xref: /kernel/linux/linux-5.10/tools/perf/util/header.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2#include <errno.h>
3#include <inttypes.h>
4#include "string2.h"
5#include <sys/param.h>
6#include <sys/types.h>
7#include <byteswap.h>
8#include <unistd.h>
9#include <stdio.h>
10#include <stdlib.h>
11#include <linux/compiler.h>
12#include <linux/list.h>
13#include <linux/kernel.h>
14#include <linux/bitops.h>
15#include <linux/string.h>
16#include <linux/stringify.h>
17#include <linux/zalloc.h>
18#include <sys/stat.h>
19#include <sys/utsname.h>
20#include <linux/time64.h>
21#include <dirent.h>
22#include <bpf/libbpf.h>
23#include <perf/cpumap.h>
24
25#include "dso.h"
26#include "evlist.h"
27#include "evsel.h"
28#include "util/evsel_fprintf.h"
29#include "header.h"
30#include "memswap.h"
31#include "trace-event.h"
32#include "session.h"
33#include "symbol.h"
34#include "debug.h"
35#include "cpumap.h"
36#include "pmu.h"
37#include "vdso.h"
38#include "strbuf.h"
39#include "build-id.h"
40#include "data.h"
41#include <api/fs/fs.h>
42#include "asm/bug.h"
43#include "tool.h"
44#include "time-utils.h"
45#include "units.h"
46#include "util/util.h" // perf_exe()
47#include "cputopo.h"
48#include "bpf-event.h"
49#include "clockid.h"
50
51#include <linux/ctype.h>
52#include <internal/lib.h>
53
54/*
55 * magic2 = "PERFILE2"
56 * must be a numerical value to let the endianness
57 * determine the memory layout. That way we are able
58 * to detect endianness when reading the perf.data file
59 * back.
60 *
61 * we check for legacy (PERFFILE) format.
62 */
63static const char *__perf_magic1 = "PERFFILE";
64static const u64 __perf_magic2    = 0x32454c4946524550ULL;
65static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
66
67#define PERF_MAGIC	__perf_magic2
68
69const char perf_version_string[] = PERF_VERSION;
70
71struct perf_file_attr {
72	struct perf_event_attr	attr;
73	struct perf_file_section	ids;
74};
75
76void perf_header__set_feat(struct perf_header *header, int feat)
77{
78	set_bit(feat, header->adds_features);
79}
80
81void perf_header__clear_feat(struct perf_header *header, int feat)
82{
83	clear_bit(feat, header->adds_features);
84}
85
86bool perf_header__has_feat(const struct perf_header *header, int feat)
87{
88	return test_bit(feat, header->adds_features);
89}
90
91static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
92{
93	ssize_t ret = writen(ff->fd, buf, size);
94
95	if (ret != (ssize_t)size)
96		return ret < 0 ? (int)ret : -1;
97	return 0;
98}
99
100static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
101{
102	/* struct perf_event_header::size is u16 */
103	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
104	size_t new_size = ff->size;
105	void *addr;
106
107	if (size + ff->offset > max_size)
108		return -E2BIG;
109
110	while (size > (new_size - ff->offset))
111		new_size <<= 1;
112	new_size = min(max_size, new_size);
113
114	if (ff->size < new_size) {
115		addr = realloc(ff->buf, new_size);
116		if (!addr)
117			return -ENOMEM;
118		ff->buf = addr;
119		ff->size = new_size;
120	}
121
122	memcpy(ff->buf + ff->offset, buf, size);
123	ff->offset += size;
124
125	return 0;
126}
127
128/* Return: 0 if succeded, -ERR if failed. */
129int do_write(struct feat_fd *ff, const void *buf, size_t size)
130{
131	if (!ff->buf)
132		return __do_write_fd(ff, buf, size);
133	return __do_write_buf(ff, buf, size);
134}
135
136/* Return: 0 if succeded, -ERR if failed. */
137static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
138{
139	u64 *p = (u64 *) set;
140	int i, ret;
141
142	ret = do_write(ff, &size, sizeof(size));
143	if (ret < 0)
144		return ret;
145
146	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
147		ret = do_write(ff, p + i, sizeof(*p));
148		if (ret < 0)
149			return ret;
150	}
151
152	return 0;
153}
154
155/* Return: 0 if succeded, -ERR if failed. */
156int write_padded(struct feat_fd *ff, const void *bf,
157		 size_t count, size_t count_aligned)
158{
159	static const char zero_buf[NAME_ALIGN];
160	int err = do_write(ff, bf, count);
161
162	if (!err)
163		err = do_write(ff, zero_buf, count_aligned - count);
164
165	return err;
166}
167
168#define string_size(str)						\
169	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
170
171/* Return: 0 if succeded, -ERR if failed. */
172static int do_write_string(struct feat_fd *ff, const char *str)
173{
174	u32 len, olen;
175	int ret;
176
177	olen = strlen(str) + 1;
178	len = PERF_ALIGN(olen, NAME_ALIGN);
179
180	/* write len, incl. \0 */
181	ret = do_write(ff, &len, sizeof(len));
182	if (ret < 0)
183		return ret;
184
185	return write_padded(ff, str, olen, len);
186}
187
188static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
189{
190	ssize_t ret = readn(ff->fd, addr, size);
191
192	if (ret != size)
193		return ret < 0 ? (int)ret : -1;
194	return 0;
195}
196
197static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
198{
199	if (size > (ssize_t)ff->size - ff->offset)
200		return -1;
201
202	memcpy(addr, ff->buf + ff->offset, size);
203	ff->offset += size;
204
205	return 0;
206
207}
208
209static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
210{
211	if (!ff->buf)
212		return __do_read_fd(ff, addr, size);
213	return __do_read_buf(ff, addr, size);
214}
215
216static int do_read_u32(struct feat_fd *ff, u32 *addr)
217{
218	int ret;
219
220	ret = __do_read(ff, addr, sizeof(*addr));
221	if (ret)
222		return ret;
223
224	if (ff->ph->needs_swap)
225		*addr = bswap_32(*addr);
226	return 0;
227}
228
229static int do_read_u64(struct feat_fd *ff, u64 *addr)
230{
231	int ret;
232
233	ret = __do_read(ff, addr, sizeof(*addr));
234	if (ret)
235		return ret;
236
237	if (ff->ph->needs_swap)
238		*addr = bswap_64(*addr);
239	return 0;
240}
241
242static char *do_read_string(struct feat_fd *ff)
243{
244	u32 len;
245	char *buf;
246
247	if (do_read_u32(ff, &len))
248		return NULL;
249
250	buf = malloc(len);
251	if (!buf)
252		return NULL;
253
254	if (!__do_read(ff, buf, len)) {
255		/*
256		 * strings are padded by zeroes
257		 * thus the actual strlen of buf
258		 * may be less than len
259		 */
260		return buf;
261	}
262
263	free(buf);
264	return NULL;
265}
266
267/* Return: 0 if succeded, -ERR if failed. */
268static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
269{
270	unsigned long *set;
271	u64 size, *p;
272	int i, ret;
273
274	ret = do_read_u64(ff, &size);
275	if (ret)
276		return ret;
277
278	set = bitmap_alloc(size);
279	if (!set)
280		return -ENOMEM;
281
282	p = (u64 *) set;
283
284	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
285		ret = do_read_u64(ff, p + i);
286		if (ret < 0) {
287			free(set);
288			return ret;
289		}
290	}
291
292	*pset  = set;
293	*psize = size;
294	return 0;
295}
296
297static int write_tracing_data(struct feat_fd *ff,
298			      struct evlist *evlist)
299{
300	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
301		return -1;
302
303	return read_tracing_data(ff->fd, &evlist->core.entries);
304}
305
306static int write_build_id(struct feat_fd *ff,
307			  struct evlist *evlist __maybe_unused)
308{
309	struct perf_session *session;
310	int err;
311
312	session = container_of(ff->ph, struct perf_session, header);
313
314	if (!perf_session__read_build_ids(session, true))
315		return -1;
316
317	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
318		return -1;
319
320	err = perf_session__write_buildid_table(session, ff);
321	if (err < 0) {
322		pr_debug("failed to write buildid table\n");
323		return err;
324	}
325	perf_session__cache_build_ids(session);
326
327	return 0;
328}
329
330static int write_hostname(struct feat_fd *ff,
331			  struct evlist *evlist __maybe_unused)
332{
333	struct utsname uts;
334	int ret;
335
336	ret = uname(&uts);
337	if (ret < 0)
338		return -1;
339
340	return do_write_string(ff, uts.nodename);
341}
342
343static int write_osrelease(struct feat_fd *ff,
344			   struct evlist *evlist __maybe_unused)
345{
346	struct utsname uts;
347	int ret;
348
349	ret = uname(&uts);
350	if (ret < 0)
351		return -1;
352
353	return do_write_string(ff, uts.release);
354}
355
356static int write_arch(struct feat_fd *ff,
357		      struct evlist *evlist __maybe_unused)
358{
359	struct utsname uts;
360	int ret;
361
362	ret = uname(&uts);
363	if (ret < 0)
364		return -1;
365
366	return do_write_string(ff, uts.machine);
367}
368
369static int write_version(struct feat_fd *ff,
370			 struct evlist *evlist __maybe_unused)
371{
372	return do_write_string(ff, perf_version_string);
373}
374
375static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
376{
377	FILE *file;
378	char *buf = NULL;
379	char *s, *p;
380	const char *search = cpuinfo_proc;
381	size_t len = 0;
382	int ret = -1;
383
384	if (!search)
385		return -1;
386
387	file = fopen("/proc/cpuinfo", "r");
388	if (!file)
389		return -1;
390
391	while (getline(&buf, &len, file) > 0) {
392		ret = strncmp(buf, search, strlen(search));
393		if (!ret)
394			break;
395	}
396
397	if (ret) {
398		ret = -1;
399		goto done;
400	}
401
402	s = buf;
403
404	p = strchr(buf, ':');
405	if (p && *(p+1) == ' ' && *(p+2))
406		s = p + 2;
407	p = strchr(s, '\n');
408	if (p)
409		*p = '\0';
410
411	/* squash extra space characters (branding string) */
412	p = s;
413	while (*p) {
414		if (isspace(*p)) {
415			char *r = p + 1;
416			char *q = skip_spaces(r);
417			*p = ' ';
418			if (q != (p+1))
419				while ((*r++ = *q++));
420		}
421		p++;
422	}
423	ret = do_write_string(ff, s);
424done:
425	free(buf);
426	fclose(file);
427	return ret;
428}
429
430static int write_cpudesc(struct feat_fd *ff,
431		       struct evlist *evlist __maybe_unused)
432{
433#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
434#define CPUINFO_PROC	{ "cpu", }
435#elif defined(__s390__)
436#define CPUINFO_PROC	{ "vendor_id", }
437#elif defined(__sh__)
438#define CPUINFO_PROC	{ "cpu type", }
439#elif defined(__alpha__) || defined(__mips__)
440#define CPUINFO_PROC	{ "cpu model", }
441#elif defined(__arm__)
442#define CPUINFO_PROC	{ "model name", "Processor", }
443#elif defined(__arc__)
444#define CPUINFO_PROC	{ "Processor", }
445#elif defined(__xtensa__)
446#define CPUINFO_PROC	{ "core ID", }
447#else
448#define CPUINFO_PROC	{ "model name", }
449#endif
450	const char *cpuinfo_procs[] = CPUINFO_PROC;
451#undef CPUINFO_PROC
452	unsigned int i;
453
454	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
455		int ret;
456		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
457		if (ret >= 0)
458			return ret;
459	}
460	return -1;
461}
462
463
464static int write_nrcpus(struct feat_fd *ff,
465			struct evlist *evlist __maybe_unused)
466{
467	long nr;
468	u32 nrc, nra;
469	int ret;
470
471	nrc = cpu__max_present_cpu();
472
473	nr = sysconf(_SC_NPROCESSORS_ONLN);
474	if (nr < 0)
475		return -1;
476
477	nra = (u32)(nr & UINT_MAX);
478
479	ret = do_write(ff, &nrc, sizeof(nrc));
480	if (ret < 0)
481		return ret;
482
483	return do_write(ff, &nra, sizeof(nra));
484}
485
486static int write_event_desc(struct feat_fd *ff,
487			    struct evlist *evlist)
488{
489	struct evsel *evsel;
490	u32 nre, nri, sz;
491	int ret;
492
493	nre = evlist->core.nr_entries;
494
495	/*
496	 * write number of events
497	 */
498	ret = do_write(ff, &nre, sizeof(nre));
