xref: /kernel/linux/linux-5.10/tools/perf/util/cs-etm.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright(C) 2015-2018 Linaro Limited.
4 *
5 * Author: Tor Jeremiassen <tor@ti.com>
6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7 */
8
9#include <linux/bitops.h>
10#include <linux/err.h>
11#include <linux/kernel.h>
12#include <linux/log2.h>
13#include <linux/types.h>
14#include <linux/zalloc.h>
15
16#include <opencsd/ocsd_if_types.h>
17#include <stdlib.h>
18
19#include "auxtrace.h"
20#include "color.h"
21#include "cs-etm.h"
22#include "cs-etm-decoder/cs-etm-decoder.h"
23#include "debug.h"
24#include "dso.h"
25#include "evlist.h"
26#include "intlist.h"
27#include "machine.h"
28#include "map.h"
29#include "perf.h"
30#include "session.h"
31#include "map_symbol.h"
32#include "branch.h"
33#include "symbol.h"
34#include "tool.h"
35#include "thread.h"
36#include "thread-stack.h"
37#include <tools/libc_compat.h>
38#include "util/synthetic-events.h"
39
40#define MAX_TIMESTAMP (~0ULL)
41
42struct cs_etm_auxtrace {
43	struct auxtrace auxtrace;
44	struct auxtrace_queues queues;
45	struct auxtrace_heap heap;
46	struct itrace_synth_opts synth_opts;
47	struct perf_session *session;
48	struct machine *machine;
49	struct thread *unknown_thread;
50
51	u8 timeless_decoding;
52	u8 snapshot_mode;
53	u8 data_queued;
54	u8 sample_branches;
55	u8 sample_instructions;
56
57	int num_cpu;
58	u32 auxtrace_type;
59	u64 branches_sample_type;
60	u64 branches_id;
61	u64 instructions_sample_type;
62	u64 instructions_sample_period;
63	u64 instructions_id;
64	u64 **metadata;
65	u64 kernel_start;
66	unsigned int pmu_type;
67};
68
69struct cs_etm_traceid_queue {
70	u8 trace_chan_id;
71	pid_t pid, tid;
72	u64 period_instructions;
73	size_t last_branch_pos;
74	union perf_event *event_buf;
75	struct thread *thread;
76	struct branch_stack *last_branch;
77	struct branch_stack *last_branch_rb;
78	struct cs_etm_packet *prev_packet;
79	struct cs_etm_packet *packet;
80	struct cs_etm_packet_queue packet_queue;
81};
82
83struct cs_etm_queue {
84	struct cs_etm_auxtrace *etm;
85	struct cs_etm_decoder *decoder;
86	struct auxtrace_buffer *buffer;
87	unsigned int queue_nr;
88	u8 pending_timestamp;
89	u64 offset;
90	const unsigned char *buf;
91	size_t buf_len, buf_used;
92	/* Conversion between traceID and index in traceid_queues array */
93	struct intlist *traceid_queues_list;
94	struct cs_etm_traceid_queue **traceid_queues;
95};
96
97/* RB tree for quick conversion between traceID and metadata pointers */
98static struct intlist *traceid_list;
99
100static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
101static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
102static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
103					   pid_t tid);
104static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
105static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
106
107/* PTMs ETMIDR [11:8] set to b0011 */
108#define ETMIDR_PTM_VERSION 0x00000300
109
110/*
111 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
112 * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
113 * encode the etm queue number as the upper 16 bit and the channel as
114 * the lower 16 bit.
115 */
116#define TO_CS_QUEUE_NR(queue_nr, trace_chan_id)	\
117		      (queue_nr << 16 | trace_chan_id)
118#define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
119#define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
120
121static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
122{
123	etmidr &= ETMIDR_PTM_VERSION;
124
125	if (etmidr == ETMIDR_PTM_VERSION)
126		return CS_ETM_PROTO_PTM;
127
128	return CS_ETM_PROTO_ETMV3;
129}
130
131static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
132{
133	struct int_node *inode;
134	u64 *metadata;
135
136	inode = intlist__find(traceid_list, trace_chan_id);
137	if (!inode)
138		return -EINVAL;
139
140	metadata = inode->priv;
141	*magic = metadata[CS_ETM_MAGIC];
142	return 0;
143}
144
145int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
146{
147	struct int_node *inode;
148	u64 *metadata;
149
150	inode = intlist__find(traceid_list, trace_chan_id);
151	if (!inode)
152		return -EINVAL;
153
154	metadata = inode->priv;
155	*cpu = (int)metadata[CS_ETM_CPU];
156	return 0;
157}
158
159void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
160					      u8 trace_chan_id)
161{
162	/*
163	 * Wnen a timestamp packet is encountered the backend code
164	 * is stopped so that the front end has time to process packets
165	 * that were accumulated in the traceID queue.  Since there can
166	 * be more than one channel per cs_etm_queue, we need to specify
167	 * what traceID queue needs servicing.
168	 */
169	etmq->pending_timestamp = trace_chan_id;
170}
171
172static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
173				      u8 *trace_chan_id)
174{
175	struct cs_etm_packet_queue *packet_queue;
176
177	if (!etmq->pending_timestamp)
178		return 0;
179
180	if (trace_chan_id)
181		*trace_chan_id = etmq->pending_timestamp;
182
183	packet_queue = cs_etm__etmq_get_packet_queue(etmq,
184						     etmq->pending_timestamp);
185	if (!packet_queue)
186		return 0;
187
188	/* Acknowledge pending status */
189	etmq->pending_timestamp = 0;
190
191	/* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
192	return packet_queue->timestamp;
193}
194
195static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
196{
197	int i;
198
199	queue->head = 0;
200	queue->tail = 0;
201	queue->packet_count = 0;
202	for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
203		queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
204		queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
205		queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
206		queue->packet_buffer[i].instr_count = 0;
207		queue->packet_buffer[i].last_instr_taken_branch = false;
208		queue->packet_buffer[i].last_instr_size = 0;
209		queue->packet_buffer[i].last_instr_type = 0;
210		queue->packet_buffer[i].last_instr_subtype = 0;
211		queue->packet_buffer[i].last_instr_cond = 0;
212		queue->packet_buffer[i].flags = 0;
213		queue->packet_buffer[i].exception_number = UINT32_MAX;
214		queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
215		queue->packet_buffer[i].cpu = INT_MIN;
216	}
217}
218
219static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
220{
221	int idx;
222	struct int_node *inode;
223	struct cs_etm_traceid_queue *tidq;
224	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
225
226	intlist__for_each_entry(inode, traceid_queues_list) {
227		idx = (int)(intptr_t)inode->priv;
228		tidq = etmq->traceid_queues[idx];
229		cs_etm__clear_packet_queue(&tidq->packet_queue);
230	}
231}
232
233static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
234				      struct cs_etm_traceid_queue *tidq,
235				      u8 trace_chan_id)
236{
237	int rc = -ENOMEM;
238	struct auxtrace_queue *queue;
239	struct cs_etm_auxtrace *etm = etmq->etm;
240
241	cs_etm__clear_packet_queue(&tidq->packet_queue);
242
243	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
244	tidq->tid = queue->tid;
245	tidq->pid = -1;
246	tidq->trace_chan_id = trace_chan_id;
247
248	tidq->packet = zalloc(sizeof(struct cs_etm_packet));
249	if (!tidq->packet)
250		goto out;
251
252	tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
253	if (!tidq->prev_packet)
254		goto out_free;
255
256	if (etm->synth_opts.last_branch) {
257		size_t sz = sizeof(struct branch_stack);
258
259		sz += etm->synth_opts.last_branch_sz *
260		      sizeof(struct branch_entry);
261		tidq->last_branch = zalloc(sz);
262		if (!tidq->last_branch)
263			goto out_free;
264		tidq->last_branch_rb = zalloc(sz);
265		if (!tidq->last_branch_rb)
266			goto out_free;
267	}
268
269	tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
270	if (!tidq->event_buf)
271		goto out_free;
272
273	return 0;
274
275out_free:
276	zfree(&tidq->last_branch_rb);
277	zfree(&tidq->last_branch);
278	zfree(&tidq->prev_packet);
279	zfree(&tidq->packet);
280out:
281	return rc;
282}
283
284static struct cs_etm_traceid_queue
285*cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
286{
287	int idx;
288	struct int_node *inode;
289	struct intlist *traceid_queues_list;
290	struct cs_etm_traceid_queue *tidq, **traceid_queues;
291	struct cs_etm_auxtrace *etm = etmq->etm;
292
293	if (etm->timeless_decoding)
294		trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
295
296	traceid_queues_list = etmq->traceid_queues_list;
297
298	/*
299	 * Check if the traceid_queue exist for this traceID by looking
300	 * in the queue list.
301	 */
302	inode = intlist__find(traceid_queues_list, trace_chan_id);
303	if (inode) {
304		idx = (int)(intptr_t)inode->priv;
305		return etmq->traceid_queues[idx];
306	}
307
308	/* We couldn't find a traceid_queue for this traceID, allocate one */
309	tidq = malloc(sizeof(*tidq));
310	if (!tidq)
311		return NULL;
312
313	memset(tidq, 0, sizeof(*tidq));
314
315	/* Get a valid index for the new traceid_queue */
316	idx = intlist__nr_entries(traceid_queues_list);
317	/* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
318	inode = intlist__findnew(traceid_queues_list, trace_chan_id);
319	if (!inode)
320		goto out_free;
321
322	/* Associate this traceID with this index */
323	inode->priv = (void *)(intptr_t)idx;
324
325	if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
326		goto out_free;
327
328	/* Grow the traceid_queues array by one unit */
329	traceid_queues = etmq->traceid_queues;
330	traceid_queues = reallocarray(traceid_queues,
331				      idx + 1,
332				      sizeof(*traceid_queues));
333
334	/*
335	 * On failure reallocarray() returns NULL and the original block of
336	 * memory is left untouched.
337	 */
338	if (!traceid_queues)
339		goto out_free;
340
341	traceid_queues[idx] = tidq;
342	etmq->traceid_queues = traceid_queues;
343
344	return etmq->traceid_queues[idx];
345
346out_free:
347	/*
348	 * Function intlist__remove() removes the inode from the list
349	 * and delete the memory associated to it.
