20Sopenharmony_ci *   backing_src - Storage source for this region.
5868c2ecf20Sopenharmony_ci *                 NULL to use anonymous memory.
5878c2ecf20Sopenharmony_ci *   guest_paddr - Starting guest physical address
5888c2ecf20Sopenharmony_ci *   slot - KVM region slot
5898c2ecf20Sopenharmony_ci *   npages - Number of physical pages
5908c2ecf20Sopenharmony_ci *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
5918c2ecf20Sopenharmony_ci *
5928c2ecf20Sopenharmony_ci * Output Args: None
5938c2ecf20Sopenharmony_ci *
5948c2ecf20Sopenharmony_ci * Return: None
5958c2ecf20Sopenharmony_ci *
5968c2ecf20Sopenharmony_ci * Allocates a memory area of the number of pages specified by npages
5978c2ecf20Sopenharmony_ci * and maps it to the VM specified by vm, at a starting physical address
5988c2ecf20Sopenharmony_ci * given by guest_paddr.  The region is created with a KVM region slot
5998c2ecf20Sopenharmony_ci * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
6008c2ecf20Sopenharmony_ci * region is created with the flags given by flags.
6018c2ecf20Sopenharmony_ci */
6028c2ecf20Sopenharmony_civoid vm_userspace_mem_region_add(struct kvm_vm *vm,
6038c2ecf20Sopenharmony_ci	enum vm_mem_backing_src_type src_type,
6048c2ecf20Sopenharmony_ci	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
6058c2ecf20Sopenharmony_ci	uint32_t flags)
6068c2ecf20Sopenharmony_ci{
6078c2ecf20Sopenharmony_ci	int ret;
6088c2ecf20Sopenharmony_ci	struct userspace_mem_region *region;
6098c2ecf20Sopenharmony_ci	size_t huge_page_size = KVM_UTIL_PGS_PER_HUGEPG * vm->page_size;
6108c2ecf20Sopenharmony_ci	size_t alignment;
6118c2ecf20Sopenharmony_ci
6128c2ecf20Sopenharmony_ci	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
6138c2ecf20Sopenharmony_ci		"Number of guest pages is not compatible with the host. "
6148c2ecf20Sopenharmony_ci		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
6158c2ecf20Sopenharmony_ci
6168c2ecf20Sopenharmony_ci	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
6178c2ecf20Sopenharmony_ci		"address not on a page boundary.\n"
6188c2ecf20Sopenharmony_ci		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
6198c2ecf20Sopenharmony_ci		guest_paddr, vm->page_size);
6208c2ecf20Sopenharmony_ci	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
6218c2ecf20Sopenharmony_ci		<= vm->max_gfn, "Physical range beyond maximum "
6228c2ecf20Sopenharmony_ci		"supported physical address,\n"
6238c2ecf20Sopenharmony_ci		"  guest_paddr: 0x%lx npages: 0x%lx\n"
6248c2ecf20Sopenharmony_ci		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
6258c2ecf20Sopenharmony_ci		guest_paddr, npages, vm->max_gfn, vm->page_size);
6268c2ecf20Sopenharmony_ci
6278c2ecf20Sopenharmony_ci	/*
6288c2ecf20Sopenharmony_ci	 * Confirm a mem region with an overlapping address doesn't
6298c2ecf20Sopenharmony_ci	 * already exist.
6308c2ecf20Sopenharmony_ci	 */
6318c2ecf20Sopenharmony_ci	region = (struct userspace_mem_region *) userspace_mem_region_find(
6328c2ecf20Sopenharmony_ci		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
6338c2ecf20Sopenharmony_ci	if (region != NULL)
6348c2ecf20Sopenharmony_ci		TEST_FAIL("overlapping userspace_mem_region already "
6358c2ecf20Sopenharmony_ci			"exists\n"
6368c2ecf20Sopenharmony_ci			"  requested guest_paddr: 0x%lx npages: 0x%lx "
6378c2ecf20Sopenharmony_ci			"page_size: 0x%x\n"
6388c2ecf20Sopenharmony_ci			"  existing guest_paddr: 0x%lx size: 0x%lx",
6398c2ecf20Sopenharmony_ci			guest_paddr, npages, vm->page_size,
6408c2ecf20Sopenharmony_ci			(uint64_t) region->region.guest_phys_addr,
6418c2ecf20Sopenharmony_ci			(uint64_t) region->region.memory_size);
6428c2ecf20Sopenharmony_ci
6438c2ecf20Sopenharmony_ci	/* Confirm no region with the requested slot already exists. */
6448c2ecf20Sopenharmony_ci	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
6458c2ecf20Sopenharmony_ci		if (region->region.slot != slot)
6468c2ecf20Sopenharmony_ci			continue;
6478c2ecf20Sopenharmony_ci
6488c2ecf20Sopenharmony_ci		TEST_FAIL("A mem region with the requested slot "
6498c2ecf20Sopenharmony_ci			"already exists.\n"
6508c2ecf20Sopenharmony_ci			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
6518c2ecf20Sopenharmony_ci			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
6528c2ecf20Sopenharmony_ci			slot, guest_paddr, npages,
6538c2ecf20Sopenharmony_ci			region->region.slot,
6548c2ecf20Sopenharmony_ci			(uint64_t) region->region.guest_phys_addr,
6558c2ecf20Sopenharmony_ci			(uint64_t) region->region.memory_size);
6568c2ecf20Sopenharmony_ci	}
6578c2ecf20Sopenharmony_ci
6588c2ecf20Sopenharmony_ci	/* Allocate and initialize new mem region structure. */
6598c2ecf20Sopenharmony_ci	region = calloc(1, sizeof(*region));
6608c2ecf20Sopenharmony_ci	TEST_ASSERT(region != NULL, "Insufficient Memory");
6618c2ecf20Sopenharmony_ci	region->mmap_size = npages * vm->page_size;
6628c2ecf20Sopenharmony_ci
6638c2ecf20Sopenharmony_ci#ifdef __s390x__
6648c2ecf20Sopenharmony_ci	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
6658c2ecf20Sopenharmony_ci	alignment = 0x100000;
6668c2ecf20Sopenharmony_ci#else
6678c2ecf20Sopenharmony_ci	alignment = 1;
6688c2ecf20Sopenharmony_ci#endif
6698c2ecf20Sopenharmony_ci
6708c2ecf20Sopenharmony_ci	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
6718c2ecf20Sopenharmony_ci		alignment = max(huge_page_size, alignment);
6728c2ecf20Sopenharmony_ci
6738c2ecf20Sopenharmony_ci	/* Add enough memory to align up if necessary */
6748c2ecf20Sopenharmony_ci	if (alignment > 1)
6758c2ecf20Sopenharmony_ci		region->mmap_size += alignment;
6768c2ecf20Sopenharmony_ci
6778c2ecf20Sopenharmony_ci	region->mmap_start = mmap(NULL, region->mmap_size,
6788c2ecf20Sopenharmony_ci				  PROT_READ | PROT_WRITE,
6798c2ecf20Sopenharmony_ci				  MAP_PRIVATE | MAP_ANONYMOUS
6808c2ecf20Sopenharmony_ci				  | (src_type == VM_MEM_SRC_ANONYMOUS_HUGETLB ? MAP_HUGETLB : 0),
6818c2ecf20Sopenharmony_ci				  -1, 0);
6828c2ecf20Sopenharmony_ci	TEST_ASSERT(region->mmap_start != MAP_FAILED,
6838c2ecf20Sopenharmony_ci		    "test_malloc failed, mmap_start: %p errno: %i",
6848c2ecf20Sopenharmony_ci		    region->mmap_start, errno);
6858c2ecf20Sopenharmony_ci
6868c2ecf20Sopenharmony_ci	/* Align host address */
6878c2ecf20Sopenharmony_ci	region->host_mem = align(region->mmap_start, alignment);
6888c2ecf20Sopenharmony_ci
6898c2ecf20Sopenharmony_ci	/* As needed perform madvise */
6908c2ecf20Sopenharmony_ci	if (src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) {
6918c2ecf20Sopenharmony_ci		struct stat statbuf;
6928c2ecf20Sopenharmony_ci
6938c2ecf20Sopenharmony_ci		ret = stat("/sys/kernel/mm/transparent_hugepage", &statbuf);
6948c2ecf20Sopenharmony_ci		TEST_ASSERT(ret == 0 || (ret == -1 && errno == ENOENT),
6958c2ecf20Sopenharmony_ci			    "stat /sys/kernel/mm/transparent_hugepage");
6968c2ecf20Sopenharmony_ci
6978c2ecf20Sopenharmony_ci		TEST_ASSERT(ret == 0 || src_type != VM_MEM_SRC_ANONYMOUS_THP,
6988c2ecf20Sopenharmony_ci			    "VM_MEM_SRC_ANONYMOUS_THP requires THP to be configured in the host kernel");
6998c2ecf20Sopenharmony_ci
7008c2ecf20Sopenharmony_ci		if (ret == 0) {
7018c2ecf20Sopenharmony_ci			ret = madvise(region->host_mem, npages * vm->page_size,
7028c2ecf20Sopenharmony_ci				      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
7038c2ecf20Sopenharmony_ci			TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %x",
7048c2ecf20Sopenharmony_ci				    region->host_mem, npages * vm->page_size, src_type);
7058c2ecf20Sopenharmony_ci		}
7068c2ecf20Sopenharmony_ci	}
7078c2ecf20Sopenharmony_ci
7088c2ecf20Sopenharmony_ci	region->unused_phy_pages = sparsebit_alloc();
7098c2ecf20Sopenharmony_ci	sparsebit_set_num(region->unused_phy_pages,
7108c2ecf20Sopenharmony_ci		guest_paddr >> vm->page_shift, npages);
7118c2ecf20Sopenharmony_ci	region->region.slot = slot;
7128c2ecf20Sopenharmony_ci	region->region.flags = flags;
7138c2ecf20Sopenharmony_ci	region->region.guest_phys_addr = guest_paddr;
7148c2ecf20Sopenharmony_ci	region->region.memory_size = npages * vm->page_size;
7158c2ecf20Sopenharmony_ci	region->region.userspace_addr = (uintptr_t) region->host_mem;
7168c2ecf20Sopenharmony_ci	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
7178c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
7188c2ecf20Sopenharmony_ci		"  rc: %i errno: %i\n"
7198c2ecf20Sopenharmony_ci		"  slot: %u flags: 0x%x\n"
7208c2ecf20Sopenharmony_ci		"  guest_phys_addr: 0x%lx size: 0x%lx",
7218c2ecf20Sopenharmony_ci		ret, errno, slot, flags,
7228c2ecf20Sopenharmony_ci		guest_paddr, (uint64_t) region->region.memory_size);
7238c2ecf20Sopenharmony_ci
7248c2ecf20Sopenharmony_ci	/* Add to linked-list of memory regions. */
7258c2ecf20Sopenharmony_ci	list_add(&region->list, &vm->userspace_mem_regions);
7268c2ecf20Sopenharmony_ci}
7278c2ecf20Sopenharmony_ci
7288c2ecf20Sopenharmony_ci/*
7298c2ecf20Sopenharmony_ci * Memslot to region
7308c2ecf20Sopenharmony_ci *
7318c2ecf20Sopenharmony_ci * Input Args:
7328c2ecf20Sopenharmony_ci *   vm - Virtual Machine
7338c2ecf20Sopenharmony_ci *   memslot - KVM memory slot ID
7348c2ecf20Sopenharmony_ci *
7358c2ecf20Sopenharmony_ci * Output Args: None
7368c2ecf20Sopenharmony_ci *
7378c2ecf20Sopenharmony_ci * Return:
7388c2ecf20Sopenharmony_ci *   Pointer to memory region structure that describe memory region
7398c2ecf20Sopenharmony_ci *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
7408c2ecf20Sopenharmony_ci *   on error (e.g. currently no memory region using memslot as a KVM
7418c2ecf20Sopenharmony_ci *   memory slot ID).