499	if (ret < 0)
500		return ret;
501
502	/*
503	 * size of perf_event_attr struct
504	 */
505	sz = (u32)sizeof(evsel->core.attr);
506	ret = do_write(ff, &sz, sizeof(sz));
507	if (ret < 0)
508		return ret;
509
510	evlist__for_each_entry(evlist, evsel) {
511		ret = do_write(ff, &evsel->core.attr, sz);
512		if (ret < 0)
513			return ret;
514		/*
515		 * write number of unique id per event
516		 * there is one id per instance of an event
517		 *
518		 * copy into an nri to be independent of the
519		 * type of ids,
520		 */
521		nri = evsel->core.ids;
522		ret = do_write(ff, &nri, sizeof(nri));
523		if (ret < 0)
524			return ret;
525
526		/*
527		 * write event string as passed on cmdline
528		 */
529		ret = do_write_string(ff, evsel__name(evsel));
530		if (ret < 0)
531			return ret;
532		/*
533		 * write unique ids for this event
534		 */
535		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
536		if (ret < 0)
537			return ret;
538	}
539	return 0;
540}
541
542static int write_cmdline(struct feat_fd *ff,
543			 struct evlist *evlist __maybe_unused)
544{
545	char pbuf[MAXPATHLEN], *buf;
546	int i, ret, n;
547
548	/* actual path to perf binary */
549	buf = perf_exe(pbuf, MAXPATHLEN);
550
551	/* account for binary path */
552	n = perf_env.nr_cmdline + 1;
553
554	ret = do_write(ff, &n, sizeof(n));
555	if (ret < 0)
556		return ret;
557
558	ret = do_write_string(ff, buf);
559	if (ret < 0)
560		return ret;
561
562	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
563		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
564		if (ret < 0)
565			return ret;
566	}
567	return 0;
568}
569
570
571static int write_cpu_topology(struct feat_fd *ff,
572			      struct evlist *evlist __maybe_unused)
573{
574	struct cpu_topology *tp;
575	u32 i;
576	int ret, j;
577
578	tp = cpu_topology__new();
579	if (!tp)
580		return -1;
581
582	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
583	if (ret < 0)
584		goto done;
585
586	for (i = 0; i < tp->core_sib; i++) {
587		ret = do_write_string(ff, tp->core_siblings[i]);
588		if (ret < 0)
589			goto done;
590	}
591	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
592	if (ret < 0)
593		goto done;
594
595	for (i = 0; i < tp->thread_sib; i++) {
596		ret = do_write_string(ff, tp->thread_siblings[i]);
597		if (ret < 0)
598			break;
599	}
600
601	ret = perf_env__read_cpu_topology_map(&perf_env);
602	if (ret < 0)
603		goto done;
604
605	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
606		ret = do_write(ff, &perf_env.cpu[j].core_id,
607			       sizeof(perf_env.cpu[j].core_id));
608		if (ret < 0)
609			return ret;
610		ret = do_write(ff, &perf_env.cpu[j].socket_id,
611			       sizeof(perf_env.cpu[j].socket_id));
612		if (ret < 0)
613			return ret;
614	}
615
616	if (!tp->die_sib)
617		goto done;
618
619	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
620	if (ret < 0)
621		goto done;
622
623	for (i = 0; i < tp->die_sib; i++) {
624		ret = do_write_string(ff, tp->die_siblings[i]);
625		if (ret < 0)
626			goto done;
627	}
628
629	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
630		ret = do_write(ff, &perf_env.cpu[j].die_id,
631			       sizeof(perf_env.cpu[j].die_id));
632		if (ret < 0)
633			return ret;
634	}
635
636done:
637	cpu_topology__delete(tp);
638	return ret;
639}
640
641
642
643static int write_total_mem(struct feat_fd *ff,
644			   struct evlist *evlist __maybe_unused)
645{
646	char *buf = NULL;
647	FILE *fp;
648	size_t len = 0;
649	int ret = -1, n;
650	uint64_t mem;
651
652	fp = fopen("/proc/meminfo", "r");
653	if (!fp)
654		return -1;
655
656	while (getline(&buf, &len, fp) > 0) {
657		ret = strncmp(buf, "MemTotal:", 9);
658		if (!ret)
659			break;
660	}
661	if (!ret) {
662		n = sscanf(buf, "%*s %"PRIu64, &mem);
663		if (n == 1)
664			ret = do_write(ff, &mem, sizeof(mem));
665	} else
666		ret = -1;
667	free(buf);
668	fclose(fp);
669	return ret;
670}
671
672static int write_numa_topology(struct feat_fd *ff,
673			       struct evlist *evlist __maybe_unused)
674{
675	struct numa_topology *tp;
676	int ret = -1;
677	u32 i;
678
679	tp = numa_topology__new();
680	if (!tp)
681		return -ENOMEM;
682
683	ret = do_write(ff, &tp->nr, sizeof(u32));
684	if (ret < 0)
685		goto err;
686
687	for (i = 0; i < tp->nr; i++) {
688		struct numa_topology_node *n = &tp->nodes[i];
689
690		ret = do_write(ff, &n->node, sizeof(u32));
691		if (ret < 0)
692			goto err;
693
694		ret = do_write(ff, &n->mem_total, sizeof(u64));
695		if (ret)
696			goto err;
697
698		ret = do_write(ff, &n->mem_free, sizeof(u64));
699		if (ret)
700			goto err;
701
702		ret = do_write_string(ff, n->cpus);
703		if (ret < 0)
704			goto err;
705	}
706
707	ret = 0;
708
709err:
710	numa_topology__delete(tp);
711	return ret;
712}
713
714/*
715 * File format:
716 *
717 * struct pmu_mappings {
718 *	u32	pmu_num;
719 *	struct pmu_map {
720 *		u32	type;
721 *		char	name[];
722 *	}[pmu_num];
723 * };
724 */
725
726static int write_pmu_mappings(struct feat_fd *ff,
727			      struct evlist *evlist __maybe_unused)
728{
729	struct perf_pmu *pmu = NULL;
730	u32 pmu_num = 0;
731	int ret;
732
733	/*
734	 * Do a first pass to count number of pmu to avoid lseek so this
735	 * works in pipe mode as well.
736	 */
737	while ((pmu = perf_pmu__scan(pmu))) {
738		if (!pmu->name)
739			continue;
740		pmu_num++;
741	}
742
743	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
744	if (ret < 0)
745		return ret;
746
747	while ((pmu = perf_pmu__scan(pmu))) {
748		if (!pmu->name)
749			continue;
750
751		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
752		if (ret < 0)
753			return ret;
754
755		ret = do_write_string(ff, pmu->name);
756		if (ret < 0)
757			return ret;
758	}
759
760	return 0;
761}
762
763/*
764 * File format:
765 *
766 * struct group_descs {
767 *	u32	nr_groups;
768 *	struct group_desc {
769 *		char	name[];
770 *		u32	leader_idx;
771 *		u32	nr_members;
772 *	}[nr_groups];
773 * };
774 */
775static int write_group_desc(struct feat_fd *ff,
776			    struct evlist *evlist)
777{
778	u32 nr_groups = evlist->nr_groups;
779	struct evsel *evsel;
780	int ret;
781
782	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
783	if (ret < 0)
784		return ret;
785
786	evlist__for_each_entry(evlist, evsel) {
787		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
788			const char *name = evsel->group_name ?: "{anon_group}";
789			u32 leader_idx = evsel->idx;
790			u32 nr_members = evsel->core.nr_members;
791
792			ret = do_write_string(ff, name);
793			if (ret < 0)
794				return ret;
795
796			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797			if (ret < 0)
798				return ret;
799
800			ret = do_write(ff, &nr_members, sizeof(nr_members));
801			if (ret < 0)
802				return ret;
803		}
804	}
805	return 0;
806}
807
808/*
809 * Return the CPU id as a raw string.
810 *
811 * Each architecture should provide a more precise id string that
812 * can be use to match the architecture's "mapfile".
813 */
814char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
815{
816	return NULL;
817}
818
819/* Return zero when the cpuid from the mapfile.csv matches the
820 * cpuid string generated on this platform.
821 * Otherwise return non-zero.
822 */
823int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
824{
825	regex_t re;
826	regmatch_t pmatch[1];
827	int match;
828
829	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
830		/* Warn unable to generate match particular string. */
831		pr_info("Invalid regular expression %s\n", mapcpuid);
832		return 1;
833	}
834
835	match = !regexec(&re, cpuid, 1, pmatch, 0);
836	regfree(&re);
837	if (match) {
838		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
839
840		/* Verify the entire string matched. */
841		if (match_len == strlen(cpuid))
842			return 0;
843	}
844	return 1;
845}
846
847/*
848 * default get_cpuid(): nothing gets recorded
849 * actual implementation must be in arch/$(SRCARCH)/util/header.c
850 */
851int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
852{
853	return ENOSYS; /* Not implemented */
854}
855
856static int write_cpuid(struct feat_fd *ff,
857		       struct evlist *evlist __maybe_unused)
858{
859	char buffer[64];
860	int ret;
861
862	ret = get_cpuid(buffer, sizeof(buffer));
863	if (ret)
864		return -1;
865
866	return do_write_string(ff, buffer);
867}
868
869static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870			      struct evlist *evlist __maybe_unused)
871{
872	return 0;
873}
874
875static int write_auxtrace(struct feat_fd *ff,
876			  struct evlist *evlist __maybe_unused)
877{
878	struct perf_session *session;
879	int err;
880
881	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
882		return -1;
883
884	session = container_of(ff->ph, struct perf_session, header);
885
886	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887	if (err < 0)
888		pr_err("Failed to write auxtrace index\n");
889	return err;
890}
891
892static int write_clockid(struct feat_fd *ff,
893			 struct evlist *evlist __maybe_unused)
894{
895	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
896			sizeof(ff->ph->env.clock.clockid_res_ns));
897}
898
899static int write_clock_data(struct feat_fd *ff,
900			    struct evlist *evlist __maybe_unused)
901{
902	u64 *data64;
903	u32 data32;
904	int ret;
905
906	/* version */
907	data32 = 1;
908
909	ret = do_write(ff, &data32, sizeof(data32));
910	if (ret < 0)
911		return ret;
912
913	/* clockid */
914	data32 = ff->ph->env.clock.clockid;
915
916	ret = do_write(ff, &data32, sizeof(data32));
917	if (ret < 0)
918		return ret;
919
920	/* TOD ref time */
921	data64 = &ff->ph->env.clock.tod_ns;
922
923	ret = do_write(ff, data64, sizeof(*data64));
924	if (ret < 0)
925		return ret;
926
927	/* clockid ref time */
928	data64 = &ff->ph->env.clock.clockid_ns;
929
930	return do_write(ff, data64, sizeof(*data64));
931}
932
933static int write_dir_format(struct feat_fd *ff,
934			    struct evlist *evlist __maybe_unused)
935{
936	struct perf_session *session;
937	struct perf_data *data;
938
939	session = container_of(ff->ph, struct perf_session, header);
940	data = session->data;
941
942	if (WARN_ON(!perf_data__is_dir(data)))
943		return -1;
944
945	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
946}
947
948#ifdef HAVE_LIBBPF_SUPPORT
949static int write_bpf_prog_info(struct feat_fd *ff,
950			       struct evlist *evlist __maybe_unused)
951{
952	struct perf_env *env = &ff->ph->env;
953	struct rb_root *root;
954	struct rb_node *next;
955	int ret;
956
957	down_read(&env->bpf_progs.lock);
958
959	ret = do_write(ff, &env->bpf_progs.infos_cnt,
960		       sizeof(env->bpf_progs.infos_cnt));
961	if (ret < 0)
962		goto out;
963
964	root = &env->bpf_progs.infos;
965	next = rb_first(root);
966	while (next) {
967		struct bpf_prog_info_node *node;
968		size_t len;
969
970		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
971		next = rb_next(&node->rb_node);
972		len = sizeof(struct bpf_prog_info_linear) +
973			node->info_linear->data_len;
974
975		/* before writing to file, translate address to offset */
976		bpf_program__bpil_addr_to_offs(node->info_linear);
977		ret = do_write(ff, node->info_linear, len);
978		/*
979		 * translate back to address even when do_write() fails,
980		 * so that this function never changes the data.
