1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * auxtrace.c: AUX area trace support
4 * Copyright (c) 2013-2015, Intel Corporation.
5 */
6
7#include <inttypes.h>
8#include <sys/types.h>
9#include <sys/mman.h>
10#include <stdbool.h>
11#include <string.h>
12#include <limits.h>
13#include <errno.h>
14
15#include <linux/kernel.h>
16#include <linux/perf_event.h>
17#include <linux/types.h>
18#include <linux/bitops.h>
19#include <linux/log2.h>
20#include <linux/string.h>
21#include <linux/time64.h>
22
23#include <sys/param.h>
24#include <stdlib.h>
25#include <stdio.h>
26#include <linux/list.h>
27#include <linux/zalloc.h>
28
29#include "evlist.h"
30#include "dso.h"
31#include "map.h"
32#include "pmu.h"
33#include "evsel.h"
34#include "evsel_config.h"
35#include "symbol.h"
36#include "util/perf_api_probe.h"
37#include "util/synthetic-events.h"
38#include "thread_map.h"
39#include "asm/bug.h"
40#include "auxtrace.h"
41
42#include <linux/hash.h>
43
44#include "event.h"
45#include "record.h"
46#include "session.h"
47#include "debug.h"
48#include <subcmd/parse-options.h>
49
50#include "cs-etm.h"
51#include "intel-pt.h"
52#include "intel-bts.h"
53#include "arm-spe.h"
54#include "s390-cpumsf.h"
55#include "util/mmap.h"
56
57#include <linux/ctype.h>
58#include "symbol/kallsyms.h"
59#include <internal/lib.h>
60
61/*
62 * Make a group from 'leader' to 'last', requiring that the events were not
63 * already grouped to a different leader.
64 */
65static int perf_evlist__regroup(struct evlist *evlist,
66				struct evsel *leader,
67				struct evsel *last)
68{
69	struct evsel *evsel;
70	bool grp;
71
72	if (!evsel__is_group_leader(leader))
73		return -EINVAL;
74
75	grp = false;
76	evlist__for_each_entry(evlist, evsel) {
77		if (grp) {
78			if (!(evsel->leader == leader ||
79			     (evsel->leader == evsel &&
80			      evsel->core.nr_members <= 1)))
81				return -EINVAL;
82		} else if (evsel == leader) {
83			grp = true;
84		}
85		if (evsel == last)
86			break;
87	}
88
89	grp = false;
90	evlist__for_each_entry(evlist, evsel) {
91		if (grp) {
92			if (evsel->leader != leader) {
93				evsel->leader = leader;
94				if (leader->core.nr_members < 1)
95					leader->core.nr_members = 1;
96				leader->core.nr_members += 1;
97			}
98		} else if (evsel == leader) {
99			grp = true;
100		}
101		if (evsel == last)
102			break;
103	}
104
105	return 0;
106}
107
108static bool auxtrace__dont_decode(struct perf_session *session)
109{
110	return !session->itrace_synth_opts ||
111	       session->itrace_synth_opts->dont_decode;
112}
113
114int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
115			struct auxtrace_mmap_params *mp,
116			void *userpg, int fd)
117{
118	struct perf_event_mmap_page *pc = userpg;
119
120	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
121
122	mm->userpg = userpg;
123	mm->mask = mp->mask;
124	mm->len = mp->len;
125	mm->prev = 0;
126	mm->idx = mp->idx;
127	mm->tid = mp->tid;
128	mm->cpu = mp->cpu;
129
130	if (!mp->len) {
131		mm->base = NULL;
132		return 0;
133	}
134
135#if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
136	pr_err("Cannot use AUX area tracing mmaps\n");
137	return -1;
138#endif
139
140	pc->aux_offset = mp->offset;
141	pc->aux_size = mp->len;
142
143	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
144	if (mm->base == MAP_FAILED) {
145		pr_debug2("failed to mmap AUX area\n");
146		mm->base = NULL;
147		return -1;
148	}
149
150	return 0;
151}
152
153void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
154{
155	if (mm->base) {
156		munmap(mm->base, mm->len);
157		mm->base = NULL;
158	}
159}
160
161void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
162				off_t auxtrace_offset,
163				unsigned int auxtrace_pages,
164				bool auxtrace_overwrite)
165{
166	if (auxtrace_pages) {
167		mp->offset = auxtrace_offset;
168		mp->len = auxtrace_pages * (size_t)page_size;
169		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
170		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
171		pr_debug2("AUX area mmap length %zu\n", mp->len);
172	} else {
173		mp->len = 0;
174	}
175}
176
177void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
178				   struct evlist *evlist, int idx,
179				   bool per_cpu)
180{
181	mp->idx = idx;
182
183	if (per_cpu) {
184		mp->cpu = evlist->core.cpus->map[idx];
185		if (evlist->core.threads)
186			mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
187		else
188			mp->tid = -1;
189	} else {
190		mp->cpu = -1;
191		mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
192	}
193}
194
195#define AUXTRACE_INIT_NR_QUEUES	32
196
197static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
198{
199	struct auxtrace_queue *queue_array;
200	unsigned int max_nr_queues, i;
201
202	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
203	if (nr_queues > max_nr_queues)
204		return NULL;
205
206	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
207	if (!queue_array)
208		return NULL;
209
210	for (i = 0; i < nr_queues; i++) {
211		INIT_LIST_HEAD(&queue_array[i].head);
212		queue_array[i].priv = NULL;
213	}
214
215	return queue_array;
216}
217
218int auxtrace_queues__init(struct auxtrace_queues *queues)
219{
220	queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
221	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
222	if (!queues->queue_array)
223		return -ENOMEM;
224	return 0;
225}
226
227static int auxtrace_queues__grow(struct auxtrace_queues *queues,
228				 unsigned int new_nr_queues)
229{
230	unsigned int nr_queues = queues->nr_queues;
231	struct auxtrace_queue *queue_array;
232	unsigned int i;
233
234	if (!nr_queues)
235		nr_queues = AUXTRACE_INIT_NR_QUEUES;
236
237	while (nr_queues && nr_queues < new_nr_queues)
238		nr_queues <<= 1;
239
240	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
241		return -EINVAL;
242
243	queue_array = auxtrace_alloc_queue_array(nr_queues);
244	if (!queue_array)
245		return -ENOMEM;
246
247	for (i = 0; i < queues->nr_queues; i++) {
248		list_splice_tail(&queues->queue_array[i].head,
249				 &queue_array[i].head);
250		queue_array[i].tid = queues->queue_array[i].tid;
251		queue_array[i].cpu = queues->queue_array[i].cpu;
252		queue_array[i].set = queues->queue_array[i].set;
253		queue_array[i].priv = queues->queue_array[i].priv;
254	}
255
256	queues->nr_queues = nr_queues;
257	queues->queue_array = queue_array;
258
259	return 0;
260}
261
262static void *auxtrace_copy_data(u64 size, struct perf_session *session)
263{
264	int fd = perf_data__fd(session->data);
265	void *p;
266	ssize_t ret;
267
268	if (size > SSIZE_MAX)
269		return NULL;
270
271	p = malloc(size);
272	if (!p)
273		return NULL;
274
275	ret = readn(fd, p, size);
276	if (ret != (ssize_t)size) {
277		free(p);
278		return NULL;
279	}
280
281	return p;
282}
283
284static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
285					 unsigned int idx,
286					 struct auxtrace_buffer *buffer)
287{
288	struct auxtrace_queue *queue;
289	int err;
290
291	if (idx >= queues->nr_queues) {
292		err = auxtrace_queues__grow(queues, idx + 1);
293		if (err)
294			return err;
295	}
296
297	queue = &queues->queue_array[idx];
298
299	if (!queue->set) {
300		queue->set = true;
301		queue->tid = buffer->tid;
302		queue->cpu = buffer->cpu;
303	}
304
305	buffer->buffer_nr = queues->next_buffer_nr++;
306
307	list_add_tail(&buffer->list, &queue->head);
308
309	queues->new_data = true;
310	queues->populated = true;
311
312	return 0;
313}
314
315/* Limit buffers to 32MiB on 32-bit */
316#define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
317
318static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
319					 unsigned int idx,
320					 struct auxtrace_buffer *buffer)
321{
322	u64 sz = buffer->size;
323	bool consecutive = false;
324	struct auxtrace_buffer *b;
325	int err;
326
327	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
328		b = memdup(buffer, sizeof(struct auxtrace_buffer));
329		if (!b)
330			return -ENOMEM;
331		b->size = BUFFER_LIMIT_FOR_32_BIT;
332		b->consecutive = consecutive;
333		err = auxtrace_queues__queue_buffer(queues, idx, b);
334		if (err) {
335			auxtrace_buffer__free(b);
336			return err;
337		}
338		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
339		sz -= BUFFER_LIMIT_FOR_32_BIT;
340		consecutive = true;
341	}
342
343	buffer->size = sz;
344	buffer->consecutive = consecutive;
345