7428c2ecf20Sopenharmony_ci */
7438c2ecf20Sopenharmony_cistruct userspace_mem_region *
7448c2ecf20Sopenharmony_cimemslot2region(struct kvm_vm *vm, uint32_t memslot)
7458c2ecf20Sopenharmony_ci{
7468c2ecf20Sopenharmony_ci	struct userspace_mem_region *region;
7478c2ecf20Sopenharmony_ci
7488c2ecf20Sopenharmony_ci	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
7498c2ecf20Sopenharmony_ci		if (region->region.slot == memslot)
7508c2ecf20Sopenharmony_ci			return region;
7518c2ecf20Sopenharmony_ci	}
7528c2ecf20Sopenharmony_ci
7538c2ecf20Sopenharmony_ci	fprintf(stderr, "No mem region with the requested slot found,\n"
7548c2ecf20Sopenharmony_ci		"  requested slot: %u\n", memslot);
7558c2ecf20Sopenharmony_ci	fputs("---- vm dump ----\n", stderr);
7568c2ecf20Sopenharmony_ci	vm_dump(stderr, vm, 2);
7578c2ecf20Sopenharmony_ci	TEST_FAIL("Mem region not found");
7588c2ecf20Sopenharmony_ci	return NULL;
7598c2ecf20Sopenharmony_ci}
7608c2ecf20Sopenharmony_ci
7618c2ecf20Sopenharmony_ci/*
7628c2ecf20Sopenharmony_ci * VM Memory Region Flags Set
7638c2ecf20Sopenharmony_ci *
7648c2ecf20Sopenharmony_ci * Input Args:
7658c2ecf20Sopenharmony_ci *   vm - Virtual Machine
7668c2ecf20Sopenharmony_ci *   flags - Starting guest physical address
7678c2ecf20Sopenharmony_ci *
7688c2ecf20Sopenharmony_ci * Output Args: None
7698c2ecf20Sopenharmony_ci *
7708c2ecf20Sopenharmony_ci * Return: None
7718c2ecf20Sopenharmony_ci *
7728c2ecf20Sopenharmony_ci * Sets the flags of the memory region specified by the value of slot,
7738c2ecf20Sopenharmony_ci * to the values given by flags.
7748c2ecf20Sopenharmony_ci */
7758c2ecf20Sopenharmony_civoid vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
7768c2ecf20Sopenharmony_ci{
7778c2ecf20Sopenharmony_ci	int ret;
7788c2ecf20Sopenharmony_ci	struct userspace_mem_region *region;
7798c2ecf20Sopenharmony_ci
7808c2ecf20Sopenharmony_ci	region = memslot2region(vm, slot);
7818c2ecf20Sopenharmony_ci
7828c2ecf20Sopenharmony_ci	region->region.flags = flags;
7838c2ecf20Sopenharmony_ci
7848c2ecf20Sopenharmony_ci	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
7858c2ecf20Sopenharmony_ci
7868c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
7878c2ecf20Sopenharmony_ci		"  rc: %i errno: %i slot: %u flags: 0x%x",
7888c2ecf20Sopenharmony_ci		ret, errno, slot, flags);
7898c2ecf20Sopenharmony_ci}
7908c2ecf20Sopenharmony_ci
7918c2ecf20Sopenharmony_ci/*
7928c2ecf20Sopenharmony_ci * VM Memory Region Move
7938c2ecf20Sopenharmony_ci *
7948c2ecf20Sopenharmony_ci * Input Args:
7958c2ecf20Sopenharmony_ci *   vm - Virtual Machine
7968c2ecf20Sopenharmony_ci *   slot - Slot of the memory region to move
7978c2ecf20Sopenharmony_ci *   new_gpa - Starting guest physical address
7988c2ecf20Sopenharmony_ci *
7998c2ecf20Sopenharmony_ci * Output Args: None
8008c2ecf20Sopenharmony_ci *
8018c2ecf20Sopenharmony_ci * Return: None
8028c2ecf20Sopenharmony_ci *
8038c2ecf20Sopenharmony_ci * Change the gpa of a memory region.
8048c2ecf20Sopenharmony_ci */
8058c2ecf20Sopenharmony_civoid vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
8068c2ecf20Sopenharmony_ci{
8078c2ecf20Sopenharmony_ci	struct userspace_mem_region *region;
8088c2ecf20Sopenharmony_ci	int ret;
8098c2ecf20Sopenharmony_ci
8108c2ecf20Sopenharmony_ci	region = memslot2region(vm, slot);
8118c2ecf20Sopenharmony_ci
8128c2ecf20Sopenharmony_ci	region->region.guest_phys_addr = new_gpa;
8138c2ecf20Sopenharmony_ci
8148c2ecf20Sopenharmony_ci	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
8158c2ecf20Sopenharmony_ci
8168c2ecf20Sopenharmony_ci	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
8178c2ecf20Sopenharmony_ci		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
8188c2ecf20Sopenharmony_ci		    ret, errno, slot, new_gpa);
8198c2ecf20Sopenharmony_ci}
8208c2ecf20Sopenharmony_ci
8218c2ecf20Sopenharmony_ci/*
8228c2ecf20Sopenharmony_ci * VM Memory Region Delete
8238c2ecf20Sopenharmony_ci *
8248c2ecf20Sopenharmony_ci * Input Args:
8258c2ecf20Sopenharmony_ci *   vm - Virtual Machine
8268c2ecf20Sopenharmony_ci *   slot - Slot of the memory region to delete
8278c2ecf20Sopenharmony_ci *
8288c2ecf20Sopenharmony_ci * Output Args: None
8298c2ecf20Sopenharmony_ci *
8308c2ecf20Sopenharmony_ci * Return: None
8318c2ecf20Sopenharmony_ci *
8328c2ecf20Sopenharmony_ci * Delete a memory region.
8338c2ecf20Sopenharmony_ci */
8348c2ecf20Sopenharmony_civoid vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
8358c2ecf20Sopenharmony_ci{
8368c2ecf20Sopenharmony_ci	__vm_mem_region_delete(vm, memslot2region(vm, slot));
8378c2ecf20Sopenharmony_ci}
8388c2ecf20Sopenharmony_ci
8398c2ecf20Sopenharmony_ci/*
8408c2ecf20Sopenharmony_ci * VCPU mmap Size
8418c2ecf20Sopenharmony_ci *
8428c2ecf20Sopenharmony_ci * Input Args: None
8438c2ecf20Sopenharmony_ci *
8448c2ecf20Sopenharmony_ci * Output Args: None
8458c2ecf20Sopenharmony_ci *
8468c2ecf20Sopenharmony_ci * Return:
8478c2ecf20Sopenharmony_ci *   Size of VCPU state
8488c2ecf20Sopenharmony_ci *
8498c2ecf20Sopenharmony_ci * Returns the size of the structure pointed to by the return value
8508c2ecf20Sopenharmony_ci * of vcpu_state().
8518c2ecf20Sopenharmony_ci */
8528c2ecf20Sopenharmony_cistatic int vcpu_mmap_sz(void)
8538c2ecf20Sopenharmony_ci{
8548c2ecf20Sopenharmony_ci	int dev_fd, ret;
8558c2ecf20Sopenharmony_ci
8568c2ecf20Sopenharmony_ci	dev_fd = open(KVM_DEV_PATH, O_RDONLY);
8578c2ecf20Sopenharmony_ci	if (dev_fd < 0)
8588c2ecf20Sopenharmony_ci		exit(KSFT_SKIP);
8598c2ecf20Sopenharmony_ci
8608c2ecf20Sopenharmony_ci	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
8618c2ecf20Sopenharmony_ci	TEST_ASSERT(ret >= sizeof(struct kvm_run),
8628c2ecf20Sopenharmony_ci		"%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
8638c2ecf20Sopenharmony_ci		__func__, ret, errno);
8648c2ecf20Sopenharmony_ci
8658c2ecf20Sopenharmony_ci	close(dev_fd);
8668c2ecf20Sopenharmony_ci
8678c2ecf20Sopenharmony_ci	return ret;
8688c2ecf20Sopenharmony_ci}
8698c2ecf20Sopenharmony_ci
8708c2ecf20Sopenharmony_ci/*
8718c2ecf20Sopenharmony_ci * VM VCPU Add
8728c2ecf20Sopenharmony_ci *
8738c2ecf20Sopenharmony_ci * Input Args:
8748c2ecf20Sopenharmony_ci *   vm - Virtual Machine
8758c2ecf20Sopenharmony_ci *   vcpuid - VCPU ID
8768c2ecf20Sopenharmony_ci *
8778c2ecf20Sopenharmony_ci * Output Args: None
8788c2ecf20Sopenharmony_ci *
8798c2ecf20Sopenharmony_ci * Return: None
8808c2ecf20Sopenharmony_ci *
8818c2ecf20Sopenharmony_ci * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid.
8828c2ecf20Sopenharmony_ci * No additional VCPU setup is done.