981		 */
982		bpf_program__bpil_offs_to_addr(node->info_linear);
983		if (ret < 0)
984			goto out;
985	}
986out:
987	up_read(&env->bpf_progs.lock);
988	return ret;
989}
990#else // HAVE_LIBBPF_SUPPORT
991static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
992			       struct evlist *evlist __maybe_unused)
993{
994	return 0;
995}
996#endif // HAVE_LIBBPF_SUPPORT
997
998static int write_bpf_btf(struct feat_fd *ff,
999			 struct evlist *evlist __maybe_unused)
1000{
1001	struct perf_env *env = &ff->ph->env;
1002	struct rb_root *root;
1003	struct rb_node *next;
1004	int ret;
1005
1006	down_read(&env->bpf_progs.lock);
1007
1008	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1009		       sizeof(env->bpf_progs.btfs_cnt));
1010
1011	if (ret < 0)
1012		goto out;
1013
1014	root = &env->bpf_progs.btfs;
1015	next = rb_first(root);
1016	while (next) {
1017		struct btf_node *node;
1018
1019		node = rb_entry(next, struct btf_node, rb_node);
1020		next = rb_next(&node->rb_node);
1021		ret = do_write(ff, &node->id,
1022			       sizeof(u32) * 2 + node->data_size);
1023		if (ret < 0)
1024			goto out;
1025	}
1026out:
1027	up_read(&env->bpf_progs.lock);
1028	return ret;
1029}
1030
1031static int cpu_cache_level__sort(const void *a, const void *b)
1032{
1033	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1034	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1035
1036	return cache_a->level - cache_b->level;
1037}
1038
1039static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1040{
1041	if (a->level != b->level)
1042		return false;
1043
1044	if (a->line_size != b->line_size)
1045		return false;
1046
1047	if (a->sets != b->sets)
1048		return false;
1049
1050	if (a->ways != b->ways)
1051		return false;
1052
1053	if (strcmp(a->type, b->type))
1054		return false;
1055
1056	if (strcmp(a->size, b->size))
1057		return false;
1058
1059	if (strcmp(a->map, b->map))
1060		return false;
1061
1062	return true;
1063}
1064
1065static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1066{
1067	char path[PATH_MAX], file[PATH_MAX];
1068	struct stat st;
1069	size_t len;
1070
1071	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1072	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1073
1074	if (stat(file, &st))
1075		return 1;
1076
1077	scnprintf(file, PATH_MAX, "%s/level", path);
1078	if (sysfs__read_int(file, (int *) &cache->level))
1079		return -1;
1080
1081	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1082	if (sysfs__read_int(file, (int *) &cache->line_size))
1083		return -1;
1084
1085	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1086	if (sysfs__read_int(file, (int *) &cache->sets))
1087		return -1;
1088
1089	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1090	if (sysfs__read_int(file, (int *) &cache->ways))
1091		return -1;
1092
1093	scnprintf(file, PATH_MAX, "%s/type", path);
1094	if (sysfs__read_str(file, &cache->type, &len))
1095		return -1;
1096
1097	cache->type[len] = 0;
1098	cache->type = strim(cache->type);
1099
1100	scnprintf(file, PATH_MAX, "%s/size", path);
1101	if (sysfs__read_str(file, &cache->size, &len)) {
1102		zfree(&cache->type);
1103		return -1;
1104	}
1105
1106	cache->size[len] = 0;
1107	cache->size = strim(cache->size);
1108
1109	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1110	if (sysfs__read_str(file, &cache->map, &len)) {
1111		zfree(&cache->size);
1112		zfree(&cache->type);
1113		return -1;
1114	}
1115
1116	cache->map[len] = 0;
1117	cache->map = strim(cache->map);
1118	return 0;
1119}
1120
1121static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1122{
1123	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1124}
1125
1126#define MAX_CACHE_LVL 4
1127
1128static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1129{
1130	u32 i, cnt = 0;
1131	u32 nr, cpu;
1132	u16 level;
1133
1134	nr = cpu__max_cpu();
1135
1136	for (cpu = 0; cpu < nr; cpu++) {
1137		for (level = 0; level < MAX_CACHE_LVL; level++) {
1138			struct cpu_cache_level c;
1139			int err;
1140
1141			err = cpu_cache_level__read(&c, cpu, level);
1142			if (err < 0)
1143				return err;
1144
1145			if (err == 1)
1146				break;
1147
1148			for (i = 0; i < cnt; i++) {
1149				if (cpu_cache_level__cmp(&c, &caches[i]))
1150					break;
1151			}
1152
1153			if (i == cnt)
1154				caches[cnt++] = c;
1155			else
1156				cpu_cache_level__free(&c);
1157		}
1158	}
1159	*cntp = cnt;
1160	return 0;
1161}
1162
1163static int write_cache(struct feat_fd *ff,
1164		       struct evlist *evlist __maybe_unused)
1165{
1166	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1167	struct cpu_cache_level caches[max_caches];
1168	u32 cnt = 0, i, version = 1;
1169	int ret;
1170
1171	ret = build_caches(caches, &cnt);
1172	if (ret)
1173		goto out;
1174
1175	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1176
1177	ret = do_write(ff, &version, sizeof(u32));
1178	if (ret < 0)
1179		goto out;
1180
1181	ret = do_write(ff, &cnt, sizeof(u32));
1182	if (ret < 0)
1183		goto out;
1184
1185	for (i = 0; i < cnt; i++) {
1186		struct cpu_cache_level *c = &caches[i];
1187
1188		#define _W(v)					\
1189			ret = do_write(ff, &c->v, sizeof(u32));	\
1190			if (ret < 0)				\
1191				goto out;
1192
1193		_W(level)
1194		_W(line_size)
1195		_W(sets)
1196		_W(ways)
1197		#undef _W
1198
1199		#define _W(v)						\
1200			ret = do_write_string(ff, (const char *) c->v);	\
1201			if (ret < 0)					\
1202				goto out;
1203
1204		_W(type)
1205		_W(size)
1206		_W(map)
1207		#undef _W
1208	}
1209
1210out:
1211	for (i = 0; i < cnt; i++)
1212		cpu_cache_level__free(&caches[i]);
1213	return ret;
1214}
1215
1216static int write_stat(struct feat_fd *ff __maybe_unused,
1217		      struct evlist *evlist __maybe_unused)
1218{
1219	return 0;
1220}
1221
1222static int write_sample_time(struct feat_fd *ff,
1223			     struct evlist *evlist)
1224{
1225	int ret;
1226
1227	ret = do_write(ff, &evlist->first_sample_time,
1228		       sizeof(evlist->first_sample_time));
1229	if (ret < 0)
1230		return ret;
1231
1232	return do_write(ff, &evlist->last_sample_time,
1233			sizeof(evlist->last_sample_time));
1234}
1235
1236
1237static int memory_node__read(struct memory_node *n, unsigned long idx)
1238{
1239	unsigned int phys, size = 0;
1240	char path[PATH_MAX];
1241	struct dirent *ent;
1242	DIR *dir;
1243
1244#define for_each_memory(mem, dir)					\
1245	while ((ent = readdir(dir)))					\
1246		if (strcmp(ent->d_name, ".") &&				\
1247		    strcmp(ent->d_name, "..") &&			\
1248		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1249
1250	scnprintf(path, PATH_MAX,
1251		  "%s/devices/system/node/node%lu",
1252		  sysfs__mountpoint(), idx);
1253
1254	dir = opendir(path);
1255	if (!dir) {
1256		pr_warning("failed: cant' open memory sysfs data\n");
1257		return -1;
1258	}
1259
1260	for_each_memory(phys, dir) {
1261		size = max(phys, size);
1262	}
1263
1264	size++;
1265
1266	n->set = bitmap_alloc(size);
1267	if (!n->set) {
1268		closedir(dir);
1269		return -ENOMEM;
1270	}
1271
1272	n->node = idx;
1273	n->size = size;
1274
1275	rewinddir(dir);
1276
1277	for_each_memory(phys, dir) {
1278		set_bit(phys, n->set);
1279	}
1280
1281	closedir(dir);
1282	return 0;
1283}
1284
1285static int memory_node__sort(const void *a, const void *b)
1286{
1287	const struct memory_node *na = a;
1288	const struct memory_node *nb = b;
1289
1290	return na->node - nb->node;
1291}
1292
1293static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1294{
1295	char path[PATH_MAX];
1296	struct dirent *ent;
1297	DIR *dir;
1298	u64 cnt = 0;
1299	int ret = 0;
1300
1301	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1302		  sysfs__mountpoint());
1303
1304	dir = opendir(path);
1305	if (!dir) {
1306		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1307			  __func__, path);
1308		return -1;
1309	}
1310
1311	while (!ret && (ent = readdir(dir))) {
1312		unsigned int idx;
1313		int r;
1314
1315		if (!strcmp(ent->d_name, ".") ||
1316		    !strcmp(ent->d_name, ".."))
1317			continue;
1318
1319		r = sscanf(ent->d_name, "node%u", &idx);
1320		if (r != 1)
1321			continue;
1322
1323		if (WARN_ONCE(cnt >= size,
1324			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1325			closedir(dir);
1326			return -1;
1327		}
1328
1329		ret = memory_node__read(&nodes[cnt++], idx);
1330	}
1331
1332	*cntp = cnt;
1333	closedir(dir);
1334
1335	if (!ret)
1336		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1337
1338	return ret;
1339}
1340
1341#define MAX_MEMORY_NODES 2000
1342
1343/*
1344 * The MEM_TOPOLOGY holds physical memory map for every
1345 * node in system. The format of data is as follows:
1346 *
1347 *  0 - version          | for future changes
1348 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1349 * 16 - count            | number of nodes
1350 *
1351 * For each node we store map of physical indexes for
1352 * each node:
1353 *
1354 * 32 - node id          | node index
1355 * 40 - size             | size of bitmap
1356 * 48 - bitmap           | bitmap of memory indexes that belongs to node
1357 */
1358static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1359			      struct evlist *evlist __maybe_unused)
1360{
1361	static struct memory_node nodes[MAX_MEMORY_NODES];
1362	u64 bsize, version = 1, i, nr;
1363	int ret;
1364
1365	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1366			      (unsigned long long *) &bsize);
1367	if (ret)
1368		return ret;
1369
1370	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1371	if (ret)
1372		return ret;
1373
1374	ret = do_write(ff, &version, sizeof(version));
1375	if (ret < 0)
1376		goto out;
1377
1378	ret = do_write(ff, &bsize, sizeof(bsize));
1379	if (ret < 0)
1380		goto out;
1381
1382	ret = do_write(ff, &nr, sizeof(nr));
1383	if (ret < 0)
1384		goto out;
1385
1386	for (i = 0; i < nr; i++) {
1387		struct memory_node *n = &nodes[i];
1388
1389		#define _W(v)						\
1390			ret = do_write(ff, &n->v, sizeof(n->v));	\
1391			if (ret < 0)					\
1392				goto out;
1393
1394		_W(node)
1395		_W(size)
1396
1397		#undef _W
1398
1399		ret = do_write_bitmap(ff, n->set, n->size);
1400		if (ret < 0)
1401			goto out;
1402	}
1403
1404out:
1405	return ret;
1406}
1407
1408static int write_compressed(struct feat_fd *ff __maybe_unused,
1409			    struct evlist *evlist __maybe_unused)
1410{
1411	int ret;
1412
1413	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1414	if (ret)
1415		return ret;
1416
1417	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1418	if (ret)
1419		return ret;
1420
1421	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1422	if (ret)
1423		return ret;
1424
1425	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1426	if (ret)
1427		return ret;
1428
1429	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1430}
1431
1432static int write_cpu_pmu_caps(struct feat_fd *ff,
1433			      struct evlist *evlist __maybe_unused)
1434{
1435	struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1436	struct perf_pmu_caps *caps = NULL;
1437	int nr_caps;
1438	int ret;
1439
1440	if (!cpu_pmu)
1441		return -ENOENT;
1442
1443	nr_caps = perf_pmu__caps_parse(cpu_pmu);
1444	if (nr_caps < 0)
1445		return nr_caps;
1446
1447	ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1448	if (ret < 0)
1449		return ret;
1450
1451	list_for_each_entry(caps, &cpu_pmu->caps, list) {
1452		ret = do_write_string(ff, caps->name);
1453		if (ret < 0)
1454			return ret;
1455
1456		ret = do_write_string(ff, caps->value);
1457		if (ret < 0)
1458			return ret;
1459	}
1460
1461	return ret;
1462}
1463
1464static void print_hostname(struct feat_fd *ff, FILE *fp)
1465{
1466	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1467}
1468
1469static void print_osrelease(struct feat_fd *ff, FILE *fp)
1470{
1471	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1472}
1473
1474static void print_arch(struct feat_fd *ff, FILE *fp)
1475{
1476	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1477}
1478
1479static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1480{
1481	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1482}
1483
1484static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1485{
1486	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1487	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1488}
1489
1490static void print_version(struct feat_fd *ff, FILE *fp)
1491{
1492	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1493}
1494
1495static void print_cmdline(struct feat_fd *ff, FILE *fp)
1496{
1497	int nr, i;
1498
1499	nr = ff->ph->env.nr_cmdline;
1500
1501	fprintf(fp, "# cmdline : ");
1502
1503	for (i = 0; i < nr; i++) {
1504		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1505		if (!argv_i) {
1506			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1507		} else {
1508			char *mem = argv_i;
1509			do {
1510				char *quote = strchr(argv_i, '\'');
1511				if (!quote)
1512					break;
1513				*quote++ = '\0';
1514				fprintf(fp, "%s\\\'", argv_i);
1515				argv_i = quote;
1516			} while (1);
1517			fprintf(fp, "%s ", argv_i);
1518			free(mem);
1519		}
1520	}
1521	fputc('\n', fp);
1522}
1523
1524static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1525{
1526	struct perf_header *ph = ff->ph;
1527	int cpu_nr = ph->env.nr_cpus_avail;
1528	int nr, i;
1529	char *str;
1530
1531	nr = ph->env.nr_sibling_cores;
1532	str = ph->env.sibling_cores;
1533
1534	for (i = 0; i < nr; i++) {
1535		fprintf(fp, "# sibling sockets : %s\n", str);
1536		str += strlen(str) + 1;
1537	}
1538
1539	if (ph->env.nr_sibling_dies) {
1540		nr = ph->env.nr_sibling_dies;
1541		str = ph->env.sibling_dies;
1542
1543		for (i = 0; i < nr; i++) {
1544			fprintf(fp, "# sibling dies    : %s\n", str);
1545			str += strlen(str) + 1;
1546		}
1547	}
1548
1549	nr = ph->env.nr_sibling_threads;
1550	str = ph->env.sibling_threads;
1551
1552	for (i = 0; i < nr; i++) {
1553		fprintf(fp, "# sibling threads : %s\n", str);
1554		str += strlen(str) + 1;
1555	}
1556
1557	if (ph->env.nr_sibling_dies) {
1558		if (ph->env.cpu != NULL) {
1559			for (i = 0; i < cpu_nr; i++)
1560				fprintf(fp, "# CPU %d: Core ID %d, "
1561					    "Die ID %d, Socket ID %d\n",
1562					    i, ph->env.cpu[i].core_id,
1563					    ph->env.cpu[i].die_id,
1564					    ph->env.cpu[i].socket_id);
1565		} else
1566			fprintf(fp, "# Core ID, Die ID and Socket ID "
1567				    "information is not available\n");
1568	} else {
1569		if (ph->env.cpu != NULL) {
1570			for (i = 0; i < cpu_nr; i++)
1571				fprintf(fp, "# CPU %d: Core ID %d, "
1572					    "Socket ID %d\n",
1573					    i, ph->env.cpu[i].core_id,
1574					    ph->env.cpu[i].socket_id);
1575		} else
1576			fprintf(fp, "# Core ID and Socket ID "
1577				    "information is not available\n");
1578	}
1579}
1580
1581static void print_clockid(struct feat_fd *ff, FILE *fp)
1582{
1583	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1584		ff->ph->env.clock.clockid_res_ns * 1000);
1585}
1586
1587static void print_clock_data(struct feat_fd *ff, FILE *fp)
1588{
1589	struct timespec clockid_ns;
1590	char tstr[64], date[64];
1591	struct timeval tod_ns;
1592	clockid_t clockid;
1593	struct tm ltime;
1594	u64 ref;
1595
1596	if (!ff->ph->env.clock.enabled) {
1597		fprintf(fp, "# reference time disabled\n");
1598		return;
1599	}
1600
1601	/* Compute TOD time. */
1602	ref = ff->ph->env.clock.tod_ns;
1603	tod_ns.tv_sec = ref / NSEC_PER_SEC;
1604	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1605	tod_ns.tv_usec = ref / NSEC_PER_USEC;
1606
1607	/* Compute clockid time. */
1608	ref = ff->ph->env.clock.clockid_ns;
1609	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1610	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1611	clockid_ns.tv_nsec = ref;
1612
1613	clockid = ff->ph->env.clock.clockid;
1614
1615	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1616		snprintf(tstr, sizeof(tstr), "<error>");
1617	else {
1618		strftime(date, sizeof(date), "%F %T", &ltime);
1619		scnprintf(tstr, sizeof(tstr), "%s.%06d",
1620			  date, (int) tod_ns.tv_usec);
1621	}
1622
1623	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1624	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1625		    tstr, tod_ns.tv_sec, (int) tod_ns.tv_usec,
1626		    clockid_ns.tv_sec, clockid_ns.tv_nsec,
1627		    clockid_name(clockid));
1628}
1629
1630static void print_dir_format(struct feat_fd *ff, FILE *fp)
1631{
1632	struct perf_session *session;
1633	struct perf_data *data;
1634
1635	session = container_of(ff->ph, struct perf_session, header);
1636	data = session->data;
1637
1638	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1639}
1640
1641static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1642{
1643	struct perf_env *env = &ff->ph->env;
1644	struct rb_root *root;
1645	struct rb_node *next;
1646
1647	down_read(&env->bpf_progs.lock);
1648
1649	root = &env->bpf_progs.infos;
1650	next = rb_first(root);
1651
1652	while (next) {
1653		struct bpf_prog_info_node *node;
1654
1655		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1656		next = rb_next(&node->rb_node);
1657
1658		__bpf_event__print_bpf_prog_info(&node->info_linear->info,
1659						 env, fp);
1660	}
1661
1662	up_read(&env->bpf_progs.lock);
1663}
1664
1665static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1666{
1667	struct perf_env *env = &ff->ph->env;
1668	struct rb_root *root;
1669	struct rb_node *next;
1670
1671	down_read(&env->bpf_progs.lock);
1672
1673	root = &env->bpf_progs.btfs;
1674	next = rb_first(root);
1675
1676	while (next) {
1677		struct btf_node *node;
1678
1679		node = rb_entry(next, struct btf_node, rb_node);
1680		next = rb_next(&node->rb_node);
1681		fprintf(fp, "# btf info of id %u\n", node->id);
1682	}
1683
1684	up_read(&env->bpf_progs.lock);
1685}
1686
1687static void free_event_desc(struct evsel *events)
1688{
1689	struct evsel *evsel;
1690
1691	if (!events)
1692		return;
1693
1694	for (evsel = events; evsel->core.attr.size; evsel++) {
1695		zfree(&evsel->name);
1696		zfree(&evsel->core.id);
1697	}
1698
1699	free(events);
1700}
1701
1702static bool perf_attr_check(struct perf_event_attr *attr)
1703{
1704	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1705		pr_warning("Reserved bits are set unexpectedly. "
1706			   "Please update perf tool.\n");
1707		return false;
1708	}
1709
1710	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1711		pr_warning("Unknown sample type (0x%llx) is detected. "
1712			   "Please update perf tool.\n",
1713			   attr->sample_type);
1714		return false;
1715	}
1716
1717	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1718		pr_warning("Unknown read format (0x%llx) is detected. "
1719			   "Please update perf tool.\n",
1720			   attr->read_format);
1721		return false;
1722	}
1723
1724	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1725	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1726		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1727			   "Please update perf tool.\n",
1728			   attr->branch_sample_type);
1729
1730		return false;
1731	}
1732
1733	return true;
1734}
1735
1736static struct evsel *read_event_desc(struct feat_fd *ff)
1737{
1738	struct evsel *evsel, *events = NULL;
1739	u64 *id;
1740	void *buf = NULL;
1741	u32 nre, sz, nr, i, j;
1742	size_t msz;
1743
1744	/* number of events */
1745	if (do_read_u32(ff, &nre))
1746		goto error;
1747
1748	if (do_read_u32(ff, &sz))
1749		goto error;
1750
1751	/* buffer to hold on file attr struct */
1752	buf = malloc(sz);
1753	if (!buf)
1754		goto error;
1755
1756	/* the last event terminates with evsel->core.attr.size == 0: */
1757	events = calloc(nre + 1, sizeof(*events));
1758	if (!events)
1759		goto error;
1760
1761	msz = sizeof(evsel->core.attr);
1762	if (sz < msz)
1763		msz = sz;
1764
1765	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1766		evsel->idx = i;
1767
1768		/*
1769		 * must read entire on-file attr struct to
1770		 * sync up with layout.
