1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "srcline.h"
20#include "symbol.h"
21#include "sort.h"
22#include "strlist.h"
23#include "target.h"
24#include "thread.h"
25#include "util.h"
26#include "vdso.h"
27#include <stdbool.h>
28#include <sys/types.h>
29#include <sys/stat.h>
30#include <unistd.h>
31#include "unwind.h"
32#include "linux/hash.h"
33#include "asm/bug.h"
34#include "bpf-event.h"
35#include <internal/lib.h> // page_size
36#include "cgroup.h"
37
38#include <linux/ctype.h>
39#include <symbol/kallsyms.h>
40#include <linux/mman.h>
41#include <linux/string.h>
42#include <linux/zalloc.h>
43
44static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
45
46static struct dso *machine__kernel_dso(struct machine *machine)
47{
48	return machine->vmlinux_map->dso;
49}
50
51static void dsos__init(struct dsos *dsos)
52{
53	INIT_LIST_HEAD(&dsos->head);
54	dsos->root = RB_ROOT;
55	init_rwsem(&dsos->lock);
56}
57
58static void machine__threads_init(struct machine *machine)
59{
60	int i;
61
62	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
63		struct threads *threads = &machine->threads[i];
64		threads->entries = RB_ROOT_CACHED;
65		init_rwsem(&threads->lock);
66		threads->nr = 0;
67		INIT_LIST_HEAD(&threads->dead);
68		threads->last_match = NULL;
69	}
70}
71
72static int machine__set_mmap_name(struct machine *machine)
73{
74	if (machine__is_host(machine))
75		machine->mmap_name = strdup("[kernel.kallsyms]");
76	else if (machine__is_default_guest(machine))
77		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
78	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
79			  machine->pid) < 0)
80		machine->mmap_name = NULL;
81
82	return machine->mmap_name ? 0 : -ENOMEM;
83}
84
85int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
86{
87	int err = -ENOMEM;
88
89	memset(machine, 0, sizeof(*machine));
90	maps__init(&machine->kmaps, machine);
91	RB_CLEAR_NODE(&machine->rb_node);
92	dsos__init(&machine->dsos);
93
94	machine__threads_init(machine);
95
96	machine->vdso_info = NULL;
97	machine->env = NULL;
98
99	machine->pid = pid;
100
101	machine->id_hdr_size = 0;
102	machine->kptr_restrict_warned = false;
103	machine->comm_exec = false;
104	machine->kernel_start = 0;
105	machine->vmlinux_map = NULL;
106
107	machine->root_dir = strdup(root_dir);
108	if (machine->root_dir == NULL)
109		return -ENOMEM;
110
111	if (machine__set_mmap_name(machine))
112		goto out;
113
114	if (pid != HOST_KERNEL_ID) {
115		struct thread *thread = machine__findnew_thread(machine, -1,
116								pid);
117		char comm[64];
118
119		if (thread == NULL)
120			goto out;
121
122		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
123		thread__set_comm(thread, comm, 0);
124		thread__put(thread);
125	}
126
127	machine->current_tid = NULL;
128	err = 0;
129
130out:
131	if (err) {
132		zfree(&machine->root_dir);
133		zfree(&machine->mmap_name);
134	}
135	return 0;
136}
137
138struct machine *machine__new_host(void)
139{
140	struct machine *machine = malloc(sizeof(*machine));
141
142	if (machine != NULL) {
143		machine__init(machine, "", HOST_KERNEL_ID);
144
145		if (machine__create_kernel_maps(machine) < 0)
146			goto out_delete;
147	}
148
149	return machine;
150out_delete:
151	free(machine);
152	return NULL;
153}
154
155struct machine *machine__new_kallsyms(void)
156{
157	struct machine *machine = machine__new_host();
158	/*
159	 * FIXME:
160	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
161	 *    ask for not using the kcore parsing code, once this one is fixed
162	 *    to create a map per module.
163	 */
164	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
165		machine__delete(machine);
166		machine = NULL;
167	}
168
169	return machine;
170}
171
172static void dsos__purge(struct dsos *dsos)
173{
174	struct dso *pos, *n;
175
176	down_write(&dsos->lock);
177
178	list_for_each_entry_safe(pos, n, &dsos->head, node) {
179		RB_CLEAR_NODE(&pos->rb_node);
180		pos->root = NULL;
181		list_del_init(&pos->node);
182		dso__put(pos);
183	}
184
185	up_write(&dsos->lock);
186}
187
188static void dsos__exit(struct dsos *dsos)
189{
190	dsos__purge(dsos);
191	exit_rwsem(&dsos->lock);
192}
193
194void machine__delete_threads(struct machine *machine)
195{
196	struct rb_node *nd;
197	int i;
198
199	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
200		struct threads *threads = &machine->threads[i];
201		down_write(&threads->lock);
202		nd = rb_first_cached(&threads->entries);
203		while (nd) {
204			struct thread *t = rb_entry(nd, struct thread, rb_node);
205
206			nd = rb_next(nd);
207			__machine__remove_thread(machine, t, false);
208		}
209		up_write(&threads->lock);
210	}
211}
212
213void machine__exit(struct machine *machine)
214{
215	int i;
216
217	if (machine == NULL)
218		return;
219
220	machine__destroy_kernel_maps(machine);
221	maps__exit(&machine->kmaps);
222	dsos__exit(&machine->dsos);
223	machine__exit_vdso(machine);
224	zfree(&machine->root_dir);
225	zfree(&machine->mmap_name);
226	zfree(&machine->current_tid);
227
228	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
229		struct threads *threads = &machine->threads[i];
230		struct thread *thread, *n;
231		/*
232		 * Forget about the dead, at this point whatever threads were
233		 * left in the dead lists better have a reference count taken
234		 * by who is using them, and then, when they drop those references
235		 * and it finally hits zero, thread__put() will check and see that
236		 * its not in the dead threads list and will not try to remove it
237		 * from there, just calling thread__delete() straight away.
238		 */
239		list_for_each_entry_safe(thread, n, &threads->dead, node)
240			list_del_init(&thread->node);
241
242		exit_rwsem(&threads->lock);
243	}
244}
245
246void machine__delete(struct machine *machine)
247{
248	if (machine) {
249		machine__exit(machine);
250		free(machine);
251	}
252}
253
254void machines__init(struct machines *machines)
255{
256	machine__init(&machines->host, "", HOST_KERNEL_ID);
257	machines->guests = RB_ROOT_CACHED;
258}
259
260void machines__exit(struct machines *machines)
261{
262	machine__exit(&machines->host);
263	/* XXX exit guest */
264}
265
266struct machine *machines__add(struct machines *machines, pid_t pid,
267			      const char *root_dir)
268{
269	struct rb_node **p = &machines->guests.rb_root.rb_node;
270	struct rb_node *parent = NULL;
271	struct machine *pos, *machine = malloc(sizeof(*machine));
272	bool leftmost = true;
273
274	if (machine == NULL)
275		return NULL;
276
277	if (machine__init(machine, root_dir, pid) != 0) {
278		free(machine);
279		return NULL;
280	}
281
282	while (*p != NULL) {
283		parent = *p;
284		pos = rb_entry(parent, struct machine, rb_node);
285		if (pid < pos->pid)
286			p = &(*p)->rb_left;
287		else {
288			p = &(*p)->rb_right;
289			leftmost = false;
290		}
291	}
292
293	rb_link_node(&machine->rb_node, parent, p);
294	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
295
296	return machine;
297}
298
299void machines__set_comm_exec(struct machines *machines, bool comm_exec)
300{
301	struct rb_node *nd;
302
303	machines->host.comm_exec = comm_exec;
304
305	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
306		struct machine *machine = rb_entry(nd, struct machine, rb_node);
307
308		machine->comm_exec = comm_exec;
309	}
310}
311
312struct machine *machines__find(struct machines *machines, pid_t pid)
313{
314	struct rb_node **p = &machines->guests.rb_root.rb_node;
315	struct rb_node *parent = NULL;
316	struct machine *machine;
317	struct machine *default_machine = NULL;
318
319	if (pid == HOST_KERNEL_ID)
320		return &machines->host;
321
322	while (*p != NULL) {
323		parent = *p;
324		machine = rb_entry(parent, struct machine, rb_node);
325		if (pid < machine->pid)
326			p = &(*p)->rb_left;
327		else if (pid > machine->pid)
328			p = &(*p)->rb_right;
329		else
330			return machine;
331		if (!machine->pid)
332			default_machine = machine;
333	}
334
335	return default_machine;
336}
337
338struct machine *machines__findnew(struct machines *machines, pid_t pid)
339{
340	char path[PATH_MAX];
341	const char *root_dir = "";
342	struct machine *machine = machines__find(machines, pid);
343
344	if (machine && (machine->pid == pid))
345		goto out;
346
347	if ((pid != HOST_KERNEL_ID) &&
348	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
349	    (symbol_conf.guestmount)) {
350		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
351		if (access(path, R_OK)) {
352			static struct strlist *seen;
353
354			if (!seen)
355				seen = strlist__new(NULL, NULL);
356
357			if (!strlist__has_entry(seen, path)) {
358				pr_err("Can't access file %s\n", path);
359				strlist__add(seen, path);
360			}
361			machine = NULL;
362			goto out;
363		}
364		root_dir = path;
365	}
366
367	machine = machines__add(machines, pid, root_dir);
368out:
369	return machine;
370}
371
372void machines__process_guests(struct machines *machines,
373			      machine__process_t process, void *data)
374{
375	struct rb_node *nd;
376
377	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
378		struct machine *pos = rb_entry(nd, struct machine, rb_node);
379		process(pos, data);
380	}
381}
382
383void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
384{
385	struct rb_node *node;
386	struct machine *machine;
387
388	machines->host.id_hdr_size = id_hdr_size;
389
390	for (node = rb_first_cached(&machines->guests); node;
391	     node = rb_next(node)) {
392		machine = rb_entry(node, struct machine, rb_node);
393		machine->id_hdr_size = id_hdr_size;
394	}
395
396	return;
397}
398
399static void machine__update_thread_pid(struct machine *machine,
400				       struct thread *th, pid_t pid)
401{
402	struct thread *leader;
403
404	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
405		return;
406
407	th->pid_ = pid;
408
409	if (th->pid_ == th->tid)
410		return;
411
412	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
413	if (!leader)
414		goto out_err;
415
416	if (!leader->maps)
417		leader->maps = maps__new(machine);
418
419	if (!leader->maps)
420		goto out_err;
421
422	if (th->maps == leader->maps)
423		return;
424
425	if (th->maps) {
426		/*
427		 * Maps are created from MMAP events which provide the pid and
428		 * tid.  Consequently there never should be any maps on a thread
429		 * with an unknown pid.  Just print an error if there are.
