1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * builtin-timechart.c - make an svg timechart of system activity
4 *
5 * (C) Copyright 2009 Intel Corporation
6 *
7 * Authors:
8 *     Arjan van de Ven <arjan@linux.intel.com>
9 */
10
11#include <errno.h>
12#include <inttypes.h>
13
14#include "builtin.h"
15#include "util/color.h"
16#include <linux/list.h>
17#include "util/evlist.h" // for struct evsel_str_handler
18#include "util/evsel.h"
19#include <linux/kernel.h>
20#include <linux/rbtree.h>
21#include <linux/time64.h>
22#include <linux/zalloc.h>
23#include "util/symbol.h"
24#include "util/thread.h"
25#include "util/callchain.h"
26
27#include "perf.h"
28#include "util/header.h"
29#include <subcmd/pager.h>
30#include <subcmd/parse-options.h>
31#include "util/parse-events.h"
32#include "util/event.h"
33#include "util/session.h"
34#include "util/svghelper.h"
35#include "util/tool.h"
36#include "util/data.h"
37#include "util/debug.h"
38#include <linux/err.h>
39
40#ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
41FILE *open_memstream(char **ptr, size_t *sizeloc);
42#endif
43
44#define SUPPORT_OLD_POWER_EVENTS 1
45#define PWR_EVENT_EXIT -1
46
47struct per_pid;
48struct power_event;
49struct wake_event;
50
51struct timechart {
52	struct perf_tool	tool;
53	struct per_pid		*all_data;
54	struct power_event	*power_events;
55	struct wake_event	*wake_events;
56	int			proc_num;
57	unsigned int		numcpus;
58	u64			min_freq,	/* Lowest CPU frequency seen */
59				max_freq,	/* Highest CPU frequency seen */
60				turbo_frequency,
61				first_time, last_time;
62	bool			power_only,
63				tasks_only,
64				with_backtrace,
65				topology;
66	bool			force;
67	/* IO related settings */
68	bool			io_only,
69				skip_eagain;
70	u64			io_events;
71	u64			min_time,
72				merge_dist;
73};
74
75struct per_pidcomm;
76struct cpu_sample;
77struct io_sample;
78
79/*
80 * Datastructure layout:
81 * We keep an list of "pid"s, matching the kernels notion of a task struct.
82 * Each "pid" entry, has a list of "comm"s.
83 *	this is because we want to track different programs different, while
84 *	exec will reuse the original pid (by design).
85 * Each comm has a list of samples that will be used to draw
86 * final graph.
87 */
88
89struct per_pid {
90	struct per_pid *next;
91
92	int		pid;
93	int		ppid;
94
95	u64		start_time;
96	u64		end_time;
97	u64		total_time;
98	u64		total_bytes;
99	int		display;
100
101	struct per_pidcomm *all;
102	struct per_pidcomm *current;
103};
104
105
106struct per_pidcomm {
107	struct per_pidcomm *next;
108
109	u64		start_time;
110	u64		end_time;
111	u64		total_time;
112	u64		max_bytes;
113	u64		total_bytes;
114
115	int		Y;
116	int		display;
117
118	long		state;
119	u64		state_since;
120
121	char		*comm;
122
123	struct cpu_sample *samples;
124	struct io_sample  *io_samples;
125};
126
127struct sample_wrapper {
128	struct sample_wrapper *next;
129
130	u64		timestamp;
131	unsigned char	data[];
132};
133
134#define TYPE_NONE	0
135#define TYPE_RUNNING	1
136#define TYPE_WAITING	2
137#define TYPE_BLOCKED	3
138
139struct cpu_sample {
140	struct cpu_sample *next;
141
142	u64 start_time;
143	u64 end_time;
144	int type;
145	int cpu;
146	const char *backtrace;
147};
148
149enum {
150	IOTYPE_READ,
151	IOTYPE_WRITE,
152	IOTYPE_SYNC,
153	IOTYPE_TX,
154	IOTYPE_RX,
155	IOTYPE_POLL,
156};
157
158struct io_sample {
159	struct io_sample *next;
160
161	u64 start_time;
162	u64 end_time;
163	u64 bytes;
164	int type;
165	int fd;
166	int err;
167	int merges;
168};
169
170#define CSTATE 1
171#define PSTATE 2
172
173struct power_event {
174	struct power_event *next;
175	int type;
176	int state;
177	u64 start_time;
178	u64 end_time;
179	int cpu;
180};
181
182struct wake_event {
183	struct wake_event *next;
184	int waker;
185	int wakee;
186	u64 time;
187	const char *backtrace;
188};
189
190struct process_filter {
191	char			*name;
192	int			pid;
193	struct process_filter	*next;
194};
195
196static struct process_filter *process_filter;
197
198
199static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
200{
201	struct per_pid *cursor = tchart->all_data;
202
203	while (cursor) {
204		if (cursor->pid == pid)
205			return cursor;
206		cursor = cursor->next;
207	}
208	cursor = zalloc(sizeof(*cursor));
209	assert(cursor != NULL);
210	cursor->pid = pid;
211	cursor->next = tchart->all_data;
212	tchart->all_data = cursor;
213	return cursor;
214}
215
216static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
217{
218	struct per_pid *p;
219	struct per_pidcomm *c;
220	p = find_create_pid(tchart, pid);
221	c = p->all;
222	while (c) {
223		if (c->comm && strcmp(c->comm, comm) == 0) {
224			p->current = c;
225			return;
226		}
227		if (!c->comm) {
228			c->comm = strdup(comm);
229			p->current = c;
230			return;
231		}
232		c = c->next;
233	}
234	c = zalloc(sizeof(*c));
235	assert(c != NULL);
236	c->comm = strdup(comm);
237	p->current = c;
238	c->next = p->all;
239	p->all = c;
240}
241
242static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
243{
244	struct per_pid *p, *pp;
245	p = find_create_pid(tchart, pid);
246	pp = find_create_pid(tchart, ppid);
247	p->ppid = ppid;
248	if (pp->current && pp->current->comm && !p->current)
249		pid_set_comm(tchart, pid, pp->current->comm);
250
251	p->start_time = timestamp;
252	if (p->current && !p->current->start_time) {
253		p->current->start_time = timestamp;
254		p->current->state_since = timestamp;
255	}
256}
257
258static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
259{
260	struct per_pid *p;
261	p = find_create_pid(tchart, pid);
262	p->end_time = timestamp;
263	if (p->current)
264		p->current->end_time = timestamp;
265}
266
267static void pid_put_sample(struct timechart *tchart, int pid, int type,
268			   unsigned int cpu, u64 start, u64 end,
269			   const char *backtrace)
270{
271	struct per_pid *p;
272	struct per_pidcomm *c;
273	struct cpu_sample *sample;
274
275	p = find_create_pid(tchart, pid);
276	c = p->current;
277	if (!c) {
278		c = zalloc(sizeof(*c));
279		assert(c != NULL);
280		p->current = c;
281		c->next = p->all;
282		p->all = c;
283	}
284
285	sample = zalloc(sizeof(*sample));
286	assert(sample != NULL);
287	sample->start_time = start;
288	sample->end_time = end;
289	sample->type = type;
290	sample->next = c->samples;
291	sample->cpu = cpu;
292	sample->backtrace = backtrace;
293	c->samples = sample;
294
295	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
296		c->total_time += (end-start);
297		p->total_time += (end-start);