346	return 0;
347}
348
349static bool filter_cpu(struct perf_session *session, int cpu)
350{
351	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
352
353	return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
354}
355
356static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
357				       struct perf_session *session,
358				       unsigned int idx,
359				       struct auxtrace_buffer *buffer,
360				       struct auxtrace_buffer **buffer_ptr)
361{
362	int err = -ENOMEM;
363
364	if (filter_cpu(session, buffer->cpu))
365		return 0;
366
367	buffer = memdup(buffer, sizeof(*buffer));
368	if (!buffer)
369		return -ENOMEM;
370
371	if (session->one_mmap) {
372		buffer->data = buffer->data_offset - session->one_mmap_offset +
373			       session->one_mmap_addr;
374	} else if (perf_data__is_pipe(session->data)) {
375		buffer->data = auxtrace_copy_data(buffer->size, session);
376		if (!buffer->data)
377			goto out_free;
378		buffer->data_needs_freeing = true;
379	} else if (BITS_PER_LONG == 32 &&
380		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
381		err = auxtrace_queues__split_buffer(queues, idx, buffer);
382		if (err)
383			goto out_free;
384	}
385
386	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
387	if (err)
388		goto out_free;
389
390	/* FIXME: Doesn't work for split buffer */
391	if (buffer_ptr)
392		*buffer_ptr = buffer;
393
394	return 0;
395
396out_free:
397	auxtrace_buffer__free(buffer);
398	return err;
399}
400
401int auxtrace_queues__add_event(struct auxtrace_queues *queues,
402			       struct perf_session *session,
403			       union perf_event *event, off_t data_offset,
404			       struct auxtrace_buffer **buffer_ptr)
405{
406	struct auxtrace_buffer buffer = {
407		.pid = -1,
408		.tid = event->auxtrace.tid,
409		.cpu = event->auxtrace.cpu,
410		.data_offset = data_offset,
411		.offset = event->auxtrace.offset,
412		.reference = event->auxtrace.reference,
413		.size = event->auxtrace.size,
414	};
415	unsigned int idx = event->auxtrace.idx;
416
417	return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
418					   buffer_ptr);
419}
420
421static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
422					      struct perf_session *session,
423					      off_t file_offset, size_t sz)
424{
425	union perf_event *event;
426	int err;
427	char buf[PERF_SAMPLE_MAX_SIZE];
428
429	err = perf_session__peek_event(session, file_offset, buf,
430				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
431	if (err)
432		return err;
433
434	if (event->header.type == PERF_RECORD_AUXTRACE) {
435		if (event->header.size < sizeof(struct perf_record_auxtrace) ||
436		    event->header.size != sz) {
437			err = -EINVAL;
438			goto out;
439		}
440		file_offset += event->header.size;
441		err = auxtrace_queues__add_event(queues, session, event,
442						 file_offset, NULL);
443	}
444out:
445	return err;
446}
447
448void auxtrace_queues__free(struct auxtrace_queues *queues)
449{
450	unsigned int i;
451
452	for (i = 0; i < queues->nr_queues; i++) {
453		while (!list_empty(&queues->queue_array[i].head)) {
454			struct auxtrace_buffer *buffer;
455
456			buffer = list_entry(queues->queue_array[i].head.next,
457					    struct auxtrace_buffer, list);
458			list_del_init(&buffer->list);
459			auxtrace_buffer__free(buffer);
460		}
461	}
462
463	zfree(&queues->queue_array);
464	queues->nr_queues = 0;
465}
466
467static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
468			     unsigned int pos, unsigned int queue_nr,
469			     u64 ordinal)
470{
471	unsigned int parent;
472
473	while (pos) {
474		parent = (pos - 1) >> 1;
475		if (heap_array[parent].ordinal <= ordinal)
476			break;
477		heap_array[pos] = heap_array[parent];
478		pos = parent;
479	}
480	heap_array[pos].queue_nr = queue_nr;
481	heap_array[pos].ordinal = ordinal;
482}
483
484int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
485		       u64 ordinal)
486{
487	struct auxtrace_heap_item *heap_array;
488
489	if (queue_nr >= heap->heap_sz) {
490		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
491
492		while (heap_sz <= queue_nr)
493			heap_sz <<= 1;
494		heap_array = realloc(heap->heap_array,
495				     heap_sz * sizeof(struct auxtrace_heap_item));
496		if (!heap_array)
497			return -ENOMEM;
498		heap->heap_array = heap_array;
499		heap->heap_sz = heap_sz;
500	}
501
502	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
503
504	return 0;
505}
506
507void auxtrace_heap__free(struct auxtrace_heap *heap)
508{
509	zfree(&heap->heap_array);
510	heap->heap_cnt = 0;
511	heap->heap_sz = 0;
512}
513
514void auxtrace_heap__pop(struct auxtrace_heap *heap)
515{
516	unsigned int pos, last, heap_cnt = heap->heap_cnt;
517	struct auxtrace_heap_item *heap_array;
518
519	if (!heap_cnt)
520		return;
521
522	heap->heap_cnt -= 1;
523
524	heap_array = heap->heap_array;
525
526	pos = 0;
527	while (1) {
528		unsigned int left, right;
529
530		left = (pos << 1) + 1;
531		if (left >= heap_cnt)
532			break;
533		right = left + 1;
534		if (right >= heap_cnt) {
535			heap_array[pos] = heap_array[left];
536			return;
537		}
538		if (heap_array[left].ordinal < heap_array[right].ordinal) {
539			heap_array[pos] = heap_array[left];
540			pos = left;
541		} else {
542			heap_array[pos] = heap_array[right];
543			pos = right;
544		}
545	}
546
547	last = heap_cnt - 1;
548	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
549			 heap_array[last].ordinal);
550}
551
552size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
553				       struct evlist *evlist)
554{
555	if (itr)
556		return itr->info_priv_size(itr, evlist);
557	return 0;
558}
559
560static int auxtrace_not_supported(void)
561{
562	pr_err("AUX area tracing is not supported on this architecture\n");
563	return -EINVAL;
564}
565
566int auxtrace_record__info_fill(struct auxtrace_record *itr,
567			       struct perf_session *session,
568			       struct perf_record_auxtrace_info *auxtrace_info,
569			       size_t priv_size)
570{
571	if (itr)
572		return itr->info_fill(itr, session, auxtrace_info, priv_size);
573	return auxtrace_not_supported();
574}
575
576void auxtrace_record__free(struct auxtrace_record *itr)
577{
578	if (itr)
579		itr->free(itr);
580}
581
582int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
583{
584	if (itr && itr->snapshot_start)
585		return itr->snapshot_start(itr);
586	return 0;
587}
588
589int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
590{
591	if (!on_exit && itr && itr->snapshot_finish)
592		return itr->snapshot_finish(itr);
593	return 0;
594}
595
596int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
597				   struct auxtrace_mmap *mm,
598				   unsigned char *data, u64 *head, u64 *old)
599{
600	if (itr && itr->find_snapshot)
601		return itr->find_snapshot(itr, idx, mm, data, head, old);
602	return 0;
603}
604
605int auxtrace_record__options(struct auxtrace_record *itr,
606			     struct evlist *evlist,
607			     struct record_opts *opts)
608{
609	if (itr) {
610		itr->evlist = evlist;
611		return itr->recording_options(itr, evlist, opts);
612	}
613	return 0;
614}
615
616u64 auxtrace_record__reference(struct auxtrace_record *itr)
617{
618	if (itr)
619		return itr->reference(itr);
620	return 0;
621}
622
623int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
624				    struct record_opts *opts, const char *str)
625{
626	if (!str)
627		return 0;
628
629	/* PMU-agnostic options */
630	switch (*str) {
631	case 'e':
632		opts->auxtrace_snapshot_on_exit = true;
633		str++;
634		break;
635	default:
636		break;
637	}
638
639	if (itr && itr->parse_snapshot_options)
640		return itr->parse_snapshot_options(itr, opts, str);
641
642	pr_err("No AUX area tracing to snapshot\n");
643	return -EINVAL;
644}
645
646int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
647{
648	struct evsel *evsel;
649
650	if (!itr->evlist || !itr->pmu)
651		return -EINVAL;
652
653	evlist__for_each_entry(itr->evlist, evsel) {
654		if (evsel->core.attr.type == itr->pmu->type) {
655			if (evsel->disabled)
656				return 0;
657			return perf_evlist__enable_event_idx(itr->evlist, evsel,
658							     idx);
659		}
660	}
661	return -EINVAL;
662}
663
664/*
665 * Event record size is 16-bit which results in a maximum size of about 64KiB.
666 * Allow about 4KiB for the rest of the sample record, to give a maximum
667 * AUX area sample size of 60KiB.