430		 */
431		if (!maps__empty(th->maps))
432			pr_err("Discarding thread maps for %d:%d\n",
433			       th->pid_, th->tid);
434		maps__put(th->maps);
435	}
436
437	th->maps = maps__get(leader->maps);
438out_put:
439	thread__put(leader);
440	return;
441out_err:
442	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
443	goto out_put;
444}
445
446/*
447 * Front-end cache - TID lookups come in blocks,
448 * so most of the time we dont have to look up
449 * the full rbtree:
450 */
451static struct thread*
452__threads__get_last_match(struct threads *threads, struct machine *machine,
453			  int pid, int tid)
454{
455	struct thread *th;
456
457	th = threads->last_match;
458	if (th != NULL) {
459		if (th->tid == tid) {
460			machine__update_thread_pid(machine, th, pid);
461			return thread__get(th);
462		}
463
464		threads->last_match = NULL;
465	}
466
467	return NULL;
468}
469
470static struct thread*
471threads__get_last_match(struct threads *threads, struct machine *machine,
472			int pid, int tid)
473{
474	struct thread *th = NULL;
475
476	if (perf_singlethreaded)
477		th = __threads__get_last_match(threads, machine, pid, tid);
478
479	return th;
480}
481
482static void
483__threads__set_last_match(struct threads *threads, struct thread *th)
484{
485	threads->last_match = th;
486}
487
488static void
489threads__set_last_match(struct threads *threads, struct thread *th)
490{
491	if (perf_singlethreaded)
492		__threads__set_last_match(threads, th);
493}
494
495/*
496 * Caller must eventually drop thread->refcnt returned with a successful
497 * lookup/new thread inserted.
498 */
499static struct thread *____machine__findnew_thread(struct machine *machine,
500						  struct threads *threads,
501						  pid_t pid, pid_t tid,
502						  bool create)
503{
504	struct rb_node **p = &threads->entries.rb_root.rb_node;
505	struct rb_node *parent = NULL;
506	struct thread *th;
507	bool leftmost = true;
508
509	th = threads__get_last_match(threads, machine, pid, tid);
510	if (th)
511		return th;
512
513	while (*p != NULL) {
514		parent = *p;
515		th = rb_entry(parent, struct thread, rb_node);
516
517		if (th->tid == tid) {
518			threads__set_last_match(threads, th);
519			machine__update_thread_pid(machine, th, pid);
520			return thread__get(th);
521		}
522
523		if (tid < th->tid)
524			p = &(*p)->rb_left;
525		else {
526			p = &(*p)->rb_right;
527			leftmost = false;
528		}
529	}
530
531	if (!create)
532		return NULL;
533
534	th = thread__new(pid, tid);
535	if (th != NULL) {
536		rb_link_node(&th->rb_node, parent, p);
537		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
538
539		/*
540		 * We have to initialize maps separately after rb tree is updated.
541		 *
542		 * The reason is that we call machine__findnew_thread
543		 * within thread__init_maps to find the thread
544		 * leader and that would screwed the rb tree.
545		 */
546		if (thread__init_maps(th, machine)) {
547			rb_erase_cached(&th->rb_node, &threads->entries);
548			RB_CLEAR_NODE(&th->rb_node);
549			thread__put(th);
550			return NULL;
551		}
552		/*
553		 * It is now in the rbtree, get a ref
554		 */
555		thread__get(th);
556		threads__set_last_match(threads, th);
557		++threads->nr;
558	}
559
560	return th;
561}
562
563struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
564{
565	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
566}
567
568struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
569				       pid_t tid)
570{
571	struct threads *threads = machine__threads(machine, tid);
572	struct thread *th;
573
574	down_write(&threads->lock);
575	th = __machine__findnew_thread(machine, pid, tid);
576	up_write(&threads->lock);
577	return th;
578}
579
580struct thread *machine__find_thread(struct machine *machine, pid_t pid,
581				    pid_t tid)
582{
583	struct threads *threads = machine__threads(machine, tid);
584	struct thread *th;
585
586	down_read(&threads->lock);
587	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
588	up_read(&threads->lock);
589	return th;
590}
591
592struct comm *machine__thread_exec_comm(struct machine *machine,
593				       struct thread *thread)
594{
595	if (machine->comm_exec)
596		return thread__exec_comm(thread);
597	else
598		return thread__comm(thread);
599}
600
601int machine__process_comm_event(struct machine *machine, union perf_event *event,
602				struct perf_sample *sample)
603{
604	struct thread *thread = machine__findnew_thread(machine,
605							event->comm.pid,
606							event->comm.tid);
607	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
608	int err = 0;
609
610	if (exec)
611		machine->comm_exec = true;
612
613	if (dump_trace)
614		perf_event__fprintf_comm(event, stdout);
615
616	if (thread == NULL ||
617	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
618		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
619		err = -1;
620	}
621
622	thread__put(thread);
623
624	return err;
625}
626
627int machine__process_namespaces_event(struct machine *machine __maybe_unused,
628				      union perf_event *event,
629				      struct perf_sample *sample __maybe_unused)
630{
631	struct thread *thread = machine__findnew_thread(machine,
632							event->namespaces.pid,
633							event->namespaces.tid);
634	int err = 0;
635
636	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
637		  "\nWARNING: kernel seems to support more namespaces than perf"
638		  " tool.\nTry updating the perf tool..\n\n");
639
640	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
641		  "\nWARNING: perf tool seems to support more namespaces than"
642		  " the kernel.\nTry updating the kernel..\n\n");
643
644	if (dump_trace)
645		perf_event__fprintf_namespaces(event, stdout);
646
647	if (thread == NULL ||
648	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
649		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
650		err = -1;
651	}
652
653	thread__put(thread);
654
655	return err;
656}
657
658int machine__process_cgroup_event(struct machine *machine,
659				  union perf_event *event,
660				  struct perf_sample *sample __maybe_unused)
661{
662	struct cgroup *cgrp;
663
664	if (dump_trace)
665		perf_event__fprintf_cgroup(event, stdout);
666
667	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
668	if (cgrp == NULL)
669		return -ENOMEM;
670
671	return 0;
672}
673
674int machine__process_lost_event(struct machine *machine __maybe_unused,
675				union perf_event *event, struct perf_sample *sample __maybe_unused)
676{
677	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
678		    event->lost.id, event->lost.lost);
679	return 0;
680}
681
682int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
683					union perf_event *event, struct perf_sample *sample)
684{
685	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
686		    sample->id, event->lost_samples.lost);
687	return 0;
688}
689
690static struct dso *machine__findnew_module_dso(struct machine *machine,
691					       struct kmod_path *m,
692					       const char *filename)
693{
694	struct dso *dso;
695
696	down_write(&machine->dsos.lock);
697
698	dso = __dsos__find(&machine->dsos, m->name, true);
699	if (!dso) {
700		dso = __dsos__addnew(&machine->dsos, m->name);
701		if (dso == NULL)
702			goto out_unlock;
703
704		dso__set_module_info(dso, m, machine);
705		dso__set_long_name(dso, strdup(filename), true);
706		dso->kernel = DSO_SPACE__KERNEL;
707	}
708
709	dso__get(dso);
710out_unlock:
711	up_write(&machine->dsos.lock);
712	return dso;
713}
714
715int machine__process_aux_event(struct machine *machine __maybe_unused,
716			       union perf_event *event)
717{
718	if (dump_trace)
719		perf_event__fprintf_aux(event, stdout);
720	return 0;
721}
722
723int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
724					union perf_event *event)
725{
726	if (dump_trace)
727		perf_event__fprintf_itrace_start(event, stdout);
728	return 0;
729}
730
731int machine__process_switch_event(struct machine *machine __maybe_unused,
732				  union perf_event *event)
733{
734	if (dump_trace)
735		perf_event__fprintf_switch(event, stdout);
736	return 0;
737}
738
739static int machine__process_ksymbol_register(struct machine *machine,
740					     union perf_event *event,
741					     struct perf_sample *sample __maybe_unused)
742{
743	struct symbol *sym;
744	struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
745
746	if (!map) {
747		struct dso *dso = dso__new(event->ksymbol.name);
748
749		if (dso) {
750			dso->kernel = DSO_SPACE__KERNEL;
751			map = map__new2(0, dso);
752		}
753
754		if (!dso || !map) {
755			dso__put(dso);
756			return -ENOMEM;
757		}
758
759		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
760			map->dso->binary_type = DSO_BINARY_TYPE__OOL;
761			map->dso->data.file_size = event->ksymbol.len;
762			dso__set_loaded(map->dso);
763		}
764
765		map->start = event->ksymbol.addr;
766		map->end = map->start + event->ksymbol.len;
767		maps__insert(&machine->kmaps, map);
768		dso__set_loaded(dso);
769
770		if (is_bpf_image(event->ksymbol.name)) {
771			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
772			dso__set_long_name(dso, "", false);
773		}
774	}
775
776	sym = symbol__new(map->map_ip(map, map->start),
777			  event->ksymbol.len,
778			  0, 0, event->ksymbol.name);
779	if (!sym)
780		return -ENOMEM;
781	dso__insert_symbol(map->dso, sym);
782	return 0;
783}
784
785static int machine__process_ksymbol_unregister(struct machine *machine,
786					       union perf_event *event,
787					       struct perf_sample *sample __maybe_unused)
788{
789	struct symbol *sym;
790	struct map *map;
791
792	map = maps__find(&machine->kmaps, event->ksymbol.addr);
793	if (!map)
794		return 0;
795
796	if (map != machine->vmlinux_map)
797		maps__remove(&machine->kmaps, map);
798	else {
799		sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
800		if (sym)
801			dso__delete_symbol(map->dso, sym);
802	}
803
804	return 0;
805}
806
807int machine__process_ksymbol(struct machine *machine __maybe_unused,
808			     union perf_event *event,
809			     struct perf_sample *sample)
810{
811	if (dump_trace)
812		perf_event__fprintf_ksymbol(event, stdout);
813
814	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
815		return machine__process_ksymbol_unregister(machine, event,
816							   sample);
817	return machine__process_ksymbol_register(machine, event, sample);
818}
819
820int machine__process_text_poke(struct machine *machine, union perf_event *event,
821			       struct perf_sample *sample __maybe_unused)
822{
823	struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
824	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
825
826	if (dump_trace)
827		perf_event__fprintf_text_poke(event, machine, stdout);
828
829	if (!event->text_poke.new_len)
830		return 0;
831
832	if (cpumode != PERF_RECORD_MISC_KERNEL) {
833		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
834		return 0;
835	}
836
837	if (map && map->dso) {
838		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
839		int ret;
840
841		/*
842		 * Kernel maps might be changed when loading symbols so loading
843		 * must be done prior to using kernel maps.