8838c2ecf20Sopenharmony_ci */
8848c2ecf20Sopenharmony_civoid vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid)
8858c2ecf20Sopenharmony_ci{
8868c2ecf20Sopenharmony_ci	struct vcpu *vcpu;
8878c2ecf20Sopenharmony_ci
8888c2ecf20Sopenharmony_ci	/* Confirm a vcpu with the specified id doesn't already exist. */
8898c2ecf20Sopenharmony_ci	vcpu = vcpu_find(vm, vcpuid);
8908c2ecf20Sopenharmony_ci	if (vcpu != NULL)
8918c2ecf20Sopenharmony_ci		TEST_FAIL("vcpu with the specified id "
8928c2ecf20Sopenharmony_ci			"already exists,\n"
8938c2ecf20Sopenharmony_ci			"  requested vcpuid: %u\n"
8948c2ecf20Sopenharmony_ci			"  existing vcpuid: %u state: %p",
8958c2ecf20Sopenharmony_ci			vcpuid, vcpu->id, vcpu->state);
8968c2ecf20Sopenharmony_ci
8978c2ecf20Sopenharmony_ci	/* Allocate and initialize new vcpu structure. */
8988c2ecf20Sopenharmony_ci	vcpu = calloc(1, sizeof(*vcpu));
8998c2ecf20Sopenharmony_ci	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
9008c2ecf20Sopenharmony_ci	vcpu->id = vcpuid;
9018c2ecf20Sopenharmony_ci	vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
9028c2ecf20Sopenharmony_ci	TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
9038c2ecf20Sopenharmony_ci		vcpu->fd, errno);
9048c2ecf20Sopenharmony_ci
9058c2ecf20Sopenharmony_ci	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
9068c2ecf20Sopenharmony_ci		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
9078c2ecf20Sopenharmony_ci		vcpu_mmap_sz(), sizeof(*vcpu->state));
9088c2ecf20Sopenharmony_ci	vcpu->state = (struct kvm_run *) mmap(NULL, sizeof(*vcpu->state),
9098c2ecf20Sopenharmony_ci		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
9108c2ecf20Sopenharmony_ci	TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
9118c2ecf20Sopenharmony_ci		"vcpu id: %u errno: %i", vcpuid, errno);
9128c2ecf20Sopenharmony_ci
9138c2ecf20Sopenharmony_ci	/* Add to linked-list of VCPUs. */
9148c2ecf20Sopenharmony_ci	list_add(&vcpu->list, &vm->vcpus);
9158c2ecf20Sopenharmony_ci}
9168c2ecf20Sopenharmony_ci
9178c2ecf20Sopenharmony_ci/*
9188c2ecf20Sopenharmony_ci * VM Virtual Address Unused Gap
9198c2ecf20Sopenharmony_ci *
9208c2ecf20Sopenharmony_ci * Input Args:
9218c2ecf20Sopenharmony_ci *   vm - Virtual Machine
9228c2ecf20Sopenharmony_ci *   sz - Size (bytes)
9238c2ecf20Sopenharmony_ci *   vaddr_min - Minimum Virtual Address
9248c2ecf20Sopenharmony_ci *
9258c2ecf20Sopenharmony_ci * Output Args: None
9268c2ecf20Sopenharmony_ci *
9278c2ecf20Sopenharmony_ci * Return:
9288c2ecf20Sopenharmony_ci *   Lowest virtual address at or below vaddr_min, with at least
9298c2ecf20Sopenharmony_ci *   sz unused bytes.  TEST_ASSERT failure if no area of at least
9308c2ecf20Sopenharmony_ci *   size sz is available.
9318c2ecf20Sopenharmony_ci *
9328c2ecf20Sopenharmony_ci * Within the VM specified by vm, locates the lowest starting virtual
9338c2ecf20Sopenharmony_ci * address >= vaddr_min, that has at least sz unallocated bytes.  A
9348c2ecf20Sopenharmony_ci * TEST_ASSERT failure occurs for invalid input or no area of at least
9358c2ecf20Sopenharmony_ci * sz unallocated bytes >= vaddr_min is available.
9368c2ecf20Sopenharmony_ci */
9378c2ecf20Sopenharmony_cistatic vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
9388c2ecf20Sopenharmony_ci				      vm_vaddr_t vaddr_min)
9398c2ecf20Sopenharmony_ci{
9408c2ecf20Sopenharmony_ci	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
9418c2ecf20Sopenharmony_ci
9428c2ecf20Sopenharmony_ci	/* Determine lowest permitted virtual page index. */
9438c2ecf20Sopenharmony_ci	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
9448c2ecf20Sopenharmony_ci	if ((pgidx_start * vm->page_size) < vaddr_min)
9458c2ecf20Sopenharmony_ci		goto no_va_found;
9468c2ecf20Sopenharmony_ci
9478c2ecf20Sopenharmony_ci	/* Loop over section with enough valid virtual page indexes. */
9488c2ecf20Sopenharmony_ci	if (!sparsebit_is_set_num(vm->vpages_valid,
9498c2ecf20Sopenharmony_ci		pgidx_start, pages))
9508c2ecf20Sopenharmony_ci		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
9518c2ecf20Sopenharmony_ci			pgidx_start, pages);
9528c2ecf20Sopenharmony_ci	do {
9538c2ecf20Sopenharmony_ci		/*
9548c2ecf20Sopenharmony_ci		 * Are there enough unused virtual pages available at
9558c2ecf20Sopenharmony_ci		 * the currently proposed starting virtual page index.
9568c2ecf20Sopenharmony_ci		 * If not, adjust proposed starting index to next
9578c2ecf20Sopenharmony_ci		 * possible.
9588c2ecf20Sopenharmony_ci		 */
9598c2ecf20Sopenharmony_ci		if (sparsebit_is_clear_num(vm->vpages_mapped,
9608c2ecf20Sopenharmony_ci			pgidx_start, pages))
9618c2ecf20Sopenharmony_ci			goto va_found;
9628c2ecf20Sopenharmony_ci		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
9638c2ecf20Sopenharmony_ci			pgidx_start, pages);
9648c2ecf20Sopenharmony_ci		if (pgidx_start == 0)
9658c2ecf20Sopenharmony_ci			goto no_va_found;
9668c2ecf20Sopenharmony_ci
9678c2ecf20Sopenharmony_ci		/*
9688c2ecf20Sopenharmony_ci		 * If needed, adjust proposed starting virtual address,
9698c2ecf20Sopenharmony_ci		 * to next range of valid virtual addresses.
9708c2ecf20Sopenharmony_ci		 */
9718c2ecf20Sopenharmony_ci		if (!sparsebit_is_set_num(vm->vpages_valid,
9728c2ecf20Sopenharmony_ci			pgidx_start, pages)) {
9738c2ecf20Sopenharmony_ci			pgidx_start = sparsebit_next_set_num(
9748c2ecf20Sopenharmony_ci				vm->vpages_valid, pgidx_start, pages);
9758c2ecf20Sopenharmony_ci			if (pgidx_start == 0)
9768c2ecf20Sopenharmony_ci				goto no_va_found;
9778c2ecf20Sopenharmony_ci		}
9788c2ecf20Sopenharmony_ci	} while (pgidx_start != 0);
9798c2ecf20Sopenharmony_ci
9808c2ecf20Sopenharmony_cino_va_found:
9818c2ecf20Sopenharmony_ci	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
9828c2ecf20Sopenharmony_ci
9838c2ecf20Sopenharmony_ci	/* NOT REACHED */
9848c2ecf20Sopenharmony_ci	return -1;
9858c2ecf20Sopenharmony_ci
9868c2ecf20Sopenharmony_civa_found:
9878c2ecf20Sopenharmony_ci	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
9888c2ecf20Sopenharmony_ci		pgidx_start, pages),
9898c2ecf20Sopenharmony_ci		"Unexpected, invalid virtual page index range,\n"
9908c2ecf20Sopenharmony_ci		"  pgidx_start: 0x%lx\n"
9918c2ecf20Sopenharmony_ci		"  pages: 0x%lx",
9928c2ecf20Sopenharmony_ci		pgidx_start, pages);
9938c2ecf20Sopenharmony_ci	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
9948c2ecf20Sopenharmony_ci		pgidx_start, pages),
9958c2ecf20Sopenharmony_ci		"Unexpected, pages already mapped,\n"
9968c2ecf20Sopenharmony_ci		"  pgidx_start: 0x%lx\n"
9978c2ecf20Sopenharmony_ci		"  pages: 0x%lx",
9988c2ecf20Sopenharmony_ci		pgidx_start, pages);
9998c2ecf20Sopenharmony_ci
10008c2ecf20Sopenharmony_ci	return pgidx_start * vm->page_size;
10018c2ecf20Sopenharmony_ci}
10028c2ecf20Sopenharmony_ci
10038c2ecf20Sopenharmony_ci/*
10048c2ecf20Sopenharmony_ci * VM Virtual Address Allocate
10058c2ecf20Sopenharmony_ci *
10068c2ecf20Sopenharmony_ci * Input Args:
10078c2ecf20Sopenharmony_ci *   vm - Virtual Machine
10088c2ecf20Sopenharmony_ci *   sz - Size in bytes
10098c2ecf20Sopenharmony_ci *   vaddr_min - Minimum starting virtual address
10108c2ecf20Sopenharmony_ci *   data_memslot - Memory region slot for data pages
10118c2ecf20Sopenharmony_ci *   pgd_memslot - Memory region slot for new virtual translation tables
10128c2ecf20Sopenharmony_ci *
10138c2ecf20Sopenharmony_ci * Output Args: None
10148c2ecf20Sopenharmony_ci *
10158c2ecf20Sopenharmony_ci * Return:
10168c2ecf20Sopenharmony_ci *   Starting guest virtual address
10178c2ecf20Sopenharmony_ci *
10188c2ecf20Sopenharmony_ci * Allocates at least sz bytes within the virtual address space of the vm
10198c2ecf20Sopenharmony_ci * given by vm.  The allocated bytes are mapped to a virtual address >=
10208c2ecf20Sopenharmony_ci * the address given by vaddr_min.  Note that each allocation uses a
10218c2ecf20Sopenharmony_ci * a unique set of pages, with the minimum real allocation being at least
10228c2ecf20Sopenharmony_ci * a page.
10238c2ecf20Sopenharmony_ci */
10248c2ecf20Sopenharmony_civm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
10258c2ecf20Sopenharmony_ci			  uint32_t data_memslot, uint32_t pgd_memslot)
10268c2ecf20Sopenharmony_ci{
10278c2ecf20Sopenharmony_ci	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
10288c2ecf20Sopenharmony_ci
10298c2ecf20Sopenharmony_ci	virt_pgd_alloc(vm, pgd_memslot);
10308c2ecf20Sopenharmony_ci
10318c2ecf20Sopenharmony_ci	/*
10328c2ecf20Sopenharmony_ci	 * Find an unused range of virtual page addresses of at least
10338c2ecf20Sopenharmony_ci	 * pages in length.