298	}
299
300	if (c->start_time == 0 || c->start_time > start)
301		c->start_time = start;
302	if (p->start_time == 0 || p->start_time > start)
303		p->start_time = start;
304}
305
306#define MAX_CPUS 4096
307
308static u64 cpus_cstate_start_times[MAX_CPUS];
309static int cpus_cstate_state[MAX_CPUS];
310static u64 cpus_pstate_start_times[MAX_CPUS];
311static u64 cpus_pstate_state[MAX_CPUS];
312
313static int process_comm_event(struct perf_tool *tool,
314			      union perf_event *event,
315			      struct perf_sample *sample __maybe_unused,
316			      struct machine *machine __maybe_unused)
317{
318	struct timechart *tchart = container_of(tool, struct timechart, tool);
319	pid_set_comm(tchart, event->comm.tid, event->comm.comm);
320	return 0;
321}
322
323static int process_fork_event(struct perf_tool *tool,
324			      union perf_event *event,
325			      struct perf_sample *sample __maybe_unused,
326			      struct machine *machine __maybe_unused)
327{
328	struct timechart *tchart = container_of(tool, struct timechart, tool);
329	pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
330	return 0;
331}
332
333static int process_exit_event(struct perf_tool *tool,
334			      union perf_event *event,
335			      struct perf_sample *sample __maybe_unused,
336			      struct machine *machine __maybe_unused)
337{
338	struct timechart *tchart = container_of(tool, struct timechart, tool);
339	pid_exit(tchart, event->fork.pid, event->fork.time);
340	return 0;
341}
342
343#ifdef SUPPORT_OLD_POWER_EVENTS
344static int use_old_power_events;
345#endif
346
347static void c_state_start(int cpu, u64 timestamp, int state)
348{
349	cpus_cstate_start_times[cpu] = timestamp;
350	cpus_cstate_state[cpu] = state;
351}
352
353static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
354{
355	struct power_event *pwr = zalloc(sizeof(*pwr));
356
357	if (!pwr)
358		return;
359
360	pwr->state = cpus_cstate_state[cpu];
361	pwr->start_time = cpus_cstate_start_times[cpu];
362	pwr->end_time = timestamp;
363	pwr->cpu = cpu;
364	pwr->type = CSTATE;
365	pwr->next = tchart->power_events;
366
367	tchart->power_events = pwr;
368}
369
370static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
371{
372	struct power_event *pwr;
373
374	if (new_freq > 8000000) /* detect invalid data */
375		return;
376
377	pwr = zalloc(sizeof(*pwr));
378	if (!pwr)
379		return;
380
381	pwr->state = cpus_pstate_state[cpu];
382	pwr->start_time = cpus_pstate_start_times[cpu];
383	pwr->end_time = timestamp;
384	pwr->cpu = cpu;
385	pwr->type = PSTATE;
386	pwr->next = tchart->power_events;
387
388	if (!pwr->start_time)
389		pwr->start_time = tchart->first_time;
390
391	tchart->power_events = pwr;
392
393	cpus_pstate_state[cpu] = new_freq;
394	cpus_pstate_start_times[cpu] = timestamp;
395
396	if ((u64)new_freq > tchart->max_freq)
397		tchart->max_freq = new_freq;
398
399	if (new_freq < tchart->min_freq || tchart->min_freq == 0)
400		tchart->min_freq = new_freq;
401
402	if (new_freq == tchart->max_freq - 1000)
403		tchart->turbo_frequency = tchart->max_freq;
404}
405
406static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
407			 int waker, int wakee, u8 flags, const char *backtrace)
408{
409	struct per_pid *p;
410	struct wake_event *we = zalloc(sizeof(*we));
411
412	if (!we)
413		return;
414
415	we->time = timestamp;
416	we->waker = waker;
417	we->backtrace = backtrace;
418
419	if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
420		we->waker = -1;
421
422	we->wakee = wakee;
423	we->next = tchart->wake_events;
424	tchart->wake_events = we;
425	p = find_create_pid(tchart, we->wakee);
426
427	if (p && p->current && p->current->state == TYPE_NONE) {
428		p->current->state_since = timestamp;
429		p->current->state = TYPE_WAITING;
430	}
431	if (p && p->current && p->current->state == TYPE_BLOCKED) {
432		pid_put_sample(tchart, p->pid, p->current->state, cpu,
433			       p->current->state_since, timestamp, NULL);
434		p->current->state_since = timestamp;
435		p->current->state = TYPE_WAITING;
436	}
437}
438
439static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
440			 int prev_pid, int next_pid, u64 prev_state,
441			 const char *backtrace)
442{
443	struct per_pid *p = NULL, *prev_p;
444
445	prev_p = find_create_pid(tchart, prev_pid);
446
447	p = find_create_pid(tchart, next_pid);
448
449	if (prev_p->current && prev_p->current->state != TYPE_NONE)
450		pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
451			       prev_p->current->state_since, timestamp,
452			       backtrace);
453	if (p && p->current) {
454		if (p->current->state != TYPE_NONE)
455			pid_put_sample(tchart, next_pid, p->current->state, cpu,
456				       p->current->state_since, timestamp,
457				       backtrace);
458
459		p->current->state_since = timestamp;
460		p->current->state = TYPE_RUNNING;
461	}
462
463	if (prev_p->current) {
464		prev_p->current->state = TYPE_NONE;
465		prev_p->current->state_since = timestamp;
466		if (prev_state & 2)
467			prev_p->current->state = TYPE_BLOCKED;
468		if (prev_state == 0)
469			prev_p->current->state = TYPE_WAITING;
470	}
471}
472
473static const char *cat_backtrace(union perf_event *event,
474				 struct perf_sample *sample,
475				 struct machine *machine)
476{
477	struct addr_location al;
478	unsigned int i;
479	char *p = NULL;
480	size_t p_len;
481	u8 cpumode = PERF_RECORD_MISC_USER;
482	struct addr_location tal;
483	struct ip_callchain *chain = sample->callchain;
484	FILE *f = open_memstream(&p, &p_len);
485
486	if (!f) {
487		perror("open_memstream error");
488		return NULL;
489	}
490
491	if (!chain)
492		goto exit;
493
494	if (machine__resolve(machine, &al, sample) < 0) {
495		fprintf(stderr, "problem processing %d event, skipping it.\n",
496			event->header.type);
497		goto exit;
498	}
499
500	for (i = 0; i < chain->nr; i++) {
501		u64 ip;
502
503		if (callchain_param.order == ORDER_CALLEE)
504			ip = chain->ips[i];
505		else
506			ip = chain->ips[chain->nr - i - 1];
507
508		if (ip >= PERF_CONTEXT_MAX) {
509			switch (ip) {
510			case PERF_CONTEXT_HV:
511				cpumode = PERF_RECORD_MISC_HYPERVISOR;
512				break;
513			case PERF_CONTEXT_KERNEL:
514				cpumode = PERF_RECORD_MISC_KERNEL;
515				break;
516			case PERF_CONTEXT_USER:
517				cpumode = PERF_RECORD_MISC_USER;
518				break;
519			default:
520				pr_debug("invalid callchain context: "
521					 "%"PRId64"\n", (s64) ip);
522
523				/*
524				 * It seems the callchain is corrupted.
525				 * Discard all.