1771		 */
1772		if (__do_read(ff, buf, sz))
1773			goto error;
1774
1775		if (ff->ph->needs_swap)
1776			perf_event__attr_swap(buf);
1777
1778		memcpy(&evsel->core.attr, buf, msz);
1779
1780		if (!perf_attr_check(&evsel->core.attr))
1781			goto error;
1782
1783		if (do_read_u32(ff, &nr))
1784			goto error;
1785
1786		if (ff->ph->needs_swap)
1787			evsel->needs_swap = true;
1788
1789		evsel->name = do_read_string(ff);
1790		if (!evsel->name)
1791			goto error;
1792
1793		if (!nr)
1794			continue;
1795
1796		id = calloc(nr, sizeof(*id));
1797		if (!id)
1798			goto error;
1799		evsel->core.ids = nr;
1800		evsel->core.id = id;
1801
1802		for (j = 0 ; j < nr; j++) {
1803			if (do_read_u64(ff, id))
1804				goto error;
1805			id++;
1806		}
1807	}
1808out:
1809	free(buf);
1810	return events;
1811error:
1812	free_event_desc(events);
1813	events = NULL;
1814	goto out;
1815}
1816
1817static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1818				void *priv __maybe_unused)
1819{
1820	return fprintf(fp, ", %s = %s", name, val);
1821}
1822
1823static void print_event_desc(struct feat_fd *ff, FILE *fp)
1824{
1825	struct evsel *evsel, *events;
1826	u32 j;
1827	u64 *id;
1828
1829	if (ff->events)
1830		events = ff->events;
1831	else
1832		events = read_event_desc(ff);
1833
1834	if (!events) {
1835		fprintf(fp, "# event desc: not available or unable to read\n");
1836		return;
1837	}
1838
1839	for (evsel = events; evsel->core.attr.size; evsel++) {
1840		fprintf(fp, "# event : name = %s, ", evsel->name);
1841
1842		if (evsel->core.ids) {
1843			fprintf(fp, ", id = {");
1844			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1845				if (j)
1846					fputc(',', fp);
1847				fprintf(fp, " %"PRIu64, *id);
1848			}
1849			fprintf(fp, " }");
1850		}
1851
1852		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1853
1854		fputc('\n', fp);
1855	}
1856
1857	free_event_desc(events);
1858	ff->events = NULL;
1859}
1860
1861static void print_total_mem(struct feat_fd *ff, FILE *fp)
1862{
1863	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1864}
1865
1866static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1867{
1868	int i;
1869	struct numa_node *n;
1870
1871	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1872		n = &ff->ph->env.numa_nodes[i];
1873
1874		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1875			    " free = %"PRIu64" kB\n",
1876			n->node, n->mem_total, n->mem_free);
1877
1878		fprintf(fp, "# node%u cpu list : ", n->node);
1879		cpu_map__fprintf(n->map, fp);
1880	}
1881}
1882
1883static void print_cpuid(struct feat_fd *ff, FILE *fp)
1884{
1885	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1886}
1887
1888static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1889{
1890	fprintf(fp, "# contains samples with branch stack\n");
1891}
1892
1893static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1894{
1895	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1896}
1897
1898static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1899{
1900	fprintf(fp, "# contains stat data\n");
1901}
1902
1903static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1904{
1905	int i;
1906
1907	fprintf(fp, "# CPU cache info:\n");
1908	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1909		fprintf(fp, "#  ");
1910		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1911	}
1912}
1913
1914static void print_compressed(struct feat_fd *ff, FILE *fp)
1915{
1916	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1917		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1918		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1919}
1920
1921static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
1922{
1923	const char *delimiter = "# cpu pmu capabilities: ";
1924	u32 nr_caps = ff->ph->env.nr_cpu_pmu_caps;
1925	char *str;
1926
1927	if (!nr_caps) {
1928		fprintf(fp, "# cpu pmu capabilities: not available\n");
1929		return;
1930	}
1931
1932	str = ff->ph->env.cpu_pmu_caps;
1933	while (nr_caps--) {
1934		fprintf(fp, "%s%s", delimiter, str);
1935		delimiter = ", ";
1936		str += strlen(str) + 1;
1937	}
1938
1939	fprintf(fp, "\n");
1940}
1941
1942static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1943{
1944	const char *delimiter = "# pmu mappings: ";
1945	char *str, *tmp;
1946	u32 pmu_num;
1947	u32 type;
1948
1949	pmu_num = ff->ph->env.nr_pmu_mappings;
1950	if (!pmu_num) {
1951		fprintf(fp, "# pmu mappings: not available\n");
1952		return;
1953	}
1954
1955	str = ff->ph->env.pmu_mappings;
1956
1957	while (pmu_num) {
1958		type = strtoul(str, &tmp, 0);
1959		if (*tmp != ':')
1960			goto error;
1961
1962		str = tmp + 1;
1963		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1964
1965		delimiter = ", ";
1966		str += strlen(str) + 1;
1967		pmu_num--;
1968	}
1969
1970	fprintf(fp, "\n");
1971
1972	if (!pmu_num)
1973		return;
1974error:
1975	fprintf(fp, "# pmu mappings: unable to read\n");
1976}
1977
1978static void print_group_desc(struct feat_fd *ff, FILE *fp)
1979{
1980	struct perf_session *session;
1981	struct evsel *evsel;
1982	u32 nr = 0;
1983
1984	session = container_of(ff->ph, struct perf_session, header);
1985
1986	evlist__for_each_entry(session->evlist, evsel) {
1987		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
1988			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
1989
1990			nr = evsel->core.nr_members - 1;
1991		} else if (nr) {
1992			fprintf(fp, ",%s", evsel__name(evsel));
1993
1994			if (--nr == 0)
1995				fprintf(fp, "}\n");
1996		}
1997	}
1998}
1999
2000static void print_sample_time(struct feat_fd *ff, FILE *fp)
2001{
2002	struct perf_session *session;
2003	char time_buf[32];
2004	double d;
2005
2006	session = container_of(ff->ph, struct perf_session, header);
2007
2008	timestamp__scnprintf_usec(session->evlist->first_sample_time,
2009				  time_buf, sizeof(time_buf));
2010	fprintf(fp, "# time of first sample : %s\n", time_buf);
2011
2012	timestamp__scnprintf_usec(session->evlist->last_sample_time,
2013				  time_buf, sizeof(time_buf));
2014	fprintf(fp, "# time of last sample : %s\n", time_buf);
2015
2016	d = (double)(session->evlist->last_sample_time -
2017		session->evlist->first_sample_time) / NSEC_PER_MSEC;
2018
2019	fprintf(fp, "# sample duration : %10.3f ms\n", d);
2020}
2021
2022static void memory_node__fprintf(struct memory_node *n,
2023				 unsigned long long bsize, FILE *fp)
2024{
2025	char buf_map[100], buf_size[50];
2026	unsigned long long size;
2027
2028	size = bsize * bitmap_weight(n->set, n->size);
2029	unit_number__scnprintf(buf_size, 50, size);
2030
2031	bitmap_scnprintf(n->set, n->size, buf_map, 100);
2032	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2033}
2034
2035static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2036{
2037	struct memory_node *nodes;
2038	int i, nr;
2039
2040	nodes = ff->ph->env.memory_nodes;
2041	nr    = ff->ph->env.nr_memory_nodes;
2042
2043	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2044		nr, ff->ph->env.memory_bsize);
2045
2046	for (i = 0; i < nr; i++) {
2047		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2048	}
2049}
2050
2051static int __event_process_build_id(struct perf_record_header_build_id *bev,
2052				    char *filename,
2053				    struct perf_session *session)
2054{
2055	int err = -1;
2056	struct machine *machine;
2057	u16 cpumode;
2058	struct dso *dso;
2059	enum dso_space_type dso_space;
2060
2061	machine = perf_session__findnew_machine(session, bev->pid);
2062	if (!machine)
2063		goto out;
2064
2065	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2066
2067	switch (cpumode) {
2068	case PERF_RECORD_MISC_KERNEL:
2069		dso_space = DSO_SPACE__KERNEL;
2070		break;
2071	case PERF_RECORD_MISC_GUEST_KERNEL:
2072		dso_space = DSO_SPACE__KERNEL_GUEST;
2073		break;
2074	case PERF_RECORD_MISC_USER:
2075	case PERF_RECORD_MISC_GUEST_USER:
2076		dso_space = DSO_SPACE__USER;
2077		break;
2078	default:
2079		goto out;
2080	}
2081
2082	dso = machine__findnew_dso(machine, filename);
2083	if (dso != NULL) {
2084		char sbuild_id[SBUILD_ID_SIZE];
2085		struct build_id bid;
2086		size_t size = BUILD_ID_SIZE;
2087
2088		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2089			size = bev->size;
2090
2091		build_id__init(&bid, bev->data, size);
2092		dso__set_build_id(dso, &bid);
2093
2094		if (dso_space != DSO_SPACE__USER) {
2095			struct kmod_path m = { .name = NULL, };
2096
2097			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2098				dso__set_module_info(dso, &m, machine);
2099
2100			dso->kernel = dso_space;
2101			free(m.name);
2102		}
2103
2104		build_id__sprintf(&dso->bid, sbuild_id);
2105		pr_debug("build id event received for %s: %s [%zu]\n",
2106			 dso->long_name, sbuild_id, size);
2107		dso__put(dso);
2108	}
2109
2110	err = 0;
2111out:
2112	return err;
2113}
2114
2115static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2116						 int input, u64 offset, u64 size)
2117{
2118	struct perf_session *session = container_of(header, struct perf_session, header);
2119	struct {
2120		struct perf_event_header   header;
2121		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2122		char			   filename[0];
2123	} old_bev;
2124	struct perf_record_header_build_id bev;
2125	char filename[PATH_MAX];
2126	u64 limit = offset + size;
2127
2128	while (offset < limit) {
2129		ssize_t len;
2130
2131		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2132			return -1;
2133
2134		if (header->needs_swap)
2135			perf_event_header__bswap(&old_bev.header);
2136
2137		len = old_bev.header.size - sizeof(old_bev);
2138		if (readn(input, filename, len) != len)
2139			return -1;
2140
2141		bev.header = old_bev.header;
2142
2143		/*
2144		 * As the pid is the missing value, we need to fill
2145		 * it properly. The header.misc value give us nice hint.