844		 */
845		map__load(map);
846		ret = dso__data_write_cache_addr(map->dso, map, machine,
847						 event->text_poke.addr,
848						 new_bytes,
849						 event->text_poke.new_len);
850		if (ret != event->text_poke.new_len)
851			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
852				 event->text_poke.addr);
853	} else {
854		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
855			 event->text_poke.addr);
856	}
857
858	return 0;
859}
860
861static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
862					      const char *filename)
863{
864	struct map *map = NULL;
865	struct kmod_path m;
866	struct dso *dso;
867
868	if (kmod_path__parse_name(&m, filename))
869		return NULL;
870
871	dso = machine__findnew_module_dso(machine, &m, filename);
872	if (dso == NULL)
873		goto out;
874
875	map = map__new2(start, dso);
876	if (map == NULL)
877		goto out;
878
879	maps__insert(&machine->kmaps, map);
880
881	/* Put the map here because maps__insert alread got it */
882	map__put(map);
883out:
884	/* put the dso here, corresponding to  machine__findnew_module_dso */
885	dso__put(dso);
886	zfree(&m.name);
887	return map;
888}
889
890size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
891{
892	struct rb_node *nd;
893	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
894
895	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
896		struct machine *pos = rb_entry(nd, struct machine, rb_node);
897		ret += __dsos__fprintf(&pos->dsos.head, fp);
898	}
899
900	return ret;
901}
902
903size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
904				     bool (skip)(struct dso *dso, int parm), int parm)
905{
906	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
907}
908
909size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
910				     bool (skip)(struct dso *dso, int parm), int parm)
911{
912	struct rb_node *nd;
913	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
914
915	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
916		struct machine *pos = rb_entry(nd, struct machine, rb_node);
917		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
918	}
919	return ret;
920}
921
922size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
923{
924	int i;
925	size_t printed = 0;
926	struct dso *kdso = machine__kernel_dso(machine);
927
928	if (kdso->has_build_id) {
929		char filename[PATH_MAX];
930		if (dso__build_id_filename(kdso, filename, sizeof(filename),
931					   false))
932			printed += fprintf(fp, "[0] %s\n", filename);
933	}
934
935	for (i = 0; i < vmlinux_path__nr_entries; ++i)
936		printed += fprintf(fp, "[%d] %s\n",
937				   i + kdso->has_build_id, vmlinux_path[i]);
938
939	return printed;
940}
941
942size_t machine__fprintf(struct machine *machine, FILE *fp)
943{
944	struct rb_node *nd;
945	size_t ret;
946	int i;
947
948	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
949		struct threads *threads = &machine->threads[i];
950
951		down_read(&threads->lock);
952
953		ret = fprintf(fp, "Threads: %u\n", threads->nr);
954
955		for (nd = rb_first_cached(&threads->entries); nd;
956		     nd = rb_next(nd)) {
957			struct thread *pos = rb_entry(nd, struct thread, rb_node);
958
959			ret += thread__fprintf(pos, fp);
960		}
961
962		up_read(&threads->lock);
963	}
964	return ret;
965}
966
967static struct dso *machine__get_kernel(struct machine *machine)
968{
969	const char *vmlinux_name = machine->mmap_name;
970	struct dso *kernel;
971
972	if (machine__is_host(machine)) {
973		if (symbol_conf.vmlinux_name)
974			vmlinux_name = symbol_conf.vmlinux_name;
975
976		kernel = machine__findnew_kernel(machine, vmlinux_name,
977						 "[kernel]", DSO_SPACE__KERNEL);
978	} else {
979		if (symbol_conf.default_guest_vmlinux_name)
980			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
981
982		kernel = machine__findnew_kernel(machine, vmlinux_name,
983						 "[guest.kernel]",
984						 DSO_SPACE__KERNEL_GUEST);
985	}
986
987	if (kernel != NULL && (!kernel->has_build_id))
988		dso__read_running_kernel_build_id(kernel, machine);
989
990	return kernel;
991}
992
993struct process_args {
994	u64 start;
995};
996
997void machine__get_kallsyms_filename(struct machine *machine, char *buf,
998				    size_t bufsz)
999{
1000	if (machine__is_default_guest(machine))
1001		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1002	else
1003		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1004}
1005
1006const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1007
1008/* Figure out the start address of kernel map from /proc/kallsyms.
1009 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1010 * symbol_name if it's not that important.
1011 */
1012static int machine__get_running_kernel_start(struct machine *machine,
1013					     const char **symbol_name,
1014					     u64 *start, u64 *end)
1015{
1016	char filename[PATH_MAX];
1017	int i, err = -1;
1018	const char *name;
1019	u64 addr = 0;
1020
1021	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1022
1023	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1024		return 0;
1025
1026	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1027		err = kallsyms__get_function_start(filename, name, &addr);
1028		if (!err)
1029			break;
1030	}
1031
1032	if (err)
1033		return -1;
1034
1035	if (symbol_name)
1036		*symbol_name = name;
1037
1038	*start = addr;
1039
1040	err = kallsyms__get_function_start(filename, "_etext", &addr);
1041	if (!err)
1042		*end = addr;
1043
1044	return 0;
1045}
1046
1047int machine__create_extra_kernel_map(struct machine *machine,
1048				     struct dso *kernel,
1049				     struct extra_kernel_map *xm)
1050{
1051	struct kmap *kmap;
1052	struct map *map;
1053
1054	map = map__new2(xm->start, kernel);
1055	if (!map)
1056		return -1;
1057
1058	map->end   = xm->end;
1059	map->pgoff = xm->pgoff;
1060
1061	kmap = map__kmap(map);
1062
1063	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1064
1065	maps__insert(&machine->kmaps, map);
1066
1067	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1068		  kmap->name, map->start, map->end);
1069
1070	map__put(map);
1071
1072	return 0;
1073}
1074
1075static u64 find_entry_trampoline(struct dso *dso)
1076{
1077	/* Duplicates are removed so lookup all aliases */
1078	const char *syms[] = {
1079		"_entry_trampoline",
1080		"__entry_trampoline_start",
1081		"entry_SYSCALL_64_trampoline",
1082	};
1083	struct symbol *sym = dso__first_symbol(dso);
1084	unsigned int i;
1085
1086	for (; sym; sym = dso__next_symbol(sym)) {
1087		if (sym->binding != STB_GLOBAL)
1088			continue;
1089		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1090			if (!strcmp(sym->name, syms[i]))
1091				return sym->start;
1092		}
1093	}
1094
1095	return 0;
1096}
1097
1098/*
1099 * These values can be used for kernels that do not have symbols for the entry
1100 * trampolines in kallsyms.
1101 */
1102#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1103#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1104#define X86_64_ENTRY_TRAMPOLINE		0x6000
1105
1106/* Map x86_64 PTI entry trampolines */
1107int machine__map_x86_64_entry_trampolines(struct machine *machine,
1108					  struct dso *kernel)
1109{
1110	struct maps *kmaps = &machine->kmaps;
1111	int nr_cpus_avail, cpu;
1112	bool found = false;
1113	struct map *map;
1114	u64 pgoff;
1115
1116	/*
1117	 * In the vmlinux case, pgoff is a virtual address which must now be
1118	 * mapped to a vmlinux offset.
1119	 */
1120	maps__for_each_entry(kmaps, map) {
1121		struct kmap *kmap = __map__kmap(map);
1122		struct map *dest_map;
1123
1124		if (!kmap || !is_entry_trampoline(kmap->name))
1125			continue;
1126
1127		dest_map = maps__find(kmaps, map->pgoff);
1128		if (dest_map != map)
1129			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1130		found = true;
1131	}
1132	if (found || machine->trampolines_mapped)
1133		return 0;
1134
1135	pgoff = find_entry_trampoline(kernel);
1136	if (!pgoff)
1137		return 0;
1138
1139	nr_cpus_avail = machine__nr_cpus_avail(machine);
1140
1141	/* Add a 1 page map for each CPU's entry trampoline */
1142	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1143		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1144			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1145			 X86_64_ENTRY_TRAMPOLINE;
1146		struct extra_kernel_map xm = {
1147			.start = va,
1148			.end   = va + page_size,
1149			.pgoff = pgoff,
1150		};
1151
1152		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1153
1154		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1155			return -1;
1156	}
1157
1158	machine->trampolines_mapped = nr_cpus_avail;
1159
1160	return 0;
1161}
1162
1163int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1164					     struct dso *kernel __maybe_unused)
1165{
1166	return 0;
1167}
1168
1169static int
1170__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1171{
1172	/* In case of renewal the kernel map, destroy previous one */
1173	machine__destroy_kernel_maps(machine);
1174
1175	machine->vmlinux_map = map__new2(0, kernel);
1176	if (machine->vmlinux_map == NULL)
1177		return -1;
1178
1179	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1180	maps__insert(&machine->kmaps, machine->vmlinux_map);
1181	return 0;
1182}
1183
1184void machine__destroy_kernel_maps(struct machine *machine)
1185{
1186	struct kmap *kmap;
1187	struct map *map = machine__kernel_map(machine);
1188
1189	if (map == NULL)
1190		return;
1191
1192	kmap = map__kmap(map);
1193	maps__remove(&machine->kmaps, map);
1194	if (kmap && kmap->ref_reloc_sym) {
1195		zfree((char **)&kmap->ref_reloc_sym->name);
1196		zfree(&kmap->ref_reloc_sym);
1197	}
1198
1199	map__zput(machine->vmlinux_map);
1200}
1201
1202int machines__create_guest_kernel_maps(struct machines *machines)
1203{
1204	int ret = 0;
1205	struct dirent **namelist = NULL;
1206	int i, items = 0;
1207	char path[PATH_MAX];
1208	pid_t pid;
1209	char *endp;
1210
1211	if (symbol_conf.default_guest_vmlinux_name ||
1212	    symbol_conf.default_guest_modules ||
1213	    symbol_conf.default_guest_kallsyms) {
1214		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1215	}
1216
1217	if (symbol_conf.guestmount) {
1218		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1219		if (items <= 0)
1220			return -ENOENT;
1221		for (i = 0; i < items; i++) {
1222			if (!isdigit(namelist[i]->d_name[0])) {
1223				/* Filter out . and .. */
1224				continue;
1225			}
1226			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1227			if ((*endp != '\0') ||
1228			    (endp == namelist[i]->d_name) ||
1229			    (errno == ERANGE)) {
1230				pr_debug("invalid directory (%s). Skipping.\n",
1231					 namelist[i]->d_name);
1232				continue;
1233			}
1234			sprintf(path, "%s/%s/proc/kallsyms",
1235				symbol_conf.guestmount,
1236				namelist[i]->d_name);
1237			ret = access(path, R_OK);
1238			if (ret) {
1239				pr_debug("Can't access file %s\n", path);
1240				goto failure;
1241			}
1242			machines__create_kernel_maps(machines, pid);
1243		}
1244failure:
1245		free(namelist);
1246	}
1247
1248	return ret;
1249}
1250
1251void machines__destroy_kernel_maps(struct machines *machines)
1252{
1253	struct rb_node *next = rb_first_cached(&machines->guests);
1254
1255	machine__destroy_kernel_maps(&machines->host);
1256
1257	while (next) {
1258		struct machine *pos = rb_entry(next, struct machine, rb_node);
1259
1260		next = rb_next(&pos->rb_node);
1261		rb_erase_cached(&pos->rb_node, &machines->guests);
1262		machine__delete(pos);
1263	}
1264}
1265
1266int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1267{
1268	struct machine *machine = machines__findnew(machines, pid);
1269
1270	if (machine == NULL)
1271		return -1;
1272
1273	return machine__create_kernel_maps(machine);
1274}
1275
1276int machine__load_kallsyms(struct machine *machine, const char *filename)
1277{
1278	struct map *map = machine__kernel_map(machine);
1279	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1280
1281	if (ret > 0) {
1282		dso__set_loaded(map->dso);
1283		/*
1284		 * Since /proc/kallsyms will have multiple sessions for the
1285		 * kernel, with modules between them, fixup the end of all
1286		 * sections.