526				 */
527				zfree(&p);
528				goto exit_put;
529			}
530			continue;
531		}
532
533		tal.filtered = 0;
534		if (thread__find_symbol(al.thread, cpumode, ip, &tal))
535			fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
536		else
537			fprintf(f, "..... %016" PRIx64 "\n", ip);
538	}
539exit_put:
540	addr_location__put(&al);
541exit:
542	fclose(f);
543
544	return p;
545}
546
547typedef int (*tracepoint_handler)(struct timechart *tchart,
548				  struct evsel *evsel,
549				  struct perf_sample *sample,
550				  const char *backtrace);
551
552static int process_sample_event(struct perf_tool *tool,
553				union perf_event *event,
554				struct perf_sample *sample,
555				struct evsel *evsel,
556				struct machine *machine)
557{
558	struct timechart *tchart = container_of(tool, struct timechart, tool);
559
560	if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
561		if (!tchart->first_time || tchart->first_time > sample->time)
562			tchart->first_time = sample->time;
563		if (tchart->last_time < sample->time)
564			tchart->last_time = sample->time;
565	}
566
567	if (evsel->handler != NULL) {
568		tracepoint_handler f = evsel->handler;
569		return f(tchart, evsel, sample,
570			 cat_backtrace(event, sample, machine));
571	}
572
573	return 0;
574}
575
576static int
577process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
578			struct evsel *evsel,
579			struct perf_sample *sample,
580			const char *backtrace __maybe_unused)
581{
582	u32 state  = evsel__intval(evsel, sample, "state");
583	u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
584
585	if (state == (u32)PWR_EVENT_EXIT)
586		c_state_end(tchart, cpu_id, sample->time);
587	else
588		c_state_start(cpu_id, sample->time, state);
589	return 0;
590}
591
592static int
593process_sample_cpu_frequency(struct timechart *tchart,
594			     struct evsel *evsel,
595			     struct perf_sample *sample,
596			     const char *backtrace __maybe_unused)
597{
598	u32 state  = evsel__intval(evsel, sample, "state");
599	u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
600
601	p_state_change(tchart, cpu_id, sample->time, state);
602	return 0;
603}
604
605static int
606process_sample_sched_wakeup(struct timechart *tchart,
607			    struct evsel *evsel,
608			    struct perf_sample *sample,
609			    const char *backtrace)
610{
611	u8 flags  = evsel__intval(evsel, sample, "common_flags");
612	int waker = evsel__intval(evsel, sample, "common_pid");
613	int wakee = evsel__intval(evsel, sample, "pid");
614
615	sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
616	return 0;
617}
618
619static int
620process_sample_sched_switch(struct timechart *tchart,
621			    struct evsel *evsel,
622			    struct perf_sample *sample,
623			    const char *backtrace)
624{
625	int prev_pid   = evsel__intval(evsel, sample, "prev_pid");
626	int next_pid   = evsel__intval(evsel, sample, "next_pid");
627	u64 prev_state = evsel__intval(evsel, sample, "prev_state");
628
629	sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
630		     prev_state, backtrace);
631	return 0;
632}
633
634#ifdef SUPPORT_OLD_POWER_EVENTS
635static int
636process_sample_power_start(struct timechart *tchart __maybe_unused,
637			   struct evsel *evsel,
638			   struct perf_sample *sample,
639			   const char *backtrace __maybe_unused)
640{
641	u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
642	u64 value  = evsel__intval(evsel, sample, "value");
643
644	c_state_start(cpu_id, sample->time, value);
645	return 0;
646}
647
648static int
649process_sample_power_end(struct timechart *tchart,
650			 struct evsel *evsel __maybe_unused,
651			 struct perf_sample *sample,
652			 const char *backtrace __maybe_unused)
653{
654	c_state_end(tchart, sample->cpu, sample->time);
655	return 0;
656}
657
658static int
659process_sample_power_frequency(struct timechart *tchart,
660			       struct evsel *evsel,
661			       struct perf_sample *sample,
662			       const char *backtrace __maybe_unused)
663{
664	u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
665	u64 value  = evsel__intval(evsel, sample, "value");
666
667	p_state_change(tchart, cpu_id, sample->time, value);
668	return 0;
669}
670#endif /* SUPPORT_OLD_POWER_EVENTS */
671
672/*
673 * After the last sample we need to wrap up the current C/P state
674 * and close out each CPU for these.
675 */
676static void end_sample_processing(struct timechart *tchart)
677{
678	u64 cpu;
679	struct power_event *pwr;
680
681	for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
682		/* C state */
683#if 0
684		pwr = zalloc(sizeof(*pwr));
685		if (!pwr)
686			return;
687
688		pwr->state = cpus_cstate_state[cpu];
689		pwr->start_time = cpus_cstate_start_times[cpu];
690		pwr->end_time = tchart->last_time;
691		pwr->cpu = cpu;
692		pwr->type = CSTATE;
693		pwr->next = tchart->power_events;
694
695		tchart->power_events = pwr;
696#endif
697		/* P state */
698
699		pwr = zalloc(sizeof(*pwr));
700		if (!pwr)
701			return;
702
703		pwr->state = cpus_pstate_state[cpu];
704		pwr->start_time = cpus_pstate_start_times[cpu];
705		pwr->end_time = tchart->last_time;
706		pwr->cpu = cpu;
707		pwr->type = PSTATE;
708		pwr->next = tchart->power_events;
709
710		if (!pwr->start_time)
711			pwr->start_time = tchart->first_time;
712		if (!pwr->state)
713			pwr->state = tchart->min_freq;
714		tchart->power_events = pwr;
715	}
716}
717
718static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
719			       u64 start, int fd)
720{
721	struct per_pid *p = find_create_pid(tchart, pid);
722	struct per_pidcomm *c = p->current;
723	struct io_sample *sample;
724	struct io_sample *prev;
725
726	if (!c) {
727		c = zalloc(sizeof(*c));
728		if (!c)
729			return -ENOMEM;
730		p->current = c;
731		c->next = p->all;
732		p->all = c;
733	}
734
735	prev = c->io_samples;
736
737	if (prev && prev->start_time && !prev->end_time) {
738		pr_warning("Skip invalid start event: "
739			   "previous event already started!\n");
740
741		/* remove previous event that has been started,
742		 * we are not sure we will ever get an end for it */
743		c->io_samples = prev->next;
744		free(prev);
745		return 0;
746	}
747
748	sample = zalloc(sizeof(*sample));
749	if (!sample)
750		return -ENOMEM;
751	sample->start_time = start;
752	sample->type = type;
753	sample->fd = fd;
754	sample->next = c->io_samples;
755	c->io_samples = sample;
756
757	if (c->start_time == 0 || c->start_time > start)
758		c->start_time = start;
759
760	return 0;
761}
762
763static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
764			     u64 end, long ret)
765{
766	struct per_pid *p = find_create_pid(tchart, pid);
767	struct per_pidcomm *c = p->current;
768	struct io_sample *sample, *prev;
769
770	if (!c) {
771		pr_warning("Invalid pidcomm!\n");
772		return -1;
773	}
774
775	sample = c->io_samples;
776