668 */
669#define MAX_AUX_SAMPLE_SIZE (60 * 1024)
670
671/* Arbitrary default size if no other default provided */
672#define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
673
674static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
675					     struct record_opts *opts)
676{
677	struct evsel *evsel;
678	bool has_aux_leader = false;
679	u32 sz;
680
681	evlist__for_each_entry(evlist, evsel) {
682		sz = evsel->core.attr.aux_sample_size;
683		if (evsel__is_group_leader(evsel)) {
684			has_aux_leader = evsel__is_aux_event(evsel);
685			if (sz) {
686				if (has_aux_leader)
687					pr_err("Cannot add AUX area sampling to an AUX area event\n");
688				else
689					pr_err("Cannot add AUX area sampling to a group leader\n");
690				return -EINVAL;
691			}
692		}
693		if (sz > MAX_AUX_SAMPLE_SIZE) {
694			pr_err("AUX area sample size %u too big, max. %d\n",
695			       sz, MAX_AUX_SAMPLE_SIZE);
696			return -EINVAL;
697		}
698		if (sz) {
699			if (!has_aux_leader) {
700				pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
701				return -EINVAL;
702			}
703			evsel__set_sample_bit(evsel, AUX);
704			opts->auxtrace_sample_mode = true;
705		} else {
706			evsel__reset_sample_bit(evsel, AUX);
707		}
708	}
709
710	if (!opts->auxtrace_sample_mode) {
711		pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
712		return -EINVAL;
713	}
714
715	if (!perf_can_aux_sample()) {
716		pr_err("AUX area sampling is not supported by kernel\n");
717		return -EINVAL;
718	}
719
720	return 0;
721}
722
723int auxtrace_parse_sample_options(struct auxtrace_record *itr,
724				  struct evlist *evlist,
725				  struct record_opts *opts, const char *str)
726{
727	struct evsel_config_term *term;
728	struct evsel *aux_evsel;
729	bool has_aux_sample_size = false;
730	bool has_aux_leader = false;
731	struct evsel *evsel;
732	char *endptr;
733	unsigned long sz;
734
735	if (!str)
736		goto no_opt;
737
738	if (!itr) {
739		pr_err("No AUX area event to sample\n");
740		return -EINVAL;
741	}
742
743	sz = strtoul(str, &endptr, 0);
744	if (*endptr || sz > UINT_MAX) {
745		pr_err("Bad AUX area sampling option: '%s'\n", str);
746		return -EINVAL;
747	}
748
749	if (!sz)
750		sz = itr->default_aux_sample_size;
751
752	if (!sz)
753		sz = DEFAULT_AUX_SAMPLE_SIZE;
754
755	/* Set aux_sample_size based on --aux-sample option */
756	evlist__for_each_entry(evlist, evsel) {
757		if (evsel__is_group_leader(evsel)) {
758			has_aux_leader = evsel__is_aux_event(evsel);
759		} else if (has_aux_leader) {
760			evsel->core.attr.aux_sample_size = sz;
761		}
762	}
763no_opt:
764	aux_evsel = NULL;
765	/* Override with aux_sample_size from config term */
766	evlist__for_each_entry(evlist, evsel) {
767		if (evsel__is_aux_event(evsel))
768			aux_evsel = evsel;
769		term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
770		if (term) {
771			has_aux_sample_size = true;
772			evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
773			/* If possible, group with the AUX event */
774			if (aux_evsel && evsel->core.attr.aux_sample_size)
775				perf_evlist__regroup(evlist, aux_evsel, evsel);
776		}
777	}
778
779	if (!str && !has_aux_sample_size)
780		return 0;
781
782	if (!itr) {
783		pr_err("No AUX area event to sample\n");
784		return -EINVAL;
785	}
786
787	return auxtrace_validate_aux_sample_size(evlist, opts);
788}
789
790struct auxtrace_record *__weak
791auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
792{
793	*err = 0;
794	return NULL;
795}
796
797static int auxtrace_index__alloc(struct list_head *head)
798{
799	struct auxtrace_index *auxtrace_index;
800
801	auxtrace_index = malloc(sizeof(struct auxtrace_index));
802	if (!auxtrace_index)
803		return -ENOMEM;
804
805	auxtrace_index->nr = 0;
806	INIT_LIST_HEAD(&auxtrace_index->list);
807
808	list_add_tail(&auxtrace_index->list, head);
809
810	return 0;
811}
812
813void auxtrace_index__free(struct list_head *head)
814{
815	struct auxtrace_index *auxtrace_index, *n;
816
817	list_for_each_entry_safe(auxtrace_index, n, head, list) {
818		list_del_init(&auxtrace_index->list);
819		free(auxtrace_index);
820	}
821}
822
823static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
824{
825	struct auxtrace_index *auxtrace_index;
826	int err;
827
828	if (list_empty(head)) {
829		err = auxtrace_index__alloc(head);
830		if (err)
831			return NULL;
832	}
833
834	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
835
836	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
837		err = auxtrace_index__alloc(head);
838		if (err)
839			return NULL;
840		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
841					    list);
842	}
843
844	return auxtrace_index;
845}
846
847int auxtrace_index__auxtrace_event(struct list_head *head,
848				   union perf_event *event, off_t file_offset)
849{
850	struct auxtrace_index *auxtrace_index;
851	size_t nr;
852
853	auxtrace_index = auxtrace_index__last(head);
854	if (!auxtrace_index)
855		return -ENOMEM;
856
857	nr = auxtrace_index->nr;
858	auxtrace_index->entries[nr].file_offset = file_offset;
859	auxtrace_index->entries[nr].sz = event->header.size;
860	auxtrace_index->nr += 1;
861
862	return 0;
863}
864
865static int auxtrace_index__do_write(int fd,
866				    struct auxtrace_index *auxtrace_index)
867{
868	struct auxtrace_index_entry ent;
869	size_t i;
870
871	for (i = 0; i < auxtrace_index->nr; i++) {
872		ent.file_offset = auxtrace_index->entries[i].file_offset;
873		ent.sz = auxtrace_index->entries[i].sz;
874		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
875			return -errno;
876	}
877	return 0;
878}
879
880int auxtrace_index__write(int fd, struct list_head *head)
881{
882	struct auxtrace_index *auxtrace_index;
883	u64 total = 0;
884	int err;
885
886	list_for_each_entry(auxtrace_index, head, list)
887		total += auxtrace_index->nr;
888
889	if (writen(fd, &total, sizeof(total)) != sizeof(total))
890		return -errno;
891
892	list_for_each_entry(auxtrace_index, head, list) {
893		err = auxtrace_index__do_write(fd, auxtrace_index);
894		if (err)
895			return err;
896	}
897
898	return 0;
899}
900
901static int auxtrace_index__process_entry(int fd, struct list_head *head,
902					 bool needs_swap)
903{
904	struct auxtrace_index *auxtrace_index;
905	struct auxtrace_index_entry ent;
906	size_t nr;
907
908	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
909		return -1;
910
911	auxtrace_index = auxtrace_index__last(head);
912	if (!auxtrace_index)
913		return -1;
914
915	nr = auxtrace_index->nr;
916	if (needs_swap) {
917		auxtrace_index->entries[nr].file_offset =
918						bswap_64(ent.file_offset);
919		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
920	} else {
921		auxtrace_index->entries[nr].file_offset = ent.file_offset;
922		auxtrace_index->entries[nr].sz = ent.sz;
923	}
924
925	auxtrace_index->nr = nr + 1;
926
927	return 0;
928}
929
930int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
931			    bool needs_swap)
932{
933	struct list_head *head = &session->auxtrace_index;
934	u64 nr;
935
936	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
937		return -1;
938
939	if (needs_swap)
940		nr = bswap_64(nr);
941
942	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
943		return -1;
944
945	while (nr--) {
946		int err;
947
948		err = auxtrace_index__process_entry(fd, head, needs_swap);
949		if (err)
950			return -1;
951	}
952
953	return 0;
954}
955
956static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
957						struct perf_session *session,
958						struct auxtrace_index_entry *ent)
959{
960	return auxtrace_queues__add_indexed_event(queues, session,
961						  ent->file_offset, ent->sz);
962}
963
964int auxtrace_queues__process_index(struct auxtrace_queues *queues,
965				   struct perf_session *session)
966{
967	struct auxtrace_index *auxtrace_index;
968	struct auxtrace_index_entry *ent;
969	size_t i;
970	int err;
971
972	if (auxtrace__dont_decode(session))
973		return 0;
974
975	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
976		for (i = 0; i < auxtrace_index->nr; i++) {
977			ent = &auxtrace_index->entries[i];
978			err = auxtrace_queues__process_index_entry(queues,
979								   session,
980								   ent);
981			if (err)
982				return err;
983		}
984	}
985	return 0;
986}
987
988struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
989					      struct auxtrace_buffer *buffer)
990{
991	if (buffer) {
992		if (list_is_last(&buffer->list, &queue->head))
993			return NULL;
994		return list_entry(buffer->list.next, struct auxtrace_buffer,
995				  list);
996	} else {
997		if (list_empty(&queue->head))
998			return NULL;
999		return list_entry(queue->head.next, struct auxtrace_buffer,
1000				  list);
1001	}
1002}
1003
1004struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1005						     struct perf_sample *sample,
1006						     struct perf_session *session)
1007{
1008	struct perf_sample_id *sid;
1009	unsigned int idx;
1010	u64 id;
1011
1012	id = sample->id;
1013	if (!id)
1014		return NULL;
1015
1016	sid = perf_evlist__id2sid(session->evlist, id);
1017	if (!sid)
1018		return NULL;
1019
1020	idx = sid->idx;
1021
1022	if (idx >= queues->nr_queues)
1023		return NULL;
1024
1025	return &queues->queue_array[idx];
1026}
1027
1028int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1029				struct perf_session *session,
1030				struct perf_sample *sample, u64 data_offset,
1031				u64 reference)
1032{
1033	struct auxtrace_buffer buffer = {
1034		.pid = -1,
1035		.data_offset = data_offset,
1036		.reference = reference,
1037		.size = sample->aux_sample.size,
1038	};
1039	struct perf_sample_id *sid;
1040	u64 id = sample->id;
1041	unsigned int idx;
1042
1043	if (!id)