350	 */
351	intlist__remove(traceid_queues_list, inode);
352	free(tidq);
353
354	return NULL;
355}
356
357struct cs_etm_packet_queue
358*cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
359{
360	struct cs_etm_traceid_queue *tidq;
361
362	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
363	if (tidq)
364		return &tidq->packet_queue;
365
366	return NULL;
367}
368
369static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
370				struct cs_etm_traceid_queue *tidq)
371{
372	struct cs_etm_packet *tmp;
373
374	if (etm->sample_branches || etm->synth_opts.last_branch ||
375	    etm->sample_instructions) {
376		/*
377		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
378		 * the next incoming packet.
379		 */
380		tmp = tidq->packet;
381		tidq->packet = tidq->prev_packet;
382		tidq->prev_packet = tmp;
383	}
384}
385
386static void cs_etm__packet_dump(const char *pkt_string)
387{
388	const char *color = PERF_COLOR_BLUE;
389	int len = strlen(pkt_string);
390
391	if (len && (pkt_string[len-1] == '\n'))
392		color_fprintf(stdout, color, "	%s", pkt_string);
393	else
394		color_fprintf(stdout, color, "	%s\n", pkt_string);
395
396	fflush(stdout);
397}
398
399static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
400					  struct cs_etm_auxtrace *etm, int idx,
401					  u32 etmidr)
402{
403	u64 **metadata = etm->metadata;
404
405	t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
406	t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
407	t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
408}
409
410static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
411					  struct cs_etm_auxtrace *etm, int idx)
412{
413	u64 **metadata = etm->metadata;
414
415	t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
416	t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
417	t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
418	t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
419	t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
420	t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
421	t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
422}
423
424static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
425				     struct cs_etm_auxtrace *etm)
426{
427	int i;
428	u32 etmidr;
429	u64 architecture;
430
431	for (i = 0; i < etm->num_cpu; i++) {
432		architecture = etm->metadata[i][CS_ETM_MAGIC];
433
434		switch (architecture) {
435		case __perf_cs_etmv3_magic:
436			etmidr = etm->metadata[i][CS_ETM_ETMIDR];
437			cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
438			break;
439		case __perf_cs_etmv4_magic:
440			cs_etm__set_trace_param_etmv4(t_params, etm, i);
441			break;
442		default:
443			return -EINVAL;
444		}
445	}
446
447	return 0;
448}
449
450static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
451				       struct cs_etm_queue *etmq,
452				       enum cs_etm_decoder_operation mode)
453{
454	int ret = -EINVAL;
455
456	if (!(mode < CS_ETM_OPERATION_MAX))
457		goto out;
458
459	d_params->packet_printer = cs_etm__packet_dump;
460	d_params->operation = mode;
461	d_params->data = etmq;
462	d_params->formatted = true;
463	d_params->fsyncs = false;
464	d_params->hsyncs = false;
465	d_params->frame_aligned = true;
466
467	ret = 0;
468out:
469	return ret;
470}
471
472static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
473			       struct auxtrace_buffer *buffer)
474{
475	int ret;
476	const char *color = PERF_COLOR_BLUE;
477	struct cs_etm_decoder_params d_params;
478	struct cs_etm_trace_params *t_params;
479	struct cs_etm_decoder *decoder;
480	size_t buffer_used = 0;
481
482	fprintf(stdout, "\n");
483	color_fprintf(stdout, color,
484		     ". ... CoreSight ETM Trace data: size %zu bytes\n",
485		     buffer->size);
486
487	/* Use metadata to fill in trace parameters for trace decoder */
488	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
489
490	if (!t_params)
491		return;
492
493	if (cs_etm__init_trace_params(t_params, etm))
494		goto out_free;
495
496	/* Set decoder parameters to simply print the trace packets */
497	if (cs_etm__init_decoder_params(&d_params, NULL,
498					CS_ETM_OPERATION_PRINT))
499		goto out_free;
500
501	decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
502
503	if (!decoder)
504		goto out_free;
505	do {
506		size_t consumed;
507
508		ret = cs_etm_decoder__process_data_block(
509				decoder, buffer->offset,
510				&((u8 *)buffer->data)[buffer_used],
511				buffer->size - buffer_used, &consumed);
512		if (ret)
513			break;
514
515		buffer_used += consumed;
516	} while (buffer_used < buffer->size);
517
518	cs_etm_decoder__free(decoder);
519
520out_free:
521	zfree(&t_params);
522}
523
524static int cs_etm__flush_events(struct perf_session *session,
525				struct perf_tool *tool)
526{
527	int ret;
528	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
529						   struct cs_etm_auxtrace,
530						   auxtrace);
531	if (dump_trace)
532		return 0;
533
534	if (!tool->ordered_events)
535		return -EINVAL;
536
537	ret = cs_etm__update_queues(etm);
538
539	if (ret < 0)
540		return ret;
541
542	if (etm->timeless_decoding)
543		return cs_etm__process_timeless_queues(etm, -1);
544
545	return cs_etm__process_queues(etm);
546}
547
548static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
549{
550	int idx;
551	uintptr_t priv;
552	struct int_node *inode, *tmp;
553	struct cs_etm_traceid_queue *tidq;
554	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
555
556	intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
557		priv = (uintptr_t)inode->priv;
558		idx = priv;
559
560		/* Free this traceid_queue from the array */
561		tidq = etmq->traceid_queues[idx];
562		thread__zput(tidq->thread);
563		zfree(&tidq->event_buf);
564		zfree(&tidq->last_branch);
565		zfree(&tidq->last_branch_rb);
566		zfree(&tidq->prev_packet);
567		zfree(&tidq->packet);
568		zfree(&tidq);
569
570		/*
571		 * Function intlist__remove() removes the inode from the list
572		 * and delete the memory associated to it.
573		 */
574		intlist__remove(traceid_queues_list, inode);
575	}
576
577	/* Then the RB tree itself */
578	intlist__delete(traceid_queues_list);
579	etmq->traceid_queues_list = NULL;
580
581	/* finally free the traceid_queues array */
582	zfree(&etmq->traceid_queues);
583}
584
585static void cs_etm__free_queue(void *priv)
586{
587	struct cs_etm_queue *etmq = priv;
588
589	if (!etmq)
590		return;
591
592	cs_etm_decoder__free(etmq->decoder);
593	cs_etm__free_traceid_queues(etmq);
594	free(etmq);
595}
596
597static void cs_etm__free_events(struct perf_session *session)
598{
599	unsigned int i;
600	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
601						   struct cs_etm_auxtrace,
602						   auxtrace);
603	struct auxtrace_queues *queues = &aux->queues;
604
605	for (i = 0; i < queues->nr_queues; i++) {
606		cs_etm__free_queue(queues->queue_array[i].priv);
607		queues->queue_array[i].priv = NULL;
608	}
609
610	auxtrace_queues__free(queues);
611}
612
613static void cs_etm__free(struct perf_session *session)
614{
615	int i;
616	struct int_node *inode, *tmp;
617	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
618						   struct cs_etm_auxtrace,
619						   auxtrace);
620	cs_etm__free_events(session);
621	session->auxtrace = NULL;
622
623	/* First remove all traceID/metadata nodes for the RB tree */
624	intlist__for_each_entry_safe(inode, tmp, traceid_list)
625		intlist__remove(traceid_list, inode);
626	/* Then the RB tree itself */
627	intlist__delete(traceid_list);
628
629	for (i = 0; i < aux->num_cpu; i++)
630		zfree(&aux->metadata[i]);
631
632	thread__zput(aux->unknown_thread);
633	zfree(&aux->metadata);
634	zfree(&aux);
635}
636
637static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
638				      struct evsel *evsel)
639{
640	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
641						   struct cs_etm_auxtrace,
642						   auxtrace);
643
644	return evsel->core.attr.type == aux->pmu_type;
645}
646
647static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
648{
649	struct machine *machine;
650
651	machine = etmq->etm->machine;
652
653	if (address >= etmq->etm->kernel_start) {
654		if (machine__is_host(machine))
655			return PERF_RECORD_MISC_KERNEL;
656		else
657			return PERF_RECORD_MISC_GUEST_KERNEL;
658	} else {
659		if (machine__is_host(machine))
660			return PERF_RECORD_MISC_USER;
661		else if (perf_guest)
662			return PERF_RECORD_MISC_GUEST_USER;
663		else
664			return PERF_RECORD_MISC_HYPERVISOR;
665	}
666}
667
668static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
669			      u64 address, size_t size, u8 *buffer)
670{
671	u8  cpumode;
672	u64 offset;
673	int len;
674	struct thread *thread;
675	struct machine *machine;
676	struct addr_location al;
677	struct cs_etm_traceid_queue *tidq;
678
679	if (!etmq)
680		return 0;
681
682	machine = etmq->etm->machine;
683	cpumode = cs_etm__cpu_mode(etmq, address);
684	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
685	if (!tidq)
686		return 0;
687
688	thread = tidq->thread;
689	if (!thread) {
690		if (cpumode != PERF_RECORD_MISC_KERNEL)
691			return 0;
692		thread = etmq->etm->unknown_thread;
693	}
694
695	if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
696		return 0;
697
698	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
699	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
700		return 0;
701
702	offset = al.map->map_ip(al.map, address);
703
704	map__load(al.map);
705
706	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
707
708	if (len <= 0)
709		return 0;
710
711	return len;
712}
713
714static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
715{
716	struct cs_etm_decoder_params d_params;
717	struct cs_etm_trace_params  *t_params = NULL;
718	struct cs_etm_queue *etmq;
719
720	etmq = zalloc(sizeof(*etmq));
721	if (!etmq)
722		return NULL;
723
724	etmq->traceid_queues_list = intlist__new(NULL);
725	if (!etmq->traceid_queues_list)
726		goto out_free;
727
728	/* Use metadata to fill in trace parameters for trace decoder */
729	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
730
731	if (!t_params)
732		goto out_free;
733
734	if (cs_etm__init_trace_params(t_params, etm))
735		goto out_free;
736
737	/* Set decoder parameters to decode trace packets */
738	if (cs_etm__init_decoder_params(&d_params, etmq,
739					CS_ETM_OPERATION_DECODE))
740		goto out_free;
741
742	etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
743
744	if (!etmq->decoder)
745		goto out_free;
746
747	/*
748	 * Register a function to handle all memory accesses required by
749	 * the trace decoder library.