777	if (!sample) /* skip partially captured events */
778		return 0;
779
780	if (sample->end_time) {
781		pr_warning("Skip invalid end event: "
782			   "previous event already ended!\n");
783		return 0;
784	}
785
786	if (sample->type != type) {
787		pr_warning("Skip invalid end event: invalid event type!\n");
788		return 0;
789	}
790
791	sample->end_time = end;
792	prev = sample->next;
793
794	/* we want to be able to see small and fast transfers, so make them
795	 * at least min_time long, but don't overlap them */
796	if (sample->end_time - sample->start_time < tchart->min_time)
797		sample->end_time = sample->start_time + tchart->min_time;
798	if (prev && sample->start_time < prev->end_time) {
799		if (prev->err) /* try to make errors more visible */
800			sample->start_time = prev->end_time;
801		else
802			prev->end_time = sample->start_time;
803	}
804
805	if (ret < 0) {
806		sample->err = ret;
807	} else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
808		   type == IOTYPE_TX || type == IOTYPE_RX) {
809
810		if ((u64)ret > c->max_bytes)
811			c->max_bytes = ret;
812
813		c->total_bytes += ret;
814		p->total_bytes += ret;
815		sample->bytes = ret;
816	}
817
818	/* merge two requests to make svg smaller and render-friendly */
819	if (prev &&
820	    prev->type == sample->type &&
821	    prev->err == sample->err &&
822	    prev->fd == sample->fd &&
823	    prev->end_time + tchart->merge_dist >= sample->start_time) {
824
825		sample->bytes += prev->bytes;
826		sample->merges += prev->merges + 1;
827
828		sample->start_time = prev->start_time;
829		sample->next = prev->next;
830		free(prev);
831
832		if (!sample->err && sample->bytes > c->max_bytes)
833			c->max_bytes = sample->bytes;
834	}
835
836	tchart->io_events++;
837
838	return 0;
839}
840
841static int
842process_enter_read(struct timechart *tchart,
843		   struct evsel *evsel,
844		   struct perf_sample *sample)
845{
846	long fd = evsel__intval(evsel, sample, "fd");
847	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
848				   sample->time, fd);
849}
850
851static int
852process_exit_read(struct timechart *tchart,
853		  struct evsel *evsel,
854		  struct perf_sample *sample)
855{
856	long ret = evsel__intval(evsel, sample, "ret");
857	return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
858				 sample->time, ret);
859}
860
861static int
862process_enter_write(struct timechart *tchart,
863		    struct evsel *evsel,
864		    struct perf_sample *sample)
865{
866	long fd = evsel__intval(evsel, sample, "fd");
867	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
868				   sample->time, fd);
869}
870
871static int
872process_exit_write(struct timechart *tchart,
873		   struct evsel *evsel,
874		   struct perf_sample *sample)
875{
876	long ret = evsel__intval(evsel, sample, "ret");
877	return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
878				 sample->time, ret);
879}
880
881static int
882process_enter_sync(struct timechart *tchart,
883		   struct evsel *evsel,
884		   struct perf_sample *sample)
885{
886	long fd = evsel__intval(evsel, sample, "fd");
887	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
888				   sample->time, fd);
889}
890
891static int
892process_exit_sync(struct timechart *tchart,
893		  struct evsel *evsel,
894		  struct perf_sample *sample)
895{
896	long ret = evsel__intval(evsel, sample, "ret");
897	return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
898				 sample->time, ret);
899}
900
901static int
902process_enter_tx(struct timechart *tchart,
903		 struct evsel *evsel,
904		 struct perf_sample *sample)
905{
906	long fd = evsel__intval(evsel, sample, "fd");
907	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
908				   sample->time, fd);
909}
910
911static int
912process_exit_tx(struct timechart *tchart,
913		struct evsel *evsel,
914		struct perf_sample *sample)
915{
916	long ret = evsel__intval(evsel, sample, "ret");
917	return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
918				 sample->time, ret);
919}
920
921static int
922process_enter_rx(struct timechart *tchart,
923		 struct evsel *evsel,
924		 struct perf_sample *sample)
925{
926	long fd = evsel__intval(evsel, sample, "fd");
927	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
928				   sample->time, fd);
929}
930
931static int
932process_exit_rx(struct timechart *tchart,
933		struct evsel *evsel,
934		struct perf_sample *sample)
935{
936	long ret = evsel__intval(evsel, sample, "ret");
937	return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
938				 sample->time, ret);
939}
940
941static int
942process_enter_poll(struct timechart *tchart,
943		   struct evsel *evsel,
944		   struct perf_sample *sample)
945{
946	long fd = evsel__intval(evsel, sample, "fd");
947	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
948				   sample->time, fd);
949}
950
951static int
952process_exit_poll(struct timechart *tchart,
953		  struct evsel *evsel,
954		  struct perf_sample *sample)
955{
956	long ret = evsel__intval(evsel, sample, "ret");
957	return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
958				 sample->time, ret);
959}
960
961/*
962 * Sort the pid datastructure
963 */
964static void sort_pids(struct timechart *tchart)
965{
966	struct per_pid *new_list, *p, *cursor, *prev;
967	/* sort by ppid first, then by pid, lowest to highest */
968
969	new_list = NULL;
970
971	while (tchart->all_data) {
972		p = tchart->all_data;
973		tchart->all_data = p->next;
974		p->next = NULL;
975
976		if (new_list == NULL) {
977			new_list = p;
978			p->next = NULL;
979			continue;
980		}
981		prev = NULL;
982		cursor = new_list;
983		while (cursor) {
984			if (cursor->ppid > p->ppid ||
985				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
986				/* must insert before */
987				if (prev) {
988					p->next = prev->next;
989					prev->next = p;
990					cursor = NULL;
991					continue;
992				} else {
993					p->next = new_list;
994					new_list = p;
995					cursor = NULL;
996					continue;
997				}
998			}
999
1000			prev = cursor;
1001			cursor = cursor->next;
1002			if (!cursor)
1003				prev->next = p;
1004		}
1005	}
1006	tchart->all_data = new_list;
1007}
1008
1009
1010static void draw_c_p_states(struct timechart *tchart)
1011{
1012	struct power_event *pwr;
1013	pwr = tchart->power_events;
1014
1015	/*
1016	 * two pass drawing so that the P state bars are on top of the C state blocks
1017	 */
1018	while (pwr) {
1019		if (pwr->type == CSTATE)
1020			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1021		pwr = pwr->next;
1022	}
1023
1024	pwr = tchart->power_events;
1025	while (pwr) {
1026		if (pwr->type == PSTATE) {
1027			if (!pwr->state)
1028				pwr->state = tchart->min_freq;
1029			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1030		}
1031		pwr = pwr->next;
1032	}
1033}
1034