2146		 */
2147		bev.pid	= HOST_KERNEL_ID;
2148		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2149		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2150			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2151
2152		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2153		__event_process_build_id(&bev, filename, session);
2154
2155		offset += bev.header.size;
2156	}
2157
2158	return 0;
2159}
2160
2161static int perf_header__read_build_ids(struct perf_header *header,
2162				       int input, u64 offset, u64 size)
2163{
2164	struct perf_session *session = container_of(header, struct perf_session, header);
2165	struct perf_record_header_build_id bev;
2166	char filename[PATH_MAX];
2167	u64 limit = offset + size, orig_offset = offset;
2168	int err = -1;
2169
2170	while (offset < limit) {
2171		ssize_t len;
2172
2173		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2174			goto out;
2175
2176		if (header->needs_swap)
2177			perf_event_header__bswap(&bev.header);
2178
2179		len = bev.header.size - sizeof(bev);
2180		if (readn(input, filename, len) != len)
2181			goto out;
2182		/*
2183		 * The a1645ce1 changeset:
2184		 *
2185		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2186		 *
2187		 * Added a field to struct perf_record_header_build_id that broke the file
2188		 * format.
2189		 *
2190		 * Since the kernel build-id is the first entry, process the
2191		 * table using the old format if the well known
2192		 * '[kernel.kallsyms]' string for the kernel build-id has the
2193		 * first 4 characters chopped off (where the pid_t sits).
2194		 */
2195		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2196			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2197				return -1;
2198			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2199		}
2200
2201		__event_process_build_id(&bev, filename, session);
2202
2203		offset += bev.header.size;
2204	}
2205	err = 0;
2206out:
2207	return err;
2208}
2209
2210/* Macro for features that simply need to read and store a string. */
2211#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2212static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2213{\
2214	ff->ph->env.__feat_env = do_read_string(ff); \
2215	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2216}
2217
2218FEAT_PROCESS_STR_FUN(hostname, hostname);
2219FEAT_PROCESS_STR_FUN(osrelease, os_release);
2220FEAT_PROCESS_STR_FUN(version, version);
2221FEAT_PROCESS_STR_FUN(arch, arch);
2222FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2223FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2224
2225static int process_tracing_data(struct feat_fd *ff, void *data)
2226{
2227	ssize_t ret = trace_report(ff->fd, data, false);
2228
2229	return ret < 0 ? -1 : 0;
2230}
2231
2232static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2233{
2234	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2235		pr_debug("Failed to read buildids, continuing...\n");
2236	return 0;
2237}
2238
2239static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2240{
2241	int ret;
2242	u32 nr_cpus_avail, nr_cpus_online;
2243
2244	ret = do_read_u32(ff, &nr_cpus_avail);
2245	if (ret)
2246		return ret;
2247
2248	ret = do_read_u32(ff, &nr_cpus_online);
2249	if (ret)
2250		return ret;
2251	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2252	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2253	return 0;
2254}
2255
2256static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2257{
2258	u64 total_mem;
2259	int ret;
2260
2261	ret = do_read_u64(ff, &total_mem);
2262	if (ret)
2263		return -1;
2264	ff->ph->env.total_mem = (unsigned long long)total_mem;
2265	return 0;
2266}
2267
2268static struct evsel *
2269perf_evlist__find_by_index(struct evlist *evlist, int idx)
2270{
2271	struct evsel *evsel;
2272
2273	evlist__for_each_entry(evlist, evsel) {
2274		if (evsel->idx == idx)
2275			return evsel;
2276	}
2277
2278	return NULL;
2279}
2280
2281static void
2282perf_evlist__set_event_name(struct evlist *evlist,
2283			    struct evsel *event)
2284{
2285	struct evsel *evsel;
2286
2287	if (!event->name)
2288		return;
2289
2290	evsel = perf_evlist__find_by_index(evlist, event->idx);
2291	if (!evsel)
2292		return;
2293
2294	if (evsel->name)
2295		return;
2296
2297	evsel->name = strdup(event->name);
2298}
2299
2300static int
2301process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2302{
2303	struct perf_session *session;
2304	struct evsel *evsel, *events = read_event_desc(ff);
2305
2306	if (!events)
2307		return 0;
2308
2309	session = container_of(ff->ph, struct perf_session, header);
2310
2311	if (session->data->is_pipe) {
2312		/* Save events for reading later by print_event_desc,
2313		 * since they can't be read again in pipe mode. */
2314		ff->events = events;
2315	}
2316
2317	for (evsel = events; evsel->core.attr.size; evsel++)
2318		perf_evlist__set_event_name(session->evlist, evsel);
2319
2320	if (!session->data->is_pipe)
2321		free_event_desc(events);
2322
2323	return 0;
2324}
2325
2326static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2327{
2328	char *str, *cmdline = NULL, **argv = NULL;
2329	u32 nr, i, len = 0;
2330
2331	if (do_read_u32(ff, &nr))
2332		return -1;
2333
2334	ff->ph->env.nr_cmdline = nr;
2335
2336	cmdline = zalloc(ff->size + nr + 1);
2337	if (!cmdline)
2338		return -1;
2339
2340	argv = zalloc(sizeof(char *) * (nr + 1));
2341	if (!argv)
2342		goto error;
2343
2344	for (i = 0; i < nr; i++) {
2345		str = do_read_string(ff);
2346		if (!str)
2347			goto error;
2348
2349		argv[i] = cmdline + len;
2350		memcpy(argv[i], str, strlen(str) + 1);
2351		len += strlen(str) + 1;
2352		free(str);
2353	}
2354	ff->ph->env.cmdline = cmdline;
2355	ff->ph->env.cmdline_argv = (const char **) argv;
2356	return 0;
2357
2358error:
2359	free(argv);
2360	free(cmdline);
2361	return -1;
2362}
2363
2364static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2365{
2366	u32 nr, i;
2367	char *str;
2368	struct strbuf sb;
2369	int cpu_nr = ff->ph->env.nr_cpus_avail;
2370	u64 size = 0;
2371	struct perf_header *ph = ff->ph;
2372	bool do_core_id_test = true;
2373
2374	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2375	if (!ph->env.cpu)
2376		return -1;
2377
2378	if (do_read_u32(ff, &nr))
2379		goto free_cpu;
2380
2381	ph->env.nr_sibling_cores = nr;
2382	size += sizeof(u32);
2383	if (strbuf_init(&sb, 128) < 0)
2384		goto free_cpu;
2385
2386	for (i = 0; i < nr; i++) {
2387		str = do_read_string(ff);
2388		if (!str)
2389			goto error;
2390
2391		/* include a NULL character at the end */
2392		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2393			goto error;
2394		size += string_size(str);
2395		free(str);
2396	}
2397	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2398
2399	if (do_read_u32(ff, &nr))
2400		return -1;
2401
2402	ph->env.nr_sibling_threads = nr;
2403	size += sizeof(u32);
2404
2405	for (i = 0; i < nr; i++) {
2406		str = do_read_string(ff);
2407		if (!str)
2408			goto error;
2409
2410		/* include a NULL character at the end */
2411		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2412			goto error;
2413		size += string_size(str);
2414		free(str);
2415	}
2416	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2417
2418	/*
2419	 * The header may be from old perf,
2420	 * which doesn't include core id and socket id information.
2421	 */
2422	if (ff->size <= size) {
2423		zfree(&ph->env.cpu);
2424		return 0;
2425	}
2426
2427	/* On s390 the socket_id number is not related to the numbers of cpus.
2428	 * The socket_id number might be higher than the numbers of cpus.
2429	 * This depends on the configuration.
2430	 * AArch64 is the same.
2431	 */
2432	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2433			  || !strncmp(ph->env.arch, "aarch64", 7)))
2434		do_core_id_test = false;
2435
2436	for (i = 0; i < (u32)cpu_nr; i++) {
2437		if (do_read_u32(ff, &nr))
2438			goto free_cpu;
2439
2440		ph->env.cpu[i].core_id = nr;
2441		size += sizeof(u32);
2442
2443		if (do_read_u32(ff, &nr))
2444			goto free_cpu;
2445
2446		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2447			pr_debug("socket_id number is too big."
2448				 "You may need to upgrade the perf tool.\n");
2449			goto free_cpu;
2450		}
2451
2452		ph->env.cpu[i].socket_id = nr;
2453		size += sizeof(u32);
2454	}
2455
2456	/*
2457	 * The header may be from old perf,
2458	 * which doesn't include die information.
2459	 */
2460	if (ff->size <= size)
2461		return 0;
2462
2463	if (do_read_u32(ff, &nr))
2464		return -1;
2465
2466	ph->env.nr_sibling_dies = nr;
2467	size += sizeof(u32);
2468
2469	for (i = 0; i < nr; i++) {
2470		str = do_read_string(ff);
2471		if (!str)
2472			goto error;
2473
2474		/* include a NULL character at the end */
2475		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2476			goto error;
2477		size += string_size(str);
2478		free(str);
2479	}
2480	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2481
2482	for (i = 0; i < (u32)cpu_nr; i++) {
2483		if (do_read_u32(ff, &nr))
2484			goto free_cpu;
2485
2486		ph->env.cpu[i].die_id = nr;
2487	}
2488
2489	return 0;
2490
2491error:
2492	strbuf_release(&sb);
2493free_cpu:
2494	zfree(&ph->env.cpu);
2495	return -1;
2496}
2497
2498static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2499{
2500	struct numa_node *nodes, *n;
2501	u32 nr, i;
2502	char *str;
2503
2504	/* nr nodes */
2505	if (do_read_u32(ff, &nr))
2506		return -1;
2507
2508	nodes = zalloc(sizeof(*nodes) * nr);
2509	if (!nodes)
2510		return -ENOMEM;
2511
2512	for (i = 0; i < nr; i++) {
2513		n = &nodes[i];
2514
2515		/* node number */
2516		if (do_read_u32(ff, &n->node))
2517			goto error;
2518
2519		if (do_read_u64(ff, &n->mem_total))
2520			goto error;
2521
2522		if (do_read_u64(ff, &n->mem_free))
2523			goto error;
2524
2525		str = do_read_string(ff);
2526		if (!str)
2527			goto error;
2528
2529		n->map = perf_cpu_map__new(str);
2530		if (!n->map)
2531			goto error;
2532
2533		free(str);
2534	}
2535	ff->ph->env.nr_numa_nodes = nr;
2536	ff->ph->env.numa_nodes = nodes;
2537	return 0;
2538
2539error:
2540	free(nodes);
2541	return -1;
2542}
2543
2544static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2545{
2546	char *name;
2547	u32 pmu_num;
2548	u32 type;
2549	struct strbuf sb;
2550
2551	if (do_read_u32(ff, &pmu_num))
2552		return -1;
2553
2554	if (!pmu_num) {
2555		pr_debug("pmu mappings not available\n");
2556		return 0;
2557	}
2558
2559	ff->ph->env.nr_pmu_mappings = pmu_num;
2560	if (strbuf_init(&sb, 128) < 0)
2561		return -1;
2562
2563	while (pmu_num) {
2564		if (do_read_u32(ff, &type))
2565			goto error;
2566
2567		name = do_read_string(ff);
2568		if (!name)
2569			goto error;
2570
2571		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2572			goto error;
2573		/* include a NULL character at the end */
2574		if (strbuf_add(&sb, "", 1) < 0)
2575			goto error;
2576
2577		if (!strcmp(name, "msr"))
2578			ff->ph->env.msr_pmu_type = type;
2579
2580		free(name);
2581		pmu_num--;
2582	}
2583	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2584	return 0;
2585
2586error:
2587	strbuf_release(&sb);
2588	return -1;
2589}
2590
2591static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2592{
2593	size_t ret = -1;
2594	u32 i, nr, nr_groups;
2595	struct perf_session *session;
2596	struct evsel *evsel, *leader = NULL;
2597	struct group_desc {
2598		char *name;
2599		u32 leader_idx;
2600		u32 nr_members;
2601	} *desc;
2602
2603	if (do_read_u32(ff, &nr_groups))
2604		return -1;
2605
2606	ff->ph->env.nr_groups = nr_groups;
2607	if (!nr_groups) {
2608		pr_debug("group desc not available\n");
2609		return 0;
2610	}
2611
2612	desc = calloc(nr_groups, sizeof(*desc));
2613	if (!desc)
2614		return -1;
2615
2616	for (i = 0; i < nr_groups; i++) {
2617		desc[i].name = do_read_string(ff);
2618		if (!desc[i].name)
2619			goto out_free;
2620
2621		if (do_read_u32(ff, &desc[i].leader_idx))
2622			goto out_free;
2623
2624		if (do_read_u32(ff, &desc[i].nr_members))
2625			goto out_free;
2626	}
2627
2628	/*
2629	 * Rebuild group relationship based on the group_desc
2630	 */
2631	session = container_of(ff->ph, struct perf_session, header);
2632	session->evlist->nr_groups = nr_groups;
2633
2634	i = nr = 0;
2635	evlist__for_each_entry(session->evlist, evsel) {
2636		if (evsel->idx == (int) desc[i].leader_idx) {
2637			evsel->leader = evsel;
2638			/* {anon_group} is a dummy name */
2639			if (strcmp(desc[i].name, "{anon_group}")) {
2640				evsel->group_name = desc[i].name;
2641				desc[i].name = NULL;
2642			}
2643			evsel->core.nr_members = desc[i].nr_members;
2644