10348c2ecf20Sopenharmony_ci	 */
10358c2ecf20Sopenharmony_ci	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
10368c2ecf20Sopenharmony_ci
10378c2ecf20Sopenharmony_ci	/* Map the virtual pages. */
10388c2ecf20Sopenharmony_ci	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
10398c2ecf20Sopenharmony_ci		pages--, vaddr += vm->page_size) {
10408c2ecf20Sopenharmony_ci		vm_paddr_t paddr;
10418c2ecf20Sopenharmony_ci
10428c2ecf20Sopenharmony_ci		paddr = vm_phy_page_alloc(vm,
10438c2ecf20Sopenharmony_ci				KVM_UTIL_MIN_PFN * vm->page_size, data_memslot);
10448c2ecf20Sopenharmony_ci
10458c2ecf20Sopenharmony_ci		virt_pg_map(vm, vaddr, paddr, pgd_memslot);
10468c2ecf20Sopenharmony_ci
10478c2ecf20Sopenharmony_ci		sparsebit_set(vm->vpages_mapped,
10488c2ecf20Sopenharmony_ci			vaddr >> vm->page_shift);
10498c2ecf20Sopenharmony_ci	}
10508c2ecf20Sopenharmony_ci
10518c2ecf20Sopenharmony_ci	return vaddr_start;
10528c2ecf20Sopenharmony_ci}
10538c2ecf20Sopenharmony_ci
10548c2ecf20Sopenharmony_ci/*
10558c2ecf20Sopenharmony_ci * Map a range of VM virtual address to the VM's physical address
10568c2ecf20Sopenharmony_ci *
10578c2ecf20Sopenharmony_ci * Input Args:
10588c2ecf20Sopenharmony_ci *   vm - Virtual Machine
10598c2ecf20Sopenharmony_ci *   vaddr - Virtuall address to map
10608c2ecf20Sopenharmony_ci *   paddr - VM Physical Address
10618c2ecf20Sopenharmony_ci *   npages - The number of pages to map
10628c2ecf20Sopenharmony_ci *   pgd_memslot - Memory region slot for new virtual translation tables
10638c2ecf20Sopenharmony_ci *
10648c2ecf20Sopenharmony_ci * Output Args: None
10658c2ecf20Sopenharmony_ci *
10668c2ecf20Sopenharmony_ci * Return: None
10678c2ecf20Sopenharmony_ci *
10688c2ecf20Sopenharmony_ci * Within the VM given by @vm, creates a virtual translation for
10698c2ecf20Sopenharmony_ci * @npages starting at @vaddr to the page range starting at @paddr.
10708c2ecf20Sopenharmony_ci */
10718c2ecf20Sopenharmony_civoid virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
10728c2ecf20Sopenharmony_ci	      unsigned int npages, uint32_t pgd_memslot)
10738c2ecf20Sopenharmony_ci{
10748c2ecf20Sopenharmony_ci	size_t page_size = vm->page_size;
10758c2ecf20Sopenharmony_ci	size_t size = npages * page_size;
10768c2ecf20Sopenharmony_ci
10778c2ecf20Sopenharmony_ci	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
10788c2ecf20Sopenharmony_ci	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
10798c2ecf20Sopenharmony_ci
10808c2ecf20Sopenharmony_ci	while (npages--) {
10818c2ecf20Sopenharmony_ci		virt_pg_map(vm, vaddr, paddr, pgd_memslot);
10828c2ecf20Sopenharmony_ci		vaddr += page_size;
10838c2ecf20Sopenharmony_ci		paddr += page_size;
10848c2ecf20Sopenharmony_ci	}
10858c2ecf20Sopenharmony_ci}
10868c2ecf20Sopenharmony_ci
10878c2ecf20Sopenharmony_ci/*
10888c2ecf20Sopenharmony_ci * Address VM Physical to Host Virtual
10898c2ecf20Sopenharmony_ci *
10908c2ecf20Sopenharmony_ci * Input Args:
10918c2ecf20Sopenharmony_ci *   vm - Virtual Machine
10928c2ecf20Sopenharmony_ci *   gpa - VM physical address
10938c2ecf20Sopenharmony_ci *
10948c2ecf20Sopenharmony_ci * Output Args: None
10958c2ecf20Sopenharmony_ci *
10968c2ecf20Sopenharmony_ci * Return:
10978c2ecf20Sopenharmony_ci *   Equivalent host virtual address
10988c2ecf20Sopenharmony_ci *
10998c2ecf20Sopenharmony_ci * Locates the memory region containing the VM physical address given
11008c2ecf20Sopenharmony_ci * by gpa, within the VM given by vm.  When found, the host virtual
11018c2ecf20Sopenharmony_ci * address providing the memory to the vm physical address is returned.
11028c2ecf20Sopenharmony_ci * A TEST_ASSERT failure occurs if no region containing gpa exists.
11038c2ecf20Sopenharmony_ci */
11048c2ecf20Sopenharmony_civoid *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
11058c2ecf20Sopenharmony_ci{
11068c2ecf20Sopenharmony_ci	struct userspace_mem_region *region;
11078c2ecf20Sopenharmony_ci
11088c2ecf20Sopenharmony_ci	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
11098c2ecf20Sopenharmony_ci		if ((gpa >= region->region.guest_phys_addr)
11108c2ecf20Sopenharmony_ci			&& (gpa <= (region->region.guest_phys_addr
11118c2ecf20Sopenharmony_ci				+ region->region.memory_size - 1)))
11128c2ecf20Sopenharmony_ci			return (void *) ((uintptr_t) region->host_mem
11138c2ecf20Sopenharmony_ci				+ (gpa - region->region.guest_phys_addr));
11148c2ecf20Sopenharmony_ci	}
11158c2ecf20Sopenharmony_ci
11168c2ecf20Sopenharmony_ci	TEST_FAIL("No vm physical memory at 0x%lx", gpa);
11178c2ecf20Sopenharmony_ci	return NULL;
11188c2ecf20Sopenharmony_ci}
11198c2ecf20Sopenharmony_ci
11208c2ecf20Sopenharmony_ci/*
11218c2ecf20Sopenharmony_ci * Address Host Virtual to VM Physical
11228c2ecf20Sopenharmony_ci *
11238c2ecf20Sopenharmony_ci * Input Args:
11248c2ecf20Sopenharmony_ci *   vm - Virtual Machine
11258c2ecf20Sopenharmony_ci *   hva - Host virtual address
11268c2ecf20Sopenharmony_ci *
11278c2ecf20Sopenharmony_ci * Output Args: None
11288c2ecf20Sopenharmony_ci *
11298c2ecf20Sopenharmony_ci * Return:
11308c2ecf20Sopenharmony_ci *   Equivalent VM physical address
11318c2ecf20Sopenharmony_ci *
11328c2ecf20Sopenharmony_ci * Locates the memory region containing the host virtual address given
11338c2ecf20Sopenharmony_ci * by hva, within the VM given by vm.  When found, the equivalent
11348c2ecf20Sopenharmony_ci * VM physical address is returned. A TEST_ASSERT failure occurs if no
11358c2ecf20Sopenharmony_ci * region containing hva exists.
11368c2ecf20Sopenharmony_ci */
11378c2ecf20Sopenharmony_civm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
11388c2ecf20Sopenharmony_ci{
11398c2ecf20Sopenharmony_ci	struct userspace_mem_region *region;
11408c2ecf20Sopenharmony_ci
11418c2ecf20Sopenharmony_ci	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
11428c2ecf20Sopenharmony_ci		if ((hva >= region->host_mem)
11438c2ecf20Sopenharmony_ci			&& (hva <= (region->host_mem
11448c2ecf20Sopenharmony_ci				+ region->region.memory_size - 1)))
11458c2ecf20Sopenharmony_ci			return (vm_paddr_t) ((uintptr_t)
11468c2ecf20Sopenharmony_ci				region->region.guest_phys_addr
11478c2ecf20Sopenharmony_ci				+ (hva - (uintptr_t) region->host_mem));
11488c2ecf20Sopenharmony_ci	}
11498c2ecf20Sopenharmony_ci
11508c2ecf20Sopenharmony_ci	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
11518c2ecf20Sopenharmony_ci	return -1;
11528c2ecf20Sopenharmony_ci}
11538c2ecf20Sopenharmony_ci
11548c2ecf20Sopenharmony_ci/*
11558c2ecf20Sopenharmony_ci * VM Create IRQ Chip
11568c2ecf20Sopenharmony_ci *
11578c2ecf20Sopenharmony_ci * Input Args:
11588c2ecf20Sopenharmony_ci *   vm - Virtual Machine
11598c2ecf20Sopenharmony_ci *
11608c2ecf20Sopenharmony_ci * Output Args: None
11618c2ecf20Sopenharmony_ci *
11628c2ecf20Sopenharmony_ci * Return: None
11638c2ecf20Sopenharmony_ci *
11648c2ecf20Sopenharmony_ci * Creates an interrupt controller chip for the VM specified by vm.
11658c2ecf20Sopenharmony_ci */
11668c2ecf20Sopenharmony_civoid vm_create_irqchip(struct kvm_vm *vm)
11678c2ecf20Sopenharmony_ci{
11688c2ecf20Sopenharmony_ci	int ret;
11698c2ecf20Sopenharmony_ci
11708c2ecf20Sopenharmony_ci	ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
11718c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
11728c2ecf20Sopenharmony_ci		"rc: %i errno: %i", ret, errno);
11738c2ecf20Sopenharmony_ci
11748c2ecf20Sopenharmony_ci	vm->has_irqchip = true;
11758c2ecf20Sopenharmony_ci}
11768c2ecf20Sopenharmony_ci
11778c2ecf20Sopenharmony_ci/*
11788c2ecf20Sopenharmony_ci * VM VCPU State
11798c2ecf20Sopenharmony_ci *
11808c2ecf20Sopenharmony_ci * Input Args:
11818c2ecf20Sopenharmony_ci *   vm - Virtual Machine
11828c2ecf20Sopenharmony_ci *   vcpuid - VCPU ID
11838c2ecf20Sopenharmony_ci *
11848c2ecf20Sopenharmony_ci * Output Args: None
11858c2ecf20Sopenharmony_ci *
11868c2ecf20Sopenharmony_ci * Return:
11878c2ecf20Sopenharmony_ci *   Pointer to structure that describes the state of the VCPU.
11888c2ecf20Sopenharmony_ci *
11898c2ecf20Sopenharmony_ci * Locates and returns a pointer to a structure that describes the
11908c2ecf20Sopenharmony_ci * state of the VCPU with the given vcpuid.