750	 */
751	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
752					      0x0L, ((u64) -1L),
753					      cs_etm__mem_access))
754		goto out_free_decoder;
755
756	zfree(&t_params);
757	return etmq;
758
759out_free_decoder:
760	cs_etm_decoder__free(etmq->decoder);
761out_free:
762	intlist__delete(etmq->traceid_queues_list);
763	free(etmq);
764
765	return NULL;
766}
767
768static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
769			       struct auxtrace_queue *queue,
770			       unsigned int queue_nr)
771{
772	int ret = 0;
773	unsigned int cs_queue_nr;
774	u8 trace_chan_id;
775	u64 timestamp;
776	struct cs_etm_queue *etmq = queue->priv;
777
778	if (list_empty(&queue->head) || etmq)
779		goto out;
780
781	etmq = cs_etm__alloc_queue(etm);
782
783	if (!etmq) {
784		ret = -ENOMEM;
785		goto out;
786	}
787
788	queue->priv = etmq;
789	etmq->etm = etm;
790	etmq->queue_nr = queue_nr;
791	etmq->offset = 0;
792
793	if (etm->timeless_decoding)
794		goto out;
795
796	/*
797	 * We are under a CPU-wide trace scenario.  As such we need to know
798	 * when the code that generated the traces started to execute so that
799	 * it can be correlated with execution on other CPUs.  So we get a
800	 * handle on the beginning of traces and decode until we find a
801	 * timestamp.  The timestamp is then added to the auxtrace min heap
802	 * in order to know what nibble (of all the etmqs) to decode first.
803	 */
804	while (1) {
805		/*
806		 * Fetch an aux_buffer from this etmq.  Bail if no more
807		 * blocks or an error has been encountered.
808		 */
809		ret = cs_etm__get_data_block(etmq);
810		if (ret <= 0)
811			goto out;
812
813		/*
814		 * Run decoder on the trace block.  The decoder will stop when
815		 * encountering a timestamp, a full packet queue or the end of
816		 * trace for that block.
817		 */
818		ret = cs_etm__decode_data_block(etmq);
819		if (ret)
820			goto out;
821
822		/*
823		 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
824		 * the timestamp calculation for us.
825		 */
826		timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
827
828		/* We found a timestamp, no need to continue. */
829		if (timestamp)
830			break;
831
832		/*
833		 * We didn't find a timestamp so empty all the traceid packet
834		 * queues before looking for another timestamp packet, either
835		 * in the current data block or a new one.  Packets that were
836		 * just decoded are useless since no timestamp has been
837		 * associated with them.  As such simply discard them.
838		 */
839		cs_etm__clear_all_packet_queues(etmq);
840	}
841
842	/*
843	 * We have a timestamp.  Add it to the min heap to reflect when
844	 * instructions conveyed by the range packets of this traceID queue
845	 * started to execute.  Once the same has been done for all the traceID
846	 * queues of each etmq, redenring and decoding can start in
847	 * chronological order.
848	 *
849	 * Note that packets decoded above are still in the traceID's packet
850	 * queue and will be processed in cs_etm__process_queues().
851	 */
852	cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
853	ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
854out:
855	return ret;
856}
857
858static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
859{
860	unsigned int i;
861	int ret;
862
863	if (!etm->kernel_start)
864		etm->kernel_start = machine__kernel_start(etm->machine);
865
866	for (i = 0; i < etm->queues.nr_queues; i++) {
867		ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
868		if (ret)
869			return ret;
870	}
871
872	return 0;
873}
874
875static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
876{
877	if (etm->queues.new_data) {
878		etm->queues.new_data = false;
879		return cs_etm__setup_queues(etm);
880	}
881
882	return 0;
883}
884
885static inline
886void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
887				 struct cs_etm_traceid_queue *tidq)
888{
889	struct branch_stack *bs_src = tidq->last_branch_rb;
890	struct branch_stack *bs_dst = tidq->last_branch;
891	size_t nr = 0;
892
893	/*
894	 * Set the number of records before early exit: ->nr is used to
895	 * determine how many branches to copy from ->entries.
896	 */
897	bs_dst->nr = bs_src->nr;
898
899	/*
900	 * Early exit when there is nothing to copy.
901	 */
902	if (!bs_src->nr)
903		return;
904
905	/*
906	 * As bs_src->entries is a circular buffer, we need to copy from it in
907	 * two steps.  First, copy the branches from the most recently inserted
908	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
909	 */
910	nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
911	memcpy(&bs_dst->entries[0],
912	       &bs_src->entries[tidq->last_branch_pos],
913	       sizeof(struct branch_entry) * nr);
914
915	/*
916	 * If we wrapped around at least once, the branches from the beginning
917	 * of the bs_src->entries buffer and until the ->last_branch_pos element
918	 * are older valid branches: copy them over.  The total number of
919	 * branches copied over will be equal to the number of branches asked by
920	 * the user in last_branch_sz.
921	 */
922	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
923		memcpy(&bs_dst->entries[nr],
924		       &bs_src->entries[0],
925		       sizeof(struct branch_entry) * tidq->last_branch_pos);
926	}
927}
928
929static inline
930void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
931{
932	tidq->last_branch_pos = 0;
933	tidq->last_branch_rb->nr = 0;
934}
935
936static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
937					 u8 trace_chan_id, u64 addr)
938{
939	u8 instrBytes[2];
940
941	cs_etm__mem_access(etmq, trace_chan_id, addr,
942			   ARRAY_SIZE(instrBytes), instrBytes);
943	/*
944	 * T32 instruction size is indicated by bits[15:11] of the first
945	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
946	 * denote a 32-bit instruction.
947	 */
948	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
949}
950
951static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
952{
953	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
954	if (packet->sample_type == CS_ETM_DISCONTINUITY)
955		return 0;
956
957	return packet->start_addr;
958}
959
960static inline
961u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
962{
963	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
964	if (packet->sample_type == CS_ETM_DISCONTINUITY)
965		return 0;
966
967	return packet->end_addr - packet->last_instr_size;
968}
969
970static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
971				     u64 trace_chan_id,
972				     const struct cs_etm_packet *packet,
973				     u64 offset)
974{
975	if (packet->isa == CS_ETM_ISA_T32) {
976		u64 addr = packet->start_addr;
977
978		while (offset) {
979			addr += cs_etm__t32_instr_size(etmq,
980						       trace_chan_id, addr);
981			offset--;
982		}
983		return addr;
984	}
985
986	/* Assume a 4 byte instruction size (A32/A64) */
987	return packet->start_addr + offset * 4;
988}
989
990static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
991					  struct cs_etm_traceid_queue *tidq)
992{
993	struct branch_stack *bs = tidq->last_branch_rb;
994	struct branch_entry *be;
995
996	/*
997	 * The branches are recorded in a circular buffer in reverse
998	 * chronological order: we start recording from the last element of the
999	 * buffer down.  After writing the first element of the stack, move the
1000	 * insert position back to the end of the buffer.
1001	 */
1002	if (!tidq->last_branch_pos)
1003		tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1004
1005	tidq->last_branch_pos -= 1;
1006
1007	be       = &bs->entries[tidq->last_branch_pos];
1008	be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1009	be->to	 = cs_etm__first_executed_instr(tidq->packet);
1010	/* No support for mispredict */
1011	be->flags.mispred = 0;
1012	be->flags.predicted = 1;
1013
1014	/*
1015	 * Increment bs->nr until reaching the number of last branches asked by
1016	 * the user on the command line.
1017	 */
1018	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1019		bs->nr += 1;
1020}
1021
1022static int cs_etm__inject_event(union perf_event *event,
1023			       struct perf_sample *sample, u64 type)
1024{
1025	event->header.size = perf_event__sample_event_size(sample, type, 0);
1026	return perf_event__synthesize_sample(event, type, 0, sample);
1027}
1028
1029
1030static int
1031cs_etm__get_trace(struct cs_etm_queue *etmq)
1032{
1033	struct auxtrace_buffer *aux_buffer = etmq->buffer;
1034	struct auxtrace_buffer *old_buffer = aux_buffer;
1035	struct auxtrace_queue *queue;
1036
1037	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1038
1039	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1040
1041	/* If no more data, drop the previous auxtrace_buffer and return */
1042	if (!aux_buffer) {
1043		if (old_buffer)
1044			auxtrace_buffer__drop_data(old_buffer);
1045		etmq->buf_len = 0;
1046		return 0;
1047	}
1048
1049	etmq->buffer = aux_buffer;
1050
1051	/* If the aux_buffer doesn't have data associated, try to load it */
1052	if (!aux_buffer->data) {
1053		/* get the file desc associated with the perf data file */
1054		int fd = perf_data__fd(etmq->etm->session->data);
1055
1056		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1057		if (!aux_buffer->data)
1058			return -ENOMEM;
1059	}
1060
1061	/* If valid, drop the previous buffer */
1062	if (old_buffer)
1063		auxtrace_buffer__drop_data(old_buffer);
1064
1065	etmq->buf_used = 0;
1066	etmq->buf_len = aux_buffer->size;
1067	etmq->buf = aux_buffer->data;
1068
1069	return etmq->buf_len;
1070}
1071
1072static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1073				    struct cs_etm_traceid_queue *tidq)
1074{
1075	if ((!tidq->thread) && (tidq->tid != -1))
1076		tidq->thread = machine__find_thread(etm->machine, -1,
1077						    tidq->tid);
1078
1079	if (tidq->thread)
1080		tidq->pid = tidq->thread->pid_;
1081}
1082
1083int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1084			 pid_t tid, u8 trace_chan_id)
1085{
1086	int cpu, err = -EINVAL;
1087	struct cs_etm_auxtrace *etm = etmq->etm;
1088	struct cs_etm_traceid_queue *tidq;
1089
1090	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1091	if (!tidq)
1092		return err;
1093
1094	if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1095		return err;
1096
1097	err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1098	if (err)
1099		return err;
1100
1101	tidq->tid = tid;
1102	thread__zput(tidq->thread);
1103
1104	cs_etm__set_pid_tid_cpu(etm, tidq);
1105	return 0;
1106}
1107
1108bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1109{
1110	return !!etmq->etm->timeless_decoding;
1111}
1112
1113static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1114			      u64 trace_chan_id,
1115			      const struct cs_etm_packet *packet,
1116			      struct perf_sample *sample)
1117{
1118	/*
1119	 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1120	 * packet, so directly bail out with 'insn_len' = 0.