1287		 */
1288		maps__fixup_end(&machine->kmaps);
1289	}
1290
1291	return ret;
1292}
1293
1294int machine__load_vmlinux_path(struct machine *machine)
1295{
1296	struct map *map = machine__kernel_map(machine);
1297	int ret = dso__load_vmlinux_path(map->dso, map);
1298
1299	if (ret > 0)
1300		dso__set_loaded(map->dso);
1301
1302	return ret;
1303}
1304
1305static char *get_kernel_version(const char *root_dir)
1306{
1307	char version[PATH_MAX];
1308	FILE *file;
1309	char *name, *tmp;
1310	const char *prefix = "Linux version ";
1311
1312	sprintf(version, "%s/proc/version", root_dir);
1313	file = fopen(version, "r");
1314	if (!file)
1315		return NULL;
1316
1317	tmp = fgets(version, sizeof(version), file);
1318	fclose(file);
1319	if (!tmp)
1320		return NULL;
1321
1322	name = strstr(version, prefix);
1323	if (!name)
1324		return NULL;
1325	name += strlen(prefix);
1326	tmp = strchr(name, ' ');
1327	if (tmp)
1328		*tmp = '\0';
1329
1330	return strdup(name);
1331}
1332
1333static bool is_kmod_dso(struct dso *dso)
1334{
1335	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1336	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1337}
1338
1339static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1340{
1341	char *long_name;
1342	struct map *map = maps__find_by_name(maps, m->name);
1343
1344	if (map == NULL)
1345		return 0;
1346
1347	long_name = strdup(path);
1348	if (long_name == NULL)
1349		return -ENOMEM;
1350
1351	dso__set_long_name(map->dso, long_name, true);
1352	dso__kernel_module_get_build_id(map->dso, "");
1353
1354	/*
1355	 * Full name could reveal us kmod compression, so
1356	 * we need to update the symtab_type if needed.
1357	 */
1358	if (m->comp && is_kmod_dso(map->dso)) {
1359		map->dso->symtab_type++;
1360		map->dso->comp = m->comp;
1361	}
1362
1363	return 0;
1364}
1365
1366static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1367{
1368	struct dirent *dent;
1369	DIR *dir = opendir(dir_name);
1370	int ret = 0;
1371
1372	if (!dir) {
1373		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1374		return -1;
1375	}
1376
1377	while ((dent = readdir(dir)) != NULL) {
1378		char path[PATH_MAX];
1379		struct stat st;
1380
1381		/*sshfs might return bad dent->d_type, so we have to stat*/
1382		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1383		if (stat(path, &st))
1384			continue;
1385
1386		if (S_ISDIR(st.st_mode)) {
1387			if (!strcmp(dent->d_name, ".") ||
1388			    !strcmp(dent->d_name, ".."))
1389				continue;
1390
1391			/* Do not follow top-level source and build symlinks */
1392			if (depth == 0) {
1393				if (!strcmp(dent->d_name, "source") ||
1394				    !strcmp(dent->d_name, "build"))
1395					continue;
1396			}
1397
1398			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1399			if (ret < 0)
1400				goto out;
1401		} else {
1402			struct kmod_path m;
1403
1404			ret = kmod_path__parse_name(&m, dent->d_name);
1405			if (ret)
1406				goto out;
1407
1408			if (m.kmod)
1409				ret = maps__set_module_path(maps, path, &m);
1410
1411			zfree(&m.name);
1412
1413			if (ret)
1414				goto out;
1415		}
1416	}
1417
1418out:
1419	closedir(dir);
1420	return ret;
1421}
1422
1423static int machine__set_modules_path(struct machine *machine)
1424{
1425	char *version;
1426	char modules_path[PATH_MAX];
1427
1428	version = get_kernel_version(machine->root_dir);
1429	if (!version)
1430		return -1;
1431
1432	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1433		 machine->root_dir, version);
1434	free(version);
1435
1436	return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1437}
1438int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1439				u64 *size __maybe_unused,
1440				const char *name __maybe_unused)
1441{
1442	return 0;
1443}
1444
1445static int machine__create_module(void *arg, const char *name, u64 start,
1446				  u64 size)
1447{
1448	struct machine *machine = arg;
1449	struct map *map;
1450
1451	if (arch__fix_module_text_start(&start, &size, name) < 0)
1452		return -1;
1453
1454	map = machine__addnew_module_map(machine, start, name);
1455	if (map == NULL)
1456		return -1;
1457	map->end = start + size;
1458
1459	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1460
1461	return 0;
1462}
1463
1464static int machine__create_modules(struct machine *machine)
1465{
1466	const char *modules;
1467	char path[PATH_MAX];
1468
1469	if (machine__is_default_guest(machine)) {
1470		modules = symbol_conf.default_guest_modules;
1471	} else {
1472		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1473		modules = path;
1474	}
1475
1476	if (symbol__restricted_filename(modules, "/proc/modules"))
1477		return -1;
1478
1479	if (modules__parse(modules, machine, machine__create_module))
1480		return -1;
1481
1482	if (!machine__set_modules_path(machine))
1483		return 0;
1484
1485	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1486
1487	return 0;
1488}
1489
1490static void machine__set_kernel_mmap(struct machine *machine,
1491				     u64 start, u64 end)
1492{
1493	machine->vmlinux_map->start = start;
1494	machine->vmlinux_map->end   = end;
1495	/*
1496	 * Be a bit paranoid here, some perf.data file came with
1497	 * a zero sized synthesized MMAP event for the kernel.
1498	 */
1499	if (start == 0 && end == 0)
1500		machine->vmlinux_map->end = ~0ULL;
1501}
1502
1503static void machine__update_kernel_mmap(struct machine *machine,
1504				     u64 start, u64 end)
1505{
1506	struct map *map = machine__kernel_map(machine);
1507
1508	map__get(map);
1509	maps__remove(&machine->kmaps, map);
1510
1511	machine__set_kernel_mmap(machine, start, end);
1512
1513	maps__insert(&machine->kmaps, map);
1514	map__put(map);
1515}
1516
1517int machine__create_kernel_maps(struct machine *machine)
1518{
1519	struct dso *kernel = machine__get_kernel(machine);
1520	const char *name = NULL;
1521	struct map *map;
1522	u64 start = 0, end = ~0ULL;
1523	int ret;
1524
1525	if (kernel == NULL)
1526		return -1;
1527
1528	ret = __machine__create_kernel_maps(machine, kernel);
1529	if (ret < 0)
1530		goto out_put;
1531
1532	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1533		if (machine__is_host(machine))
1534			pr_debug("Problems creating module maps, "
1535				 "continuing anyway...\n");
1536		else
1537			pr_debug("Problems creating module maps for guest %d, "
1538				 "continuing anyway...\n", machine->pid);
1539	}
1540
1541	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1542		if (name &&
1543		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1544			machine__destroy_kernel_maps(machine);
1545			ret = -1;
1546			goto out_put;
1547		}
1548
1549		/*
1550		 * we have a real start address now, so re-order the kmaps
1551		 * assume it's the last in the kmaps
1552		 */
1553		machine__update_kernel_mmap(machine, start, end);
1554	}
1555
1556	if (machine__create_extra_kernel_maps(machine, kernel))
1557		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1558
1559	if (end == ~0ULL) {
1560		/* update end address of the kernel map using adjacent module address */
1561		map = map__next(machine__kernel_map(machine));
1562		if (map)
1563			machine__set_kernel_mmap(machine, start, map->start);
1564	}
1565
1566out_put:
1567	dso__put(kernel);
1568	return ret;
1569}
1570
1571static bool machine__uses_kcore(struct machine *machine)
1572{
1573	struct dso *dso;
1574
1575	list_for_each_entry(dso, &machine->dsos.head, node) {
1576		if (dso__is_kcore(dso))
1577			return true;
1578	}
1579
1580	return false;
1581}
1582
1583static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1584					     union perf_event *event)
1585{
1586	return machine__is(machine, "x86_64") &&
1587	       is_entry_trampoline(event->mmap.filename);
1588}
1589
1590static int machine__process_extra_kernel_map(struct machine *machine,
1591					     union perf_event *event)
1592{
1593	struct dso *kernel = machine__kernel_dso(machine);
1594	struct extra_kernel_map xm = {
1595		.start = event->mmap.start,
1596		.end   = event->mmap.start + event->mmap.len,
1597		.pgoff = event->mmap.pgoff,
1598	};
1599
1600	if (kernel == NULL)
1601		return -1;
1602
1603	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1604
1605	return machine__create_extra_kernel_map(machine, kernel, &xm);
1606}
1607
1608static int machine__process_kernel_mmap_event(struct machine *machine,
1609					      union perf_event *event)
1610{
1611	struct map *map;
1612	enum dso_space_type dso_space;
1613	bool is_kernel_mmap;
1614
1615	/* If we have maps from kcore then we do not need or want any others */
1616	if (machine__uses_kcore(machine))
1617		return 0;
1618
1619	if (machine__is_host(machine))
1620		dso_space = DSO_SPACE__KERNEL;
1621	else
1622		dso_space = DSO_SPACE__KERNEL_GUEST;
1623
1624	is_kernel_mmap = memcmp(event->mmap.filename,
1625				machine->mmap_name,
1626				strlen(machine->mmap_name) - 1) == 0;
1627	if (event->mmap.filename[0] == '/' ||
1628	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1629		map = machine__addnew_module_map(machine, event->mmap.start,
1630						 event->mmap.filename);
1631		if (map == NULL)
1632			goto out_problem;
1633
1634		map->end = map->start + event->mmap.len;
1635	} else if (is_kernel_mmap) {
1636		const char *symbol_name = (event->mmap.filename +
1637				strlen(machine->mmap_name));
1638		/*
1639		 * Should be there already, from the build-id table in
1640		 * the header.
1641		 */
1642		struct dso *kernel = NULL;
1643		struct dso *dso;
1644
1645		down_read(&machine->dsos.lock);
1646
1647		list_for_each_entry(dso, &machine->dsos.head, node) {
1648
1649			/*
1650			 * The cpumode passed to is_kernel_module is not the
1651			 * cpumode of *this* event. If we insist on passing
1652			 * correct cpumode to is_kernel_module, we should
1653			 * record the cpumode when we adding this dso to the
1654			 * linked list.