1044		return -EINVAL;
1045
1046	sid = perf_evlist__id2sid(session->evlist, id);
1047	if (!sid)
1048		return -ENOENT;
1049
1050	idx = sid->idx;
1051	buffer.tid = sid->tid;
1052	buffer.cpu = sid->cpu;
1053
1054	return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1055}
1056
1057struct queue_data {
1058	bool samples;
1059	bool events;
1060};
1061
1062static int auxtrace_queue_data_cb(struct perf_session *session,
1063				  union perf_event *event, u64 offset,
1064				  void *data)
1065{
1066	struct queue_data *qd = data;
1067	struct perf_sample sample;
1068	int err;
1069
1070	if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1071		if (event->header.size < sizeof(struct perf_record_auxtrace))
1072			return -EINVAL;
1073		offset += event->header.size;
1074		return session->auxtrace->queue_data(session, NULL, event,
1075						     offset);
1076	}
1077
1078	if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1079		return 0;
1080
1081	err = perf_evlist__parse_sample(session->evlist, event, &sample);
1082	if (err)
1083		return err;
1084
1085	if (!sample.aux_sample.size)
1086		return 0;
1087
1088	offset += sample.aux_sample.data - (void *)event;
1089
1090	return session->auxtrace->queue_data(session, &sample, NULL, offset);
1091}
1092
1093int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1094{
1095	struct queue_data qd = {
1096		.samples = samples,
1097		.events = events,
1098	};
1099
1100	if (auxtrace__dont_decode(session))
1101		return 0;
1102
1103	if (!session->auxtrace || !session->auxtrace->queue_data)
1104		return -EINVAL;
1105
1106	return perf_session__peek_events(session, session->header.data_offset,
1107					 session->header.data_size,
1108					 auxtrace_queue_data_cb, &qd);
1109}
1110
1111void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
1112{
1113	size_t adj = buffer->data_offset & (page_size - 1);
1114	size_t size = buffer->size + adj;
1115	off_t file_offset = buffer->data_offset - adj;
1116	void *addr;
1117
1118	if (buffer->data)
1119		return buffer->data;
1120
1121	addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
1122	if (addr == MAP_FAILED)
1123		return NULL;
1124
1125	buffer->mmap_addr = addr;
1126	buffer->mmap_size = size;
1127
1128	buffer->data = addr + adj;
1129
1130	return buffer->data;
1131}
1132
1133void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1134{
1135	if (!buffer->data || !buffer->mmap_addr)
1136		return;
1137	munmap(buffer->mmap_addr, buffer->mmap_size);
1138	buffer->mmap_addr = NULL;
1139	buffer->mmap_size = 0;
1140	buffer->data = NULL;
1141	buffer->use_data = NULL;
1142}
1143
1144void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1145{
1146	auxtrace_buffer__put_data(buffer);
1147	if (buffer->data_needs_freeing) {
1148		buffer->data_needs_freeing = false;
1149		zfree(&buffer->data);
1150		buffer->use_data = NULL;
1151		buffer->size = 0;
1152	}
1153}
1154
1155void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1156{
1157	auxtrace_buffer__drop_data(buffer);
1158	free(buffer);
1159}
1160
1161void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1162			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1163			  const char *msg, u64 timestamp)
1164{
1165	size_t size;
1166
1167	memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1168
1169	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1170	auxtrace_error->type = type;
1171	auxtrace_error->code = code;
1172	auxtrace_error->cpu = cpu;
1173	auxtrace_error->pid = pid;
1174	auxtrace_error->tid = tid;
1175	auxtrace_error->fmt = 1;
1176	auxtrace_error->ip = ip;
1177	auxtrace_error->time = timestamp;
1178	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1179
1180	size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1181	       strlen(auxtrace_error->msg) + 1;
1182	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1183}
1184
1185int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1186					 struct perf_tool *tool,
1187					 struct perf_session *session,
1188					 perf_event__handler_t process)
1189{
1190	union perf_event *ev;
1191	size_t priv_size;
1192	int err;
1193
1194	pr_debug2("Synthesizing auxtrace information\n");
1195	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1196	ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1197	if (!ev)
1198		return -ENOMEM;
1199
1200	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1201	ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1202					priv_size;
1203	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1204					 priv_size);
1205	if (err)
1206		goto out_free;
1207
1208	err = process(tool, ev, NULL, NULL);
1209out_free:
1210	free(ev);
1211	return err;
1212}
1213
1214static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1215{
1216	struct evsel *new_leader = NULL;
1217	struct evsel *evsel;
1218
1219	/* Find new leader for the group */
1220	evlist__for_each_entry(evlist, evsel) {
1221		if (evsel->leader != leader || evsel == leader)
1222			continue;
1223		if (!new_leader)
1224			new_leader = evsel;
1225		evsel->leader = new_leader;
1226	}
1227
1228	/* Update group information */
1229	if (new_leader) {
1230		zfree(&new_leader->group_name);
1231		new_leader->group_name = leader->group_name;
1232		leader->group_name = NULL;
1233
1234		new_leader->core.nr_members = leader->core.nr_members - 1;
1235		leader->core.nr_members = 1;
1236	}
1237}
1238
1239static void unleader_auxtrace(struct perf_session *session)
1240{
1241	struct evsel *evsel;
1242
1243	evlist__for_each_entry(session->evlist, evsel) {
1244		if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1245		    evsel__is_group_leader(evsel)) {
1246			unleader_evsel(session->evlist, evsel);
1247		}
1248	}
1249}
1250
1251int perf_event__process_auxtrace_info(struct perf_session *session,
1252				      union perf_event *event)
1253{
1254	enum auxtrace_type type = event->auxtrace_info.type;
1255	int err;
1256
1257	if (dump_trace)
1258		fprintf(stdout, " type: %u\n", type);
1259
1260	switch (type) {
1261	case PERF_AUXTRACE_INTEL_PT:
1262		err = intel_pt_process_auxtrace_info(event, session);
1263		break;
1264	case PERF_AUXTRACE_INTEL_BTS:
1265		err = intel_bts_process_auxtrace_info(event, session);
1266		break;
1267	case PERF_AUXTRACE_ARM_SPE:
1268		err = arm_spe_process_auxtrace_info(event, session);
1269		break;
1270	case PERF_AUXTRACE_CS_ETM:
1271		err = cs_etm__process_auxtrace_info(event, session);
1272		break;
1273	case PERF_AUXTRACE_S390_CPUMSF:
1274		err = s390_cpumsf_process_auxtrace_info(event, session);
1275		break;
1276	case PERF_AUXTRACE_UNKNOWN:
1277	default:
1278		return -EINVAL;
1279	}
1280
1281	if (err)
1282		return err;
1283
1284	unleader_auxtrace(session);
1285
1286	return 0;
1287}
1288
1289s64 perf_event__process_auxtrace(struct perf_session *session,
1290				 union perf_event *event)
1291{
1292	s64 err;
1293
1294	if (dump_trace)
1295		fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1296			event->auxtrace.size, event->auxtrace.offset,
1297			event->auxtrace.reference, event->auxtrace.idx,
1298			event->auxtrace.tid, event->auxtrace.cpu);
1299
1300	if (auxtrace__dont_decode(session))
1301		return event->auxtrace.size;
1302
1303	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1304		return -EINVAL;
1305
1306	err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1307	if (err < 0)
1308		return err;
1309
1310	return event->auxtrace.size;
1311}
1312
1313#define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
1314#define PERF_ITRACE_DEFAULT_PERIOD		100000
1315#define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
1316#define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
1317#define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
1318#define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
1319
1320void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1321				    bool no_sample)
1322{
1323	synth_opts->branches = true;
1324	synth_opts->transactions = true;
1325	synth_opts->ptwrites = true;
1326	synth_opts->pwr_events = true;
1327	synth_opts->other_events = true;
1328	synth_opts->errors = true;
1329	synth_opts->flc = true;
1330	synth_opts->llc = true;
1331	synth_opts->tlb = true;
1332	synth_opts->remote_access = true;
1333
1334	if (no_sample) {
1335		synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1336		synth_opts->period = 1;
1337		synth_opts->calls = true;
1338	} else {
1339		synth_opts->instructions = true;
1340		synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1341		synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1342	}
1343	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1344	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1345	synth_opts->initial_skip = 0;
1346}
1347
1348static int get_flag(const char **ptr, unsigned int *flags)
1349{
1350	while (1) {
1351		char c = **ptr;
1352
1353		if (c >= 'a' && c <= 'z') {
1354			*flags |= 1 << (c - 'a');
1355			++*ptr;
1356			return 0;
1357		} else if (c == ' ') {
1358			++*ptr;
1359			continue;
1360		} else {
1361			return -1;
1362		}
1363	}
1364}
1365
1366static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1367{
1368	while (1) {
1369		switch (**ptr) {
1370		case '+':
1371			++*ptr;
1372			if (get_flag(ptr, plus_flags))
1373				return -1;
1374			break;
1375		case '-':
1376			++*ptr;
1377			if (get_flag(ptr, minus_flags))
1378				return -1;
1379			break;
1380		case ' ':
1381			++*ptr;
1382			break;
1383		default:
1384			return 0;
1385		}
1386	}
1387}
1388
1389/*
1390 * Please check tools/perf/Documentation/perf-script.txt for information
1391 * about the options parsed here, which is introduced after this cset,
1392 * when support in 'perf script' for these options is introduced.