1121	 */
1122	if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1123		sample->insn_len = 0;
1124		return;
1125	}
1126
1127	/*
1128	 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1129	 * cs_etm__t32_instr_size().
1130	 */
1131	if (packet->isa == CS_ETM_ISA_T32)
1132		sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1133							  sample->ip);
1134	/* Otherwise, A64 and A32 instruction size are always 32-bit. */
1135	else
1136		sample->insn_len = 4;
1137
1138	cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1139			   sample->insn_len, (void *)sample->insn);
1140}
1141
1142static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1143					    struct cs_etm_traceid_queue *tidq,
1144					    u64 addr, u64 period)
1145{
1146	int ret = 0;
1147	struct cs_etm_auxtrace *etm = etmq->etm;
1148	union perf_event *event = tidq->event_buf;
1149	struct perf_sample sample = {.ip = 0,};
1150
1151	event->sample.header.type = PERF_RECORD_SAMPLE;
1152	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1153	event->sample.header.size = sizeof(struct perf_event_header);
1154
1155	sample.ip = addr;
1156	sample.pid = tidq->pid;
1157	sample.tid = tidq->tid;
1158	sample.id = etmq->etm->instructions_id;
1159	sample.stream_id = etmq->etm->instructions_id;
1160	sample.period = period;
1161	sample.cpu = tidq->packet->cpu;
1162	sample.flags = tidq->prev_packet->flags;
1163	sample.cpumode = event->sample.header.misc;
1164
1165	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1166
1167	if (etm->synth_opts.last_branch)
1168		sample.branch_stack = tidq->last_branch;
1169
1170	if (etm->synth_opts.inject) {
1171		ret = cs_etm__inject_event(event, &sample,
1172					   etm->instructions_sample_type);
1173		if (ret)
1174			return ret;
1175	}
1176
1177	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1178
1179	if (ret)
1180		pr_err(
1181			"CS ETM Trace: failed to deliver instruction event, error %d\n",
1182			ret);
1183
1184	return ret;
1185}
1186
1187/*
1188 * The cs etm packet encodes an instruction range between a branch target
1189 * and the next taken branch. Generate sample accordingly.
1190 */
1191static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1192				       struct cs_etm_traceid_queue *tidq)
1193{
1194	int ret = 0;
1195	struct cs_etm_auxtrace *etm = etmq->etm;
1196	struct perf_sample sample = {.ip = 0,};
1197	union perf_event *event = tidq->event_buf;
1198	struct dummy_branch_stack {
1199		u64			nr;
1200		u64			hw_idx;
1201		struct branch_entry	entries;
1202	} dummy_bs;
1203	u64 ip;
1204
1205	ip = cs_etm__last_executed_instr(tidq->prev_packet);
1206
1207	event->sample.header.type = PERF_RECORD_SAMPLE;
1208	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1209	event->sample.header.size = sizeof(struct perf_event_header);
1210
1211	sample.ip = ip;
1212	sample.pid = tidq->pid;
1213	sample.tid = tidq->tid;
1214	sample.addr = cs_etm__first_executed_instr(tidq->packet);
1215	sample.id = etmq->etm->branches_id;
1216	sample.stream_id = etmq->etm->branches_id;
1217	sample.period = 1;
1218	sample.cpu = tidq->packet->cpu;
1219	sample.flags = tidq->prev_packet->flags;
1220	sample.cpumode = event->sample.header.misc;
1221
1222	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1223			  &sample);
1224
1225	/*
1226	 * perf report cannot handle events without a branch stack
1227	 */
1228	if (etm->synth_opts.last_branch) {
1229		dummy_bs = (struct dummy_branch_stack){
1230			.nr = 1,
1231			.hw_idx = -1ULL,
1232			.entries = {
1233				.from = sample.ip,
1234				.to = sample.addr,
1235			},
1236		};
1237		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1238	}
1239
1240	if (etm->synth_opts.inject) {
1241		ret = cs_etm__inject_event(event, &sample,
1242					   etm->branches_sample_type);
1243		if (ret)
1244			return ret;
1245	}
1246
1247	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1248
1249	if (ret)
1250		pr_err(
1251		"CS ETM Trace: failed to deliver instruction event, error %d\n",
1252		ret);
1253
1254	return ret;
1255}
1256
1257struct cs_etm_synth {
1258	struct perf_tool dummy_tool;
1259	struct perf_session *session;
1260};
1261
1262static int cs_etm__event_synth(struct perf_tool *tool,
1263			       union perf_event *event,
1264			       struct perf_sample *sample __maybe_unused,
1265			       struct machine *machine __maybe_unused)
1266{
1267	struct cs_etm_synth *cs_etm_synth =
1268		      container_of(tool, struct cs_etm_synth, dummy_tool);
1269
1270	return perf_session__deliver_synth_event(cs_etm_synth->session,
1271						 event, NULL);
1272}
1273
1274static int cs_etm__synth_event(struct perf_session *session,
1275			       struct perf_event_attr *attr, u64 id)
1276{
1277	struct cs_etm_synth cs_etm_synth;
1278
1279	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1280	cs_etm_synth.session = session;
1281
1282	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1283					   &id, cs_etm__event_synth);
1284}
1285
1286static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1287				struct perf_session *session)
1288{
1289	struct evlist *evlist = session->evlist;
1290	struct evsel *evsel;
1291	struct perf_event_attr attr;
1292	bool found = false;
1293	u64 id;
1294	int err;
1295
1296	evlist__for_each_entry(evlist, evsel) {
1297		if (evsel->core.attr.type == etm->pmu_type) {
1298			found = true;
1299			break;
1300		}
1301	}
1302
1303	if (!found) {
1304		pr_debug("No selected events with CoreSight Trace data\n");
1305		return 0;
1306	}
1307
1308	memset(&attr, 0, sizeof(struct perf_event_attr));
1309	attr.size = sizeof(struct perf_event_attr);
1310	attr.type = PERF_TYPE_HARDWARE;
1311	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1312	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1313			    PERF_SAMPLE_PERIOD;
1314	if (etm->timeless_decoding)
1315		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1316	else
1317		attr.sample_type |= PERF_SAMPLE_TIME;
1318
1319	attr.exclude_user = evsel->core.attr.exclude_user;
1320	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1321	attr.exclude_hv = evsel->core.attr.exclude_hv;
1322	attr.exclude_host = evsel->core.attr.exclude_host;
1323	attr.exclude_guest = evsel->core.attr.exclude_guest;
1324	attr.sample_id_all = evsel->core.attr.sample_id_all;
1325	attr.read_format = evsel->core.attr.read_format;
1326
1327	/* create new id val to be a fixed offset from evsel id */
1328	id = evsel->core.id[0] + 1000000000;
1329
1330	if (!id)
1331		id = 1;
1332
1333	if (etm->synth_opts.branches) {
1334		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1335		attr.sample_period = 1;
1336		attr.sample_type |= PERF_SAMPLE_ADDR;
1337		err = cs_etm__synth_event(session, &attr, id);
1338		if (err)
1339			return err;
1340		etm->sample_branches = true;
1341		etm->branches_sample_type = attr.sample_type;
1342		etm->branches_id = id;
1343		id += 1;
1344		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1345	}
1346
1347	if (etm->synth_opts.last_branch) {
1348		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1349		/*
1350		 * We don't use the hardware index, but the sample generation
1351		 * code uses the new format branch_stack with this field,
1352		 * so the event attributes must indicate that it's present.
1353		 */
1354		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1355	}
1356
1357	if (etm->synth_opts.instructions) {
1358		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1359		attr.sample_period = etm->synth_opts.period;
1360		etm->instructions_sample_period = attr.sample_period;
1361		err = cs_etm__synth_event(session, &attr, id);
1362		if (err)
1363			return err;
1364		etm->sample_instructions = true;
1365		etm->instructions_sample_type = attr.sample_type;
1366		etm->instructions_id = id;
1367		id += 1;
1368	}
1369
1370	return 0;
1371}
1372
1373static int cs_etm__sample(struct cs_etm_queue *etmq,
1374			  struct cs_etm_traceid_queue *tidq)
1375{
1376	struct cs_etm_auxtrace *etm = etmq->etm;
1377	int ret;
1378	u8 trace_chan_id = tidq->trace_chan_id;
1379	u64 instrs_prev;
1380
1381	/* Get instructions remainder from previous packet */
1382	instrs_prev = tidq->period_instructions;
1383
1384	tidq->period_instructions += tidq->packet->instr_count;
1385
1386	/*
1387	 * Record a branch when the last instruction in
1388	 * PREV_PACKET is a branch.
1389	 */
1390	if (etm->synth_opts.last_branch &&
1391	    tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1392	    tidq->prev_packet->last_instr_taken_branch)
1393		cs_etm__update_last_branch_rb(etmq, tidq);
1394
1395	if (etm->sample_instructions &&
1396	    tidq->period_instructions >= etm->instructions_sample_period) {
1397		/*
1398		 * Emit instruction sample periodically
1399		 * TODO: allow period to be defined in cycles and clock time
1400		 */
1401
1402		/*
1403		 * Below diagram demonstrates the instruction samples
1404		 * generation flows:
1405		 *
1406		 *    Instrs     Instrs       Instrs       Instrs
1407		 *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
1408		 *    |            |            |            |
1409		 *    V            V            V            V
1410		 *   --------------------------------------------------
1411		 *            ^                                  ^
1412		 *            |                                  |
1413		 *         Period                             Period
1414		 *    instructions(Pi)                   instructions(Pi')
1415		 *
1416		 *            |                                  |
1417		 *            \---------------- -----------------/
1418		 *                             V
1419		 *                 tidq->packet->instr_count
1420		 *
1421		 * Instrs Sample(n...) are the synthesised samples occurring
1422		 * every etm->instructions_sample_period instructions - as
1423		 * defined on the perf command line.  Sample(n) is being the
1424		 * last sample before the current etm packet, n+1 to n+3
1425		 * samples are generated from the current etm packet.