1035static void draw_wakeups(struct timechart *tchart)
1036{
1037	struct wake_event *we;
1038	struct per_pid *p;
1039	struct per_pidcomm *c;
1040
1041	we = tchart->wake_events;
1042	while (we) {
1043		int from = 0, to = 0;
1044		char *task_from = NULL, *task_to = NULL;
1045
1046		/* locate the column of the waker and wakee */
1047		p = tchart->all_data;
1048		while (p) {
1049			if (p->pid == we->waker || p->pid == we->wakee) {
1050				c = p->all;
1051				while (c) {
1052					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1053						if (p->pid == we->waker && !from) {
1054							from = c->Y;
1055							task_from = strdup(c->comm);
1056						}
1057						if (p->pid == we->wakee && !to) {
1058							to = c->Y;
1059							task_to = strdup(c->comm);
1060						}
1061					}
1062					c = c->next;
1063				}
1064				c = p->all;
1065				while (c) {
1066					if (p->pid == we->waker && !from) {
1067						from = c->Y;
1068						task_from = strdup(c->comm);
1069					}
1070					if (p->pid == we->wakee && !to) {
1071						to = c->Y;
1072						task_to = strdup(c->comm);
1073					}
1074					c = c->next;
1075				}
1076			}
1077			p = p->next;
1078		}
1079
1080		if (!task_from) {
1081			task_from = malloc(40);
1082			sprintf(task_from, "[%i]", we->waker);
1083		}
1084		if (!task_to) {
1085			task_to = malloc(40);
1086			sprintf(task_to, "[%i]", we->wakee);
1087		}
1088
1089		if (we->waker == -1)
1090			svg_interrupt(we->time, to, we->backtrace);
1091		else if (from && to && abs(from - to) == 1)
1092			svg_wakeline(we->time, from, to, we->backtrace);
1093		else
1094			svg_partial_wakeline(we->time, from, task_from, to,
1095					     task_to, we->backtrace);
1096		we = we->next;
1097
1098		free(task_from);
1099		free(task_to);
1100	}
1101}
1102
1103static void draw_cpu_usage(struct timechart *tchart)
1104{
1105	struct per_pid *p;
1106	struct per_pidcomm *c;
1107	struct cpu_sample *sample;
1108	p = tchart->all_data;
1109	while (p) {
1110		c = p->all;
1111		while (c) {
1112			sample = c->samples;
1113			while (sample) {
1114				if (sample->type == TYPE_RUNNING) {
1115					svg_process(sample->cpu,
1116						    sample->start_time,
1117						    sample->end_time,
1118						    p->pid,
1119						    c->comm,
1120						    sample->backtrace);
1121				}
1122
1123				sample = sample->next;
1124			}
1125			c = c->next;
1126		}
1127		p = p->next;
1128	}
1129}
1130
1131static void draw_io_bars(struct timechart *tchart)
1132{
1133	const char *suf;
1134	double bytes;
1135	char comm[256];
1136	struct per_pid *p;
1137	struct per_pidcomm *c;
1138	struct io_sample *sample;
1139	int Y = 1;
1140
1141	p = tchart->all_data;
1142	while (p) {
1143		c = p->all;
1144		while (c) {
1145			if (!c->display) {
1146				c->Y = 0;
1147				c = c->next;
1148				continue;
1149			}
1150
1151			svg_box(Y, c->start_time, c->end_time, "process3");
1152			sample = c->io_samples;
1153			for (sample = c->io_samples; sample; sample = sample->next) {
1154				double h = (double)sample->bytes / c->max_bytes;
1155
1156				if (tchart->skip_eagain &&
1157				    sample->err == -EAGAIN)
1158					continue;
1159
1160				if (sample->err)
1161					h = 1;
1162
1163				if (sample->type == IOTYPE_SYNC)
1164					svg_fbox(Y,
1165						sample->start_time,
1166						sample->end_time,
1167						1,
1168						sample->err ? "error" : "sync",
1169						sample->fd,
1170						sample->err,
1171						sample->merges);
1172				else if (sample->type == IOTYPE_POLL)
1173					svg_fbox(Y,
1174						sample->start_time,
1175						sample->end_time,
1176						1,
1177						sample->err ? "error" : "poll",
1178						sample->fd,
1179						sample->err,
1180						sample->merges);
1181				else if (sample->type == IOTYPE_READ)
1182					svg_ubox(Y,
1183						sample->start_time,
1184						sample->end_time,
1185						h,
1186						sample->err ? "error" : "disk",
1187						sample->fd,
1188						sample->err,
1189						sample->merges);
1190				else if (sample->type == IOTYPE_WRITE)
1191					svg_lbox(Y,
1192						sample->start_time,
1193						sample->end_time,
1194						h,
1195						sample->err ? "error" : "disk",
1196						sample->fd,
1197						sample->err,
1198						sample->merges);
1199				else if (sample->type == IOTYPE_RX)
1200					svg_ubox(Y,
1201						sample->start_time,
1202						sample->end_time,
1203						h,
1204						sample->err ? "error" : "net",
1205						sample->fd,
1206						sample->err,
1207						sample->merges);
1208				else if (sample->type == IOTYPE_TX)
1209					svg_lbox(Y,
1210						sample->start_time,
1211						sample->end_time,
1212						h,
1213						sample->err ? "error" : "net",
1214						sample->fd,
1215						sample->err,
1216						sample->merges);
1217			}
1218
1219			suf = "";
1220			bytes = c->total_bytes;
1221			if (bytes > 1024) {
1222				bytes = bytes / 1024;
1223				suf = "K";
1224			}
1225			if (bytes > 1024) {
1226				bytes = bytes / 1024;
1227				suf = "M";
1228			}
1229			if (bytes > 1024) {
1230				bytes = bytes / 1024;
1231				suf = "G";
1232			}
1233
1234
1235			sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1236			svg_text(Y, c->start_time, comm);
1237
1238			c->Y = Y;
1239			Y++;
1240			c = c->next;
1241		}
1242		p = p->next;
1243	}
1244}
1245
1246static void draw_process_bars(struct timechart *tchart)
1247{
1248	struct per_pid *p;
1249	struct per_pidcomm *c;
1250	struct cpu_sample *sample;
1251	int Y = 0;
1252
1253	Y = 2 * tchart->numcpus + 2;
1254
1255	p = tchart->all_data;
1256	while (p) {
1257		c = p->all;
1258		while (c) {
1259			if (!c->display) {
1260				c->Y = 0;
1261				c = c->next;
1262				continue;
1263			}
1264
1265			svg_box(Y, c->start_time, c->end_time, "process");
1266			sample = c->samples;
1267			while (sample) {
1268				if (sample->type == TYPE_RUNNING)
1269					svg_running(Y, sample->cpu,
1270						    sample->start_time,
1271						    sample->end_time,
1272						    sample->backtrace);
1273				if (sample->type == TYPE_BLOCKED)
1274					svg_blocked(Y, sample->cpu,
1275						    sample->start_time,
1276						    sample->end_time,
1277						    sample->backtrace);
1278				if (sample->type == TYPE_WAITING)
1279					svg_waiting(Y, sample->cpu,
1280						    sample->start_time,
1281						    sample->end_time,
1282						    sample->backtrace);
1283				sample = sample->next;
1284			}
1285
1286			if (c->comm) {
1287				char comm[256];
1288				if (c->total_time > 5000000000) /* 5 seconds */
1289					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1290				else
1291					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1292
1293				svg_text(Y, c->start_time, comm);
1294			}
1295			c->Y = Y;
1296			Y++;
1297			c = c->next;
1298		}
1299		p = p->next;
1300	}
1301}
1302
1303static void add_process_filter(const char *string)
1304{
1305	int pid = strtoull(string, NULL, 10);
1306	struct process_filter *filt = malloc(sizeof(*filt));
1307
1308	if (!filt)