11918c2ecf20Sopenharmony_ci */
11928c2ecf20Sopenharmony_cistruct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
11938c2ecf20Sopenharmony_ci{
11948c2ecf20Sopenharmony_ci	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
11958c2ecf20Sopenharmony_ci	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
11968c2ecf20Sopenharmony_ci
11978c2ecf20Sopenharmony_ci	return vcpu->state;
11988c2ecf20Sopenharmony_ci}
11998c2ecf20Sopenharmony_ci
12008c2ecf20Sopenharmony_ci/*
12018c2ecf20Sopenharmony_ci * VM VCPU Run
12028c2ecf20Sopenharmony_ci *
12038c2ecf20Sopenharmony_ci * Input Args:
12048c2ecf20Sopenharmony_ci *   vm - Virtual Machine
12058c2ecf20Sopenharmony_ci *   vcpuid - VCPU ID
12068c2ecf20Sopenharmony_ci *
12078c2ecf20Sopenharmony_ci * Output Args: None
12088c2ecf20Sopenharmony_ci *
12098c2ecf20Sopenharmony_ci * Return: None
12108c2ecf20Sopenharmony_ci *
12118c2ecf20Sopenharmony_ci * Switch to executing the code for the VCPU given by vcpuid, within the VM
12128c2ecf20Sopenharmony_ci * given by vm.
12138c2ecf20Sopenharmony_ci */
12148c2ecf20Sopenharmony_civoid vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
12158c2ecf20Sopenharmony_ci{
12168c2ecf20Sopenharmony_ci	int ret = _vcpu_run(vm, vcpuid);
12178c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
12188c2ecf20Sopenharmony_ci		"rc: %i errno: %i", ret, errno);
12198c2ecf20Sopenharmony_ci}
12208c2ecf20Sopenharmony_ci
12218c2ecf20Sopenharmony_ciint _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
12228c2ecf20Sopenharmony_ci{
12238c2ecf20Sopenharmony_ci	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
12248c2ecf20Sopenharmony_ci	int rc;
12258c2ecf20Sopenharmony_ci
12268c2ecf20Sopenharmony_ci	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
12278c2ecf20Sopenharmony_ci	do {
12288c2ecf20Sopenharmony_ci		rc = ioctl(vcpu->fd, KVM_RUN, NULL);
12298c2ecf20Sopenharmony_ci	} while (rc == -1 && errno == EINTR);
12308c2ecf20Sopenharmony_ci
12318c2ecf20Sopenharmony_ci	assert_on_unhandled_exception(vm, vcpuid);
12328c2ecf20Sopenharmony_ci
12338c2ecf20Sopenharmony_ci	return rc;
12348c2ecf20Sopenharmony_ci}
12358c2ecf20Sopenharmony_ci
12368c2ecf20Sopenharmony_civoid vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
12378c2ecf20Sopenharmony_ci{
12388c2ecf20Sopenharmony_ci	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
12398c2ecf20Sopenharmony_ci	int ret;
12408c2ecf20Sopenharmony_ci
12418c2ecf20Sopenharmony_ci	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
12428c2ecf20Sopenharmony_ci
12438c2ecf20Sopenharmony_ci	vcpu->state->immediate_exit = 1;
12448c2ecf20Sopenharmony_ci	ret = ioctl(vcpu->fd, KVM_RUN, NULL);
12458c2ecf20Sopenharmony_ci	vcpu->state->immediate_exit = 0;
12468c2ecf20Sopenharmony_ci
12478c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == -1 && errno == EINTR,
12488c2ecf20Sopenharmony_ci		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
12498c2ecf20Sopenharmony_ci		    ret, errno);
12508c2ecf20Sopenharmony_ci}
12518c2ecf20Sopenharmony_ci
12528c2ecf20Sopenharmony_civoid vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid,
12538c2ecf20Sopenharmony_ci			  struct kvm_guest_debug *debug)
12548c2ecf20Sopenharmony_ci{
12558c2ecf20Sopenharmony_ci	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
12568c2ecf20Sopenharmony_ci	int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug);
12578c2ecf20Sopenharmony_ci
12588c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret);
12598c2ecf20Sopenharmony_ci}
12608c2ecf20Sopenharmony_ci
12618c2ecf20Sopenharmony_ci/*
12628c2ecf20Sopenharmony_ci * VM VCPU Set MP State
12638c2ecf20Sopenharmony_ci *
12648c2ecf20Sopenharmony_ci * Input Args:
12658c2ecf20Sopenharmony_ci *   vm - Virtual Machine
12668c2ecf20Sopenharmony_ci *   vcpuid - VCPU ID
12678c2ecf20Sopenharmony_ci *   mp_state - mp_state to be set
12688c2ecf20Sopenharmony_ci *
12698c2ecf20Sopenharmony_ci * Output Args: None
12708c2ecf20Sopenharmony_ci *
12718c2ecf20Sopenharmony_ci * Return: None
12728c2ecf20Sopenharmony_ci *
12738c2ecf20Sopenharmony_ci * Sets the MP state of the VCPU given by vcpuid, to the state given
12748c2ecf20Sopenharmony_ci * by mp_state.
12758c2ecf20Sopenharmony_ci */
12768c2ecf20Sopenharmony_civoid vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
12778c2ecf20Sopenharmony_ci		       struct kvm_mp_state *mp_state)
12788c2ecf20Sopenharmony_ci{
12798c2ecf20Sopenharmony_ci	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
12808c2ecf20Sopenharmony_ci	int ret;
12818c2ecf20Sopenharmony_ci
12828c2ecf20Sopenharmony_ci	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
12838c2ecf20Sopenharmony_ci
12848c2ecf20Sopenharmony_ci	ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
12858c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
12868c2ecf20Sopenharmony_ci		"rc: %i errno: %i", ret, errno);
12878c2ecf20Sopenharmony_ci}
12888c2ecf20Sopenharmony_ci
12898c2ecf20Sopenharmony_ci/*
12908c2ecf20Sopenharmony_ci * VM VCPU Get Reg List
12918c2ecf20Sopenharmony_ci *
12928c2ecf20Sopenharmony_ci * Input Args:
12938c2ecf20Sopenharmony_ci *   vm - Virtual Machine
12948c2ecf20Sopenharmony_ci *   vcpuid - VCPU ID
12958c2ecf20Sopenharmony_ci *
12968c2ecf20Sopenharmony_ci * Output Args:
12978c2ecf20Sopenharmony_ci *   None
12988c2ecf20Sopenharmony_ci *
12998c2ecf20Sopenharmony_ci * Return:
13008c2ecf20Sopenharmony_ci *   A pointer to an allocated struct kvm_reg_list
13018c2ecf20Sopenharmony_ci *
13028c2ecf20Sopenharmony_ci * Get the list of guest registers which are supported for
13038c2ecf20Sopenharmony_ci * KVM_GET_ONE_REG/KVM_SET_ONE_REG calls
13048c2ecf20Sopenharmony_ci */
13058c2ecf20Sopenharmony_cistruct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid)
13068c2ecf20Sopenharmony_ci{
13078c2ecf20Sopenharmony_ci	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
13088c2ecf20Sopenharmony_ci	int ret;
13098c2ecf20Sopenharmony_ci
13108c2ecf20Sopenharmony_ci	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, &reg_list_n);
13118c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
13128c2ecf20Sopenharmony_ci	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
13138c2ecf20Sopenharmony_ci	reg_list->n = reg_list_n.n;
13148c2ecf20Sopenharmony_ci	vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list);
13158c2ecf20Sopenharmony_ci	return reg_list;
13168c2ecf20Sopenharmony_ci}
13178c2ecf20Sopenharmony_ci
13188c2ecf20Sopenharmony_ci/*
13198c2ecf20Sopenharmony_ci * VM VCPU Regs Get
13208c2ecf20Sopenharmony_ci *
13218c2ecf20Sopenharmony_ci * Input Args:
13228c2ecf20Sopenharmony_ci *   vm - Virtual Machine
13238c2ecf20Sopenharmony_ci *   vcpuid - VCPU ID
13248c2ecf20Sopenharmony_ci *
13258c2ecf20Sopenharmony_ci * Output Args:
13268c2ecf20Sopenharmony_ci *   regs - current state of VCPU regs
13278c2ecf20Sopenharmony_ci *
13288c2ecf20Sopenharmony_ci * Return: None
13298c2ecf20Sopenharmony_ci *
13308c2ecf20Sopenharmony_ci * Obtains the current register state for the VCPU specified by vcpuid
13318c2ecf20Sopenharmony_ci * and stores it at the location given by regs.
13328c2ecf20Sopenharmony_ci */
13338c2ecf20Sopenharmony_civoid vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
13348c2ecf20Sopenharmony_ci{
13358c2ecf20Sopenharmony_ci	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
13368c2ecf20Sopenharmony_ci	int ret;
13378c2ecf20Sopenharmony_ci
13388c2ecf20Sopenharmony_ci	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
13398c2ecf20Sopenharmony_ci
13408c2ecf20Sopenharmony_ci	ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
13418c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
13428c2ecf20Sopenharmony_ci		ret, errno);
13438c2ecf20Sopenharmony_ci}
13448c2ecf20Sopenharmony_ci
13458c2ecf20Sopenharmony_ci/*
13468c2ecf20Sopenharmony_ci * VM VCPU Regs Set
13478c2ecf20Sopenharmony_ci *
13488c2ecf20Sopenharmony_ci * Input Args:
13498c2ecf20Sopenharmony_ci *   vm - Virtual Machine
13508c2ecf20Sopenharmony_ci *   vcpuid - VCPU ID
13518c2ecf20Sopenharmony_ci *   regs - Values to set VCPU regs to
13528c2ecf20Sopenharmony_ci *
13538c2ecf20Sopenharmony_ci * Output Args: None
13548c2ecf20Sopenharmony_ci *
13558c2ecf20Sopenharmony_ci * Return: None
13568c2ecf20Sopenharmony_ci *
13578c2ecf20Sopenharmony_ci * Sets the regs of the VCPU specified by vcpuid to the values
13588c2ecf20Sopenharmony_ci * given by regs.