1426		 *
1427		 * tidq->packet->instr_count represents the number of
1428		 * instructions in the current etm packet.
1429		 *
1430		 * Period instructions (Pi) contains the the number of
1431		 * instructions executed after the sample point(n) from the
1432		 * previous etm packet.  This will always be less than
1433		 * etm->instructions_sample_period.
1434		 *
1435		 * When generate new samples, it combines with two parts
1436		 * instructions, one is the tail of the old packet and another
1437		 * is the head of the new coming packet, to generate
1438		 * sample(n+1); sample(n+2) and sample(n+3) consume the
1439		 * instructions with sample period.  After sample(n+3), the rest
1440		 * instructions will be used by later packet and it is assigned
1441		 * to tidq->period_instructions for next round calculation.
1442		 */
1443
1444		/*
1445		 * Get the initial offset into the current packet instructions;
1446		 * entry conditions ensure that instrs_prev is less than
1447		 * etm->instructions_sample_period.
1448		 */
1449		u64 offset = etm->instructions_sample_period - instrs_prev;
1450		u64 addr;
1451
1452		/* Prepare last branches for instruction sample */
1453		if (etm->synth_opts.last_branch)
1454			cs_etm__copy_last_branch_rb(etmq, tidq);
1455
1456		while (tidq->period_instructions >=
1457				etm->instructions_sample_period) {
1458			/*
1459			 * Calculate the address of the sampled instruction (-1
1460			 * as sample is reported as though instruction has just
1461			 * been executed, but PC has not advanced to next
1462			 * instruction)
1463			 */
1464			addr = cs_etm__instr_addr(etmq, trace_chan_id,
1465						  tidq->packet, offset - 1);
1466			ret = cs_etm__synth_instruction_sample(
1467				etmq, tidq, addr,
1468				etm->instructions_sample_period);
1469			if (ret)
1470				return ret;
1471
1472			offset += etm->instructions_sample_period;
1473			tidq->period_instructions -=
1474				etm->instructions_sample_period;
1475		}
1476	}
1477
1478	if (etm->sample_branches) {
1479		bool generate_sample = false;
1480
1481		/* Generate sample for tracing on packet */
1482		if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1483			generate_sample = true;
1484
1485		/* Generate sample for branch taken packet */
1486		if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1487		    tidq->prev_packet->last_instr_taken_branch)
1488			generate_sample = true;
1489
1490		if (generate_sample) {
1491			ret = cs_etm__synth_branch_sample(etmq, tidq);
1492			if (ret)
1493				return ret;
1494		}
1495	}
1496
1497	cs_etm__packet_swap(etm, tidq);
1498
1499	return 0;
1500}
1501
1502static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1503{
1504	/*
1505	 * When the exception packet is inserted, whether the last instruction
1506	 * in previous range packet is taken branch or not, we need to force
1507	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1508	 * to generate branch sample for the instruction range before the
1509	 * exception is trapped to kernel or before the exception returning.
1510	 *
1511	 * The exception packet includes the dummy address values, so don't
1512	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1513	 * for generating instruction and branch samples.
1514	 */
1515	if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1516		tidq->prev_packet->last_instr_taken_branch = true;
1517
1518	return 0;
1519}
1520
1521static int cs_etm__flush(struct cs_etm_queue *etmq,
1522			 struct cs_etm_traceid_queue *tidq)
1523{
1524	int err = 0;
1525	struct cs_etm_auxtrace *etm = etmq->etm;
1526
1527	/* Handle start tracing packet */
1528	if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1529		goto swap_packet;
1530
1531	if (etmq->etm->synth_opts.last_branch &&
1532	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1533		u64 addr;
1534
1535		/* Prepare last branches for instruction sample */
1536		cs_etm__copy_last_branch_rb(etmq, tidq);
1537
1538		/*
1539		 * Generate a last branch event for the branches left in the
1540		 * circular buffer at the end of the trace.
1541		 *
1542		 * Use the address of the end of the last reported execution
1543		 * range
1544		 */
1545		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1546
1547		err = cs_etm__synth_instruction_sample(
1548			etmq, tidq, addr,
1549			tidq->period_instructions);
1550		if (err)
1551			return err;
1552
1553		tidq->period_instructions = 0;
1554
1555	}
1556
1557	if (etm->sample_branches &&
1558	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1559		err = cs_etm__synth_branch_sample(etmq, tidq);
1560		if (err)
1561			return err;
1562	}
1563
1564swap_packet:
1565	cs_etm__packet_swap(etm, tidq);
1566
1567	/* Reset last branches after flush the trace */
1568	if (etm->synth_opts.last_branch)
1569		cs_etm__reset_last_branch_rb(tidq);
1570
1571	return err;
1572}
1573
1574static int cs_etm__end_block(struct cs_etm_queue *etmq,
1575			     struct cs_etm_traceid_queue *tidq)
1576{
1577	int err;
1578
1579	/*
1580	 * It has no new packet coming and 'etmq->packet' contains the stale
1581	 * packet which was set at the previous time with packets swapping;
1582	 * so skip to generate branch sample to avoid stale packet.
1583	 *
1584	 * For this case only flush branch stack and generate a last branch
1585	 * event for the branches left in the circular buffer at the end of
1586	 * the trace.
1587	 */
1588	if (etmq->etm->synth_opts.last_branch &&
1589	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1590		u64 addr;
1591
1592		/* Prepare last branches for instruction sample */
1593		cs_etm__copy_last_branch_rb(etmq, tidq);
1594
1595		/*
1596		 * Use the address of the end of the last reported execution
1597		 * range.
1598		 */
1599		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1600
1601		err = cs_etm__synth_instruction_sample(
1602			etmq, tidq, addr,
1603			tidq->period_instructions);
1604		if (err)
1605			return err;
1606
1607		tidq->period_instructions = 0;
1608	}
1609
1610	return 0;
1611}
1612/*
1613 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1614 *			   if need be.
1615 * Returns:	< 0	if error
1616 *		= 0	if no more auxtrace_buffer to read
1617 *		> 0	if the current buffer isn't empty yet
1618 */
1619static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1620{
1621	int ret;
1622
1623	if (!etmq->buf_len) {
1624		ret = cs_etm__get_trace(etmq);
1625		if (ret <= 0)
1626			return ret;
1627		/*
1628		 * We cannot assume consecutive blocks in the data file
1629		 * are contiguous, reset the decoder to force re-sync.
1630		 */
1631		ret = cs_etm_decoder__reset(etmq->decoder);
1632		if (ret)
1633			return ret;
1634	}
1635
1636	return etmq->buf_len;
1637}
1638
1639static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1640				 struct cs_etm_packet *packet,
1641				 u64 end_addr)
1642{
1643	/* Initialise to keep compiler happy */
1644	u16 instr16 = 0;
1645	u32 instr32 = 0;
1646	u64 addr;
1647
1648	switch (packet->isa) {
1649	case CS_ETM_ISA_T32:
1650		/*
1651		 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1652		 *
1653		 *  b'15         b'8
1654		 * +-----------------+--------+
1655		 * | 1 1 0 1 1 1 1 1 |  imm8  |
1656		 * +-----------------+--------+
1657		 *
1658		 * According to the specifiction, it only defines SVC for T32
1659		 * with 16 bits instruction and has no definition for 32bits;
1660		 * so below only read 2 bytes as instruction size for T32.
1661		 */
1662		addr = end_addr - 2;
1663		cs_etm__mem_access(etmq, trace_chan_id, addr,
1664				   sizeof(instr16), (u8 *)&instr16);
1665		if ((instr16 & 0xFF00) == 0xDF00)
1666			return true;
1667
1668		break;
1669	case CS_ETM_ISA_A32:
1670		/*
1671		 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1672		 *
1673		 *  b'31 b'28 b'27 b'24
1674		 * +---------+---------+-------------------------+
1675		 * |  !1111  | 1 1 1 1 |        imm24            |
1676		 * +---------+---------+-------------------------+
1677		 */
1678		addr = end_addr - 4;
1679		cs_etm__mem_access(etmq, trace_chan_id, addr,
1680				   sizeof(instr32), (u8 *)&instr32);
1681		if ((instr32 & 0x0F000000) == 0x0F000000 &&
1682		    (instr32 & 0xF0000000) != 0xF0000000)
1683			return true;
1684
1685		break;
1686	case CS_ETM_ISA_A64:
1687		/*
1688		 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1689		 *
1690		 *  b'31               b'21           b'4     b'0
1691		 * +-----------------------+---------+-----------+
1692		 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1693		 * +-----------------------+---------+-----------+
1694		 */
1695		addr = end_addr - 4;
1696		cs_etm__mem_access(etmq, trace_chan_id, addr,
1697				   sizeof(instr32), (u8 *)&instr32);
1698		if ((instr32 & 0xFFE0001F) == 0xd4000001)
1699			return true;
1700
1701		break;
1702	case CS_ETM_ISA_UNKNOWN:
1703	default:
1704		break;
1705	}
1706
1707	return false;
1708}
1709
1710static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1711			       struct cs_etm_traceid_queue *tidq, u64 magic)
1712{
1713	u8 trace_chan_id = tidq->trace_chan_id;
1714	struct cs_etm_packet *packet = tidq->packet;
1715	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1716
1717	if (magic == __perf_cs_etmv3_magic)
1718		if (packet->exception_number == CS_ETMV3_EXC_SVC)
1719			return true;
1720
1721	/*
1722	 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1723	 * HVC cases; need to check if it's SVC instruction based on
1724	 * packet address.