1309		return;
1310
1311	filt->name = strdup(string);
1312	filt->pid  = pid;
1313	filt->next = process_filter;
1314
1315	process_filter = filt;
1316}
1317
1318static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1319{
1320	struct process_filter *filt;
1321	if (!process_filter)
1322		return 1;
1323
1324	filt = process_filter;
1325	while (filt) {
1326		if (filt->pid && p->pid == filt->pid)
1327			return 1;
1328		if (strcmp(filt->name, c->comm) == 0)
1329			return 1;
1330		filt = filt->next;
1331	}
1332	return 0;
1333}
1334
1335static int determine_display_tasks_filtered(struct timechart *tchart)
1336{
1337	struct per_pid *p;
1338	struct per_pidcomm *c;
1339	int count = 0;
1340
1341	p = tchart->all_data;
1342	while (p) {
1343		p->display = 0;
1344		if (p->start_time == 1)
1345			p->start_time = tchart->first_time;
1346
1347		/* no exit marker, task kept running to the end */
1348		if (p->end_time == 0)
1349			p->end_time = tchart->last_time;
1350
1351		c = p->all;
1352
1353		while (c) {
1354			c->display = 0;
1355
1356			if (c->start_time == 1)
1357				c->start_time = tchart->first_time;
1358
1359			if (passes_filter(p, c)) {
1360				c->display = 1;
1361				p->display = 1;
1362				count++;
1363			}
1364
1365			if (c->end_time == 0)
1366				c->end_time = tchart->last_time;
1367
1368			c = c->next;
1369		}
1370		p = p->next;
1371	}
1372	return count;
1373}
1374
1375static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1376{
1377	struct per_pid *p;
1378	struct per_pidcomm *c;
1379	int count = 0;
1380
1381	p = tchart->all_data;
1382	while (p) {
1383		p->display = 0;
1384		if (p->start_time == 1)
1385			p->start_time = tchart->first_time;
1386
1387		/* no exit marker, task kept running to the end */
1388		if (p->end_time == 0)
1389			p->end_time = tchart->last_time;
1390		if (p->total_time >= threshold)
1391			p->display = 1;
1392
1393		c = p->all;
1394
1395		while (c) {
1396			c->display = 0;
1397
1398			if (c->start_time == 1)
1399				c->start_time = tchart->first_time;
1400
1401			if (c->total_time >= threshold) {
1402				c->display = 1;
1403				count++;
1404			}
1405
1406			if (c->end_time == 0)
1407				c->end_time = tchart->last_time;
1408
1409			c = c->next;
1410		}
1411		p = p->next;
1412	}
1413	return count;
1414}
1415
1416static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1417{
1418	struct per_pid *p;
1419	struct per_pidcomm *c;
1420	int count = 0;
1421
1422	p = timechart->all_data;
1423	while (p) {
1424		/* no exit marker, task kept running to the end */
1425		if (p->end_time == 0)
1426			p->end_time = timechart->last_time;
1427
1428		c = p->all;
1429
1430		while (c) {
1431			c->display = 0;
1432
1433			if (c->total_bytes >= threshold) {
1434				c->display = 1;
1435				count++;
1436			}
1437
1438			if (c->end_time == 0)
1439				c->end_time = timechart->last_time;
1440
1441			c = c->next;
1442		}
1443		p = p->next;
1444	}
1445	return count;
1446}
1447
1448#define BYTES_THRESH (1 * 1024 * 1024)
1449#define TIME_THRESH 10000000
1450
1451static void write_svg_file(struct timechart *tchart, const char *filename)
1452{
1453	u64 i;
1454	int count;
1455	int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1456
1457	if (tchart->power_only)
1458		tchart->proc_num = 0;
1459
1460	/* We'd like to show at least proc_num tasks;
1461	 * be less picky if we have fewer */
1462	do {
1463		if (process_filter)
1464			count = determine_display_tasks_filtered(tchart);
1465		else if (tchart->io_events)
1466			count = determine_display_io_tasks(tchart, thresh);
1467		else
1468			count = determine_display_tasks(tchart, thresh);
1469		thresh /= 10;
1470	} while (!process_filter && thresh && count < tchart->proc_num);
1471
1472	if (!tchart->proc_num)
1473		count = 0;
1474
1475	if (tchart->io_events) {
1476		open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1477
1478		svg_time_grid(0.5);
1479		svg_io_legenda();
1480
1481		draw_io_bars(tchart);
1482	} else {
1483		open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1484
1485		svg_time_grid(0);
1486
1487		svg_legenda();
1488
1489		for (i = 0; i < tchart->numcpus; i++)
1490			svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1491
1492		draw_cpu_usage(tchart);
1493		if (tchart->proc_num)
1494			draw_process_bars(tchart);
1495		if (!tchart->tasks_only)
1496			draw_c_p_states(tchart);
1497		if (tchart->proc_num)
1498			draw_wakeups(tchart);
1499	}
1500
1501	svg_close();
1502}
1503
1504static int process_header(struct perf_file_section *section __maybe_unused,
1505			  struct perf_header *ph,
1506			  int feat,
1507			  int fd __maybe_unused,
1508			  void *data)
1509{
1510	struct timechart *tchart = data;
1511
1512	switch (feat) {
1513	case HEADER_NRCPUS:
1514		tchart->numcpus = ph->env.nr_cpus_avail;
1515		break;
1516
1517	case HEADER_CPU_TOPOLOGY:
1518		if (!tchart->topology)
1519			break;
1520
1521		if (svg_build_topology_map(&ph->env))
1522			fprintf(stderr, "problem building topology\n");
1523		break;
1524
1525	default:
1526		break;
1527	}
1528
1529	return 0;
1530}
1531
1532static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1533{
1534	const struct evsel_str_handler power_tracepoints[] = {
1535		{ "power:cpu_idle",		process_sample_cpu_idle },
1536		{ "power:cpu_frequency",	process_sample_cpu_frequency },
1537		{ "sched:sched_wakeup",		process_sample_sched_wakeup },
1538		{ "sched:sched_switch",		process_sample_sched_switch },
1539#ifdef SUPPORT_OLD_POWER_EVENTS
1540		{ "power:power_start",		process_sample_power_start },
1541		{ "power:power_end",		process_sample_power_end },
1542		{ "power:power_frequency",	process_sample_power_frequency },
1543#endif
1544
1545		{ "syscalls:sys_enter_read",		process_enter_read },
1546		{ "syscalls:sys_enter_pread64",		process_enter_read },
1547		{ "syscalls:sys_enter_readv",		process_enter_read },
1548		{ "syscalls:sys_enter_preadv",		process_enter_read },
1549		{ "syscalls:sys_enter_write",		process_enter_write },
1550		{ "syscalls:sys_enter_pwrite64",	process_enter_write },
1551		{ "syscalls:sys_enter_writev",		process_enter_write },
1552		{ "syscalls:sys_enter_pwritev",		process_enter_write },
1553		{ "syscalls:sys_enter_sync",		process_enter_sync },
1554		{ "syscalls:sys_enter_sync_file_range",	process_enter_sync },
1555		{ "syscalls:sys_enter_fsync",		process_enter_sync },
1556		{ "syscalls:sys_enter_msync",		process_enter_sync },
1557		{ "syscalls:sys_enter_recvfrom",	process_enter_rx },
1558		{ "syscalls:sys_enter_recvmmsg",	process_enter_rx },
1559		{ "syscalls:sys_enter_recvmsg",		process_enter_rx },
1560		{ "syscalls:sys_enter_sendto",		process_enter_tx },
1561		{ "syscalls:sys_enter_sendmsg",		process_enter_tx },
1562		{ "syscalls:sys_enter_sendmmsg",	process_enter_tx },
1563		{ "syscalls:sys_enter_epoll_pwait",	process_enter_poll },
1564		{ "syscalls:sys_enter_epoll_wait",	process_enter_poll },