13598c2ecf20Sopenharmony_ci */
13608c2ecf20Sopenharmony_civoid vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
13618c2ecf20Sopenharmony_ci{
13628c2ecf20Sopenharmony_ci	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
13638c2ecf20Sopenharmony_ci	int ret;
13648c2ecf20Sopenharmony_ci
13658c2ecf20Sopenharmony_ci	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
13668c2ecf20Sopenharmony_ci
13678c2ecf20Sopenharmony_ci	ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
13688c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
13698c2ecf20Sopenharmony_ci		ret, errno);
13708c2ecf20Sopenharmony_ci}
13718c2ecf20Sopenharmony_ci
13728c2ecf20Sopenharmony_ci#ifdef __KVM_HAVE_VCPU_EVENTS
13738c2ecf20Sopenharmony_civoid vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
13748c2ecf20Sopenharmony_ci		     struct kvm_vcpu_events *events)
13758c2ecf20Sopenharmony_ci{
13768c2ecf20Sopenharmony_ci	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
13778c2ecf20Sopenharmony_ci	int ret;
13788c2ecf20Sopenharmony_ci
13798c2ecf20Sopenharmony_ci	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
13808c2ecf20Sopenharmony_ci
13818c2ecf20Sopenharmony_ci	ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
13828c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
13838c2ecf20Sopenharmony_ci		ret, errno);
13848c2ecf20Sopenharmony_ci}
13858c2ecf20Sopenharmony_ci
13868c2ecf20Sopenharmony_civoid vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
13878c2ecf20Sopenharmony_ci		     struct kvm_vcpu_events *events)
13888c2ecf20Sopenharmony_ci{
13898c2ecf20Sopenharmony_ci	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
13908c2ecf20Sopenharmony_ci	int ret;
13918c2ecf20Sopenharmony_ci
13928c2ecf20Sopenharmony_ci	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
13938c2ecf20Sopenharmony_ci
13948c2ecf20Sopenharmony_ci	ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
13958c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
13968c2ecf20Sopenharmony_ci		ret, errno);
13978c2ecf20Sopenharmony_ci}
13988c2ecf20Sopenharmony_ci#endif
13998c2ecf20Sopenharmony_ci
14008c2ecf20Sopenharmony_ci#ifdef __x86_64__
14018c2ecf20Sopenharmony_civoid vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid,
14028c2ecf20Sopenharmony_ci			   struct kvm_nested_state *state)
14038c2ecf20Sopenharmony_ci{
14048c2ecf20Sopenharmony_ci	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
14058c2ecf20Sopenharmony_ci	int ret;
14068c2ecf20Sopenharmony_ci
14078c2ecf20Sopenharmony_ci	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
14088c2ecf20Sopenharmony_ci
14098c2ecf20Sopenharmony_ci	ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state);
14108c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0,
14118c2ecf20Sopenharmony_ci		"KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
14128c2ecf20Sopenharmony_ci		ret, errno);
14138c2ecf20Sopenharmony_ci}
14148c2ecf20Sopenharmony_ci
14158c2ecf20Sopenharmony_ciint vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid,
14168c2ecf20Sopenharmony_ci			  struct kvm_nested_state *state, bool ignore_error)
14178c2ecf20Sopenharmony_ci{
14188c2ecf20Sopenharmony_ci	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
14198c2ecf20Sopenharmony_ci	int ret;
14208c2ecf20Sopenharmony_ci
14218c2ecf20Sopenharmony_ci	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
14228c2ecf20Sopenharmony_ci
14238c2ecf20Sopenharmony_ci	ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state);
14248c2ecf20Sopenharmony_ci	if (!ignore_error) {
14258c2ecf20Sopenharmony_ci		TEST_ASSERT(ret == 0,
14268c2ecf20Sopenharmony_ci			"KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
14278c2ecf20Sopenharmony_ci			ret, errno);
14288c2ecf20Sopenharmony_ci	}
14298c2ecf20Sopenharmony_ci
14308c2ecf20Sopenharmony_ci	return ret;
14318c2ecf20Sopenharmony_ci}
14328c2ecf20Sopenharmony_ci#endif
14338c2ecf20Sopenharmony_ci
14348c2ecf20Sopenharmony_ci/*
14358c2ecf20Sopenharmony_ci * VM VCPU System Regs Get
14368c2ecf20Sopenharmony_ci *
14378c2ecf20Sopenharmony_ci * Input Args:
14388c2ecf20Sopenharmony_ci *   vm - Virtual Machine
14398c2ecf20Sopenharmony_ci *   vcpuid - VCPU ID
14408c2ecf20Sopenharmony_ci *
14418c2ecf20Sopenharmony_ci * Output Args:
14428c2ecf20Sopenharmony_ci *   sregs - current state of VCPU system regs
14438c2ecf20Sopenharmony_ci *
14448c2ecf20Sopenharmony_ci * Return: None
14458c2ecf20Sopenharmony_ci *
14468c2ecf20Sopenharmony_ci * Obtains the current system register state for the VCPU specified by
14478c2ecf20Sopenharmony_ci * vcpuid and stores it at the location given by sregs.
14488c2ecf20Sopenharmony_ci */
14498c2ecf20Sopenharmony_civoid vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
14508c2ecf20Sopenharmony_ci{
14518c2ecf20Sopenharmony_ci	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
14528c2ecf20Sopenharmony_ci	int ret;
14538c2ecf20Sopenharmony_ci
14548c2ecf20Sopenharmony_ci	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
14558c2ecf20Sopenharmony_ci
14568c2ecf20Sopenharmony_ci	ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
14578c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
14588c2ecf20Sopenharmony_ci		ret, errno);
14598c2ecf20Sopenharmony_ci}
14608c2ecf20Sopenharmony_ci
14618c2ecf20Sopenharmony_ci/*
14628c2ecf20Sopenharmony_ci * VM VCPU System Regs Set
14638c2ecf20Sopenharmony_ci *
14648c2ecf20Sopenharmony_ci * Input Args:
14658c2ecf20Sopenharmony_ci *   vm - Virtual Machine
14668c2ecf20Sopenharmony_ci *   vcpuid - VCPU ID
14678c2ecf20Sopenharmony_ci *   sregs - Values to set VCPU system regs to
14688c2ecf20Sopenharmony_ci *
14698c2ecf20Sopenharmony_ci * Output Args: None
14708c2ecf20Sopenharmony_ci *
14718c2ecf20Sopenharmony_ci * Return: None
14728c2ecf20Sopenharmony_ci *
14738c2ecf20Sopenharmony_ci * Sets the system regs of the VCPU specified by vcpuid to the values
14748c2ecf20Sopenharmony_ci * given by sregs.
14758c2ecf20Sopenharmony_ci */
14768c2ecf20Sopenharmony_civoid vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
14778c2ecf20Sopenharmony_ci{
14788c2ecf20Sopenharmony_ci	int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
14798c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
14808c2ecf20Sopenharmony_ci		"rc: %i errno: %i", ret, errno);
14818c2ecf20Sopenharmony_ci}
14828c2ecf20Sopenharmony_ci
14838c2ecf20Sopenharmony_ciint _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
14848c2ecf20Sopenharmony_ci{
14858c2ecf20Sopenharmony_ci	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
14868c2ecf20Sopenharmony_ci
14878c2ecf20Sopenharmony_ci	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
14888c2ecf20Sopenharmony_ci
14898c2ecf20Sopenharmony_ci	return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
14908c2ecf20Sopenharmony_ci}
14918c2ecf20Sopenharmony_ci
14928c2ecf20Sopenharmony_civoid vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
14938c2ecf20Sopenharmony_ci{
14948c2ecf20Sopenharmony_ci	int ret;
14958c2ecf20Sopenharmony_ci
14968c2ecf20Sopenharmony_ci	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu);
14978c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)",
14988c2ecf20Sopenharmony_ci		    ret, errno, strerror(errno));
14998c2ecf20Sopenharmony_ci}
15008c2ecf20Sopenharmony_ci
15018c2ecf20Sopenharmony_civoid vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
15028c2ecf20Sopenharmony_ci{
15038c2ecf20Sopenharmony_ci	int ret;
15048c2ecf20Sopenharmony_ci
15058c2ecf20Sopenharmony_ci	ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu);
15068c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)",
15078c2ecf20Sopenharmony_ci		    ret, errno, strerror(errno));
15088c2ecf20Sopenharmony_ci}
15098c2ecf20Sopenharmony_ci
15108c2ecf20Sopenharmony_civoid vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
15118c2ecf20Sopenharmony_ci{
15128c2ecf20Sopenharmony_ci	int ret;
15138c2ecf20Sopenharmony_ci
15148c2ecf20Sopenharmony_ci	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg);
15158c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)",
15168c2ecf20Sopenharmony_ci		    ret, errno, strerror(errno));
15178c2ecf20Sopenharmony_ci}
15188c2ecf20Sopenharmony_ci
15198c2ecf20Sopenharmony_civoid vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
15208c2ecf20Sopenharmony_ci{
15218c2ecf20Sopenharmony_ci	int ret;
15228c2ecf20Sopenharmony_ci
15238c2ecf20Sopenharmony_ci	ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg);
15248c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)",
15258c2ecf20Sopenharmony_ci		    ret, errno, strerror(errno));
15268c2ecf20Sopenharmony_ci}
15278c2ecf20Sopenharmony_ci
15288c2ecf20Sopenharmony_ci/*
15298c2ecf20Sopenharmony_ci * VCPU Ioctl
15308c2ecf20Sopenharmony_ci *
15318c2ecf20Sopenharmony_ci * Input Args:
15328c2ecf20Sopenharmony_ci *   vm - Virtual Machine
15338c2ecf20Sopenharmony_ci *   vcpuid - VCPU ID
15348c2ecf20Sopenharmony_ci *   cmd - Ioctl number
15358c2ecf20Sopenharmony_ci *   arg - Argument to pass to the ioctl
15368c2ecf20Sopenharmony_ci *
15378c2ecf20Sopenharmony_ci * Return: None
15388c2ecf20Sopenharmony_ci *
15398c2ecf20Sopenharmony_ci * Issues an arbitrary ioctl on a VCPU fd.