1393 */
1394int itrace_parse_synth_opts(const struct option *opt, const char *str,
1395			    int unset)
1396{
1397	struct itrace_synth_opts *synth_opts = opt->value;
1398	const char *p;
1399	char *endptr;
1400	bool period_type_set = false;
1401	bool period_set = false;
1402
1403	synth_opts->set = true;
1404
1405	if (unset) {
1406		synth_opts->dont_decode = true;
1407		return 0;
1408	}
1409
1410	if (!str) {
1411		itrace_synth_opts__set_default(synth_opts,
1412					       synth_opts->default_no_sample);
1413		return 0;
1414	}
1415
1416	for (p = str; *p;) {
1417		switch (*p++) {
1418		case 'i':
1419			synth_opts->instructions = true;
1420			while (*p == ' ' || *p == ',')
1421				p += 1;
1422			if (isdigit(*p)) {
1423				synth_opts->period = strtoull(p, &endptr, 10);
1424				period_set = true;
1425				p = endptr;
1426				while (*p == ' ' || *p == ',')
1427					p += 1;
1428				switch (*p++) {
1429				case 'i':
1430					synth_opts->period_type =
1431						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1432					period_type_set = true;
1433					break;
1434				case 't':
1435					synth_opts->period_type =
1436						PERF_ITRACE_PERIOD_TICKS;
1437					period_type_set = true;
1438					break;
1439				case 'm':
1440					synth_opts->period *= 1000;
1441					/* Fall through */
1442				case 'u':
1443					synth_opts->period *= 1000;
1444					/* Fall through */
1445				case 'n':
1446					if (*p++ != 's')
1447						goto out_err;
1448					synth_opts->period_type =
1449						PERF_ITRACE_PERIOD_NANOSECS;
1450					period_type_set = true;
1451					break;
1452				case '\0':
1453					goto out;
1454				default:
1455					goto out_err;
1456				}
1457			}
1458			break;
1459		case 'b':
1460			synth_opts->branches = true;
1461			break;
1462		case 'x':
1463			synth_opts->transactions = true;
1464			break;
1465		case 'w':
1466			synth_opts->ptwrites = true;
1467			break;
1468		case 'p':
1469			synth_opts->pwr_events = true;
1470			break;
1471		case 'o':
1472			synth_opts->other_events = true;
1473			break;
1474		case 'e':
1475			synth_opts->errors = true;
1476			if (get_flags(&p, &synth_opts->error_plus_flags,
1477				      &synth_opts->error_minus_flags))
1478				goto out_err;
1479			break;
1480		case 'd':
1481			synth_opts->log = true;
1482			if (get_flags(&p, &synth_opts->log_plus_flags,
1483				      &synth_opts->log_minus_flags))
1484				goto out_err;
1485			break;
1486		case 'c':
1487			synth_opts->branches = true;
1488			synth_opts->calls = true;
1489			break;
1490		case 'r':
1491			synth_opts->branches = true;
1492			synth_opts->returns = true;
1493			break;
1494		case 'G':
1495		case 'g':
1496			if (p[-1] == 'G')
1497				synth_opts->add_callchain = true;
1498			else
1499				synth_opts->callchain = true;
1500			synth_opts->callchain_sz =
1501					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1502			while (*p == ' ' || *p == ',')
1503				p += 1;
1504			if (isdigit(*p)) {
1505				unsigned int val;
1506
1507				val = strtoul(p, &endptr, 10);
1508				p = endptr;
1509				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1510					goto out_err;
1511				synth_opts->callchain_sz = val;
1512			}
1513			break;
1514		case 'L':
1515		case 'l':
1516			if (p[-1] == 'L')
1517				synth_opts->add_last_branch = true;
1518			else
1519				synth_opts->last_branch = true;
1520			synth_opts->last_branch_sz =
1521					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1522			while (*p == ' ' || *p == ',')
1523				p += 1;
1524			if (isdigit(*p)) {
1525				unsigned int val;
1526
1527				val = strtoul(p, &endptr, 10);
1528				p = endptr;
1529				if (!val ||
1530				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1531					goto out_err;
1532				synth_opts->last_branch_sz = val;
1533			}
1534			break;
1535		case 's':
1536			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1537			if (p == endptr)
1538				goto out_err;
1539			p = endptr;
1540			break;
1541		case 'f':
1542			synth_opts->flc = true;
1543			break;
1544		case 'm':
1545			synth_opts->llc = true;
1546			break;
1547		case 't':
1548			synth_opts->tlb = true;
1549			break;
1550		case 'a':
1551			synth_opts->remote_access = true;
1552			break;
1553		case 'q':
1554			synth_opts->quick += 1;
1555			break;
1556		case ' ':
1557		case ',':
1558			break;
1559		default:
1560			goto out_err;
1561		}
1562	}
1563out:
1564	if (synth_opts->instructions) {
1565		if (!period_type_set)
1566			synth_opts->period_type =
1567					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1568		if (!period_set)
1569			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1570	}
1571
1572	return 0;
1573
1574out_err:
1575	pr_err("Bad Instruction Tracing options '%s'\n", str);
1576	return -EINVAL;
1577}
1578
1579static const char * const auxtrace_error_type_name[] = {
1580	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1581};
1582
1583static const char *auxtrace_error_name(int type)
1584{
1585	const char *error_type_name = NULL;
1586
1587	if (type < PERF_AUXTRACE_ERROR_MAX)
1588		error_type_name = auxtrace_error_type_name[type];
1589	if (!error_type_name)
1590		error_type_name = "unknown AUX";
1591	return error_type_name;
1592}
1593
1594size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1595{
1596	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1597	unsigned long long nsecs = e->time;
1598	const char *msg = e->msg;
1599	int ret;
1600
1601	ret = fprintf(fp, " %s error type %u",
1602		      auxtrace_error_name(e->type), e->type);
1603
1604	if (e->fmt && nsecs) {
1605		unsigned long secs = nsecs / NSEC_PER_SEC;
1606
1607		nsecs -= secs * NSEC_PER_SEC;
1608		ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1609	} else {
1610		ret += fprintf(fp, " time 0");
1611	}
1612
1613	if (!e->fmt)
1614		msg = (const char *)&e->time;
1615
1616	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1617		       e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1618	return ret;
1619}
1620
1621void perf_session__auxtrace_error_inc(struct perf_session *session,
1622				      union perf_event *event)
1623{
1624	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1625
1626	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1627		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1628}
1629
1630void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1631{
1632	int i;
1633
1634	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1635		if (!stats->nr_auxtrace_errors[i])
1636			continue;
1637		ui__warning("%u %s errors\n",
1638			    stats->nr_auxtrace_errors[i],
1639			    auxtrace_error_name(i));
1640	}
1641}
1642
1643int perf_event__process_auxtrace_error(struct perf_session *session,
1644				       union perf_event *event)
1645{
1646	if (auxtrace__dont_decode(session))
1647		return 0;
1648
1649	perf_event__fprintf_auxtrace_error(event, stdout);
1650	return 0;
1651}
1652
1653static int __auxtrace_mmap__read(struct mmap *map,
1654				 struct auxtrace_record *itr,
1655				 struct perf_tool *tool, process_auxtrace_t fn,
1656				 bool snapshot, size_t snapshot_size)
1657{
1658	struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1659	u64 head, old = mm->prev, offset, ref;
1660	unsigned char *data = mm->base;
1661	size_t size, head_off, old_off, len1, len2, padding;
1662	union perf_event ev;
1663	void *data1, *data2;
1664
1665	if (snapshot) {
1666		head = auxtrace_mmap__read_snapshot_head(mm);
1667		if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1668						   &head, &old))
1669			return -1;
1670	} else {
1671		head = auxtrace_mmap__read_head(mm);
1672	}
1673
1674	if (old == head)
1675		return 0;
1676
1677	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1678		  mm->idx, old, head, head - old);
1679
1680	if (mm->mask) {
1681		head_off = head & mm->mask;
1682		old_off = old & mm->mask;
1683	} else {
1684		head_off = head % mm->len;
1685		old_off = old % mm->len;
1686	}
1687
1688	if (head_off > old_off)
1689		size = head_off - old_off;
1690	else
1691		size = mm->len - (old_off - head_off);
1692
1693	if (snapshot && size > snapshot_size)
1694		size = snapshot_size;
1695
1696	ref = auxtrace_record__reference(itr);
1697
1698	if (head > old || size <= head || mm->mask) {
1699		offset = head - size;
1700	} else {
1701		/*
1702		 * When the buffer size is not a power of 2, 'head' wraps at the
1703		 * highest multiple of the buffer size, so we have to subtract
1704		 * the remainder here.