2645			if (i >= nr_groups || nr > 0) {
2646				pr_debug("invalid group desc\n");
2647				goto out_free;
2648			}
2649
2650			leader = evsel;
2651			nr = evsel->core.nr_members - 1;
2652			i++;
2653		} else if (nr) {
2654			/* This is a group member */
2655			evsel->leader = leader;
2656
2657			nr--;
2658		}
2659	}
2660
2661	if (i != nr_groups || nr != 0) {
2662		pr_debug("invalid group desc\n");
2663		goto out_free;
2664	}
2665
2666	ret = 0;
2667out_free:
2668	for (i = 0; i < nr_groups; i++)
2669		zfree(&desc[i].name);
2670	free(desc);
2671
2672	return ret;
2673}
2674
2675static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2676{
2677	struct perf_session *session;
2678	int err;
2679
2680	session = container_of(ff->ph, struct perf_session, header);
2681
2682	err = auxtrace_index__process(ff->fd, ff->size, session,
2683				      ff->ph->needs_swap);
2684	if (err < 0)
2685		pr_err("Failed to process auxtrace index\n");
2686	return err;
2687}
2688
2689static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2690{
2691	struct cpu_cache_level *caches;
2692	u32 cnt, i, version;
2693
2694	if (do_read_u32(ff, &version))
2695		return -1;
2696
2697	if (version != 1)
2698		return -1;
2699
2700	if (do_read_u32(ff, &cnt))
2701		return -1;
2702
2703	caches = zalloc(sizeof(*caches) * cnt);
2704	if (!caches)
2705		return -1;
2706
2707	for (i = 0; i < cnt; i++) {
2708		struct cpu_cache_level c;
2709
2710		#define _R(v)						\
2711			if (do_read_u32(ff, &c.v))\
2712				goto out_free_caches;			\
2713
2714		_R(level)
2715		_R(line_size)
2716		_R(sets)
2717		_R(ways)
2718		#undef _R
2719
2720		#define _R(v)					\
2721			c.v = do_read_string(ff);		\
2722			if (!c.v)				\
2723				goto out_free_caches;
2724
2725		_R(type)
2726		_R(size)
2727		_R(map)
2728		#undef _R
2729
2730		caches[i] = c;
2731	}
2732
2733	ff->ph->env.caches = caches;
2734	ff->ph->env.caches_cnt = cnt;
2735	return 0;
2736out_free_caches:
2737	free(caches);
2738	return -1;
2739}
2740
2741static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2742{
2743	struct perf_session *session;
2744	u64 first_sample_time, last_sample_time;
2745	int ret;
2746
2747	session = container_of(ff->ph, struct perf_session, header);
2748
2749	ret = do_read_u64(ff, &first_sample_time);
2750	if (ret)
2751		return -1;
2752
2753	ret = do_read_u64(ff, &last_sample_time);
2754	if (ret)
2755		return -1;
2756
2757	session->evlist->first_sample_time = first_sample_time;
2758	session->evlist->last_sample_time = last_sample_time;
2759	return 0;
2760}
2761
2762static int process_mem_topology(struct feat_fd *ff,
2763				void *data __maybe_unused)
2764{
2765	struct memory_node *nodes;
2766	u64 version, i, nr, bsize;
2767	int ret = -1;
2768
2769	if (do_read_u64(ff, &version))
2770		return -1;
2771
2772	if (version != 1)
2773		return -1;
2774
2775	if (do_read_u64(ff, &bsize))
2776		return -1;
2777
2778	if (do_read_u64(ff, &nr))
2779		return -1;
2780
2781	nodes = zalloc(sizeof(*nodes) * nr);
2782	if (!nodes)
2783		return -1;
2784
2785	for (i = 0; i < nr; i++) {
2786		struct memory_node n;
2787
2788		#define _R(v)				\
2789			if (do_read_u64(ff, &n.v))	\
2790				goto out;		\
2791
2792		_R(node)
2793		_R(size)
2794
2795		#undef _R
2796
2797		if (do_read_bitmap(ff, &n.set, &n.size))
2798			goto out;
2799
2800		nodes[i] = n;
2801	}
2802
2803	ff->ph->env.memory_bsize    = bsize;
2804	ff->ph->env.memory_nodes    = nodes;
2805	ff->ph->env.nr_memory_nodes = nr;
2806	ret = 0;
2807
2808out:
2809	if (ret)
2810		free(nodes);
2811	return ret;
2812}
2813
2814static int process_clockid(struct feat_fd *ff,
2815			   void *data __maybe_unused)
2816{
2817	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2818		return -1;
2819
2820	return 0;
2821}
2822
2823static int process_clock_data(struct feat_fd *ff,
2824			      void *_data __maybe_unused)
2825{
2826	u32 data32;
2827	u64 data64;
2828
2829	/* version */
2830	if (do_read_u32(ff, &data32))
2831		return -1;
2832
2833	if (data32 != 1)
2834		return -1;
2835
2836	/* clockid */
2837	if (do_read_u32(ff, &data32))
2838		return -1;
2839
2840	ff->ph->env.clock.clockid = data32;
2841
2842	/* TOD ref time */
2843	if (do_read_u64(ff, &data64))
2844		return -1;
2845
2846	ff->ph->env.clock.tod_ns = data64;
2847
2848	/* clockid ref time */
2849	if (do_read_u64(ff, &data64))
2850		return -1;
2851
2852	ff->ph->env.clock.clockid_ns = data64;
2853	ff->ph->env.clock.enabled = true;
2854	return 0;
2855}
2856
2857static int process_dir_format(struct feat_fd *ff,
2858			      void *_data __maybe_unused)
2859{
2860	struct perf_session *session;
2861	struct perf_data *data;
2862
2863	session = container_of(ff->ph, struct perf_session, header);
2864	data = session->data;
2865
2866	if (WARN_ON(!perf_data__is_dir(data)))
2867		return -1;
2868
2869	return do_read_u64(ff, &data->dir.version);
2870}
2871
2872#ifdef HAVE_LIBBPF_SUPPORT
2873static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2874{
2875	struct bpf_prog_info_linear *info_linear;
2876	struct bpf_prog_info_node *info_node;
2877	struct perf_env *env = &ff->ph->env;
2878	u32 count, i;
2879	int err = -1;
2880
2881	if (ff->ph->needs_swap) {
2882		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2883		return 0;
2884	}
2885
2886	if (do_read_u32(ff, &count))
2887		return -1;
2888
2889	down_write(&env->bpf_progs.lock);
2890
2891	for (i = 0; i < count; ++i) {
2892		u32 info_len, data_len;
2893
2894		info_linear = NULL;
2895		info_node = NULL;
2896		if (do_read_u32(ff, &info_len))
2897			goto out;
2898		if (do_read_u32(ff, &data_len))
2899			goto out;
2900
2901		if (info_len > sizeof(struct bpf_prog_info)) {
2902			pr_warning("detected invalid bpf_prog_info\n");
2903			goto out;
2904		}
2905
2906		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2907				     data_len);
2908		if (!info_linear)
2909			goto out;
2910		info_linear->info_len = sizeof(struct bpf_prog_info);
2911		info_linear->data_len = data_len;
2912		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2913			goto out;
2914		if (__do_read(ff, &info_linear->info, info_len))
2915			goto out;
2916		if (info_len < sizeof(struct bpf_prog_info))
2917			memset(((void *)(&info_linear->info)) + info_len, 0,
2918			       sizeof(struct bpf_prog_info) - info_len);
2919
2920		if (__do_read(ff, info_linear->data, data_len))
2921			goto out;
2922
2923		info_node = malloc(sizeof(struct bpf_prog_info_node));
2924		if (!info_node)
2925			goto out;
2926
2927		/* after reading from file, translate offset to address */
2928		bpf_program__bpil_offs_to_addr(info_linear);
2929		info_node->info_linear = info_linear;
2930		__perf_env__insert_bpf_prog_info(env, info_node);
2931	}
2932
2933	up_write(&env->bpf_progs.lock);
2934	return 0;
2935out:
2936	free(info_linear);
2937	free(info_node);
2938	up_write(&env->bpf_progs.lock);
2939	return err;
2940}
2941#else // HAVE_LIBBPF_SUPPORT
2942static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2943{
2944	return 0;
2945}
2946#endif // HAVE_LIBBPF_SUPPORT
2947
2948static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2949{
2950	struct perf_env *env = &ff->ph->env;
2951	struct btf_node *node = NULL;
2952	u32 count, i;
2953	int err = -1;
2954
2955	if (ff->ph->needs_swap) {
2956		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2957		return 0;
2958	}
2959
2960	if (do_read_u32(ff, &count))
2961		return -1;
2962
2963	down_write(&env->bpf_progs.lock);
2964
2965	for (i = 0; i < count; ++i) {
2966		u32 id, data_size;
2967
2968		if (do_read_u32(ff, &id))
2969			goto out;
2970		if (do_read_u32(ff, &data_size))
2971			goto out;
2972
2973		node = malloc(sizeof(struct btf_node) + data_size);
2974		if (!node)
2975			goto out;
2976
2977		node->id = id;
2978		node->data_size = data_size;
2979
2980		if (__do_read(ff, node->data, data_size))
2981			goto out;
2982
2983		__perf_env__insert_btf(env, node);
2984		node = NULL;
2985	}
2986
2987	err = 0;
2988out:
2989	up_write(&env->bpf_progs.lock);
2990	free(node);
2991	return err;
2992}
2993
2994static int process_compressed(struct feat_fd *ff,
2995			      void *data __maybe_unused)
2996{
2997	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2998		return -1;
2999
3000	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3001		return -1;
3002
3003	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3004		return -1;
3005
3006	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3007		return -1;
3008
3009	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3010		return -1;
3011
3012	return 0;
3013}
3014
3015static int process_cpu_pmu_caps(struct feat_fd *ff,
3016				void *data __maybe_unused)
3017{
3018	char *name, *value;
3019	struct strbuf sb;
3020	u32 nr_caps;
3021
3022	if (do_read_u32(ff, &nr_caps))
3023		return -1;
3024
3025	if (!nr_caps) {
3026		pr_debug("cpu pmu capabilities not available\n");
3027		return 0;
3028	}
3029
3030	ff->ph->env.nr_cpu_pmu_caps = nr_caps;
3031
3032	if (strbuf_init(&sb, 128) < 0)
3033		return -1;
3034
3035	while (nr_caps--) {
3036		name = do_read_string(ff);
3037		if (!name)
3038			goto error;
3039
3040		value = do_read_string(ff);
3041		if (!value)
3042			goto free_name;
3043
3044		if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
3045			goto free_value;
3046
3047		/* include a NULL character at the end */
3048		if (strbuf_add(&sb, "", 1) < 0)
3049			goto free_value;
3050
3051		if (!strcmp(name, "branches"))
3052			ff->ph->env.max_branches = atoi(value);
3053
3054		free(value);
3055		free(name);
3056	}
3057	ff->ph->env.cpu_pmu_caps = strbuf_detach(&sb, NULL);
3058	return 0;
3059
3060free_value:
3061	free(value);
3062free_name:
3063	free(name);
3064error:
3065	strbuf_release(&sb);
3066	return -1;
3067}
3068
3069#define FEAT_OPR(n, func, __full_only) \
3070	[HEADER_##n] = {					\
3071		.name	    = __stringify(n),			\
3072		.write	    = write_##func,			\
3073		.print	    = print_##func,			\
3074		.full_only  = __full_only,			\
3075		.process    = process_##func,			\
3076		.synthesize = true				\
3077	}
3078
3079#define FEAT_OPN(n, func, __full_only) \
3080	[HEADER_##n] = {					\
3081		.name	    = __stringify(n),			\
3082		.write	    = write_##func,			\
3083		.print	    = print_##func,			\
3084		.full_only  = __full_only,			\
3085		.process    = process_##func			\
3086	}
3087
3088/* feature_ops not implemented: */
3089#define print_tracing_data	NULL
3090#define print_build_id		NULL
3091
3092#define process_branch_stack	NULL
3093#define process_stat		NULL
3094
3095// Only used in util/synthetic-events.c
3096const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3097
3098const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3099	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
3100	FEAT_OPN(BUILD_ID,	build_id,	false),
3101	FEAT_OPR(HOSTNAME,	hostname,	false),
3102	FEAT_OPR(OSRELEASE,	osrelease,	false),
3103	FEAT_OPR(VERSION,	version,	false),
3104	FEAT_OPR(ARCH,		arch,		false),
3105	FEAT_OPR(NRCPUS,	nrcpus,		false),
3106	FEAT_OPR(CPUDESC,	cpudesc,	false),
3107	FEAT_OPR(CPUID,		cpuid,		false),
3108	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
3109	FEAT_OPR(EVENT_DESC,	event_desc,	false),
3110	FEAT_OPR(CMDLINE,	cmdline,	false),
3111	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
3112	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
3113	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
3114	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3115	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3116	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3117	FEAT_OPN(STAT,		stat,		false),
3118	FEAT_OPN(CACHE,		cache,		true),
3119	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3120	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3121	FEAT_OPR(CLOCKID,	clockid,	false),
3122	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3123	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3124	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3125	FEAT_OPR(COMPRESSED,	compressed,	false),
3126	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3127	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3128};
3129
3130struct header_print_data {
3131	FILE *fp;
3132	bool full; /* extended list of headers */
3133};
3134
3135static int perf_file_section__fprintf_info(struct perf_file_section *section,
3136					   struct perf_header *ph,
3137					   int feat, int fd, void *data)
3138{
3139	struct header_print_data *hd = data;
3140	struct feat_fd ff;
3141
3142	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3143		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3144				"%d, continuing...\n", section->offset, feat);