1725	 */
1726	if (magic == __perf_cs_etmv4_magic) {
1727		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1728		    cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1729					 prev_packet->end_addr))
1730			return true;
1731	}
1732
1733	return false;
1734}
1735
1736static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1737				       u64 magic)
1738{
1739	struct cs_etm_packet *packet = tidq->packet;
1740
1741	if (magic == __perf_cs_etmv3_magic)
1742		if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1743		    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1744		    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1745		    packet->exception_number == CS_ETMV3_EXC_IRQ ||
1746		    packet->exception_number == CS_ETMV3_EXC_FIQ)
1747			return true;
1748
1749	if (magic == __perf_cs_etmv4_magic)
1750		if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1751		    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1752		    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1753		    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1754		    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1755		    packet->exception_number == CS_ETMV4_EXC_IRQ ||
1756		    packet->exception_number == CS_ETMV4_EXC_FIQ)
1757			return true;
1758
1759	return false;
1760}
1761
1762static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1763				      struct cs_etm_traceid_queue *tidq,
1764				      u64 magic)
1765{
1766	u8 trace_chan_id = tidq->trace_chan_id;
1767	struct cs_etm_packet *packet = tidq->packet;
1768	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1769
1770	if (magic == __perf_cs_etmv3_magic)
1771		if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1772		    packet->exception_number == CS_ETMV3_EXC_HYP ||
1773		    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1774		    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1775		    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1776		    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1777		    packet->exception_number == CS_ETMV3_EXC_GENERIC)
1778			return true;
1779
1780	if (magic == __perf_cs_etmv4_magic) {
1781		if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1782		    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1783		    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1784		    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1785			return true;
1786
1787		/*
1788		 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1789		 * (SMC, HVC) are taken as sync exceptions.
1790		 */
1791		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1792		    !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1793					  prev_packet->end_addr))
1794			return true;
1795
1796		/*
1797		 * ETMv4 has 5 bits for exception number; if the numbers
1798		 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1799		 * they are implementation defined exceptions.
1800		 *
1801		 * For this case, simply take it as sync exception.
1802		 */
1803		if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1804		    packet->exception_number <= CS_ETMV4_EXC_END)
1805			return true;
1806	}
1807
1808	return false;
1809}
1810
1811static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1812				    struct cs_etm_traceid_queue *tidq)
1813{
1814	struct cs_etm_packet *packet = tidq->packet;
1815	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1816	u8 trace_chan_id = tidq->trace_chan_id;
1817	u64 magic;
1818	int ret;
1819
1820	switch (packet->sample_type) {
1821	case CS_ETM_RANGE:
1822		/*
1823		 * Immediate branch instruction without neither link nor
1824		 * return flag, it's normal branch instruction within
1825		 * the function.
1826		 */
1827		if (packet->last_instr_type == OCSD_INSTR_BR &&
1828		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1829			packet->flags = PERF_IP_FLAG_BRANCH;
1830
1831			if (packet->last_instr_cond)
1832				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1833		}
1834
1835		/*
1836		 * Immediate branch instruction with link (e.g. BL), this is
1837		 * branch instruction for function call.
1838		 */
1839		if (packet->last_instr_type == OCSD_INSTR_BR &&
1840		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1841			packet->flags = PERF_IP_FLAG_BRANCH |
1842					PERF_IP_FLAG_CALL;
1843
1844		/*
1845		 * Indirect branch instruction with link (e.g. BLR), this is
1846		 * branch instruction for function call.
1847		 */
1848		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1849		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1850			packet->flags = PERF_IP_FLAG_BRANCH |
1851					PERF_IP_FLAG_CALL;
1852
1853		/*
1854		 * Indirect branch instruction with subtype of
1855		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1856		 * function return for A32/T32.
1857		 */
1858		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1859		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1860			packet->flags = PERF_IP_FLAG_BRANCH |
1861					PERF_IP_FLAG_RETURN;
1862
1863		/*
1864		 * Indirect branch instruction without link (e.g. BR), usually
1865		 * this is used for function return, especially for functions
1866		 * within dynamic link lib.
1867		 */
1868		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1869		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1870			packet->flags = PERF_IP_FLAG_BRANCH |
1871					PERF_IP_FLAG_RETURN;
1872
1873		/* Return instruction for function return. */
1874		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1875		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1876			packet->flags = PERF_IP_FLAG_BRANCH |
1877					PERF_IP_FLAG_RETURN;
1878
1879		/*
1880		 * Decoder might insert a discontinuity in the middle of
1881		 * instruction packets, fixup prev_packet with flag
1882		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1883		 */
1884		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1885			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1886					      PERF_IP_FLAG_TRACE_BEGIN;
1887
1888		/*
1889		 * If the previous packet is an exception return packet
1890		 * and the return address just follows SVC instuction,
1891		 * it needs to calibrate the previous packet sample flags
1892		 * as PERF_IP_FLAG_SYSCALLRET.
1893		 */
1894		if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1895					   PERF_IP_FLAG_RETURN |
1896					   PERF_IP_FLAG_INTERRUPT) &&
1897		    cs_etm__is_svc_instr(etmq, trace_chan_id,
1898					 packet, packet->start_addr))
1899			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1900					     PERF_IP_FLAG_RETURN |
1901					     PERF_IP_FLAG_SYSCALLRET;
1902		break;
1903	case CS_ETM_DISCONTINUITY:
1904		/*
1905		 * The trace is discontinuous, if the previous packet is
1906		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1907		 * for previous packet.
1908		 */
1909		if (prev_packet->sample_type == CS_ETM_RANGE)
1910			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1911					      PERF_IP_FLAG_TRACE_END;
1912		break;
1913	case CS_ETM_EXCEPTION:
1914		ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1915		if (ret)
1916			return ret;
1917
1918		/* The exception is for system call. */
1919		if (cs_etm__is_syscall(etmq, tidq, magic))
1920			packet->flags = PERF_IP_FLAG_BRANCH |
1921					PERF_IP_FLAG_CALL |
1922					PERF_IP_FLAG_SYSCALLRET;
1923		/*
1924		 * The exceptions are triggered by external signals from bus,
1925		 * interrupt controller, debug module, PE reset or halt.
1926		 */
1927		else if (cs_etm__is_async_exception(tidq, magic))
1928			packet->flags = PERF_IP_FLAG_BRANCH |
1929					PERF_IP_FLAG_CALL |
1930					PERF_IP_FLAG_ASYNC |
1931					PERF_IP_FLAG_INTERRUPT;
1932		/*
1933		 * Otherwise, exception is caused by trap, instruction &
1934		 * data fault, or alignment errors.
1935		 */
1936		else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1937			packet->flags = PERF_IP_FLAG_BRANCH |
1938					PERF_IP_FLAG_CALL |
1939					PERF_IP_FLAG_INTERRUPT;
1940
1941		/*
1942		 * When the exception packet is inserted, since exception
1943		 * packet is not used standalone for generating samples
1944		 * and it's affiliation to the previous instruction range
1945		 * packet; so set previous range packet flags to tell perf
1946		 * it is an exception taken branch.
1947		 */
1948		if (prev_packet->sample_type == CS_ETM_RANGE)
1949			prev_packet->flags = packet->flags;
1950		break;
1951	case CS_ETM_EXCEPTION_RET:
1952		/*
1953		 * When the exception return packet is inserted, since
1954		 * exception return packet is not used standalone for
1955		 * generating samples and it's affiliation to the previous
1956		 * instruction range packet; so set previous range packet
1957		 * flags to tell perf it is an exception return branch.
1958		 *
1959		 * The exception return can be for either system call or
1960		 * other exception types; unfortunately the packet doesn't
1961		 * contain exception type related info so we cannot decide
1962		 * the exception type purely based on exception return packet.
1963		 * If we record the exception number from exception packet and
1964		 * reuse it for excpetion return packet, this is not reliable
1965		 * due the trace can be discontinuity or the interrupt can
1966		 * be nested, thus the recorded exception number cannot be
1967		 * used for exception return packet for these two cases.
1968		 *
1969		 * For exception return packet, we only need to distinguish the
1970		 * packet is for system call or for other types.  Thus the
1971		 * decision can be deferred when receive the next packet which
1972		 * contains the return address, based on the return address we
1973		 * can read out the previous instruction and check if it's a
1974		 * system call instruction and then calibrate the sample flag
1975		 * as needed.
1976		 */
1977		if (prev_packet->sample_type == CS_ETM_RANGE)
1978			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1979					     PERF_IP_FLAG_RETURN |
1980					     PERF_IP_FLAG_INTERRUPT;
1981		break;
1982	case CS_ETM_EMPTY:
1983	default:
1984		break;
1985	}
1986
1987	return 0;
1988}
1989
1990static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
1991{
1992	int ret = 0;
1993	size_t processed = 0;
1994
1995	/*
1996	 * Packets are decoded and added to the decoder's packet queue
1997	 * until the decoder packet processing callback has requested that
1998	 * processing stops or there is nothing left in the buffer.  Normal
1999	 * operations that stop processing are a timestamp packet or a full
2000	 * decoder buffer queue.
2001	 */
2002	ret = cs_etm_decoder__process_data_block(etmq->decoder,
2003						 etmq->offset,
2004						 &etmq->buf[etmq->buf_used],
2005						 etmq->buf_len,
2006						 &processed);
2007	if (ret)
2008		goto out;
2009
2010	etmq->offset += processed;
2011	etmq->buf_used += processed;
2012	etmq->buf_len -= processed;
2013
2014out:
2015	return ret;
2016}
2017
2018static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2019					 struct cs_etm_traceid_queue *tidq)
2020{
2021	int ret;
2022	struct cs_etm_packet_queue *packet_queue;
2023
2024	packet_queue = &tidq->packet_queue;
2025
2026	/* Process each packet in this chunk */
2027	while (1) {
2028		ret = cs_etm_decoder__get_packet(packet_queue,
2029						 tidq->packet);
2030		if (ret <= 0)
2031			/*
2032			 * Stop processing this chunk on
2033			 * end of data or error
2034			 */
2035			break;
2036
2037		/*
2038		 * Since packet addresses are swapped in packet
2039		 * handling within below switch() statements,
2040		 * thus setting sample flags must be called
2041		 * prior to switch() statement to use address
2042		 * information before packets swapping.