1655			 *
1656			 * However we don't really need passing correct
1657			 * cpumode.  We know the correct cpumode must be kernel
1658			 * mode (if not, we should not link it onto kernel_dsos
1659			 * list).
1660			 *
1661			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1662			 * is_kernel_module() treats it as a kernel cpumode.
1663			 */
1664
1665			if (!dso->kernel ||
1666			    is_kernel_module(dso->long_name,
1667					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1668				continue;
1669
1670
1671			kernel = dso;
1672			break;
1673		}
1674
1675		up_read(&machine->dsos.lock);
1676
1677		if (kernel == NULL)
1678			kernel = machine__findnew_dso(machine, machine->mmap_name);
1679		if (kernel == NULL)
1680			goto out_problem;
1681
1682		kernel->kernel = dso_space;
1683		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1684			dso__put(kernel);
1685			goto out_problem;
1686		}
1687
1688		if (strstr(kernel->long_name, "vmlinux"))
1689			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1690
1691		machine__update_kernel_mmap(machine, event->mmap.start,
1692					 event->mmap.start + event->mmap.len);
1693
1694		/*
1695		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1696		 * symbol. Effectively having zero here means that at record
1697		 * time /proc/sys/kernel/kptr_restrict was non zero.
1698		 */
1699		if (event->mmap.pgoff != 0) {
1700			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1701							symbol_name,
1702							event->mmap.pgoff);
1703		}
1704
1705		if (machine__is_default_guest(machine)) {
1706			/*
1707			 * preload dso of guest kernel and modules
1708			 */
1709			dso__load(kernel, machine__kernel_map(machine));
1710		}
1711	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1712		return machine__process_extra_kernel_map(machine, event);
1713	}
1714	return 0;
1715out_problem:
1716	return -1;
1717}
1718
1719int machine__process_mmap2_event(struct machine *machine,
1720				 union perf_event *event,
1721				 struct perf_sample *sample)
1722{
1723	struct thread *thread;
1724	struct map *map;
1725	struct dso_id dso_id = {
1726		.maj = event->mmap2.maj,
1727		.min = event->mmap2.min,
1728		.ino = event->mmap2.ino,
1729		.ino_generation = event->mmap2.ino_generation,
1730	};
1731	int ret = 0;
1732
1733	if (dump_trace)
1734		perf_event__fprintf_mmap2(event, stdout);
1735
1736	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1737	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1738		ret = machine__process_kernel_mmap_event(machine, event);
1739		if (ret < 0)
1740			goto out_problem;
1741		return 0;
1742	}
1743
1744	thread = machine__findnew_thread(machine, event->mmap2.pid,
1745					event->mmap2.tid);
1746	if (thread == NULL)
1747		goto out_problem;
1748
1749	map = map__new(machine, event->mmap2.start,
1750			event->mmap2.len, event->mmap2.pgoff,
1751			&dso_id, event->mmap2.prot,
1752			event->mmap2.flags,
1753			event->mmap2.filename, thread);
1754
1755	if (map == NULL)
1756		goto out_problem_map;
1757
1758	ret = thread__insert_map(thread, map);
1759	if (ret)
1760		goto out_problem_insert;
1761
1762	thread__put(thread);
1763	map__put(map);
1764	return 0;
1765
1766out_problem_insert:
1767	map__put(map);
1768out_problem_map:
1769	thread__put(thread);
1770out_problem:
1771	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1772	return 0;
1773}
1774
1775int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1776				struct perf_sample *sample)
1777{
1778	struct thread *thread;
1779	struct map *map;
1780	u32 prot = 0;
1781	int ret = 0;
1782
1783	if (dump_trace)
1784		perf_event__fprintf_mmap(event, stdout);
1785
1786	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1787	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1788		ret = machine__process_kernel_mmap_event(machine, event);
1789		if (ret < 0)
1790			goto out_problem;
1791		return 0;
1792	}
1793
1794	thread = machine__findnew_thread(machine, event->mmap.pid,
1795					 event->mmap.tid);
1796	if (thread == NULL)
1797		goto out_problem;
1798
1799	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1800		prot = PROT_EXEC;
1801
1802	map = map__new(machine, event->mmap.start,
1803			event->mmap.len, event->mmap.pgoff,
1804			NULL, prot, 0, event->mmap.filename, thread);
1805
1806	if (map == NULL)
1807		goto out_problem_map;
1808
1809	ret = thread__insert_map(thread, map);
1810	if (ret)
1811		goto out_problem_insert;
1812
1813	thread__put(thread);
1814	map__put(map);
1815	return 0;
1816
1817out_problem_insert:
1818	map__put(map);
1819out_problem_map:
1820	thread__put(thread);
1821out_problem:
1822	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1823	return 0;
1824}
1825
1826static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1827{
1828	struct threads *threads = machine__threads(machine, th->tid);
1829
1830	if (threads->last_match == th)
1831		threads__set_last_match(threads, NULL);
1832
1833	if (lock)
1834		down_write(&threads->lock);
1835
1836	BUG_ON(refcount_read(&th->refcnt) == 0);
1837
1838	rb_erase_cached(&th->rb_node, &threads->entries);
1839	RB_CLEAR_NODE(&th->rb_node);
1840	--threads->nr;
1841	/*
1842	 * Move it first to the dead_threads list, then drop the reference,
1843	 * if this is the last reference, then the thread__delete destructor
1844	 * will be called and we will remove it from the dead_threads list.
1845	 */
1846	list_add_tail(&th->node, &threads->dead);
1847
1848	/*
1849	 * We need to do the put here because if this is the last refcount,
1850	 * then we will be touching the threads->dead head when removing the
1851	 * thread.
1852	 */
1853	thread__put(th);
1854
1855	if (lock)
1856		up_write(&threads->lock);
1857}
1858
1859void machine__remove_thread(struct machine *machine, struct thread *th)
1860{
1861	return __machine__remove_thread(machine, th, true);
1862}
1863
1864int machine__process_fork_event(struct machine *machine, union perf_event *event,
1865				struct perf_sample *sample)
1866{
1867	struct thread *thread = machine__find_thread(machine,
1868						     event->fork.pid,
1869						     event->fork.tid);
1870	struct thread *parent = machine__findnew_thread(machine,
1871							event->fork.ppid,
1872							event->fork.ptid);
1873	bool do_maps_clone = true;
1874	int err = 0;
1875
1876	if (dump_trace)
1877		perf_event__fprintf_task(event, stdout);
1878
1879	/*
1880	 * There may be an existing thread that is not actually the parent,
1881	 * either because we are processing events out of order, or because the
1882	 * (fork) event that would have removed the thread was lost. Assume the
1883	 * latter case and continue on as best we can.
1884	 */
1885	if (parent->pid_ != (pid_t)event->fork.ppid) {
1886		dump_printf("removing erroneous parent thread %d/%d\n",
1887			    parent->pid_, parent->tid);
1888		machine__remove_thread(machine, parent);
1889		thread__put(parent);
1890		parent = machine__findnew_thread(machine, event->fork.ppid,
1891						 event->fork.ptid);
1892	}
1893
1894	/* if a thread currently exists for the thread id remove it */
1895	if (thread != NULL) {
1896		machine__remove_thread(machine, thread);
1897		thread__put(thread);
1898	}
1899
1900	thread = machine__findnew_thread(machine, event->fork.pid,
1901					 event->fork.tid);
1902	/*
1903	 * When synthesizing FORK events, we are trying to create thread
1904	 * objects for the already running tasks on the machine.
1905	 *
1906	 * Normally, for a kernel FORK event, we want to clone the parent's
1907	 * maps because that is what the kernel just did.
1908	 *
1909	 * But when synthesizing, this should not be done.  If we do, we end up
1910	 * with overlapping maps as we process the sythesized MMAP2 events that
1911	 * get delivered shortly thereafter.
1912	 *
1913	 * Use the FORK event misc flags in an internal way to signal this
1914	 * situation, so we can elide the map clone when appropriate.
1915	 */
1916	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1917		do_maps_clone = false;
1918
1919	if (thread == NULL || parent == NULL ||
1920	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1921		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1922		err = -1;
1923	}
1924	thread__put(thread);
1925	thread__put(parent);
1926
1927	return err;
1928}
1929
1930int machine__process_exit_event(struct machine *machine, union perf_event *event,
1931				struct perf_sample *sample __maybe_unused)
1932{
1933	struct thread *thread = machine__find_thread(machine,
1934						     event->fork.pid,
1935						     event->fork.tid);
1936
1937	if (dump_trace)
1938		perf_event__fprintf_task(event, stdout);
1939
1940	if (thread != NULL) {
1941		thread__exited(thread);
1942		thread__put(thread);
1943	}
1944
1945	return 0;
1946}
1947
1948int machine__process_event(struct machine *machine, union perf_event *event,
1949			   struct perf_sample *sample)
1950{
1951	int ret;
1952
1953	switch (event->header.type) {
1954	case PERF_RECORD_COMM:
1955		ret = machine__process_comm_event(machine, event, sample); break;
1956	case PERF_RECORD_MMAP:
1957		ret = machine__process_mmap_event(machine, event, sample); break;
1958	case PERF_RECORD_NAMESPACES:
1959		ret = machine__process_namespaces_event(machine, event, sample); break;
1960	case PERF_RECORD_CGROUP:
1961		ret = machine__process_cgroup_event(machine, event, sample); break;
1962	case PERF_RECORD_MMAP2:
1963		ret = machine__process_mmap2_event(machine, event, sample); break;
1964	case PERF_RECORD_FORK:
1965		ret = machine__process_fork_event(machine, event, sample); break;
1966	case PERF_RECORD_EXIT:
1967		ret = machine__process_exit_event(machine, event, sample); break;
1968	case PERF_RECORD_LOST:
1969		ret = machine__process_lost_event(machine, event, sample); break;
1970	case PERF_RECORD_AUX:
1971		ret = machine__process_aux_event(machine, event); break;
1972	case PERF_RECORD_ITRACE_START:
1973		ret = machine__process_itrace_start_event(machine, event); break;
1974	case PERF_RECORD_LOST_SAMPLES:
1975		ret = machine__process_lost_samples_event(machine, event, sample); break;
1976	case PERF_RECORD_SWITCH:
1977	case PERF_RECORD_SWITCH_CPU_WIDE:
1978		ret = machine__process_switch_event(machine, event); break;
1979	case PERF_RECORD_KSYMBOL:
1980		ret = machine__process_ksymbol(machine, event, sample); break;
1981	case PERF_RECORD_BPF_EVENT:
1982		ret = machine__process_bpf(machine, event, sample); break;
1983	case PERF_RECORD_TEXT_POKE:
1984		ret = machine__process_text_poke(machine, event, sample); break;
1985	default:
1986		ret = -1;
1987		break;
1988	}
1989
1990	return ret;
1991}
1992
1993static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1994{
1995	if (!regexec(regex, sym->name, 0, NULL, 0))
1996		return 1;
1997	return 0;
1998}
1999
2000static void ip__resolve_ams(struct thread *thread,
2001			    struct addr_map_symbol *ams,
2002			    u64 ip)
2003{
2004	struct addr_location al;
2005
2006	memset(&al, 0, sizeof(al));
2007	/*
2008	 * We cannot use the header.misc hint to determine whether a
2009	 * branch stack address is user, kernel, guest, hypervisor.