1565		{ "syscalls:sys_enter_poll",		process_enter_poll },
1566		{ "syscalls:sys_enter_ppoll",		process_enter_poll },
1567		{ "syscalls:sys_enter_pselect6",	process_enter_poll },
1568		{ "syscalls:sys_enter_select",		process_enter_poll },
1569
1570		{ "syscalls:sys_exit_read",		process_exit_read },
1571		{ "syscalls:sys_exit_pread64",		process_exit_read },
1572		{ "syscalls:sys_exit_readv",		process_exit_read },
1573		{ "syscalls:sys_exit_preadv",		process_exit_read },
1574		{ "syscalls:sys_exit_write",		process_exit_write },
1575		{ "syscalls:sys_exit_pwrite64",		process_exit_write },
1576		{ "syscalls:sys_exit_writev",		process_exit_write },
1577		{ "syscalls:sys_exit_pwritev",		process_exit_write },
1578		{ "syscalls:sys_exit_sync",		process_exit_sync },
1579		{ "syscalls:sys_exit_sync_file_range",	process_exit_sync },
1580		{ "syscalls:sys_exit_fsync",		process_exit_sync },
1581		{ "syscalls:sys_exit_msync",		process_exit_sync },
1582		{ "syscalls:sys_exit_recvfrom",		process_exit_rx },
1583		{ "syscalls:sys_exit_recvmmsg",		process_exit_rx },
1584		{ "syscalls:sys_exit_recvmsg",		process_exit_rx },
1585		{ "syscalls:sys_exit_sendto",		process_exit_tx },
1586		{ "syscalls:sys_exit_sendmsg",		process_exit_tx },
1587		{ "syscalls:sys_exit_sendmmsg",		process_exit_tx },
1588		{ "syscalls:sys_exit_epoll_pwait",	process_exit_poll },
1589		{ "syscalls:sys_exit_epoll_wait",	process_exit_poll },
1590		{ "syscalls:sys_exit_poll",		process_exit_poll },
1591		{ "syscalls:sys_exit_ppoll",		process_exit_poll },
1592		{ "syscalls:sys_exit_pselect6",		process_exit_poll },
1593		{ "syscalls:sys_exit_select",		process_exit_poll },
1594	};
1595	struct perf_data data = {
1596		.path  = input_name,
1597		.mode  = PERF_DATA_MODE_READ,
1598		.force = tchart->force,
1599	};
1600
1601	struct perf_session *session = perf_session__new(&data, false,
1602							 &tchart->tool);
1603	int ret = -EINVAL;
1604
1605	if (IS_ERR(session))
1606		return PTR_ERR(session);
1607
1608	symbol__init(&session->header.env);
1609
1610	(void)perf_header__process_sections(&session->header,
1611					    perf_data__fd(session->data),
1612					    tchart,
1613					    process_header);
1614
1615	if (!perf_session__has_traces(session, "timechart record"))
1616		goto out_delete;
1617
1618	if (perf_session__set_tracepoints_handlers(session,
1619						   power_tracepoints)) {
1620		pr_err("Initializing session tracepoint handlers failed\n");
1621		goto out_delete;
1622	}
1623
1624	ret = perf_session__process_events(session);
1625	if (ret)
1626		goto out_delete;
1627
1628	end_sample_processing(tchart);
1629
1630	sort_pids(tchart);
1631
1632	write_svg_file(tchart, output_name);
1633
1634	pr_info("Written %2.1f seconds of trace to %s.\n",
1635		(tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1636out_delete:
1637	perf_session__delete(session);
1638	return ret;
1639}
1640
1641static int timechart__io_record(int argc, const char **argv)
1642{
1643	unsigned int rec_argc, i;
1644	const char **rec_argv;
1645	const char **p;
1646	char *filter = NULL;
1647
1648	const char * const common_args[] = {
1649		"record", "-a", "-R", "-c", "1",
1650	};
1651	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1652
1653	const char * const disk_events[] = {
1654		"syscalls:sys_enter_read",
1655		"syscalls:sys_enter_pread64",
1656		"syscalls:sys_enter_readv",
1657		"syscalls:sys_enter_preadv",
1658		"syscalls:sys_enter_write",
1659		"syscalls:sys_enter_pwrite64",
1660		"syscalls:sys_enter_writev",
1661		"syscalls:sys_enter_pwritev",
1662		"syscalls:sys_enter_sync",
1663		"syscalls:sys_enter_sync_file_range",
1664		"syscalls:sys_enter_fsync",
1665		"syscalls:sys_enter_msync",
1666
1667		"syscalls:sys_exit_read",
1668		"syscalls:sys_exit_pread64",
1669		"syscalls:sys_exit_readv",
1670		"syscalls:sys_exit_preadv",
1671		"syscalls:sys_exit_write",
1672		"syscalls:sys_exit_pwrite64",
1673		"syscalls:sys_exit_writev",
1674		"syscalls:sys_exit_pwritev",
1675		"syscalls:sys_exit_sync",
1676		"syscalls:sys_exit_sync_file_range",
1677		"syscalls:sys_exit_fsync",
1678		"syscalls:sys_exit_msync",
1679	};
1680	unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1681
1682	const char * const net_events[] = {
1683		"syscalls:sys_enter_recvfrom",
1684		"syscalls:sys_enter_recvmmsg",
1685		"syscalls:sys_enter_recvmsg",
1686		"syscalls:sys_enter_sendto",
1687		"syscalls:sys_enter_sendmsg",
1688		"syscalls:sys_enter_sendmmsg",
1689
1690		"syscalls:sys_exit_recvfrom",
1691		"syscalls:sys_exit_recvmmsg",
1692		"syscalls:sys_exit_recvmsg",
1693		"syscalls:sys_exit_sendto",
1694		"syscalls:sys_exit_sendmsg",
1695		"syscalls:sys_exit_sendmmsg",
1696	};
1697	unsigned int net_events_nr = ARRAY_SIZE(net_events);
1698
1699	const char * const poll_events[] = {
1700		"syscalls:sys_enter_epoll_pwait",
1701		"syscalls:sys_enter_epoll_wait",
1702		"syscalls:sys_enter_poll",
1703		"syscalls:sys_enter_ppoll",
1704		"syscalls:sys_enter_pselect6",
1705		"syscalls:sys_enter_select",
1706
1707		"syscalls:sys_exit_epoll_pwait",
1708		"syscalls:sys_exit_epoll_wait",
1709		"syscalls:sys_exit_poll",
1710		"syscalls:sys_exit_ppoll",
1711		"syscalls:sys_exit_pselect6",
1712		"syscalls:sys_exit_select",
1713	};
1714	unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1715
1716	rec_argc = common_args_nr +
1717		disk_events_nr * 4 +
1718		net_events_nr * 4 +
1719		poll_events_nr * 4 +
1720		argc;
1721	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1722
1723	if (rec_argv == NULL)
1724		return -ENOMEM;
1725
1726	if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1727		free(rec_argv);
1728		return -ENOMEM;
1729	}
1730
1731	p = rec_argv;
1732	for (i = 0; i < common_args_nr; i++)
1733		*p++ = strdup(common_args[i]);
1734
1735	for (i = 0; i < disk_events_nr; i++) {
1736		if (!is_valid_tracepoint(disk_events[i])) {
1737			rec_argc -= 4;
1738			continue;
1739		}
1740
1741		*p++ = "-e";
1742		*p++ = strdup(disk_events[i]);
1743		*p++ = "--filter";
1744		*p++ = filter;
1745	}
1746	for (i = 0; i < net_events_nr; i++) {
1747		if (!is_valid_tracepoint(net_events[i])) {
1748			rec_argc -= 4;
1749			continue;
1750		}
1751
1752		*p++ = "-e";
1753		*p++ = strdup(net_events[i]);
1754		*p++ = "--filter";
1755		*p++ = filter;
1756	}
1757	for (i = 0; i < poll_events_nr; i++) {
1758		if (!is_valid_tracepoint(poll_events[i])) {
1759			rec_argc -= 4;
1760			continue;
1761		}
1762
1763		*p++ = "-e";
1764		*p++ = strdup(poll_events[i]);
1765		*p++ = "--filter";
1766		*p++ = filter;
1767	}
1768
1769	for (i = 0; i < (unsigned int)argc; i++)
1770		*p++ = argv[i];
1771
1772	return cmd_record(rec_argc, rec_argv);
1773}
1774
1775
1776static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1777{
1778	unsigned int rec_argc, i, j;
1779	const char **rec_argv;
1780	const char **p;