2043		 */
2044		ret = cs_etm__set_sample_flags(etmq, tidq);
2045		if (ret < 0)
2046			break;
2047
2048		switch (tidq->packet->sample_type) {
2049		case CS_ETM_RANGE:
2050			/*
2051			 * If the packet contains an instruction
2052			 * range, generate instruction sequence
2053			 * events.
2054			 */
2055			cs_etm__sample(etmq, tidq);
2056			break;
2057		case CS_ETM_EXCEPTION:
2058		case CS_ETM_EXCEPTION_RET:
2059			/*
2060			 * If the exception packet is coming,
2061			 * make sure the previous instruction
2062			 * range packet to be handled properly.
2063			 */
2064			cs_etm__exception(tidq);
2065			break;
2066		case CS_ETM_DISCONTINUITY:
2067			/*
2068			 * Discontinuity in trace, flush
2069			 * previous branch stack
2070			 */
2071			cs_etm__flush(etmq, tidq);
2072			break;
2073		case CS_ETM_EMPTY:
2074			/*
2075			 * Should not receive empty packet,
2076			 * report error.
2077			 */
2078			pr_err("CS ETM Trace: empty packet\n");
2079			return -EINVAL;
2080		default:
2081			break;
2082		}
2083	}
2084
2085	return ret;
2086}
2087
2088static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2089{
2090	int idx;
2091	struct int_node *inode;
2092	struct cs_etm_traceid_queue *tidq;
2093	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2094
2095	intlist__for_each_entry(inode, traceid_queues_list) {
2096		idx = (int)(intptr_t)inode->priv;
2097		tidq = etmq->traceid_queues[idx];
2098
2099		/* Ignore return value */
2100		cs_etm__process_traceid_queue(etmq, tidq);
2101
2102		/*
2103		 * Generate an instruction sample with the remaining
2104		 * branchstack entries.
2105		 */
2106		cs_etm__flush(etmq, tidq);
2107	}
2108}
2109
2110static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2111{
2112	int err = 0;
2113	struct cs_etm_traceid_queue *tidq;
2114
2115	tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2116	if (!tidq)
2117		return -EINVAL;
2118
2119	/* Go through each buffer in the queue and decode them one by one */
2120	while (1) {
2121		err = cs_etm__get_data_block(etmq);
2122		if (err <= 0)
2123			return err;
2124
2125		/* Run trace decoder until buffer consumed or end of trace */
2126		do {
2127			err = cs_etm__decode_data_block(etmq);
2128			if (err)
2129				return err;
2130
2131			/*
2132			 * Process each packet in this chunk, nothing to do if
2133			 * an error occurs other than hoping the next one will
2134			 * be better.
2135			 */
2136			err = cs_etm__process_traceid_queue(etmq, tidq);
2137
2138		} while (etmq->buf_len);
2139
2140		if (err == 0)
2141			/* Flush any remaining branch stack entries */
2142			err = cs_etm__end_block(etmq, tidq);
2143	}
2144
2145	return err;
2146}
2147
2148static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2149					   pid_t tid)
2150{
2151	unsigned int i;
2152	struct auxtrace_queues *queues = &etm->queues;
2153
2154	for (i = 0; i < queues->nr_queues; i++) {
2155		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2156		struct cs_etm_queue *etmq = queue->priv;
2157		struct cs_etm_traceid_queue *tidq;
2158
2159		if (!etmq)
2160			continue;
2161
2162		tidq = cs_etm__etmq_get_traceid_queue(etmq,
2163						CS_ETM_PER_THREAD_TRACEID);
2164
2165		if (!tidq)
2166			continue;
2167
2168		if ((tid == -1) || (tidq->tid == tid)) {
2169			cs_etm__set_pid_tid_cpu(etm, tidq);
2170			cs_etm__run_decoder(etmq);
2171		}
2172	}
2173
2174	return 0;
2175}
2176
2177static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2178{
2179	int ret = 0;
2180	unsigned int cs_queue_nr, queue_nr;
2181	u8 trace_chan_id;
2182	u64 timestamp;
2183	struct auxtrace_queue *queue;
2184	struct cs_etm_queue *etmq;
2185	struct cs_etm_traceid_queue *tidq;
2186
2187	while (1) {
2188		if (!etm->heap.heap_cnt)
2189			goto out;
2190
2191		/* Take the entry at the top of the min heap */
2192		cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2193		queue_nr = TO_QUEUE_NR(cs_queue_nr);
2194		trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2195		queue = &etm->queues.queue_array[queue_nr];
2196		etmq = queue->priv;
2197
2198		/*
2199		 * Remove the top entry from the heap since we are about
2200		 * to process it.
2201		 */
2202		auxtrace_heap__pop(&etm->heap);
2203
2204		tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2205		if (!tidq) {
2206			/*
2207			 * No traceID queue has been allocated for this traceID,
2208			 * which means something somewhere went very wrong.  No
2209			 * other choice than simply exit.
2210			 */
2211			ret = -EINVAL;
2212			goto out;
2213		}
2214
2215		/*
2216		 * Packets associated with this timestamp are already in
2217		 * the etmq's traceID queue, so process them.
2218		 */
2219		ret = cs_etm__process_traceid_queue(etmq, tidq);
2220		if (ret < 0)
2221			goto out;
2222
2223		/*
2224		 * Packets for this timestamp have been processed, time to
2225		 * move on to the next timestamp, fetching a new auxtrace_buffer
2226		 * if need be.
2227		 */
2228refetch:
2229		ret = cs_etm__get_data_block(etmq);
2230		if (ret < 0)
2231			goto out;
2232
2233		/*
2234		 * No more auxtrace_buffers to process in this etmq, simply
2235		 * move on to another entry in the auxtrace_heap.
2236		 */
2237		if (!ret)
2238			continue;
2239
2240		ret = cs_etm__decode_data_block(etmq);
2241		if (ret)
2242			goto out;
2243
2244		timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2245
2246		if (!timestamp) {
2247			/*
2248			 * Function cs_etm__decode_data_block() returns when
2249			 * there is no more traces to decode in the current
2250			 * auxtrace_buffer OR when a timestamp has been
2251			 * encountered on any of the traceID queues.  Since we
2252			 * did not get a timestamp, there is no more traces to
2253			 * process in this auxtrace_buffer.  As such empty and
2254			 * flush all traceID queues.
2255			 */
2256			cs_etm__clear_all_traceid_queues(etmq);
2257
2258			/* Fetch another auxtrace_buffer for this etmq */
2259			goto refetch;
2260		}
2261
2262		/*
2263		 * Add to the min heap the timestamp for packets that have
2264		 * just been decoded.  They will be processed and synthesized
2265		 * during the next call to cs_etm__process_traceid_queue() for
2266		 * this queue/traceID.
2267		 */
2268		cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2269		ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
2270	}
2271
2272out:
2273	return ret;
2274}
2275
2276static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2277					union perf_event *event)
2278{
2279	struct thread *th;
2280
2281	if (etm->timeless_decoding)
2282		return 0;
2283
2284	/*
2285	 * Add the tid/pid to the log so that we can get a match when
2286	 * we get a contextID from the decoder.
2287	 */
2288	th = machine__findnew_thread(etm->machine,
2289				     event->itrace_start.pid,
2290				     event->itrace_start.tid);
2291	if (!th)
2292		return -ENOMEM;
2293
2294	thread__put(th);
2295
2296	return 0;
2297}
2298
2299static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2300					   union perf_event *event)
2301{
2302	struct thread *th;
2303	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2304
2305	/*
2306	 * Context switch in per-thread mode are irrelevant since perf
2307	 * will start/stop tracing as the process is scheduled.
2308	 */
2309	if (etm->timeless_decoding)
2310		return 0;
2311
2312	/*
2313	 * SWITCH_IN events carry the next process to be switched out while
2314	 * SWITCH_OUT events carry the process to be switched in.  As such
2315	 * we don't care about IN events.
2316	 */
2317	if (!out)
2318		return 0;
2319
2320	/*
2321	 * Add the tid/pid to the log so that we can get a match when
2322	 * we get a contextID from the decoder.
2323	 */
2324	th = machine__findnew_thread(etm->machine,
2325				     event->context_switch.next_prev_pid,
2326				     event->context_switch.next_prev_tid);
2327	if (!th)
2328		return -ENOMEM;
2329
2330	thread__put(th);
2331
2332	return 0;
2333}
2334
2335static int cs_etm__process_event(struct perf_session *session,
2336				 union perf_event *event,
2337				 struct perf_sample *sample,
2338				 struct perf_tool *tool)
2339{
2340	int err = 0;
2341	u64 timestamp;
2342	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2343						   struct cs_etm_auxtrace,
2344						   auxtrace);
2345
2346	if (dump_trace)
2347		return 0;
2348
2349	if (!tool->ordered_events) {
2350		pr_err("CoreSight ETM Trace requires ordered events\n");
2351		return -EINVAL;
2352	}
2353
2354	if (sample->time && (sample->time != (u64) -1))
2355		timestamp = sample->time;
2356	else
2357		timestamp = 0;
2358
2359	if (timestamp || etm->timeless_decoding) {
2360		err = cs_etm__update_queues(etm);
2361		if (err)
2362			return err;
2363	}
2364
2365	if (etm->timeless_decoding &&
2366	    event->header.type == PERF_RECORD_EXIT)
2367		return cs_etm__process_timeless_queues(etm,
2368						       event->fork.tid);
2369
2370	if (event->header.type == PERF_RECORD_ITRACE_START)
2371		return cs_etm__process_itrace_start(etm, event);
2372	else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2373		return cs_etm__process_switch_cpu_wide(etm, event);
2374
2375	if (!etm->timeless_decoding &&
2376	    event->header.type == PERF_RECORD_AUX)
2377		return cs_etm__process_queues(etm);
2378
2379	return 0;
2380}
2381
2382static int cs_etm__process_auxtrace_event(struct perf_session *session,
2383					  union perf_event *event,
2384					  struct perf_tool *tool __maybe_unused)
2385{
2386	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2387						   struct cs_etm_auxtrace,
2388						   auxtrace);
2389	if (!etm->data_queued) {
2390		struct auxtrace_buffer *buffer;
2391		off_t  data_offset;
2392		int fd = perf_data__fd(session->data);
2393		bool is_pipe = perf_data__is_pipe(session->data);
2394		int err;
2395
2396		if (is_pipe)
2397			data_offset = 0;
2398		else {
2399			data_offset = lseek(fd, 0, SEEK_CUR);
2400			if (data_offset == -1)
2401				return -errno;
2402		}
2403
2404		err = auxtrace_queues__add_event(&etm->queues, session,
2405						 event, data_offset, &buffer);
2406		if (err)
2407			return err;
2408
2409		if (dump_trace)
2410			if (auxtrace_buffer__get_data(buffer, fd)) {
2411				cs_etm__dump_event(etm, buffer);
2412				auxtrace_buffer__put_data(buffer);
2413			}
2414	}
2415
2416	return 0;
2417}
2418
2419static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2420{
2421	struct evsel *evsel;
2422	struct evlist *evlist = etm->session->evlist;
2423	bool timeless_decoding = true;
2424
2425	/*
2426	 * Circle through the list of event and complain if we find one
2427	 * with the time bit set.