1705		 */
1706		u64 rem = (0ULL - mm->len) % mm->len;
1707
1708		offset = head - size - rem;
1709	}
1710
1711	if (size > head_off) {
1712		len1 = size - head_off;
1713		data1 = &data[mm->len - len1];
1714		len2 = head_off;
1715		data2 = &data[0];
1716	} else {
1717		len1 = size;
1718		data1 = &data[head_off - len1];
1719		len2 = 0;
1720		data2 = NULL;
1721	}
1722
1723	if (itr->alignment) {
1724		unsigned int unwanted = len1 % itr->alignment;
1725
1726		len1 -= unwanted;
1727		size -= unwanted;
1728	}
1729
1730	/* padding must be written by fn() e.g. record__process_auxtrace() */
1731	padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1732	if (padding)
1733		padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1734
1735	memset(&ev, 0, sizeof(ev));
1736	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1737	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1738	ev.auxtrace.size = size + padding;
1739	ev.auxtrace.offset = offset;
1740	ev.auxtrace.reference = ref;
1741	ev.auxtrace.idx = mm->idx;
1742	ev.auxtrace.tid = mm->tid;
1743	ev.auxtrace.cpu = mm->cpu;
1744
1745	if (fn(tool, map, &ev, data1, len1, data2, len2))
1746		return -1;
1747
1748	mm->prev = head;
1749
1750	if (!snapshot) {
1751		auxtrace_mmap__write_tail(mm, head);
1752		if (itr->read_finish) {
1753			int err;
1754
1755			err = itr->read_finish(itr, mm->idx);
1756			if (err < 0)
1757				return err;
1758		}
1759	}
1760
1761	return 1;
1762}
1763
1764int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1765			struct perf_tool *tool, process_auxtrace_t fn)
1766{
1767	return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1768}
1769
1770int auxtrace_mmap__read_snapshot(struct mmap *map,
1771				 struct auxtrace_record *itr,
1772				 struct perf_tool *tool, process_auxtrace_t fn,
1773				 size_t snapshot_size)
1774{
1775	return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1776}
1777
1778/**
1779 * struct auxtrace_cache - hash table to implement a cache
1780 * @hashtable: the hashtable
1781 * @sz: hashtable size (number of hlists)
1782 * @entry_size: size of an entry
1783 * @limit: limit the number of entries to this maximum, when reached the cache
1784 *         is dropped and caching begins again with an empty cache
1785 * @cnt: current number of entries
1786 * @bits: hashtable size (@sz = 2^@bits)
1787 */
1788struct auxtrace_cache {
1789	struct hlist_head *hashtable;
1790	size_t sz;
1791	size_t entry_size;
1792	size_t limit;
1793	size_t cnt;
1794	unsigned int bits;
1795};
1796
1797struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1798					   unsigned int limit_percent)
1799{
1800	struct auxtrace_cache *c;
1801	struct hlist_head *ht;
1802	size_t sz, i;
1803
1804	c = zalloc(sizeof(struct auxtrace_cache));
1805	if (!c)
1806		return NULL;
1807
1808	sz = 1UL << bits;
1809
1810	ht = calloc(sz, sizeof(struct hlist_head));
1811	if (!ht)
1812		goto out_free;
1813
1814	for (i = 0; i < sz; i++)
1815		INIT_HLIST_HEAD(&ht[i]);
1816
1817	c->hashtable = ht;
1818	c->sz = sz;
1819	c->entry_size = entry_size;
1820	c->limit = (c->sz * limit_percent) / 100;
1821	c->bits = bits;
1822
1823	return c;
1824
1825out_free:
1826	free(c);
1827	return NULL;
1828}
1829
1830static void auxtrace_cache__drop(struct auxtrace_cache *c)
1831{
1832	struct auxtrace_cache_entry *entry;
1833	struct hlist_node *tmp;
1834	size_t i;
1835
1836	if (!c)
1837		return;
1838
1839	for (i = 0; i < c->sz; i++) {
1840		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1841			hlist_del(&entry->hash);
1842			auxtrace_cache__free_entry(c, entry);
1843		}
1844	}
1845
1846	c->cnt = 0;
1847}
1848
1849void auxtrace_cache__free(struct auxtrace_cache *c)
1850{
1851	if (!c)
1852		return;
1853
1854	auxtrace_cache__drop(c);
1855	zfree(&c->hashtable);
1856	free(c);
1857}
1858
1859void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1860{
1861	return malloc(c->entry_size);
1862}
1863
1864void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1865				void *entry)
1866{
1867	free(entry);
1868}
1869
1870int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1871			struct auxtrace_cache_entry *entry)
1872{
1873	if (c->limit && ++c->cnt > c->limit)
1874		auxtrace_cache__drop(c);
1875
1876	entry->key = key;
1877	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1878
1879	return 0;
1880}
1881
1882static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
1883						       u32 key)
1884{
1885	struct auxtrace_cache_entry *entry;
1886	struct hlist_head *hlist;
1887	struct hlist_node *n;
1888
1889	if (!c)
1890		return NULL;
1891
1892	hlist = &c->hashtable[hash_32(key, c->bits)];
1893	hlist_for_each_entry_safe(entry, n, hlist, hash) {
1894		if (entry->key == key) {
1895			hlist_del(&entry->hash);
1896			return entry;
1897		}
1898	}
1899
1900	return NULL;
1901}
1902
1903void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
1904{
1905	struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
1906
1907	auxtrace_cache__free_entry(c, entry);
1908}
1909
1910void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1911{
1912	struct auxtrace_cache_entry *entry;
1913	struct hlist_head *hlist;
1914
1915	if (!c)
1916		return NULL;
1917
1918	hlist = &c->hashtable[hash_32(key, c->bits)];
1919	hlist_for_each_entry(entry, hlist, hash) {
1920		if (entry->key == key)
1921			return entry;
1922	}
1923
1924	return NULL;
1925}
1926
1927static void addr_filter__free_str(struct addr_filter *filt)
1928{
1929	zfree(&filt->str);
1930	filt->action   = NULL;
1931	filt->sym_from = NULL;
1932	filt->sym_to   = NULL;
1933	filt->filename = NULL;
1934}
1935
1936static struct addr_filter *addr_filter__new(void)
1937{
1938	struct addr_filter *filt = zalloc(sizeof(*filt));
1939
1940	if (filt)
1941		INIT_LIST_HEAD(&filt->list);
1942
1943	return filt;
1944}
1945
1946static void addr_filter__free(struct addr_filter *filt)
1947{
1948	if (filt)
1949		addr_filter__free_str(filt);
1950	free(filt);
1951}
1952
1953static void addr_filters__add(struct addr_filters *filts,
1954			      struct addr_filter *filt)
1955{
1956	list_add_tail(&filt->list, &filts->head);
1957	filts->cnt += 1;
1958}
1959
1960static void addr_filters__del(struct addr_filters *filts,
1961			      struct addr_filter *filt)
1962{
1963	list_del_init(&filt->list);
1964	filts->cnt -= 1;
1965}
1966
1967void addr_filters__init(struct addr_filters *filts)
1968{
1969	INIT_LIST_HEAD(&filts->head);
1970	filts->cnt = 0;
1971}
1972
1973void addr_filters__exit(struct addr_filters *filts)
1974{
1975	struct addr_filter *filt, *n;
1976
1977	list_for_each_entry_safe(filt, n, &filts->head, list) {
1978		addr_filters__del(filts, filt);
1979		addr_filter__free(filt);
1980	}
1981}
1982
1983static int parse_num_or_str(char **inp, u64 *num, const char **str,
1984			    const char *str_delim)
1985{
1986	*inp += strspn(*inp, " ");
1987
1988	if (isdigit(**inp)) {
1989		char *endptr;
1990
1991		if (!num)
1992			return -EINVAL;
1993		errno = 0;
1994		*num = strtoull(*inp, &endptr, 0);
1995		if (errno)
1996			return -errno;
1997		if (endptr == *inp)
1998			return -EINVAL;
1999		*inp = endptr;
2000	} else {
2001		size_t n;
2002
2003		if (!str)
2004			return -EINVAL;
2005		*inp += strspn(*inp, " ");
2006		*str = *inp;
2007		n = strcspn(*inp, str_delim);
2008		if (!n)
2009			return -EINVAL;
2010		*inp += n;
2011		if (**inp) {
2012			**inp = '\0';
2013			*inp += 1;
2014		}
2015	}
2016	return 0;
2017}
2018
2019static int parse_action(struct addr_filter *filt)
2020{
2021	if (!strcmp(filt->action, "filter")) {
2022		filt->start = true;
2023		filt->range = true;
2024	} else if (!strcmp(filt->action, "start")) {
2025		filt->start = true;
2026	} else if (!strcmp(filt->action, "stop")) {
2027		filt->start = false;
2028	} else if (!strcmp(filt->action, "tracestop")) {
2029		filt->start = false;
2030		filt->range = true;
2031		filt->action += 5; /* Change 'tracestop' to 'stop' */
2032	} else {
2033		return -EINVAL;
2034	}
2035	return 0;
2036}
2037
2038static int parse_sym_idx(char **inp, int *idx)
2039{
2040	*idx = -1;
2041
2042	*inp += strspn(*inp, " ");