2010	 * Branches may straddle the kernel/user/hypervisor boundaries.
2011	 * Thus, we have to try consecutively until we find a match
2012	 * or else, the symbol is unknown
2013	 */
2014	thread__find_cpumode_addr_location(thread, ip, &al);
2015
2016	ams->addr = ip;
2017	ams->al_addr = al.addr;
2018	ams->ms.maps = al.maps;
2019	ams->ms.sym = al.sym;
2020	ams->ms.map = al.map;
2021	ams->phys_addr = 0;
2022}
2023
2024static void ip__resolve_data(struct thread *thread,
2025			     u8 m, struct addr_map_symbol *ams,
2026			     u64 addr, u64 phys_addr)
2027{
2028	struct addr_location al;
2029
2030	memset(&al, 0, sizeof(al));
2031
2032	thread__find_symbol(thread, m, addr, &al);
2033
2034	ams->addr = addr;
2035	ams->al_addr = al.addr;
2036	ams->ms.maps = al.maps;
2037	ams->ms.sym = al.sym;
2038	ams->ms.map = al.map;
2039	ams->phys_addr = phys_addr;
2040}
2041
2042struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2043				     struct addr_location *al)
2044{
2045	struct mem_info *mi = mem_info__new();
2046
2047	if (!mi)
2048		return NULL;
2049
2050	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2051	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2052			 sample->addr, sample->phys_addr);
2053	mi->data_src.val = sample->data_src;
2054
2055	return mi;
2056}
2057
2058static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2059{
2060	struct map *map = ms->map;
2061	char *srcline = NULL;
2062
2063	if (!map || callchain_param.key == CCKEY_FUNCTION)
2064		return srcline;
2065
2066	srcline = srcline__tree_find(&map->dso->srclines, ip);
2067	if (!srcline) {
2068		bool show_sym = false;
2069		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2070
2071		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2072				      ms->sym, show_sym, show_addr, ip);
2073		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2074	}
2075
2076	return srcline;
2077}
2078
2079struct iterations {
2080	int nr_loop_iter;
2081	u64 cycles;
2082};
2083
2084static int add_callchain_ip(struct thread *thread,
2085			    struct callchain_cursor *cursor,
2086			    struct symbol **parent,
2087			    struct addr_location *root_al,
2088			    u8 *cpumode,
2089			    u64 ip,
2090			    bool branch,
2091			    struct branch_flags *flags,
2092			    struct iterations *iter,
2093			    u64 branch_from)
2094{
2095	struct map_symbol ms;
2096	struct addr_location al;
2097	int nr_loop_iter = 0;
2098	u64 iter_cycles = 0;
2099	const char *srcline = NULL;
2100
2101	al.filtered = 0;
2102	al.sym = NULL;
2103	al.srcline = NULL;
2104	if (!cpumode) {
2105		thread__find_cpumode_addr_location(thread, ip, &al);
2106	} else {
2107		if (ip >= PERF_CONTEXT_MAX) {
2108			switch (ip) {
2109			case PERF_CONTEXT_HV:
2110				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2111				break;
2112			case PERF_CONTEXT_KERNEL:
2113				*cpumode = PERF_RECORD_MISC_KERNEL;
2114				break;
2115			case PERF_CONTEXT_USER:
2116				*cpumode = PERF_RECORD_MISC_USER;
2117				break;
2118			default:
2119				pr_debug("invalid callchain context: "
2120					 "%"PRId64"\n", (s64) ip);
2121				/*
2122				 * It seems the callchain is corrupted.
2123				 * Discard all.
2124				 */
2125				callchain_cursor_reset(cursor);
2126				return 1;
2127			}
2128			return 0;
2129		}
2130		thread__find_symbol(thread, *cpumode, ip, &al);
2131	}
2132
2133	if (al.sym != NULL) {
2134		if (perf_hpp_list.parent && !*parent &&
2135		    symbol__match_regex(al.sym, &parent_regex))
2136			*parent = al.sym;
2137		else if (have_ignore_callees && root_al &&
2138		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2139			/* Treat this symbol as the root,
2140			   forgetting its callees. */
2141			*root_al = al;
2142			callchain_cursor_reset(cursor);
2143		}
2144	}
2145
2146	if (symbol_conf.hide_unresolved && al.sym == NULL)
2147		return 0;
2148
2149	if (iter) {
2150		nr_loop_iter = iter->nr_loop_iter;
2151		iter_cycles = iter->cycles;
2152	}
2153
2154	ms.maps = al.maps;
2155	ms.map = al.map;
2156	ms.sym = al.sym;
2157	srcline = callchain_srcline(&ms, al.addr);
2158	return callchain_cursor_append(cursor, ip, &ms,
2159				       branch, flags, nr_loop_iter,
2160				       iter_cycles, branch_from, srcline);
2161}
2162
2163struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2164					   struct addr_location *al)
2165{
2166	unsigned int i;
2167	const struct branch_stack *bs = sample->branch_stack;
2168	struct branch_entry *entries = perf_sample__branch_entries(sample);
2169	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2170
2171	if (!bi)
2172		return NULL;
2173
2174	for (i = 0; i < bs->nr; i++) {
2175		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2176		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2177		bi[i].flags = entries[i].flags;
2178	}
2179	return bi;
2180}
2181
2182static void save_iterations(struct iterations *iter,
2183			    struct branch_entry *be, int nr)
2184{
2185	int i;
2186
2187	iter->nr_loop_iter++;
2188	iter->cycles = 0;
2189
2190	for (i = 0; i < nr; i++)
2191		iter->cycles += be[i].flags.cycles;
2192}
2193
2194#define CHASHSZ 127
2195#define CHASHBITS 7
2196#define NO_ENTRY 0xff
2197
2198#define PERF_MAX_BRANCH_DEPTH 127
2199
2200/* Remove loops. */
2201static int remove_loops(struct branch_entry *l, int nr,
2202			struct iterations *iter)
2203{
2204	int i, j, off;
2205	unsigned char chash[CHASHSZ];
2206
2207	memset(chash, NO_ENTRY, sizeof(chash));
2208
2209	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2210
2211	for (i = 0; i < nr; i++) {
2212		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2213
2214		/* no collision handling for now */
2215		if (chash[h] == NO_ENTRY) {
2216			chash[h] = i;
2217		} else if (l[chash[h]].from == l[i].from) {
2218			bool is_loop = true;
2219			/* check if it is a real loop */
2220			off = 0;
2221			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2222				if (l[j].from != l[i + off].from) {
2223					is_loop = false;
2224					break;
2225				}
2226			if (is_loop) {
2227				j = nr - (i + off);
2228				if (j > 0) {
2229					save_iterations(iter + i + off,
2230						l + i, off);
2231
2232					memmove(iter + i, iter + i + off,
2233						j * sizeof(*iter));
2234
2235					memmove(l + i, l + i + off,
2236						j * sizeof(*l));
2237				}
2238
2239				nr -= off;
2240			}
2241		}
2242	}
2243	return nr;
2244}
2245
2246static int lbr_callchain_add_kernel_ip(struct thread *thread,
2247				       struct callchain_cursor *cursor,
2248				       struct perf_sample *sample,
2249				       struct symbol **parent,
2250				       struct addr_location *root_al,
2251				       u64 branch_from,
2252				       bool callee, int end)
2253{
2254	struct ip_callchain *chain = sample->callchain;
2255	u8 cpumode = PERF_RECORD_MISC_USER;
2256	int err, i;
2257
2258	if (callee) {
2259		for (i = 0; i < end + 1; i++) {
2260			err = add_callchain_ip(thread, cursor, parent,
2261					       root_al, &cpumode, chain->ips[i],
2262					       false, NULL, NULL, branch_from);
2263			if (err)
2264				return err;
2265		}
2266		return 0;
2267	}
2268
2269	for (i = end; i >= 0; i--) {
2270		err = add_callchain_ip(thread, cursor, parent,
2271				       root_al, &cpumode, chain->ips[i],
2272				       false, NULL, NULL, branch_from);
2273		if (err)
2274			return err;
2275	}
2276
2277	return 0;
2278}
2279
2280static void save_lbr_cursor_node(struct thread *thread,
2281				 struct callchain_cursor *cursor,
2282				 int idx)
2283{
2284	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2285
2286	if (!lbr_stitch)
2287		return;
2288
2289	if (cursor->pos == cursor->nr) {
2290		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2291		return;
2292	}
2293
2294	if (!cursor->curr)
2295		cursor->curr = cursor->first;
2296	else
2297		cursor->curr = cursor->curr->next;
2298	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2299	       sizeof(struct callchain_cursor_node));
2300
2301	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2302	cursor->pos++;
2303}
2304
2305static int lbr_callchain_add_lbr_ip(struct thread *thread,
2306				    struct callchain_cursor *cursor,
2307				    struct perf_sample *sample,
2308				    struct symbol **parent,
2309				    struct addr_location *root_al,
2310				    u64 *branch_from,
2311				    bool callee)
2312{
2313	struct branch_stack *lbr_stack = sample->branch_stack;
2314	struct branch_entry *entries = perf_sample__branch_entries(sample);
2315	u8 cpumode = PERF_RECORD_MISC_USER;
2316	int lbr_nr = lbr_stack->nr;
2317	struct branch_flags *flags;
2318	int err, i;
2319	u64 ip;
2320
2321	/*
2322	 * The curr and pos are not used in writing session. They are cleared
2323	 * in callchain_cursor_commit() when the writing session is closed.
2324	 * Using curr and pos to track the current cursor node.
2325	 */
2326	if (thread->lbr_stitch) {
2327		cursor->curr = NULL;
2328		cursor->pos = cursor->nr;
2329		if (cursor->nr) {
2330			cursor->curr = cursor->first;
2331			for (i = 0; i < (int)(cursor->nr - 1); i++)
2332				cursor->curr = cursor->curr->next;
2333		}
2334	}
2335
2336	if (callee) {
2337		/* Add LBR ip from first entries.to */
2338		ip = entries[0].to;
2339		flags = &entries[0].flags;
2340		*branch_from = entries[0].from;
2341		err = add_callchain_ip(thread, cursor, parent,
2342				       root_al, &cpumode, ip,
2343				       true, flags, NULL,
2344				       *branch_from);
2345		if (err)
2346			return err;
2347
2348		/*
2349		 * The number of cursor node increases.
2350		 * Move the current cursor node.
2351		 * But does not need to save current cursor node for entry 0.
2352		 * It's impossible to stitch the whole LBRs of previous sample.