3145		return 0;
3146	}
3147	if (feat >= HEADER_LAST_FEATURE) {
3148		pr_warning("unknown feature %d\n", feat);
3149		return 0;
3150	}
3151	if (!feat_ops[feat].print)
3152		return 0;
3153
3154	ff = (struct  feat_fd) {
3155		.fd = fd,
3156		.ph = ph,
3157	};
3158
3159	if (!feat_ops[feat].full_only || hd->full)
3160		feat_ops[feat].print(&ff, hd->fp);
3161	else
3162		fprintf(hd->fp, "# %s info available, use -I to display\n",
3163			feat_ops[feat].name);
3164
3165	return 0;
3166}
3167
3168int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3169{
3170	struct header_print_data hd;
3171	struct perf_header *header = &session->header;
3172	int fd = perf_data__fd(session->data);
3173	struct stat st;
3174	time_t stctime;
3175	int ret, bit;
3176
3177	hd.fp = fp;
3178	hd.full = full;
3179
3180	ret = fstat(fd, &st);
3181	if (ret == -1)
3182		return -1;
3183
3184	stctime = st.st_mtime;
3185	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3186
3187	fprintf(fp, "# header version : %u\n", header->version);
3188	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3189	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3190	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3191
3192	perf_header__process_sections(header, fd, &hd,
3193				      perf_file_section__fprintf_info);
3194
3195	if (session->data->is_pipe)
3196		return 0;
3197
3198	fprintf(fp, "# missing features: ");
3199	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3200		if (bit)
3201			fprintf(fp, "%s ", feat_ops[bit].name);
3202	}
3203
3204	fprintf(fp, "\n");
3205	return 0;
3206}
3207
3208static int do_write_feat(struct feat_fd *ff, int type,
3209			 struct perf_file_section **p,
3210			 struct evlist *evlist)
3211{
3212	int err;
3213	int ret = 0;
3214
3215	if (perf_header__has_feat(ff->ph, type)) {
3216		if (!feat_ops[type].write)
3217			return -1;
3218
3219		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3220			return -1;
3221
3222		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3223
3224		err = feat_ops[type].write(ff, evlist);
3225		if (err < 0) {
3226			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3227
3228			/* undo anything written */
3229			lseek(ff->fd, (*p)->offset, SEEK_SET);
3230
3231			return -1;
3232		}
3233		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3234		(*p)++;
3235	}
3236	return ret;
3237}
3238
3239static int perf_header__adds_write(struct perf_header *header,
3240				   struct evlist *evlist, int fd)
3241{
3242	int nr_sections;
3243	struct feat_fd ff;
3244	struct perf_file_section *feat_sec, *p;
3245	int sec_size;
3246	u64 sec_start;
3247	int feat;
3248	int err;
3249
3250	ff = (struct feat_fd){
3251		.fd  = fd,
3252		.ph = header,
3253	};
3254
3255	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3256	if (!nr_sections)
3257		return 0;
3258
3259	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3260	if (feat_sec == NULL)
3261		return -ENOMEM;
3262
3263	sec_size = sizeof(*feat_sec) * nr_sections;
3264
3265	sec_start = header->feat_offset;
3266	lseek(fd, sec_start + sec_size, SEEK_SET);
3267
3268	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3269		if (do_write_feat(&ff, feat, &p, evlist))
3270			perf_header__clear_feat(header, feat);
3271	}
3272
3273	lseek(fd, sec_start, SEEK_SET);
3274	/*
3275	 * may write more than needed due to dropped feature, but
3276	 * this is okay, reader will skip the missing entries
3277	 */
3278	err = do_write(&ff, feat_sec, sec_size);
3279	if (err < 0)
3280		pr_debug("failed to write feature section\n");
3281	free(feat_sec);
3282	return err;
3283}
3284
3285int perf_header__write_pipe(int fd)
3286{
3287	struct perf_pipe_file_header f_header;
3288	struct feat_fd ff;
3289	int err;
3290
3291	ff = (struct feat_fd){ .fd = fd };
3292
3293	f_header = (struct perf_pipe_file_header){
3294		.magic	   = PERF_MAGIC,
3295		.size	   = sizeof(f_header),
3296	};
3297
3298	err = do_write(&ff, &f_header, sizeof(f_header));
3299	if (err < 0) {
3300		pr_debug("failed to write perf pipe header\n");
3301		return err;
3302	}
3303
3304	return 0;
3305}
3306
3307int perf_session__write_header(struct perf_session *session,
3308			       struct evlist *evlist,
3309			       int fd, bool at_exit)
3310{
3311	struct perf_file_header f_header;
3312	struct perf_file_attr   f_attr;
3313	struct perf_header *header = &session->header;
3314	struct evsel *evsel;
3315	struct feat_fd ff;
3316	u64 attr_offset;
3317	int err;
3318
3319	ff = (struct feat_fd){ .fd = fd};
3320	lseek(fd, sizeof(f_header), SEEK_SET);
3321
3322	evlist__for_each_entry(session->evlist, evsel) {
3323		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3324		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3325		if (err < 0) {
3326			pr_debug("failed to write perf header\n");
3327			return err;
3328		}
3329	}
3330
3331	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3332
3333	evlist__for_each_entry(evlist, evsel) {
3334		f_attr = (struct perf_file_attr){
3335			.attr = evsel->core.attr,
3336			.ids  = {
3337				.offset = evsel->id_offset,
3338				.size   = evsel->core.ids * sizeof(u64),
3339			}
3340		};
3341		err = do_write(&ff, &f_attr, sizeof(f_attr));
3342		if (err < 0) {
3343			pr_debug("failed to write perf header attribute\n");
3344			return err;
3345		}
3346	}
3347
3348	if (!header->data_offset)
3349		header->data_offset = lseek(fd, 0, SEEK_CUR);
3350	header->feat_offset = header->data_offset + header->data_size;
3351
3352	if (at_exit) {
3353		err = perf_header__adds_write(header, evlist, fd);
3354		if (err < 0)
3355			return err;
3356	}
3357
3358	f_header = (struct perf_file_header){
3359		.magic	   = PERF_MAGIC,
3360		.size	   = sizeof(f_header),
3361		.attr_size = sizeof(f_attr),
3362		.attrs = {
3363			.offset = attr_offset,
3364			.size   = evlist->core.nr_entries * sizeof(f_attr),
3365		},
3366		.data = {
3367			.offset = header->data_offset,
3368			.size	= header->data_size,
3369		},
3370		/* event_types is ignored, store zeros */
3371	};
3372
3373	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3374
3375	lseek(fd, 0, SEEK_SET);
3376	err = do_write(&ff, &f_header, sizeof(f_header));
3377	if (err < 0) {
3378		pr_debug("failed to write perf header\n");
3379		return err;
3380	}
3381	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3382
3383	return 0;
3384}
3385
3386static int perf_header__getbuffer64(struct perf_header *header,
3387				    int fd, void *buf, size_t size)
3388{
3389	if (readn(fd, buf, size) <= 0)
3390		return -1;
3391
3392	if (header->needs_swap)
3393		mem_bswap_64(buf, size);
3394
3395	return 0;
3396}
3397
3398int perf_header__process_sections(struct perf_header *header, int fd,
3399				  void *data,
3400				  int (*process)(struct perf_file_section *section,
3401						 struct perf_header *ph,
3402						 int feat, int fd, void *data))
3403{
3404	struct perf_file_section *feat_sec, *sec;
3405	int nr_sections;
3406	int sec_size;
3407	int feat;
3408	int err;
3409
3410	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3411	if (!nr_sections)
3412		return 0;
3413
3414	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3415	if (!feat_sec)
3416		return -1;
3417
3418	sec_size = sizeof(*feat_sec) * nr_sections;
3419
3420	lseek(fd, header->feat_offset, SEEK_SET);
3421
3422	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3423	if (err < 0)
3424		goto out_free;
3425
3426	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3427		err = process(sec++, header, feat, fd, data);
3428		if (err < 0)
3429			goto out_free;
3430	}
3431	err = 0;
3432out_free:
3433	free(feat_sec);
3434	return err;
3435}
3436
3437static const int attr_file_abi_sizes[] = {
3438	[0] = PERF_ATTR_SIZE_VER0,
3439	[1] = PERF_ATTR_SIZE_VER1,
3440	[2] = PERF_ATTR_SIZE_VER2,
3441	[3] = PERF_ATTR_SIZE_VER3,
3442	[4] = PERF_ATTR_SIZE_VER4,
3443	0,
3444};
3445
3446/*
3447 * In the legacy file format, the magic number is not used to encode endianness.
3448 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3449 * on ABI revisions, we need to try all combinations for all endianness to
3450 * detect the endianness.
3451 */
3452static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3453{
3454	uint64_t ref_size, attr_size;
3455	int i;
3456
3457	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3458		ref_size = attr_file_abi_sizes[i]
3459			 + sizeof(struct perf_file_section);
3460		if (hdr_sz != ref_size) {
3461			attr_size = bswap_64(hdr_sz);
3462			if (attr_size != ref_size)
3463				continue;
3464
3465			ph->needs_swap = true;
3466		}
3467		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3468			 i,
3469			 ph->needs_swap);
3470		return 0;
3471	}
3472	/* could not determine endianness */
3473	return -1;
3474}
3475
3476#define PERF_PIPE_HDR_VER0	16
3477
3478static const size_t attr_pipe_abi_sizes[] = {
3479	[0] = PERF_PIPE_HDR_VER0,
3480	0,
3481};
3482
3483/*
3484 * In the legacy pipe format, there is an implicit assumption that endiannesss
3485 * between host recording the samples, and host parsing the samples is the
3486 * same. This is not always the case given that the pipe output may always be
3487 * redirected into a file and analyzed on a different machine with possibly a
3488 * different endianness and perf_event ABI revsions in the perf tool itself.
3489 */
3490static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3491{
3492	u64 attr_size;
3493	int i;
3494
3495	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3496		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3497			attr_size = bswap_64(hdr_sz);
3498			if (attr_size != hdr_sz)
3499				continue;
3500
3501			ph->needs_swap = true;
3502		}
3503		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3504		return 0;
3505	}
3506	return -1;
3507}
3508
3509bool is_perf_magic(u64 magic)
3510{
3511	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3512		|| magic == __perf_magic2
3513		|| magic == __perf_magic2_sw)
3514		return true;
3515
3516	return false;
3517}
3518
3519static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3520			      bool is_pipe, struct perf_header *ph)
3521{
3522	int ret;
3523
3524	/* check for legacy format */
3525	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3526	if (ret == 0) {
3527		ph->version = PERF_HEADER_VERSION_1;
3528		pr_debug("legacy perf.data format\n");
3529		if (is_pipe)
3530			return try_all_pipe_abis(hdr_sz, ph);
3531
3532		return try_all_file_abis(hdr_sz, ph);
3533	}
3534	/*
3535	 * the new magic number serves two purposes:
3536	 * - unique number to identify actual perf.data files
3537	 * - encode endianness of file
3538	 */
3539	ph->version = PERF_HEADER_VERSION_2;
3540
3541	/* check magic number with one endianness */
3542	if (magic == __perf_magic2)
3543		return 0;
3544
3545	/* check magic number with opposite endianness */
3546	if (magic != __perf_magic2_sw)
3547		return -1;
3548
3549	ph->needs_swap = true;
3550
3551	return 0;
3552}
3553
3554int perf_file_header__read(struct perf_file_header *header,
3555			   struct perf_header *ph, int fd)
3556{
3557	ssize_t ret;
3558
3559	lseek(fd, 0, SEEK_SET);
3560
3561	ret = readn(fd, header, sizeof(*header));
3562	if (ret <= 0)
3563		return -1;
3564
3565	if (check_magic_endian(header->magic,
3566			       header->attr_size, false, ph) < 0) {
3567		pr_debug("magic/endian check failed\n");
3568		return -1;
3569	}
3570
3571	if (ph->needs_swap) {
3572		mem_bswap_64(header, offsetof(struct perf_file_header,
3573			     adds_features));
3574	}
3575
3576	if (header->size != sizeof(*header)) {
3577		/* Support the previous format */
3578		if (header->size == offsetof(typeof(*header), adds_features))
3579			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3580		else
3581			return -1;
3582	} else if (ph->needs_swap) {
3583		/*
3584		 * feature bitmap is declared as an array of unsigned longs --
3585		 * not good since its size can differ between the host that
3586		 * generated the data file and the host analyzing the file.
3587		 *
3588		 * We need to handle endianness, but we don't know the size of
3589		 * the unsigned long where the file was generated. Take a best
3590		 * guess at determining it: try 64-bit swap first (ie., file
3591		 * created on a 64-bit host), and check if the hostname feature
3592		 * bit is set (this feature bit is forced on as of fbe96f2).
3593		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3594		 * swap. If the hostname bit is still not set (e.g., older data
3595		 * file), punt and fallback to the original behavior --
3596		 * clearing all feature bits and setting buildid.