2043
2044	if (**inp != '#')
2045		return 0;
2046
2047	*inp += 1;
2048
2049	if (**inp == 'g' || **inp == 'G') {
2050		*inp += 1;
2051		*idx = 0;
2052	} else {
2053		unsigned long num;
2054		char *endptr;
2055
2056		errno = 0;
2057		num = strtoul(*inp, &endptr, 0);
2058		if (errno)
2059			return -errno;
2060		if (endptr == *inp || num > INT_MAX)
2061			return -EINVAL;
2062		*inp = endptr;
2063		*idx = num;
2064	}
2065
2066	return 0;
2067}
2068
2069static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2070{
2071	int err = parse_num_or_str(inp, num, str, " ");
2072
2073	if (!err && *str)
2074		err = parse_sym_idx(inp, idx);
2075
2076	return err;
2077}
2078
2079static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2080{
2081	char *fstr;
2082	int err;
2083
2084	filt->str = fstr = strdup(*filter_inp);
2085	if (!fstr)
2086		return -ENOMEM;
2087
2088	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2089	if (err)
2090		goto out_err;
2091
2092	err = parse_action(filt);
2093	if (err)
2094		goto out_err;
2095
2096	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2097			      &filt->sym_from_idx);
2098	if (err)
2099		goto out_err;
2100
2101	fstr += strspn(fstr, " ");
2102
2103	if (*fstr == '/') {
2104		fstr += 1;
2105		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2106				      &filt->sym_to_idx);
2107		if (err)
2108			goto out_err;
2109		filt->range = true;
2110	}
2111
2112	fstr += strspn(fstr, " ");
2113
2114	if (*fstr == '@') {
2115		fstr += 1;
2116		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2117		if (err)
2118			goto out_err;
2119	}
2120
2121	fstr += strspn(fstr, " ,");
2122
2123	*filter_inp += fstr - filt->str;
2124
2125	return 0;
2126
2127out_err:
2128	addr_filter__free_str(filt);
2129
2130	return err;
2131}
2132
2133int addr_filters__parse_bare_filter(struct addr_filters *filts,
2134				    const char *filter)
2135{
2136	struct addr_filter *filt;
2137	const char *fstr = filter;
2138	int err;
2139
2140	while (*fstr) {
2141		filt = addr_filter__new();
2142		err = parse_one_filter(filt, &fstr);
2143		if (err) {
2144			addr_filter__free(filt);
2145			addr_filters__exit(filts);
2146			return err;
2147		}
2148		addr_filters__add(filts, filt);
2149	}
2150
2151	return 0;
2152}
2153
2154struct sym_args {
2155	const char	*name;
2156	u64		start;
2157	u64		size;
2158	int		idx;
2159	int		cnt;
2160	bool		started;
2161	bool		global;
2162	bool		selected;
2163	bool		duplicate;
2164	bool		near;
2165};
2166
2167static bool kern_sym_name_match(const char *kname, const char *name)
2168{
2169	size_t n = strlen(name);
2170
2171	return !strcmp(kname, name) ||
2172	       (!strncmp(kname, name, n) && kname[n] == '\t');
2173}
2174
2175static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2176{
2177	/* A function with the same name, and global or the n'th found or any */
2178	return kallsyms__is_function(type) &&
2179	       kern_sym_name_match(name, args->name) &&
2180	       ((args->global && isupper(type)) ||
2181		(args->selected && ++(args->cnt) == args->idx) ||
2182		(!args->global && !args->selected));
2183}
2184
2185static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2186{
2187	struct sym_args *args = arg;
2188
2189	if (args->started) {
2190		if (!args->size)
2191			args->size = start - args->start;
2192		if (args->selected) {
2193			if (args->size)
2194				return 1;
2195		} else if (kern_sym_match(args, name, type)) {
2196			args->duplicate = true;
2197			return 1;
2198		}
2199	} else if (kern_sym_match(args, name, type)) {
2200		args->started = true;
2201		args->start = start;
2202	}
2203
2204	return 0;
2205}
2206
2207static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2208{
2209	struct sym_args *args = arg;
2210
2211	if (kern_sym_match(args, name, type)) {
2212		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2213		       ++args->cnt, start, type, name);
2214		args->near = true;
2215	} else if (args->near) {
2216		args->near = false;
2217		pr_err("\t\twhich is near\t\t%s\n", name);
2218	}
2219
2220	return 0;
2221}
2222
2223static int sym_not_found_error(const char *sym_name, int idx)
2224{
2225	if (idx > 0) {
2226		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2227		       idx, sym_name);
2228	} else if (!idx) {
2229		pr_err("Global symbol '%s' not found.\n", sym_name);
2230	} else {
2231		pr_err("Symbol '%s' not found.\n", sym_name);
2232	}
2233	pr_err("Note that symbols must be functions.\n");
2234
2235	return -EINVAL;
2236}
2237
2238static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2239{
2240	struct sym_args args = {
2241		.name = sym_name,
2242		.idx = idx,
2243		.global = !idx,
2244		.selected = idx > 0,
2245	};
2246	int err;
2247
2248	*start = 0;
2249	*size = 0;
2250
2251	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2252	if (err < 0) {
2253		pr_err("Failed to parse /proc/kallsyms\n");
2254		return err;
2255	}
2256
2257	if (args.duplicate) {
2258		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2259		args.cnt = 0;
2260		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2261		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2262		       sym_name);
2263		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2264		return -EINVAL;
2265	}
2266
2267	if (!args.started) {
2268		pr_err("Kernel symbol lookup: ");
2269		return sym_not_found_error(sym_name, idx);
2270	}
2271
2272	*start = args.start;
2273	*size = args.size;
2274
2275	return 0;
2276}
2277
2278static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2279			       char type, u64 start)
2280{
2281	struct sym_args *args = arg;
2282	u64 size;
2283
2284	if (!kallsyms__is_function(type))
2285		return 0;
2286
2287	if (!args->started) {
2288		args->started = true;
2289		args->start = start;
2290	}
2291	/* Don't know exactly where the kernel ends, so we add a page */
2292	size = round_up(start, page_size) + page_size - args->start;
2293	if (size > args->size)
2294		args->size = size;
2295
2296	return 0;
2297}
2298
2299static int addr_filter__entire_kernel(struct addr_filter *filt)
2300{
2301	struct sym_args args = { .started = false };
2302	int err;
2303
2304	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2305	if (err < 0 || !args.started) {
2306		pr_err("Failed to parse /proc/kallsyms\n");
2307		return err;
2308	}
2309
2310	filt->addr = args.start;
2311	filt->size = args.size;
2312
2313	return 0;
2314}
2315
2316static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2317{
2318	if (start + size >= filt->addr)
2319		return 0;
2320
2321	if (filt->sym_from) {
2322		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2323		       filt->sym_to, start, filt->sym_from, filt->addr);
2324	} else {
2325		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2326		       filt->sym_to, start, filt->addr);
2327	}
2328
2329	return -EINVAL;
2330}
2331
2332static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2333{
2334	bool no_size = false;
2335	u64 start, size;
2336	int err;
2337
2338	if (symbol_conf.kptr_restrict) {
2339		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2340		return -EINVAL;
2341	}
2342
2343	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2344		return addr_filter__entire_kernel(filt);
2345
2346	if (filt->sym_from) {
2347		err = find_kern_sym(filt->sym_from, &start, &size,
2348				    filt->sym_from_idx);
2349		if (err)
2350			return err;
2351		filt->addr = start;
2352		if (filt->range && !filt->size && !filt->sym_to) {
2353			filt->size = size;
2354			no_size = !size;
2355		}
2356	}
2357
2358	if (filt->sym_to) {
2359		err = find_kern_sym(filt->sym_to, &start, &size,
2360				    filt->sym_to_idx);
2361		if (err)
2362			return err;
2363
2364		err = check_end_after_start(filt, start, size);
2365		if (err)
2366			return err;
2367		filt->size = start + size - filt->addr;
2368		no_size = !size;
2369	}
2370
2371	/* The very last symbol in kallsyms does not imply a particular size */
2372	if (no_size) {
2373		pr_err("Cannot determine size of symbol '%s'\n",
2374		       filt->sym_to ? filt->sym_to : filt->sym_from);