1781	unsigned int record_elems;
1782
1783	const char * const common_args[] = {
1784		"record", "-a", "-R", "-c", "1",
1785	};
1786	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1787
1788	const char * const backtrace_args[] = {
1789		"-g",
1790	};
1791	unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1792
1793	const char * const power_args[] = {
1794		"-e", "power:cpu_frequency",
1795		"-e", "power:cpu_idle",
1796	};
1797	unsigned int power_args_nr = ARRAY_SIZE(power_args);
1798
1799	const char * const old_power_args[] = {
1800#ifdef SUPPORT_OLD_POWER_EVENTS
1801		"-e", "power:power_start",
1802		"-e", "power:power_end",
1803		"-e", "power:power_frequency",
1804#endif
1805	};
1806	unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1807
1808	const char * const tasks_args[] = {
1809		"-e", "sched:sched_wakeup",
1810		"-e", "sched:sched_switch",
1811	};
1812	unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1813
1814#ifdef SUPPORT_OLD_POWER_EVENTS
1815	if (!is_valid_tracepoint("power:cpu_idle") &&
1816	    is_valid_tracepoint("power:power_start")) {
1817		use_old_power_events = 1;
1818		power_args_nr = 0;
1819	} else {
1820		old_power_args_nr = 0;
1821	}
1822#endif
1823
1824	if (tchart->power_only)
1825		tasks_args_nr = 0;
1826
1827	if (tchart->tasks_only) {
1828		power_args_nr = 0;
1829		old_power_args_nr = 0;
1830	}
1831
1832	if (!tchart->with_backtrace)
1833		backtrace_args_no = 0;
1834
1835	record_elems = common_args_nr + tasks_args_nr +
1836		power_args_nr + old_power_args_nr + backtrace_args_no;
1837
1838	rec_argc = record_elems + argc;
1839	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1840
1841	if (rec_argv == NULL)
1842		return -ENOMEM;
1843
1844	p = rec_argv;
1845	for (i = 0; i < common_args_nr; i++)
1846		*p++ = strdup(common_args[i]);
1847
1848	for (i = 0; i < backtrace_args_no; i++)
1849		*p++ = strdup(backtrace_args[i]);
1850
1851	for (i = 0; i < tasks_args_nr; i++)
1852		*p++ = strdup(tasks_args[i]);
1853
1854	for (i = 0; i < power_args_nr; i++)
1855		*p++ = strdup(power_args[i]);
1856
1857	for (i = 0; i < old_power_args_nr; i++)
1858		*p++ = strdup(old_power_args[i]);
1859
1860	for (j = 0; j < (unsigned int)argc; j++)
1861		*p++ = argv[j];
1862
1863	return cmd_record(rec_argc, rec_argv);
1864}
1865
1866static int
1867parse_process(const struct option *opt __maybe_unused, const char *arg,
1868	      int __maybe_unused unset)
1869{
1870	if (arg)
1871		add_process_filter(arg);
1872	return 0;
1873}
1874
1875static int
1876parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1877		int __maybe_unused unset)
1878{
1879	unsigned long duration = strtoul(arg, NULL, 0);
1880
1881	if (svg_highlight || svg_highlight_name)
1882		return -1;
1883
1884	if (duration)
1885		svg_highlight = duration;
1886	else
1887		svg_highlight_name = strdup(arg);
1888
1889	return 0;
1890}
1891
1892static int
1893parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1894{
1895	char unit = 'n';
1896	u64 *value = opt->value;
1897
1898	if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1899		switch (unit) {
1900		case 'm':
1901			*value *= NSEC_PER_MSEC;
1902			break;
1903		case 'u':
1904			*value *= NSEC_PER_USEC;
1905			break;
1906		case 'n':
1907			break;
1908		default:
1909			return -1;
1910		}
1911	}
1912
1913	return 0;
1914}
1915
1916int cmd_timechart(int argc, const char **argv)
1917{
1918	struct timechart tchart = {
1919		.tool = {
1920			.comm		 = process_comm_event,
1921			.fork		 = process_fork_event,
1922			.exit		 = process_exit_event,
1923			.sample		 = process_sample_event,
1924			.ordered_events	 = true,
1925		},
1926		.proc_num = 15,
1927		.min_time = NSEC_PER_MSEC,
1928		.merge_dist = 1000,
1929	};
1930	const char *output_name = "output.svg";
1931	const struct option timechart_common_options[] = {
1932	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1933	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1934	OPT_END()
1935	};
1936	const struct option timechart_options[] = {
1937	OPT_STRING('i', "input", &input_name, "file", "input file name"),
1938	OPT_STRING('o', "output", &output_name, "file", "output file name"),
1939	OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1940	OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1941		      "highlight tasks. Pass duration in ns or process name.",
1942		       parse_highlight),
1943	OPT_CALLBACK('p', "process", NULL, "process",
1944		      "process selector. Pass a pid or process name.",
1945		       parse_process),
1946	OPT_CALLBACK(0, "symfs", NULL, "directory",
1947		     "Look for files with symbols relative to this directory",
1948		     symbol__config_symfs),
1949	OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1950		    "min. number of tasks to print"),
1951	OPT_BOOLEAN('t', "topology", &tchart.topology,
1952		    "sort CPUs according to topology"),
1953	OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1954		    "skip EAGAIN errors"),
1955	OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1956		     "all IO faster than min-time will visually appear longer",
1957		     parse_time),
1958	OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1959		     "merge events that are merge-dist us apart",
1960		     parse_time),
1961	OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1962	OPT_PARENT(timechart_common_options),
1963	};
1964	const char * const timechart_subcommands[] = { "record", NULL };
1965	const char *timechart_usage[] = {
1966		"perf timechart [<options>] {record}",
1967		NULL
1968	};
1969	const struct option timechart_record_options[] = {
1970	OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1971		    "record only IO data"),
1972	OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1973	OPT_PARENT(timechart_common_options),
1974	};
1975	const char * const timechart_record_usage[] = {
1976		"perf timechart record [<options>]",
1977		NULL
1978	};
1979	argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1980			timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1981
1982	if (tchart.power_only && tchart.tasks_only) {
1983		pr_err("-P and -T options cannot be used at the same time.\n");
1984		return -1;
1985	}
1986
1987	if (argc && !strncmp(argv[0], "rec", 3)) {
1988		argc = parse_options(argc, argv, timechart_record_options,
1989				     timechart_record_usage,
1990				     PARSE_OPT_STOP_AT_NON_OPTION);
1991
1992		if (tchart.power_only && tchart.tasks_only) {
1993			pr_err("-P and -T options cannot be used at the same time.\n");
1994			return -1;
1995		}
1996
1997		if (tchart.io_only)
1998			return timechart__io_record(argc, argv);
1999		else
2000			return timechart__record(&tchart, argc, argv);
2001	} else if (argc)
2002		usage_with_options(timechart_usage, timechart_options);
2003
2004	setup_pager();
2005
2006	return __cmd_timechart(&tchart, output_name);
2007}
2008