15408c2ecf20Sopenharmony_ci */
15418c2ecf20Sopenharmony_civoid vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
15428c2ecf20Sopenharmony_ci		unsigned long cmd, void *arg)
15438c2ecf20Sopenharmony_ci{
15448c2ecf20Sopenharmony_ci	int ret;
15458c2ecf20Sopenharmony_ci
15468c2ecf20Sopenharmony_ci	ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
15478c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
15488c2ecf20Sopenharmony_ci		cmd, ret, errno, strerror(errno));
15498c2ecf20Sopenharmony_ci}
15508c2ecf20Sopenharmony_ci
15518c2ecf20Sopenharmony_ciint _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
15528c2ecf20Sopenharmony_ci		unsigned long cmd, void *arg)
15538c2ecf20Sopenharmony_ci{
15548c2ecf20Sopenharmony_ci	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
15558c2ecf20Sopenharmony_ci	int ret;
15568c2ecf20Sopenharmony_ci
15578c2ecf20Sopenharmony_ci	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
15588c2ecf20Sopenharmony_ci
15598c2ecf20Sopenharmony_ci	ret = ioctl(vcpu->fd, cmd, arg);
15608c2ecf20Sopenharmony_ci
15618c2ecf20Sopenharmony_ci	return ret;
15628c2ecf20Sopenharmony_ci}
15638c2ecf20Sopenharmony_ci
15648c2ecf20Sopenharmony_ci/*
15658c2ecf20Sopenharmony_ci * VM Ioctl
15668c2ecf20Sopenharmony_ci *
15678c2ecf20Sopenharmony_ci * Input Args:
15688c2ecf20Sopenharmony_ci *   vm - Virtual Machine
15698c2ecf20Sopenharmony_ci *   cmd - Ioctl number
15708c2ecf20Sopenharmony_ci *   arg - Argument to pass to the ioctl
15718c2ecf20Sopenharmony_ci *
15728c2ecf20Sopenharmony_ci * Return: None
15738c2ecf20Sopenharmony_ci *
15748c2ecf20Sopenharmony_ci * Issues an arbitrary ioctl on a VM fd.
15758c2ecf20Sopenharmony_ci */
15768c2ecf20Sopenharmony_civoid vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
15778c2ecf20Sopenharmony_ci{
15788c2ecf20Sopenharmony_ci	int ret;
15798c2ecf20Sopenharmony_ci
15808c2ecf20Sopenharmony_ci	ret = ioctl(vm->fd, cmd, arg);
15818c2ecf20Sopenharmony_ci	TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
15828c2ecf20Sopenharmony_ci		cmd, ret, errno, strerror(errno));
15838c2ecf20Sopenharmony_ci}
15848c2ecf20Sopenharmony_ci
15858c2ecf20Sopenharmony_ci/*
15868c2ecf20Sopenharmony_ci * VM Dump
15878c2ecf20Sopenharmony_ci *
15888c2ecf20Sopenharmony_ci * Input Args:
15898c2ecf20Sopenharmony_ci *   vm - Virtual Machine
15908c2ecf20Sopenharmony_ci *   indent - Left margin indent amount
15918c2ecf20Sopenharmony_ci *
15928c2ecf20Sopenharmony_ci * Output Args:
15938c2ecf20Sopenharmony_ci *   stream - Output FILE stream
15948c2ecf20Sopenharmony_ci *
15958c2ecf20Sopenharmony_ci * Return: None
15968c2ecf20Sopenharmony_ci *
15978c2ecf20Sopenharmony_ci * Dumps the current state of the VM given by vm, to the FILE stream
15988c2ecf20Sopenharmony_ci * given by stream.
15998c2ecf20Sopenharmony_ci */
16008c2ecf20Sopenharmony_civoid vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
16018c2ecf20Sopenharmony_ci{
16028c2ecf20Sopenharmony_ci	struct userspace_mem_region *region;
16038c2ecf20Sopenharmony_ci	struct vcpu *vcpu;
16048c2ecf20Sopenharmony_ci
16058c2ecf20Sopenharmony_ci	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
16068c2ecf20Sopenharmony_ci	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
16078c2ecf20Sopenharmony_ci	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
16088c2ecf20Sopenharmony_ci	fprintf(stream, "%*sMem Regions:\n", indent, "");
16098c2ecf20Sopenharmony_ci	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
16108c2ecf20Sopenharmony_ci		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
16118c2ecf20Sopenharmony_ci			"host_virt: %p\n", indent + 2, "",
16128c2ecf20Sopenharmony_ci			(uint64_t) region->region.guest_phys_addr,
16138c2ecf20Sopenharmony_ci			(uint64_t) region->region.memory_size,
16148c2ecf20Sopenharmony_ci			region->host_mem);
16158c2ecf20Sopenharmony_ci		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
16168c2ecf20Sopenharmony_ci		sparsebit_dump(stream, region->unused_phy_pages, 0);
16178c2ecf20Sopenharmony_ci	}
16188c2ecf20Sopenharmony_ci	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
16198c2ecf20Sopenharmony_ci	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
16208c2ecf20Sopenharmony_ci	fprintf(stream, "%*spgd_created: %u\n", indent, "",
16218c2ecf20Sopenharmony_ci		vm->pgd_created);
16228c2ecf20Sopenharmony_ci	if (vm->pgd_created) {
16238c2ecf20Sopenharmony_ci		fprintf(stream, "%*sVirtual Translation Tables:\n",
16248c2ecf20Sopenharmony_ci			indent + 2, "");
16258c2ecf20Sopenharmony_ci		virt_dump(stream, vm, indent + 4);
16268c2ecf20Sopenharmony_ci	}
16278c2ecf20Sopenharmony_ci	fprintf(stream, "%*sVCPUs:\n", indent, "");
16288c2ecf20Sopenharmony_ci	list_for_each_entry(vcpu, &vm->vcpus, list)
16298c2ecf20Sopenharmony_ci		vcpu_dump(stream, vm, vcpu->id, indent + 2);
16308c2ecf20Sopenharmony_ci}
16318c2ecf20Sopenharmony_ci
16328c2ecf20Sopenharmony_ci/* Known KVM exit reasons */
16338c2ecf20Sopenharmony_cistatic struct exit_reason {
16348c2ecf20Sopenharmony_ci	unsigned int reason;
16358c2ecf20Sopenharmony_ci	const char *name;
16368c2ecf20Sopenharmony_ci} exit_reasons_known[] = {
16378c2ecf20Sopenharmony_ci	{KVM_EXIT_UNKNOWN, "UNKNOWN"},
16388c2ecf20Sopenharmony_ci	{KVM_EXIT_EXCEPTION, "EXCEPTION"},
16398c2ecf20Sopenharmony_ci	{KVM_EXIT_IO, "IO"},
16408c2ecf20Sopenharmony_ci	{KVM_EXIT_HYPERCALL, "HYPERCALL"},
16418c2ecf20Sopenharmony_ci	{KVM_EXIT_DEBUG, "DEBUG"},
16428c2ecf20Sopenharmony_ci	{KVM_EXIT_HLT, "HLT"},
16438c2ecf20Sopenharmony_ci	{KVM_EXIT_MMIO, "MMIO"},
16448c2ecf20Sopenharmony_ci	{KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
16458c2ecf20Sopenharmony_ci	{KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
16468c2ecf20Sopenharmony_ci	{KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
16478c2ecf20Sopenharmony_ci	{KVM_EXIT_INTR, "INTR"},
16488c2ecf20Sopenharmony_ci	{KVM_EXIT_SET_TPR, "SET_TPR"},
16498c2ecf20Sopenharmony_ci	{KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
16508c2ecf20Sopenharmony_ci	{KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
16518c2ecf20Sopenharmony_ci	{KVM_EXIT_S390_RESET, "S390_RESET"},
16528c2ecf20Sopenharmony_ci	{KVM_EXIT_DCR, "DCR"},
16538c2ecf20Sopenharmony_ci	{KVM_EXIT_NMI, "NMI"},
16548c2ecf20Sopenharmony_ci	{KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
16558c2ecf20Sopenharmony_ci	{KVM_EXIT_OSI, "OSI"},
16568c2ecf20Sopenharmony_ci	{KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
16578c2ecf20Sopenharmony_ci#ifdef KVM_EXIT_MEMORY_NOT_PRESENT
16588c2ecf20Sopenharmony_ci	{KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
16598c2ecf20Sopenharmony_ci#endif
16608c2ecf20Sopenharmony_ci};
16618c2ecf20Sopenharmony_ci
16628c2ecf20Sopenharmony_ci/*
16638c2ecf20Sopenharmony_ci * Exit Reason String
16648c2ecf20Sopenharmony_ci *
16658c2ecf20Sopenharmony_ci * Input Args:
16668c2ecf20Sopenharmony_ci *   exit_reason - Exit reason
16678c2ecf20Sopenharmony_ci *
16688c2ecf20Sopenharmony_ci * Output Args: None
16698c2ecf20Sopenharmony_ci *
16708c2ecf20Sopenharmony_ci * Return:
16718c2ecf20Sopenharmony_ci *   Constant string pointer describing the exit reason.
16728c2ecf20Sopenharmony_ci *
16738c2ecf20Sopenharmony_ci * Locates and returns a constant string that describes the KVM exit
16748c2ecf20Sopenharmony_ci * reason given by exit_reason.  If no such string is found, a constant
16758c2ecf20Sopenharmony_ci * string of "Unknown" is returned.
16768c2ecf20Sopenharmony_ci */
16778c2ecf20Sopenharmony_ciconst char *exit_reason_str(unsigned int exit_reason)
16788c2ecf20Sopenharmony_ci{
16798c2ecf20Sopenharmony_ci	unsigned int n1;
16808c2ecf20Sopenharmony_ci
16818c2ecf20Sopenharmony_ci	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
16828c2ecf20Sopenharmony_ci		if (exit_reason == exit_reasons_known[n1].reason)
16838c2ecf20Sopenharmony_ci			return exit_reasons_known[n1].name;
16848c2ecf20Sopenharmony_ci	}
16858c2ecf20Sopenharmony_ci
16868c2ecf20Sopenharmony_ci	return "Unknown";
16878c2ecf20Sopenharmony_ci}
16888c2ecf20Sopenharmony_ci
16898c2ecf20Sopenharmony_ci/*
16908c2ecf20Sopenharmony_ci * Physical Contiguous Page Allocator
16918c2ecf20Sopenharmony_ci *
16928c2ecf20Sopenharmony_ci * Input Args:
16938c2ecf20Sopenharmony_ci *   vm - Virtual Machine
16948c2ecf20Sopenharmony_ci *   num - number of pages
16958c2ecf20Sopenharmony_ci *   paddr_min - Physical address minimum
16968c2ecf20Sopenharmony_ci *   memslot - Memory region to allocate page from
16978c2ecf20Sopenharmony_ci *
16988c2ecf20Sopenharmony_ci * Output Args: None
16998c2ecf20Sopenharmony_ci *
17008c2ecf20Sopenharmony_ci * Return:
17018c2ecf20Sopenharmony_ci *   Starting physical address
17028c2ecf20Sopenharmony_ci *
17038c2ecf20Sopenharmony_ci * Within the VM specified by vm, locates a range of available physical
17048c2ecf20Sopenharmony_ci * pages at or above paddr_min. If found, the pages are marked as in use
17058c2ecf20Sopenharmony_ci * and their base address is returned. A TEST_ASSERT failure occurs if
17068c2ecf20Sopenharmony_ci * not enough pages are available at or above paddr_min.