2353		 */
2354		if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2355			if (!cursor->curr)
2356				cursor->curr = cursor->first;
2357			else
2358				cursor->curr = cursor->curr->next;
2359			cursor->pos++;
2360		}
2361
2362		/* Add LBR ip from entries.from one by one. */
2363		for (i = 0; i < lbr_nr; i++) {
2364			ip = entries[i].from;
2365			flags = &entries[i].flags;
2366			err = add_callchain_ip(thread, cursor, parent,
2367					       root_al, &cpumode, ip,
2368					       true, flags, NULL,
2369					       *branch_from);
2370			if (err)
2371				return err;
2372			save_lbr_cursor_node(thread, cursor, i);
2373		}
2374		return 0;
2375	}
2376
2377	/* Add LBR ip from entries.from one by one. */
2378	for (i = lbr_nr - 1; i >= 0; i--) {
2379		ip = entries[i].from;
2380		flags = &entries[i].flags;
2381		err = add_callchain_ip(thread, cursor, parent,
2382				       root_al, &cpumode, ip,
2383				       true, flags, NULL,
2384				       *branch_from);
2385		if (err)
2386			return err;
2387		save_lbr_cursor_node(thread, cursor, i);
2388	}
2389
2390	if (lbr_nr > 0) {
2391		/* Add LBR ip from first entries.to */
2392		ip = entries[0].to;
2393		flags = &entries[0].flags;
2394		*branch_from = entries[0].from;
2395		err = add_callchain_ip(thread, cursor, parent,
2396				root_al, &cpumode, ip,
2397				true, flags, NULL,
2398				*branch_from);
2399		if (err)
2400			return err;
2401	}
2402
2403	return 0;
2404}
2405
2406static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2407					     struct callchain_cursor *cursor)
2408{
2409	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2410	struct callchain_cursor_node *cnode;
2411	struct stitch_list *stitch_node;
2412	int err;
2413
2414	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2415		cnode = &stitch_node->cursor;
2416
2417		err = callchain_cursor_append(cursor, cnode->ip,
2418					      &cnode->ms,
2419					      cnode->branch,
2420					      &cnode->branch_flags,
2421					      cnode->nr_loop_iter,
2422					      cnode->iter_cycles,
2423					      cnode->branch_from,
2424					      cnode->srcline);
2425		if (err)
2426			return err;
2427	}
2428	return 0;
2429}
2430
2431static struct stitch_list *get_stitch_node(struct thread *thread)
2432{
2433	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2434	struct stitch_list *stitch_node;
2435
2436	if (!list_empty(&lbr_stitch->free_lists)) {
2437		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2438					       struct stitch_list, node);
2439		list_del(&stitch_node->node);
2440
2441		return stitch_node;
2442	}
2443
2444	return malloc(sizeof(struct stitch_list));
2445}
2446
2447static bool has_stitched_lbr(struct thread *thread,
2448			     struct perf_sample *cur,
2449			     struct perf_sample *prev,
2450			     unsigned int max_lbr,
2451			     bool callee)
2452{
2453	struct branch_stack *cur_stack = cur->branch_stack;
2454	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2455	struct branch_stack *prev_stack = prev->branch_stack;
2456	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2457	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2458	int i, j, nr_identical_branches = 0;
2459	struct stitch_list *stitch_node;
2460	u64 cur_base, distance;
2461
2462	if (!cur_stack || !prev_stack)
2463		return false;
2464
2465	/* Find the physical index of the base-of-stack for current sample. */
2466	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2467
2468	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2469						     (max_lbr + prev_stack->hw_idx - cur_base);
2470	/* Previous sample has shorter stack. Nothing can be stitched. */
2471	if (distance + 1 > prev_stack->nr)
2472		return false;
2473
2474	/*
2475	 * Check if there are identical LBRs between two samples.
2476	 * Identicall LBRs must have same from, to and flags values. Also,
2477	 * they have to be saved in the same LBR registers (same physical
2478	 * index).
2479	 *
2480	 * Starts from the base-of-stack of current sample.
2481	 */
2482	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2483		if ((prev_entries[i].from != cur_entries[j].from) ||
2484		    (prev_entries[i].to != cur_entries[j].to) ||
2485		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2486			break;
2487		nr_identical_branches++;
2488	}
2489
2490	if (!nr_identical_branches)
2491		return false;
2492
2493	/*
2494	 * Save the LBRs between the base-of-stack of previous sample
2495	 * and the base-of-stack of current sample into lbr_stitch->lists.
2496	 * These LBRs will be stitched later.
2497	 */
2498	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2499
2500		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2501			continue;
2502
2503		stitch_node = get_stitch_node(thread);
2504		if (!stitch_node)
2505			return false;
2506
2507		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2508		       sizeof(struct callchain_cursor_node));
2509
2510		if (callee)
2511			list_add(&stitch_node->node, &lbr_stitch->lists);
2512		else
2513			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2514	}
2515
2516	return true;
2517}
2518
2519static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2520{
2521	if (thread->lbr_stitch)
2522		return true;
2523
2524	thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2525	if (!thread->lbr_stitch)
2526		goto err;
2527
2528	thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2529	if (!thread->lbr_stitch->prev_lbr_cursor)
2530		goto free_lbr_stitch;
2531
2532	INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2533	INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2534
2535	return true;
2536
2537free_lbr_stitch:
2538	zfree(&thread->lbr_stitch);
2539err:
2540	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2541	thread->lbr_stitch_enable = false;
2542	return false;
2543}
2544
2545/*
2546 * Recolve LBR callstack chain sample
2547 * Return:
2548 * 1 on success get LBR callchain information
2549 * 0 no available LBR callchain information, should try fp
2550 * negative error code on other errors.
2551 */
2552static int resolve_lbr_callchain_sample(struct thread *thread,
2553					struct callchain_cursor *cursor,
2554					struct perf_sample *sample,
2555					struct symbol **parent,
2556					struct addr_location *root_al,
2557					int max_stack,
2558					unsigned int max_lbr)
2559{
2560	bool callee = (callchain_param.order == ORDER_CALLEE);
2561	struct ip_callchain *chain = sample->callchain;
2562	int chain_nr = min(max_stack, (int)chain->nr), i;
2563	struct lbr_stitch *lbr_stitch;
2564	bool stitched_lbr = false;
2565	u64 branch_from = 0;
2566	int err;
2567
2568	for (i = 0; i < chain_nr; i++) {
2569		if (chain->ips[i] == PERF_CONTEXT_USER)
2570			break;
2571	}
2572
2573	/* LBR only affects the user callchain */
2574	if (i == chain_nr)
2575		return 0;
2576
2577	if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2578	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2579		lbr_stitch = thread->lbr_stitch;
2580
2581		stitched_lbr = has_stitched_lbr(thread, sample,
2582						&lbr_stitch->prev_sample,
2583						max_lbr, callee);
2584
2585		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2586			list_replace_init(&lbr_stitch->lists,
2587					  &lbr_stitch->free_lists);
2588		}
2589		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2590	}
2591
2592	if (callee) {
2593		/* Add kernel ip */
2594		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2595						  parent, root_al, branch_from,
2596						  true, i);
2597		if (err)
2598			goto error;
2599
2600		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2601					       root_al, &branch_from, true);
2602		if (err)
2603			goto error;
2604
2605		if (stitched_lbr) {
2606			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2607			if (err)
2608				goto error;
2609		}
2610
2611	} else {
2612		if (stitched_lbr) {
2613			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2614			if (err)
2615				goto error;
2616		}
2617		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2618					       root_al, &branch_from, false);
2619		if (err)
2620			goto error;
2621
2622		/* Add kernel ip */
2623		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2624						  parent, root_al, branch_from,
2625						  false, i);
2626		if (err)
2627			goto error;
2628	}
2629	return 1;
2630
2631error:
2632	return (err < 0) ? err : 0;
2633}
2634
2635static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2636			     struct callchain_cursor *cursor,
2637			     struct symbol **parent,
2638			     struct addr_location *root_al,
2639			     u8 *cpumode, int ent)
2640{
2641	int err = 0;
2642
2643	while (--ent >= 0) {
2644		u64 ip = chain->ips[ent];
2645
2646		if (ip >= PERF_CONTEXT_MAX) {
2647			err = add_callchain_ip(thread, cursor, parent,
2648					       root_al, cpumode, ip,
2649					       false, NULL, NULL, 0);
2650			break;
2651		}
2652	}
2653	return err;
2654}
2655
2656static int thread__resolve_callchain_sample(struct thread *thread,
2657					    struct callchain_cursor *cursor,
2658					    struct evsel *evsel,
2659					    struct perf_sample *sample,
2660					    struct symbol **parent,
2661					    struct addr_location *root_al,
2662					    int max_stack)
2663{
2664	struct branch_stack *branch = sample->branch_stack;
2665	struct branch_entry *entries = perf_sample__branch_entries(sample);
2666	struct ip_callchain *chain = sample->callchain;
2667	int chain_nr = 0;
2668	u8 cpumode = PERF_RECORD_MISC_USER;
2669	int i, j, err, nr_entries;
2670	int skip_idx = -1;
2671	int first_call = 0;
2672
2673	if (chain)
2674		chain_nr = chain->nr;
2675
2676	if (evsel__has_branch_callstack(evsel)) {
2677		struct perf_env *env = evsel__env(evsel);
2678
2679		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2680						   root_al, max_stack,
2681						   !env ? 0 : env->max_branches);
2682		if (err)
2683			return (err < 0) ? err : 0;
2684	}
2685
2686	/*
2687	 * Based on DWARF debug information, some architectures skip
2688	 * a callchain entry saved by the kernel.
2689	 */
2690	skip_idx = arch_skip_callchain_idx(thread, chain);
2691
2692	/*
2693	 * Add branches to call stack for easier browsing. This gives
2694	 * more context for a sample than just the callers.
2695	 *
2696	 * This uses individual histograms of paths compared to the
2697	 * aggregated histograms the normal LBR mode uses.
2698	 *
2699	 * Limitations for now:
2700	 * - No extra filters
2701	 * - No annotations (should annotate somehow)
2702	 */
2703
2704	if (branch && callchain_param.branch_callstack) {
2705		int nr = min(max_stack, (int)branch->nr);
2706		struct branch_entry be[nr];
2707		struct iterations iter[nr];
2708
2709		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2710			pr_warning("corrupted branch chain. skipping...\n");
2711			goto check_calls;
2712		}
2713
2714		for (i = 0; i < nr; i++) {
2715			if (callchain_param.order == ORDER_CALLEE) {
2716				be[i] = entries[i];
2717
2718				if (chain == NULL)
2719					continue;
2720
2721				/*
2722				 * Check for overlap into the callchain.
2723				 * The return address is one off compared to
2724				 * the branch entry. To adjust for this
2725				 * assume the calling instruction is not longer
2726				 * than 8 bytes.