2375		return -EINVAL;
2376	}
2377
2378	return 0;
2379}
2380
2381static struct dso *load_dso(const char *name)
2382{
2383	struct map *map;
2384	struct dso *dso;
2385
2386	map = dso__new_map(name);
2387	if (!map)
2388		return NULL;
2389
2390	if (map__load(map) < 0)
2391		pr_err("File '%s' not found or has no symbols.\n", name);
2392
2393	dso = dso__get(map->dso);
2394
2395	map__put(map);
2396
2397	return dso;
2398}
2399
2400static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2401			  int idx)
2402{
2403	/* Same name, and global or the n'th found or any */
2404	return !arch__compare_symbol_names(name, sym->name) &&
2405	       ((!idx && sym->binding == STB_GLOBAL) ||
2406		(idx > 0 && ++*cnt == idx) ||
2407		idx < 0);
2408}
2409
2410static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2411{
2412	struct symbol *sym;
2413	bool near = false;
2414	int cnt = 0;
2415
2416	pr_err("Multiple symbols with name '%s'\n", sym_name);
2417
2418	sym = dso__first_symbol(dso);
2419	while (sym) {
2420		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2421			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2422			       ++cnt, sym->start,
2423			       sym->binding == STB_GLOBAL ? 'g' :
2424			       sym->binding == STB_LOCAL  ? 'l' : 'w',
2425			       sym->name);
2426			near = true;
2427		} else if (near) {
2428			near = false;
2429			pr_err("\t\twhich is near\t\t%s\n", sym->name);
2430		}
2431		sym = dso__next_symbol(sym);
2432	}
2433
2434	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2435	       sym_name);
2436	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2437}
2438
2439static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2440			u64 *size, int idx)
2441{
2442	struct symbol *sym;
2443	int cnt = 0;
2444
2445	*start = 0;
2446	*size = 0;
2447
2448	sym = dso__first_symbol(dso);
2449	while (sym) {
2450		if (*start) {
2451			if (!*size)
2452				*size = sym->start - *start;
2453			if (idx > 0) {
2454				if (*size)
2455					return 0;
2456			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2457				print_duplicate_syms(dso, sym_name);
2458				return -EINVAL;
2459			}
2460		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2461			*start = sym->start;
2462			*size = sym->end - sym->start;
2463		}
2464		sym = dso__next_symbol(sym);
2465	}
2466
2467	if (!*start)
2468		return sym_not_found_error(sym_name, idx);
2469
2470	return 0;
2471}
2472
2473static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2474{
2475	if (dso__data_file_size(dso, NULL)) {
2476		pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2477		       filt->filename);
2478		return -EINVAL;
2479	}
2480
2481	filt->addr = 0;
2482	filt->size = dso->data.file_size;
2483
2484	return 0;
2485}
2486
2487static int addr_filter__resolve_syms(struct addr_filter *filt)
2488{
2489	u64 start, size;
2490	struct dso *dso;
2491	int err = 0;
2492
2493	if (!filt->sym_from && !filt->sym_to)
2494		return 0;
2495
2496	if (!filt->filename)
2497		return addr_filter__resolve_kernel_syms(filt);
2498
2499	dso = load_dso(filt->filename);
2500	if (!dso) {
2501		pr_err("Failed to load symbols from: %s\n", filt->filename);
2502		return -EINVAL;
2503	}
2504
2505	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2506		err = addr_filter__entire_dso(filt, dso);
2507		goto put_dso;
2508	}
2509
2510	if (filt->sym_from) {
2511		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2512				   filt->sym_from_idx);
2513		if (err)
2514			goto put_dso;
2515		filt->addr = start;
2516		if (filt->range && !filt->size && !filt->sym_to)
2517			filt->size = size;
2518	}
2519
2520	if (filt->sym_to) {
2521		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2522				   filt->sym_to_idx);
2523		if (err)
2524			goto put_dso;
2525
2526		err = check_end_after_start(filt, start, size);
2527		if (err)
2528			return err;
2529
2530		filt->size = start + size - filt->addr;
2531	}
2532
2533put_dso:
2534	dso__put(dso);
2535
2536	return err;
2537}
2538
2539static char *addr_filter__to_str(struct addr_filter *filt)
2540{
2541	char filename_buf[PATH_MAX];
2542	const char *at = "";
2543	const char *fn = "";
2544	char *filter;
2545	int err;
2546
2547	if (filt->filename) {
2548		at = "@";
2549		fn = realpath(filt->filename, filename_buf);
2550		if (!fn)
2551			return NULL;
2552	}
2553
2554	if (filt->range) {
2555		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2556			       filt->action, filt->addr, filt->size, at, fn);
2557	} else {
2558		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2559			       filt->action, filt->addr, at, fn);
2560	}
2561
2562	return err < 0 ? NULL : filter;
2563}
2564
2565static int parse_addr_filter(struct evsel *evsel, const char *filter,
2566			     int max_nr)
2567{
2568	struct addr_filters filts;
2569	struct addr_filter *filt;
2570	int err;
2571
2572	addr_filters__init(&filts);
2573
2574	err = addr_filters__parse_bare_filter(&filts, filter);
2575	if (err)
2576		goto out_exit;
2577
2578	if (filts.cnt > max_nr) {
2579		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2580		       filts.cnt, max_nr);
2581		err = -EINVAL;
2582		goto out_exit;
2583	}
2584
2585	list_for_each_entry(filt, &filts.head, list) {
2586		char *new_filter;
2587
2588		err = addr_filter__resolve_syms(filt);
2589		if (err)
2590			goto out_exit;
2591
2592		new_filter = addr_filter__to_str(filt);
2593		if (!new_filter) {
2594			err = -ENOMEM;
2595			goto out_exit;
2596		}
2597
2598		if (evsel__append_addr_filter(evsel, new_filter)) {
2599			err = -ENOMEM;
2600			goto out_exit;
2601		}
2602	}
2603
2604out_exit:
2605	addr_filters__exit(&filts);
2606
2607	if (err) {
2608		pr_err("Failed to parse address filter: '%s'\n", filter);
2609		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2610		pr_err("Where multiple filters are separated by space or comma.\n");
2611	}
2612
2613	return err;
2614}
2615
2616static int evsel__nr_addr_filter(struct evsel *evsel)
2617{
2618	struct perf_pmu *pmu = evsel__find_pmu(evsel);
2619	int nr_addr_filters = 0;
2620
2621	if (!pmu)
2622		return 0;
2623
2624	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2625
2626	return nr_addr_filters;
2627}
2628
2629int auxtrace_parse_filters(struct evlist *evlist)
2630{
2631	struct evsel *evsel;
2632	char *filter;
2633	int err, max_nr;
2634
2635	evlist__for_each_entry(evlist, evsel) {
2636		filter = evsel->filter;
2637		max_nr = evsel__nr_addr_filter(evsel);
2638		if (!filter || !max_nr)
2639			continue;
2640		evsel->filter = NULL;
2641		err = parse_addr_filter(evsel, filter, max_nr);
2642		free(filter);
2643		if (err)
2644			return err;
2645		pr_debug("Address filter: %s\n", evsel->filter);
2646	}
2647
2648	return 0;
2649}
2650
2651int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2652			    struct perf_sample *sample, struct perf_tool *tool)
2653{
2654	if (!session->auxtrace)
2655		return 0;
2656
2657	return session->auxtrace->process_event(session, event, sample, tool);
2658}
2659
2660void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2661				    struct perf_sample *sample)
2662{
2663	if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2664	    auxtrace__dont_decode(session))
2665		return;
2666
2667	session->auxtrace->dump_auxtrace_sample(session, sample);
2668}
2669
2670int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2671{
2672	if (!session->auxtrace)
2673		return 0;
2674
2675	return session->auxtrace->flush_events(session, tool);
2676}
2677
2678void auxtrace__free_events(struct perf_session *session)
2679{
2680	if (!session->auxtrace)
2681		return;
2682
2683	return session->auxtrace->free_events(session);
2684}
2685
2686void auxtrace__free(struct perf_session *session)
2687{
2688	if (!session->auxtrace)
2689		return;
2690
2691	return session->auxtrace->free(session);
2692}
2693
2694bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2695				 struct evsel *evsel)
2696{
2697	if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2698		return false;
2699
2700	return session->auxtrace->evsel_is_auxtrace(session, evsel);
2701}
2702