17078c2ecf20Sopenharmony_ci */
17088c2ecf20Sopenharmony_civm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
17098c2ecf20Sopenharmony_ci			      vm_paddr_t paddr_min, uint32_t memslot)
17108c2ecf20Sopenharmony_ci{
17118c2ecf20Sopenharmony_ci	struct userspace_mem_region *region;
17128c2ecf20Sopenharmony_ci	sparsebit_idx_t pg, base;
17138c2ecf20Sopenharmony_ci
17148c2ecf20Sopenharmony_ci	TEST_ASSERT(num > 0, "Must allocate at least one page");
17158c2ecf20Sopenharmony_ci
17168c2ecf20Sopenharmony_ci	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
17178c2ecf20Sopenharmony_ci		"not divisible by page size.\n"
17188c2ecf20Sopenharmony_ci		"  paddr_min: 0x%lx page_size: 0x%x",
17198c2ecf20Sopenharmony_ci		paddr_min, vm->page_size);
17208c2ecf20Sopenharmony_ci
17218c2ecf20Sopenharmony_ci	region = memslot2region(vm, memslot);
17228c2ecf20Sopenharmony_ci	base = pg = paddr_min >> vm->page_shift;
17238c2ecf20Sopenharmony_ci
17248c2ecf20Sopenharmony_ci	do {
17258c2ecf20Sopenharmony_ci		for (; pg < base + num; ++pg) {
17268c2ecf20Sopenharmony_ci			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
17278c2ecf20Sopenharmony_ci				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
17288c2ecf20Sopenharmony_ci				break;
17298c2ecf20Sopenharmony_ci			}
17308c2ecf20Sopenharmony_ci		}
17318c2ecf20Sopenharmony_ci	} while (pg && pg != base + num);
17328c2ecf20Sopenharmony_ci
17338c2ecf20Sopenharmony_ci	if (pg == 0) {
17348c2ecf20Sopenharmony_ci		fprintf(stderr, "No guest physical page available, "
17358c2ecf20Sopenharmony_ci			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
17368c2ecf20Sopenharmony_ci			paddr_min, vm->page_size, memslot);
17378c2ecf20Sopenharmony_ci		fputs("---- vm dump ----\n", stderr);
17388c2ecf20Sopenharmony_ci		vm_dump(stderr, vm, 2);
17398c2ecf20Sopenharmony_ci		abort();
17408c2ecf20Sopenharmony_ci	}
17418c2ecf20Sopenharmony_ci
17428c2ecf20Sopenharmony_ci	for (pg = base; pg < base + num; ++pg)
17438c2ecf20Sopenharmony_ci		sparsebit_clear(region->unused_phy_pages, pg);
17448c2ecf20Sopenharmony_ci
17458c2ecf20Sopenharmony_ci	return base * vm->page_size;
17468c2ecf20Sopenharmony_ci}
17478c2ecf20Sopenharmony_ci
17488c2ecf20Sopenharmony_civm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
17498c2ecf20Sopenharmony_ci			     uint32_t memslot)
17508c2ecf20Sopenharmony_ci{
17518c2ecf20Sopenharmony_ci	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
17528c2ecf20Sopenharmony_ci}
17538c2ecf20Sopenharmony_ci
17548c2ecf20Sopenharmony_ci/*
17558c2ecf20Sopenharmony_ci * Address Guest Virtual to Host Virtual
17568c2ecf20Sopenharmony_ci *
17578c2ecf20Sopenharmony_ci * Input Args:
17588c2ecf20Sopenharmony_ci *   vm - Virtual Machine
17598c2ecf20Sopenharmony_ci *   gva - VM virtual address
17608c2ecf20Sopenharmony_ci *
17618c2ecf20Sopenharmony_ci * Output Args: None
17628c2ecf20Sopenharmony_ci *
17638c2ecf20Sopenharmony_ci * Return:
17648c2ecf20Sopenharmony_ci *   Equivalent host virtual address
17658c2ecf20Sopenharmony_ci */
17668c2ecf20Sopenharmony_civoid *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
17678c2ecf20Sopenharmony_ci{
17688c2ecf20Sopenharmony_ci	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
17698c2ecf20Sopenharmony_ci}
17708c2ecf20Sopenharmony_ci
17718c2ecf20Sopenharmony_ci/*
17728c2ecf20Sopenharmony_ci * Is Unrestricted Guest
17738c2ecf20Sopenharmony_ci *
17748c2ecf20Sopenharmony_ci * Input Args:
17758c2ecf20Sopenharmony_ci *   vm - Virtual Machine
17768c2ecf20Sopenharmony_ci *
17778c2ecf20Sopenharmony_ci * Output Args: None
17788c2ecf20Sopenharmony_ci *
17798c2ecf20Sopenharmony_ci * Return: True if the unrestricted guest is set to 'Y', otherwise return false.
17808c2ecf20Sopenharmony_ci *
17818c2ecf20Sopenharmony_ci * Check if the unrestricted guest flag is enabled.
17828c2ecf20Sopenharmony_ci */
17838c2ecf20Sopenharmony_cibool vm_is_unrestricted_guest(struct kvm_vm *vm)
17848c2ecf20Sopenharmony_ci{
17858c2ecf20Sopenharmony_ci	char val = 'N';
17868c2ecf20Sopenharmony_ci	size_t count;
17878c2ecf20Sopenharmony_ci	FILE *f;
17888c2ecf20Sopenharmony_ci
17898c2ecf20Sopenharmony_ci	if (vm == NULL) {
17908c2ecf20Sopenharmony_ci		/* Ensure that the KVM vendor-specific module is loaded. */
17918c2ecf20Sopenharmony_ci		f = fopen(KVM_DEV_PATH, "r");
17928c2ecf20Sopenharmony_ci		TEST_ASSERT(f != NULL, "Error in opening KVM dev file: %d",
17938c2ecf20Sopenharmony_ci			    errno);
17948c2ecf20Sopenharmony_ci		fclose(f);
17958c2ecf20Sopenharmony_ci	}
17968c2ecf20Sopenharmony_ci
17978c2ecf20Sopenharmony_ci	f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
17988c2ecf20Sopenharmony_ci	if (f) {
17998c2ecf20Sopenharmony_ci		count = fread(&val, sizeof(char), 1, f);
18008c2ecf20Sopenharmony_ci		TEST_ASSERT(count == 1, "Unable to read from param file.");
18018c2ecf20Sopenharmony_ci		fclose(f);
18028c2ecf20Sopenharmony_ci	}
18038c2ecf20Sopenharmony_ci
18048c2ecf20Sopenharmony_ci	return val == 'Y';
18058c2ecf20Sopenharmony_ci}
18068c2ecf20Sopenharmony_ci
18078c2ecf20Sopenharmony_ciunsigned int vm_get_page_size(struct kvm_vm *vm)
18088c2ecf20Sopenharmony_ci{
18098c2ecf20Sopenharmony_ci	return vm->page_size;
18108c2ecf20Sopenharmony_ci}
18118c2ecf20Sopenharmony_ci
18128c2ecf20Sopenharmony_ciunsigned int vm_get_page_shift(struct kvm_vm *vm)
18138c2ecf20Sopenharmony_ci{
18148c2ecf20Sopenharmony_ci	return vm->page_shift;
18158c2ecf20Sopenharmony_ci}
18168c2ecf20Sopenharmony_ci
18178c2ecf20Sopenharmony_ciunsigned int vm_get_max_gfn(struct kvm_vm *vm)
18188c2ecf20Sopenharmony_ci{
18198c2ecf20Sopenharmony_ci	return vm->max_gfn;
18208c2ecf20Sopenharmony_ci}
18218c2ecf20Sopenharmony_ci
18228c2ecf20Sopenharmony_ciint vm_get_fd(struct kvm_vm *vm)
18238c2ecf20Sopenharmony_ci{
18248c2ecf20Sopenharmony_ci	return vm->fd;
18258c2ecf20Sopenharmony_ci}
18268c2ecf20Sopenharmony_ci
18278c2ecf20Sopenharmony_cistatic unsigned int vm_calc_num_pages(unsigned int num_pages,
18288c2ecf20Sopenharmony_ci				      unsigned int page_shift,
18298c2ecf20Sopenharmony_ci				      unsigned int new_page_shift,
18308c2ecf20Sopenharmony_ci				      bool ceil)
18318c2ecf20Sopenharmony_ci{
18328c2ecf20Sopenharmony_ci	unsigned int n = 1 << (new_page_shift - page_shift);
18338c2ecf20Sopenharmony_ci
18348c2ecf20Sopenharmony_ci	if (page_shift >= new_page_shift)
18358c2ecf20Sopenharmony_ci		return num_pages * (1 << (page_shift - new_page_shift));
18368c2ecf20Sopenharmony_ci
18378c2ecf20Sopenharmony_ci	return num_pages / n + !!(ceil && num_pages % n);
18388c2ecf20Sopenharmony_ci}
18398c2ecf20Sopenharmony_ci
18408c2ecf20Sopenharmony_cistatic inline int getpageshift(void)
18418c2ecf20Sopenharmony_ci{
18428c2ecf20Sopenharmony_ci	return __builtin_ffs(getpagesize()) - 1;
18438c2ecf20Sopenharmony_ci}
18448c2ecf20Sopenharmony_ci
18458c2ecf20Sopenharmony_ciunsigned int
18468c2ecf20Sopenharmony_civm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
18478c2ecf20Sopenharmony_ci{
18488c2ecf20Sopenharmony_ci	return vm_calc_num_pages(num_guest_pages,
18498c2ecf20Sopenharmony_ci				 vm_guest_mode_params[mode].page_shift,
18508c2ecf20Sopenharmony_ci				 getpageshift(), true);
18518c2ecf20Sopenharmony_ci}
18528c2ecf20Sopenharmony_ci
18538c2ecf20Sopenharmony_ciunsigned int
18548c2ecf20Sopenharmony_civm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
18558c2ecf20Sopenharmony_ci{
18568c2ecf20Sopenharmony_ci	return vm_calc_num_pages(num_host_pages, getpageshift(),
18578c2ecf20Sopenharmony_ci				 vm_guest_mode_params[mode].page_shift, false);
18588c2ecf20Sopenharmony_ci}
18598c2ecf20Sopenharmony_ci
18608c2ecf20Sopenharmony_ciunsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
18618c2ecf20Sopenharmony_ci{
18628c2ecf20Sopenharmony_ci	unsigned int n;
18638c2ecf20Sopenharmony_ci	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
18648c2ecf20Sopenharmony_ci	return vm_adjust_num_guest_pages(mode, n);
18658c2ecf20Sopenharmony_ci}
1866