3597		 */
3598		mem_bswap_64(&header->adds_features,
3599			    BITS_TO_U64(HEADER_FEAT_BITS));
3600
3601		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3602			/* unswap as u64 */
3603			mem_bswap_64(&header->adds_features,
3604				    BITS_TO_U64(HEADER_FEAT_BITS));
3605
3606			/* unswap as u32 */
3607			mem_bswap_32(&header->adds_features,
3608				    BITS_TO_U32(HEADER_FEAT_BITS));
3609		}
3610
3611		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3612			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3613			set_bit(HEADER_BUILD_ID, header->adds_features);
3614		}
3615	}
3616
3617	memcpy(&ph->adds_features, &header->adds_features,
3618	       sizeof(ph->adds_features));
3619
3620	ph->data_offset  = header->data.offset;
3621	ph->data_size	 = header->data.size;
3622	ph->feat_offset  = header->data.offset + header->data.size;
3623	return 0;
3624}
3625
3626static int perf_file_section__process(struct perf_file_section *section,
3627				      struct perf_header *ph,
3628				      int feat, int fd, void *data)
3629{
3630	struct feat_fd fdd = {
3631		.fd	= fd,
3632		.ph	= ph,
3633		.size	= section->size,
3634		.offset	= section->offset,
3635	};
3636
3637	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3638		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3639			  "%d, continuing...\n", section->offset, feat);
3640		return 0;
3641	}
3642
3643	if (feat >= HEADER_LAST_FEATURE) {
3644		pr_debug("unknown feature %d, continuing...\n", feat);
3645		return 0;
3646	}
3647
3648	if (!feat_ops[feat].process)
3649		return 0;
3650
3651	return feat_ops[feat].process(&fdd, data);
3652}
3653
3654static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3655				       struct perf_header *ph, int fd,
3656				       bool repipe)
3657{
3658	struct feat_fd ff = {
3659		.fd = STDOUT_FILENO,
3660		.ph = ph,
3661	};
3662	ssize_t ret;
3663
3664	ret = readn(fd, header, sizeof(*header));
3665	if (ret <= 0)
3666		return -1;
3667
3668	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3669		pr_debug("endian/magic failed\n");
3670		return -1;
3671	}
3672
3673	if (ph->needs_swap)
3674		header->size = bswap_64(header->size);
3675
3676	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3677		return -1;
3678
3679	return 0;
3680}
3681
3682static int perf_header__read_pipe(struct perf_session *session)
3683{
3684	struct perf_header *header = &session->header;
3685	struct perf_pipe_file_header f_header;
3686
3687	if (perf_file_header__read_pipe(&f_header, header,
3688					perf_data__fd(session->data),
3689					session->repipe) < 0) {
3690		pr_debug("incompatible file format\n");
3691		return -EINVAL;
3692	}
3693
3694	return f_header.size == sizeof(f_header) ? 0 : -1;
3695}
3696
3697static int read_attr(int fd, struct perf_header *ph,
3698		     struct perf_file_attr *f_attr)
3699{
3700	struct perf_event_attr *attr = &f_attr->attr;
3701	size_t sz, left;
3702	size_t our_sz = sizeof(f_attr->attr);
3703	ssize_t ret;
3704
3705	memset(f_attr, 0, sizeof(*f_attr));
3706
3707	/* read minimal guaranteed structure */
3708	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3709	if (ret <= 0) {
3710		pr_debug("cannot read %d bytes of header attr\n",
3711			 PERF_ATTR_SIZE_VER0);
3712		return -1;
3713	}
3714
3715	/* on file perf_event_attr size */
3716	sz = attr->size;
3717
3718	if (ph->needs_swap)
3719		sz = bswap_32(sz);
3720
3721	if (sz == 0) {
3722		/* assume ABI0 */
3723		sz =  PERF_ATTR_SIZE_VER0;
3724	} else if (sz > our_sz) {
3725		pr_debug("file uses a more recent and unsupported ABI"
3726			 " (%zu bytes extra)\n", sz - our_sz);
3727		return -1;
3728	}
3729	/* what we have not yet read and that we know about */
3730	left = sz - PERF_ATTR_SIZE_VER0;
3731	if (left) {
3732		void *ptr = attr;
3733		ptr += PERF_ATTR_SIZE_VER0;
3734
3735		ret = readn(fd, ptr, left);
3736	}
3737	/* read perf_file_section, ids are read in caller */
3738	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3739
3740	return ret <= 0 ? -1 : 0;
3741}
3742
3743static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3744						struct tep_handle *pevent)
3745{
3746	struct tep_event *event;
3747	char bf[128];
3748
3749	/* already prepared */
3750	if (evsel->tp_format)
3751		return 0;
3752
3753	if (pevent == NULL) {
3754		pr_debug("broken or missing trace data\n");
3755		return -1;
3756	}
3757
3758	event = tep_find_event(pevent, evsel->core.attr.config);
3759	if (event == NULL) {
3760		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3761		return -1;
3762	}
3763
3764	if (!evsel->name) {
3765		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3766		evsel->name = strdup(bf);
3767		if (evsel->name == NULL)
3768			return -1;
3769	}
3770
3771	evsel->tp_format = event;
3772	return 0;
3773}
3774
3775static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3776						  struct tep_handle *pevent)
3777{
3778	struct evsel *pos;
3779
3780	evlist__for_each_entry(evlist, pos) {
3781		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3782		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3783			return -1;
3784	}
3785
3786	return 0;
3787}
3788
3789int perf_session__read_header(struct perf_session *session)
3790{
3791	struct perf_data *data = session->data;
3792	struct perf_header *header = &session->header;
3793	struct perf_file_header	f_header;
3794	struct perf_file_attr	f_attr;
3795	u64			f_id;
3796	int nr_attrs, nr_ids, i, j, err;
3797	int fd = perf_data__fd(data);
3798
3799	session->evlist = evlist__new();
3800	if (session->evlist == NULL)
3801		return -ENOMEM;
3802
3803	session->evlist->env = &header->env;
3804	session->machines.host.env = &header->env;
3805
3806	/*
3807	 * We can read 'pipe' data event from regular file,
3808	 * check for the pipe header regardless of source.
3809	 */
3810	err = perf_header__read_pipe(session);
3811	if (!err || (err && perf_data__is_pipe(data))) {
3812		data->is_pipe = true;
3813		return err;
3814	}
3815
3816	if (perf_file_header__read(&f_header, header, fd) < 0)
3817		return -EINVAL;
3818
3819	/*
3820	 * Sanity check that perf.data was written cleanly; data size is
3821	 * initialized to 0 and updated only if the on_exit function is run.
3822	 * If data size is still 0 then the file contains only partial
3823	 * information.  Just warn user and process it as much as it can.
3824	 */
3825	if (f_header.data.size == 0) {
3826		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3827			   "Was the 'perf record' command properly terminated?\n",
3828			   data->file.path);
3829	}
3830
3831	if (f_header.attr_size == 0) {
3832		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3833		       "Was the 'perf record' command properly terminated?\n",
3834		       data->file.path);
3835		return -EINVAL;
3836	}
3837
3838	nr_attrs = f_header.attrs.size / f_header.attr_size;
3839	lseek(fd, f_header.attrs.offset, SEEK_SET);
3840
3841	for (i = 0; i < nr_attrs; i++) {
3842		struct evsel *evsel;
3843		off_t tmp;
3844
3845		if (read_attr(fd, header, &f_attr) < 0)
3846			goto out_errno;
3847
3848		if (header->needs_swap) {
3849			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3850			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3851			perf_event__attr_swap(&f_attr.attr);
3852		}
3853
3854		tmp = lseek(fd, 0, SEEK_CUR);
3855		evsel = evsel__new(&f_attr.attr);
3856
3857		if (evsel == NULL)
3858			goto out_delete_evlist;
3859
3860		evsel->needs_swap = header->needs_swap;
3861		/*
3862		 * Do it before so that if perf_evsel__alloc_id fails, this
3863		 * entry gets purged too at evlist__delete().
3864		 */
3865		evlist__add(session->evlist, evsel);
3866
3867		nr_ids = f_attr.ids.size / sizeof(u64);
3868		/*
3869		 * We don't have the cpu and thread maps on the header, so
3870		 * for allocating the perf_sample_id table we fake 1 cpu and
3871		 * hattr->ids threads.
3872		 */
3873		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3874			goto out_delete_evlist;
3875
3876		lseek(fd, f_attr.ids.offset, SEEK_SET);
3877
3878		for (j = 0; j < nr_ids; j++) {
3879			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3880				goto out_errno;
3881
3882			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3883		}
3884
3885		lseek(fd, tmp, SEEK_SET);
3886	}
3887
3888	perf_header__process_sections(header, fd, &session->tevent,
3889				      perf_file_section__process);
3890
3891	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3892						   session->tevent.pevent))
3893		goto out_delete_evlist;
3894
3895	return 0;
3896out_errno:
3897	return -errno;
3898
3899out_delete_evlist:
3900	evlist__delete(session->evlist);
3901	session->evlist = NULL;
3902	return -ENOMEM;
3903}
3904
3905int perf_event__process_feature(struct perf_session *session,
3906				union perf_event *event)
3907{
3908	struct perf_tool *tool = session->tool;
3909	struct feat_fd ff = { .fd = 0 };
3910	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3911	int type = fe->header.type;
3912	u64 feat = fe->feat_id;
3913
3914	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3915		pr_warning("invalid record type %d in pipe-mode\n", type);
3916		return 0;
3917	}
3918	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3919		pr_warning("invalid record type %d in pipe-mode\n", type);
3920		return -1;
3921	}
3922
3923	if (!feat_ops[feat].process)
3924		return 0;
3925
3926	ff.buf  = (void *)fe->data;
3927	ff.size = event->header.size - sizeof(*fe);
3928	ff.ph = &session->header;
3929
3930	if (feat_ops[feat].process(&ff, NULL))
3931		return -1;
3932
3933	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3934		return 0;
3935
3936	if (!feat_ops[feat].full_only ||
3937	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3938		feat_ops[feat].print(&ff, stdout);
3939	} else {
3940		fprintf(stdout, "# %s info available, use -I to display\n",
3941			feat_ops[feat].name);
3942	}
3943
3944	return 0;
3945}
3946
3947size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3948{
3949	struct perf_record_event_update *ev = &event->event_update;
3950	struct perf_record_event_update_scale *ev_scale;
3951	struct perf_record_event_update_cpus *ev_cpus;
3952	struct perf_cpu_map *map;
3953	size_t ret;
3954
3955	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3956
3957	switch (ev->type) {
3958	case PERF_EVENT_UPDATE__SCALE:
3959		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3960		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3961		break;
3962	case PERF_EVENT_UPDATE__UNIT:
3963		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3964		break;
3965	case PERF_EVENT_UPDATE__NAME:
3966		ret += fprintf(fp, "... name:  %s\n", ev->data);
3967		break;
3968	case PERF_EVENT_UPDATE__CPUS:
3969		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3970		ret += fprintf(fp, "... ");
3971
3972		map = cpu_map__new_data(&ev_cpus->cpus);
3973		if (map)
3974			ret += cpu_map__fprintf(map, fp);
3975		else
3976			ret += fprintf(fp, "failed to get cpus\n");
3977		break;
3978	default:
3979		ret += fprintf(fp, "... unknown type\n");
3980		break;
3981	}
3982
3983	return ret;
3984}
3985
3986int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3987			     union perf_event *event,
3988			     struct evlist **pevlist)
3989{
3990	u32 i, n_ids;
3991	u64 *ids;
3992	struct evsel *evsel;
3993	struct evlist *evlist = *pevlist;
3994
3995	if (evlist == NULL) {
3996		*pevlist = evlist = evlist__new();
3997		if (evlist == NULL)
3998			return -ENOMEM;
3999	}
4000
4001	evsel = evsel__new(&event->attr.attr);
4002	if (evsel == NULL)
4003		return -ENOMEM;
4004
4005	evlist__add(evlist, evsel);
4006
4007	n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size;
4008	n_ids = n_ids / sizeof(u64);
4009	/*
4010	 * We don't have the cpu and thread maps on the header, so
4011	 * for allocating the perf_sample_id table we fake 1 cpu and
4012	 * hattr->ids threads.
4013	 */
4014	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4015		return -ENOMEM;
4016
4017	ids = (void *)&event->attr.attr + event->attr.attr.size;
4018	for (i = 0; i < n_ids; i++) {
4019		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]);
4020	}
4021
4022	return 0;
4023}
4024
4025int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4026				     union perf_event *event,
4027				     struct evlist **pevlist)
4028{
4029	struct perf_record_event_update *ev = &event->event_update;
4030	struct perf_record_event_update_scale *ev_scale;
4031	struct perf_record_event_update_cpus *ev_cpus;
4032	struct evlist *evlist;
4033	struct evsel *evsel;
4034	struct perf_cpu_map *map;
4035
4036	if (!pevlist || *pevlist == NULL)
4037		return -EINVAL;
4038
4039	evlist = *pevlist;
4040
4041	evsel = perf_evlist__id2evsel(evlist, ev->id);
4042	if (evsel == NULL)
4043		return -EINVAL;
4044
4045	switch (ev->type) {
4046	case PERF_EVENT_UPDATE__UNIT:
4047		evsel->unit = strdup(ev->data);
4048		break;
4049	case PERF_EVENT_UPDATE__NAME:
4050		evsel->name = strdup(ev->data);
4051		break;
4052	case PERF_EVENT_UPDATE__SCALE:
4053		ev_scale = (struct perf_record_event_update_scale *)ev->data;
4054		evsel->scale = ev_scale->scale;
4055		break;
4056	case PERF_EVENT_UPDATE__CPUS:
4057		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4058
4059		map = cpu_map__new_data(&ev_cpus->cpus);
4060		if (map)
4061			evsel->core.own_cpus = map;
4062		else
4063			pr_err("failed to get event_update cpus\n");
4064	default:
4065		break;
4066	}
4067
4068	return 0;
4069}
4070
4071int perf_event__process_tracing_data(struct perf_session *session,
4072				     union perf_event *event)
4073{
4074	ssize_t size_read, padding, size = event->tracing_data.size;
4075	int fd = perf_data__fd(session->data);
4076	char buf[BUFSIZ];
4077
4078	/*
4079	 * The pipe fd is already in proper place and in any case
4080	 * we can't move it, and we'd screw the case where we read
4081	 * 'pipe' data from regular file. The trace_report reads
4082	 * data from 'fd' so we need to set it directly behind the
4083	 * event, where the tracing data starts.
4084	 */
4085	if (!perf_data__is_pipe(session->data)) {
4086		off_t offset = lseek(fd, 0, SEEK_CUR);
4087
4088		/* setup for reading amidst mmap */
4089		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4090		      SEEK_SET);
4091	}
4092
4093	size_read = trace_report(fd, &session->tevent,
4094				 session->repipe);
4095	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4096
4097	if (readn(fd, buf, padding) < 0) {
4098		pr_err("%s: reading input file", __func__);
4099		return -1;
4100	}
4101	if (session->repipe) {
4102		int retw = write(STDOUT_FILENO, buf, padding);
4103		if (retw <= 0 || retw != padding) {
4104			pr_err("%s: repiping tracing data padding", __func__);
4105			return -1;
4106		}
4107	}
4108
4109	if (size_read + padding != size) {
4110		pr_err("%s: tracing data size mismatch", __func__);
4111		return -1;
4112	}
4113
4114	perf_evlist__prepare_tracepoint_events(session->evlist,
4115					       session->tevent.pevent);
4116
4117	return size_read + padding;
4118}
4119
4120int perf_event__process_build_id(struct perf_session *session,
4121				 union perf_event *event)
4122{
4123	__event_process_build_id(&event->build_id,
4124				 event->build_id.filename,
4125				 session);
4126	return 0;
4127}
4128