2428	 */
2429	evlist__for_each_entry(evlist, evsel) {
2430		if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2431			timeless_decoding = false;
2432	}
2433
2434	return timeless_decoding;
2435}
2436
2437static const char * const cs_etm_global_header_fmts[] = {
2438	[CS_HEADER_VERSION_0]	= "	Header version		       %llx\n",
2439	[CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n",
2440	[CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n",
2441};
2442
2443static const char * const cs_etm_priv_fmts[] = {
2444	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2445	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2446	[CS_ETM_ETMCR]		= "	ETMCR			       %llx\n",
2447	[CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n",
2448	[CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n",
2449	[CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n",
2450};
2451
2452static const char * const cs_etmv4_priv_fmts[] = {
2453	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2454	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2455	[CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n",
2456	[CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n",
2457	[CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n",
2458	[CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n",
2459	[CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n",
2460	[CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n",
2461	[CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n",
2462};
2463
2464static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2465{
2466	int i, j, cpu = 0;
2467
2468	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2469		fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2470
2471	for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
2472		if (val[i] == __perf_cs_etmv3_magic)
2473			for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
2474				fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2475		else if (val[i] == __perf_cs_etmv4_magic)
2476			for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
2477				fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2478		else
2479			/* failure.. return */
2480			return;
2481	}
2482}
2483
2484int cs_etm__process_auxtrace_info(union perf_event *event,
2485				  struct perf_session *session)
2486{
2487	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2488	struct cs_etm_auxtrace *etm = NULL;
2489	struct int_node *inode;
2490	unsigned int pmu_type;
2491	int event_header_size = sizeof(struct perf_event_header);
2492	int info_header_size;
2493	int total_size = auxtrace_info->header.size;
2494	int priv_size = 0;
2495	int num_cpu;
2496	int err = 0, idx = -1;
2497	int i, j, k;
2498	u64 *ptr, *hdr = NULL;
2499	u64 **metadata = NULL;
2500
2501	/*
2502	 * sizeof(auxtrace_info_event::type) +
2503	 * sizeof(auxtrace_info_event::reserved) == 8
2504	 */
2505	info_header_size = 8;
2506
2507	if (total_size < (event_header_size + info_header_size))
2508		return -EINVAL;
2509
2510	priv_size = total_size - event_header_size - info_header_size;
2511
2512	/* First the global part */
2513	ptr = (u64 *) auxtrace_info->priv;
2514
2515	/* Look for version '0' of the header */
2516	if (ptr[0] != 0)
2517		return -EINVAL;
2518
2519	hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
2520	if (!hdr)
2521		return -ENOMEM;
2522
2523	/* Extract header information - see cs-etm.h for format */
2524	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2525		hdr[i] = ptr[i];
2526	num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2527	pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2528				    0xffffffff);
2529
2530	/*
2531	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
2532	 * has to be made for each packet that gets decoded, optimizing access
2533	 * in anything other than a sequential array is worth doing.
2534	 */
2535	traceid_list = intlist__new(NULL);
2536	if (!traceid_list) {
2537		err = -ENOMEM;
2538		goto err_free_hdr;
2539	}
2540
2541	metadata = zalloc(sizeof(*metadata) * num_cpu);
2542	if (!metadata) {
2543		err = -ENOMEM;
2544		goto err_free_traceid_list;
2545	}
2546
2547	/*
2548	 * The metadata is stored in the auxtrace_info section and encodes
2549	 * the configuration of the ARM embedded trace macrocell which is
2550	 * required by the trace decoder to properly decode the trace due
2551	 * to its highly compressed nature.
2552	 */
2553	for (j = 0; j < num_cpu; j++) {
2554		if (ptr[i] == __perf_cs_etmv3_magic) {
2555			metadata[j] = zalloc(sizeof(*metadata[j]) *
2556					     CS_ETM_PRIV_MAX);
2557			if (!metadata[j]) {
2558				err = -ENOMEM;
2559				goto err_free_metadata;
2560			}
2561			for (k = 0; k < CS_ETM_PRIV_MAX; k++)
2562				metadata[j][k] = ptr[i + k];
2563
2564			/* The traceID is our handle */
2565			idx = metadata[j][CS_ETM_ETMTRACEIDR];
2566			i += CS_ETM_PRIV_MAX;
2567		} else if (ptr[i] == __perf_cs_etmv4_magic) {
2568			metadata[j] = zalloc(sizeof(*metadata[j]) *
2569					     CS_ETMV4_PRIV_MAX);
2570			if (!metadata[j]) {
2571				err = -ENOMEM;
2572				goto err_free_metadata;
2573			}
2574			for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
2575				metadata[j][k] = ptr[i + k];
2576
2577			/* The traceID is our handle */
2578			idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
2579			i += CS_ETMV4_PRIV_MAX;
2580		}
2581
2582		/* Get an RB node for this CPU */
2583		inode = intlist__findnew(traceid_list, idx);
2584
2585		/* Something went wrong, no need to continue */
2586		if (!inode) {
2587			err = -ENOMEM;
2588			goto err_free_metadata;
2589		}
2590
2591		/*
2592		 * The node for that CPU should not be taken.
2593		 * Back out if that's the case.
2594		 */
2595		if (inode->priv) {
2596			err = -EINVAL;
2597			goto err_free_metadata;
2598		}
2599		/* All good, associate the traceID with the metadata pointer */
2600		inode->priv = metadata[j];
2601	}
2602
2603	/*
2604	 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
2605	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
2606	 * global metadata, and each cpu's metadata respectively.
2607	 * The following tests if the correct number of double words was
2608	 * present in the auxtrace info section.
2609	 */
2610	if (i * 8 != priv_size) {
2611		err = -EINVAL;
2612		goto err_free_metadata;
2613	}
2614
2615	etm = zalloc(sizeof(*etm));
2616
2617	if (!etm) {
2618		err = -ENOMEM;
2619		goto err_free_metadata;
2620	}
2621
2622	err = auxtrace_queues__init(&etm->queues);
2623	if (err)
2624		goto err_free_etm;
2625
2626	etm->session = session;
2627	etm->machine = &session->machines.host;
2628
2629	etm->num_cpu = num_cpu;
2630	etm->pmu_type = pmu_type;
2631	etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
2632	etm->metadata = metadata;
2633	etm->auxtrace_type = auxtrace_info->type;
2634	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
2635
2636	etm->auxtrace.process_event = cs_etm__process_event;
2637	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
2638	etm->auxtrace.flush_events = cs_etm__flush_events;
2639	etm->auxtrace.free_events = cs_etm__free_events;
2640	etm->auxtrace.free = cs_etm__free;
2641	etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
2642	session->auxtrace = &etm->auxtrace;
2643
2644	etm->unknown_thread = thread__new(999999999, 999999999);
2645	if (!etm->unknown_thread) {
2646		err = -ENOMEM;
2647		goto err_free_queues;
2648	}
2649
2650	/*
2651	 * Initialize list node so that at thread__zput() we can avoid
2652	 * segmentation fault at list_del_init().
2653	 */
2654	INIT_LIST_HEAD(&etm->unknown_thread->node);
2655
2656	err = thread__set_comm(etm->unknown_thread, "unknown", 0);
2657	if (err)
2658		goto err_delete_thread;
2659
2660	if (thread__init_maps(etm->unknown_thread, etm->machine)) {
2661		err = -ENOMEM;
2662		goto err_delete_thread;
2663	}
2664
2665	if (dump_trace) {
2666		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
2667		return 0;
2668	}
2669
2670	if (session->itrace_synth_opts->set) {
2671		etm->synth_opts = *session->itrace_synth_opts;
2672	} else {
2673		itrace_synth_opts__set_default(&etm->synth_opts,
2674				session->itrace_synth_opts->default_no_sample);
2675		etm->synth_opts.callchain = false;
2676	}
2677
2678	err = cs_etm__synth_events(etm, session);
2679	if (err)
2680		goto err_delete_thread;
2681
2682	err = auxtrace_queues__process_index(&etm->queues, session);
2683	if (err)
2684		goto err_delete_thread;
2685
2686	etm->data_queued = etm->queues.populated;
2687
2688	return 0;
2689
2690err_delete_thread:
2691	thread__zput(etm->unknown_thread);
2692err_free_queues:
2693	auxtrace_queues__free(&etm->queues);
2694	session->auxtrace = NULL;
2695err_free_etm:
2696	zfree(&etm);
2697err_free_metadata:
2698	/* No need to check @metadata[j], free(NULL) is supported */
2699	for (j = 0; j < num_cpu; j++)
2700		zfree(&metadata[j]);
2701	zfree(&metadata);
2702err_free_traceid_list:
2703	intlist__delete(traceid_list);
2704err_free_hdr:
2705	zfree(&hdr);
2706
2707	return err;
2708}
2709