2727				 */
2728				if (i == skip_idx ||
2729				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2730					first_call++;
2731				else if (be[i].from < chain->ips[first_call] &&
2732				    be[i].from >= chain->ips[first_call] - 8)
2733					first_call++;
2734			} else
2735				be[i] = entries[branch->nr - i - 1];
2736		}
2737
2738		memset(iter, 0, sizeof(struct iterations) * nr);
2739		nr = remove_loops(be, nr, iter);
2740
2741		for (i = 0; i < nr; i++) {
2742			err = add_callchain_ip(thread, cursor, parent,
2743					       root_al,
2744					       NULL, be[i].to,
2745					       true, &be[i].flags,
2746					       NULL, be[i].from);
2747
2748			if (!err)
2749				err = add_callchain_ip(thread, cursor, parent, root_al,
2750						       NULL, be[i].from,
2751						       true, &be[i].flags,
2752						       &iter[i], 0);
2753			if (err == -EINVAL)
2754				break;
2755			if (err)
2756				return err;
2757		}
2758
2759		if (chain_nr == 0)
2760			return 0;
2761
2762		chain_nr -= nr;
2763	}
2764
2765check_calls:
2766	if (chain && callchain_param.order != ORDER_CALLEE) {
2767		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2768					&cpumode, chain->nr - first_call);
2769		if (err)
2770			return (err < 0) ? err : 0;
2771	}
2772	for (i = first_call, nr_entries = 0;
2773	     i < chain_nr && nr_entries < max_stack; i++) {
2774		u64 ip;
2775
2776		if (callchain_param.order == ORDER_CALLEE)
2777			j = i;
2778		else
2779			j = chain->nr - i - 1;
2780
2781#ifdef HAVE_SKIP_CALLCHAIN_IDX
2782		if (j == skip_idx)
2783			continue;
2784#endif
2785		ip = chain->ips[j];
2786		if (ip < PERF_CONTEXT_MAX)
2787                       ++nr_entries;
2788		else if (callchain_param.order != ORDER_CALLEE) {
2789			err = find_prev_cpumode(chain, thread, cursor, parent,
2790						root_al, &cpumode, j);
2791			if (err)
2792				return (err < 0) ? err : 0;
2793			continue;
2794		}
2795
2796		err = add_callchain_ip(thread, cursor, parent,
2797				       root_al, &cpumode, ip,
2798				       false, NULL, NULL, 0);
2799
2800		if (err)
2801			return (err < 0) ? err : 0;
2802	}
2803
2804	return 0;
2805}
2806
2807static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2808{
2809	struct symbol *sym = ms->sym;
2810	struct map *map = ms->map;
2811	struct inline_node *inline_node;
2812	struct inline_list *ilist;
2813	u64 addr;
2814	int ret = 1;
2815
2816	if (!symbol_conf.inline_name || !map || !sym)
2817		return ret;
2818
2819	addr = map__map_ip(map, ip);
2820	addr = map__rip_2objdump(map, addr);
2821
2822	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2823	if (!inline_node) {
2824		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2825		if (!inline_node)
2826			return ret;
2827		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2828	}
2829
2830	list_for_each_entry(ilist, &inline_node->val, list) {
2831		struct map_symbol ilist_ms = {
2832			.maps = ms->maps,
2833			.map = map,
2834			.sym = ilist->symbol,
2835		};
2836		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2837					      NULL, 0, 0, 0, ilist->srcline);
2838
2839		if (ret != 0)
2840			return ret;
2841	}
2842
2843	return ret;
2844}
2845
2846static int unwind_entry(struct unwind_entry *entry, void *arg)
2847{
2848	struct callchain_cursor *cursor = arg;
2849	const char *srcline = NULL;
2850	u64 addr = entry->ip;
2851
2852	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2853		return 0;
2854
2855	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2856		return 0;
2857
2858	/*
2859	 * Convert entry->ip from a virtual address to an offset in
2860	 * its corresponding binary.
2861	 */
2862	if (entry->ms.map)
2863		addr = map__map_ip(entry->ms.map, entry->ip);
2864
2865	srcline = callchain_srcline(&entry->ms, addr);
2866	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2867				       false, NULL, 0, 0, 0, srcline);
2868}
2869
2870static int thread__resolve_callchain_unwind(struct thread *thread,
2871					    struct callchain_cursor *cursor,
2872					    struct evsel *evsel,
2873					    struct perf_sample *sample,
2874					    int max_stack)
2875{
2876	/* Can we do dwarf post unwind? */
2877	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2878	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2879		return 0;
2880
2881	/* Bail out if nothing was captured. */
2882	if ((!sample->user_regs.regs) ||
2883	    (!sample->user_stack.size))
2884		return 0;
2885
2886	return unwind__get_entries(unwind_entry, cursor,
2887				   thread, sample, max_stack);
2888}
2889
2890int thread__resolve_callchain(struct thread *thread,
2891			      struct callchain_cursor *cursor,
2892			      struct evsel *evsel,
2893			      struct perf_sample *sample,
2894			      struct symbol **parent,
2895			      struct addr_location *root_al,
2896			      int max_stack)
2897{
2898	int ret = 0;
2899
2900	callchain_cursor_reset(cursor);
2901
2902	if (callchain_param.order == ORDER_CALLEE) {
2903		ret = thread__resolve_callchain_sample(thread, cursor,
2904						       evsel, sample,
2905						       parent, root_al,
2906						       max_stack);
2907		if (ret)
2908			return ret;
2909		ret = thread__resolve_callchain_unwind(thread, cursor,
2910						       evsel, sample,
2911						       max_stack);
2912	} else {
2913		ret = thread__resolve_callchain_unwind(thread, cursor,
2914						       evsel, sample,
2915						       max_stack);
2916		if (ret)
2917			return ret;
2918		ret = thread__resolve_callchain_sample(thread, cursor,
2919						       evsel, sample,
2920						       parent, root_al,
2921						       max_stack);
2922	}
2923
2924	return ret;
2925}
2926
2927int machine__for_each_thread(struct machine *machine,
2928			     int (*fn)(struct thread *thread, void *p),
2929			     void *priv)
2930{
2931	struct threads *threads;
2932	struct rb_node *nd;
2933	struct thread *thread;
2934	int rc = 0;
2935	int i;
2936
2937	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2938		threads = &machine->threads[i];
2939		for (nd = rb_first_cached(&threads->entries); nd;
2940		     nd = rb_next(nd)) {
2941			thread = rb_entry(nd, struct thread, rb_node);
2942			rc = fn(thread, priv);
2943			if (rc != 0)
2944				return rc;
2945		}
2946
2947		list_for_each_entry(thread, &threads->dead, node) {
2948			rc = fn(thread, priv);
2949			if (rc != 0)
2950				return rc;
2951		}
2952	}
2953	return rc;
2954}
2955
2956int machines__for_each_thread(struct machines *machines,
2957			      int (*fn)(struct thread *thread, void *p),
2958			      void *priv)
2959{
2960	struct rb_node *nd;
2961	int rc = 0;
2962
2963	rc = machine__for_each_thread(&machines->host, fn, priv);
2964	if (rc != 0)
2965		return rc;
2966
2967	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2968		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2969
2970		rc = machine__for_each_thread(machine, fn, priv);
2971		if (rc != 0)
2972			return rc;
2973	}
2974	return rc;
2975}
2976
2977pid_t machine__get_current_tid(struct machine *machine, int cpu)
2978{
2979	int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
2980
2981	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2982		return -1;
2983
2984	return machine->current_tid[cpu];
2985}
2986
2987int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2988			     pid_t tid)
2989{
2990	struct thread *thread;
2991	int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
2992
2993	if (cpu < 0)
2994		return -EINVAL;
2995
2996	if (!machine->current_tid) {
2997		int i;
2998
2999		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
3000		if (!machine->current_tid)
3001			return -ENOMEM;
3002		for (i = 0; i < nr_cpus; i++)
3003			machine->current_tid[i] = -1;
3004	}
3005
3006	if (cpu >= nr_cpus) {
3007		pr_err("Requested CPU %d too large. ", cpu);
3008		pr_err("Consider raising MAX_NR_CPUS\n");
3009		return -EINVAL;
3010	}
3011
3012	machine->current_tid[cpu] = tid;
3013
3014	thread = machine__findnew_thread(machine, pid, tid);
3015	if (!thread)
3016		return -ENOMEM;
3017
3018	thread->cpu = cpu;
3019	thread__put(thread);
3020
3021	return 0;
3022}
3023
3024/*
3025 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
3026 * normalized arch is needed.
3027 */
3028bool machine__is(struct machine *machine, const char *arch)
3029{
3030	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3031}
3032
3033int machine__nr_cpus_avail(struct machine *machine)
3034{
3035	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3036}
3037
3038int machine__get_kernel_start(struct machine *machine)
3039{
3040	struct map *map = machine__kernel_map(machine);
3041	int err = 0;
3042
3043	/*
3044	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3045	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3046	 * all addresses including kernel addresses are less than 2^32.  In
3047	 * that case (32-bit system), if the kernel mapping is unknown, all
3048	 * addresses will be assumed to be in user space - see
3049	 * machine__kernel_ip().
3050	 */
3051	machine->kernel_start = 1ULL << 63;
3052	if (map) {
3053		err = map__load(map);
3054		/*
3055		 * On x86_64, PTI entry trampolines are less than the
3056		 * start of kernel text, but still above 2^63. So leave
3057		 * kernel_start = 1ULL << 63 for x86_64.
3058		 */
3059		if (!err && !machine__is(machine, "x86_64"))
3060			machine->kernel_start = map->start;
3061	}
3062	return err;
3063}
3064
3065u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3066{
3067	u8 addr_cpumode = cpumode;
3068	bool kernel_ip;
3069
3070	if (!machine->single_address_space)
3071		goto out;
3072
3073	kernel_ip = machine__kernel_ip(machine, addr);
3074	switch (cpumode) {
3075	case PERF_RECORD_MISC_KERNEL:
3076	case PERF_RECORD_MISC_USER:
3077		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3078					   PERF_RECORD_MISC_USER;
3079		break;
3080	case PERF_RECORD_MISC_GUEST_KERNEL:
3081	case PERF_RECORD_MISC_GUEST_USER:
3082		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3083					   PERF_RECORD_MISC_GUEST_USER;
3084		break;
3085	default:
3086		break;
3087	}
3088out:
3089	return addr_cpumode;
3090}
3091
3092struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3093{
3094	return dsos__findnew_id(&machine->dsos, filename, id);
3095}
3096
3097struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3098{
3099	return machine__findnew_dso_id(machine, filename, NULL);
3100}
3101
3102char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3103{
3104	struct machine *machine = vmachine;
3105	struct map *map;
3106	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3107
3108	if (sym == NULL)
3109		return NULL;
3110
3111	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3112	*addrp = map->unmap_ip(map, sym->start);
3113	return sym->name;
3114}
3115
3116int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3117{
3118	struct dso *pos;
3119	int err = 0;
3120
3121	list_for_each_entry(pos, &machine->dsos.head, node) {
3122		if (fn(pos, machine, priv))
3123			err = -1;
3124	}
3125	return err;
3126}
3127