xref: /kernel/linux/linux-5.10/tools/lib/bpf/libbpf.c (revision 8c2ecf20)
1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3/*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13#ifndef _GNU_SOURCE
14#define _GNU_SOURCE
15#endif
16#include <stdlib.h>
17#include <stdio.h>
18#include <stdarg.h>
19#include <libgen.h>
20#include <inttypes.h>
21#include <limits.h>
22#include <string.h>
23#include <unistd.h>
24#include <endian.h>
25#include <fcntl.h>
26#include <errno.h>
27#include <ctype.h>
28#include <asm/unistd.h>
29#include <linux/err.h>
30#include <linux/kernel.h>
31#include <linux/bpf.h>
32#include <linux/btf.h>
33#include <linux/filter.h>
34#include <linux/list.h>
35#include <linux/limits.h>
36#include <linux/perf_event.h>
37#include <linux/ring_buffer.h>
38#include <linux/version.h>
39#include <sys/epoll.h>
40#include <sys/ioctl.h>
41#include <sys/mman.h>
42#include <sys/stat.h>
43#include <sys/types.h>
44#include <sys/vfs.h>
45#include <sys/utsname.h>
46#include <sys/resource.h>
47#include <libelf.h>
48#include <gelf.h>
49#include <zlib.h>
50
51#include "libbpf.h"
52#include "bpf.h"
53#include "btf.h"
54#include "str_error.h"
55#include "libbpf_internal.h"
56#include "hashmap.h"
57
58#ifndef EM_BPF
59#define EM_BPF 247
60#endif
61
62#ifndef BPF_FS_MAGIC
63#define BPF_FS_MAGIC		0xcafe4a11
64#endif
65
66#define BPF_INSN_SZ (sizeof(struct bpf_insn))
67
68/* vsprintf() in __base_pr() uses nonliteral format string. It may break
69 * compilation if user enables corresponding warning. Disable it explicitly.
70 */
71#pragma GCC diagnostic ignored "-Wformat-nonliteral"
72
73#define __printf(a, b)	__attribute__((format(printf, a, b)))
74
75static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
76static const struct btf_type *
77skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id);
78
79static int __base_pr(enum libbpf_print_level level, const char *format,
80		     va_list args)
81{
82	if (level == LIBBPF_DEBUG)
83		return 0;
84
85	return vfprintf(stderr, format, args);
86}
87
88static libbpf_print_fn_t __libbpf_pr = __base_pr;
89
90libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
91{
92	libbpf_print_fn_t old_print_fn = __libbpf_pr;
93
94	__libbpf_pr = fn;
95	return old_print_fn;
96}
97
98__printf(2, 3)
99void libbpf_print(enum libbpf_print_level level, const char *format, ...)
100{
101	va_list args;
102
103	if (!__libbpf_pr)
104		return;
105
106	va_start(args, format);
107	__libbpf_pr(level, format, args);
108	va_end(args);
109}
110
111static void pr_perm_msg(int err)
112{
113	struct rlimit limit;
114	char buf[100];
115
116	if (err != -EPERM || geteuid() != 0)
117		return;
118
119	err = getrlimit(RLIMIT_MEMLOCK, &limit);
120	if (err)
121		return;
122
123	if (limit.rlim_cur == RLIM_INFINITY)
124		return;
125
126	if (limit.rlim_cur < 1024)
127		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
128	else if (limit.rlim_cur < 1024*1024)
129		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
130	else
131		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
132
133	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
134		buf);
135}
136
137#define STRERR_BUFSIZE  128
138
139/* Copied from tools/perf/util/util.h */
140#ifndef zfree
141# define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
142#endif
143
144#ifndef zclose
145# define zclose(fd) ({			\
146	int ___err = 0;			\
147	if ((fd) >= 0)			\
148		___err = close((fd));	\
149	fd = -1;			\
150	___err; })
151#endif
152
153static inline __u64 ptr_to_u64(const void *ptr)
154{
155	return (__u64) (unsigned long) ptr;
156}
157
158enum kern_feature_id {
159	/* v4.14: kernel support for program & map names. */
160	FEAT_PROG_NAME,
161	/* v5.2: kernel support for global data sections. */
162	FEAT_GLOBAL_DATA,
163	/* BTF support */
164	FEAT_BTF,
165	/* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */
166	FEAT_BTF_FUNC,
167	/* BTF_KIND_VAR and BTF_KIND_DATASEC support */
168	FEAT_BTF_DATASEC,
169	/* BTF_FUNC_GLOBAL is supported */
170	FEAT_BTF_GLOBAL_FUNC,
171	/* BPF_F_MMAPABLE is supported for arrays */
172	FEAT_ARRAY_MMAP,
173	/* kernel support for expected_attach_type in BPF_PROG_LOAD */
174	FEAT_EXP_ATTACH_TYPE,
175	/* bpf_probe_read_{kernel,user}[_str] helpers */
176	FEAT_PROBE_READ_KERN,
177	/* BPF_PROG_BIND_MAP is supported */
178	FEAT_PROG_BIND_MAP,
179	__FEAT_CNT,
180};
181
182static bool kernel_supports(enum kern_feature_id feat_id);
183
184enum reloc_type {
185	RELO_LD64,
186	RELO_CALL,
187	RELO_DATA,
188	RELO_EXTERN,
189};
190
191struct reloc_desc {
192	enum reloc_type type;
193	int insn_idx;
194	int map_idx;
195	int sym_off;
196	bool processed;
197};
198
199struct bpf_sec_def;
200
201typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec,
202					struct bpf_program *prog);
203
204struct bpf_sec_def {
205	const char *sec;
206	size_t len;
207	enum bpf_prog_type prog_type;
208	enum bpf_attach_type expected_attach_type;
209	bool is_exp_attach_type_optional;
210	bool is_attachable;
211	bool is_attach_btf;
212	bool is_sleepable;
213	attach_fn_t attach_fn;
214};
215
216/*
217 * bpf_prog should be a better name but it has been used in
218 * linux/filter.h.
219 */
220struct bpf_program {
221	const struct bpf_sec_def *sec_def;
222	char *sec_name;
223	size_t sec_idx;
224	/* this program's instruction offset (in number of instructions)
225	 * within its containing ELF section
226	 */
227	size_t sec_insn_off;
228	/* number of original instructions in ELF section belonging to this
229	 * program, not taking into account subprogram instructions possible
230	 * appended later during relocation
231	 */
232	size_t sec_insn_cnt;
233	/* Offset (in number of instructions) of the start of instruction
234	 * belonging to this BPF program  within its containing main BPF
235	 * program. For the entry-point (main) BPF program, this is always
236	 * zero. For a sub-program, this gets reset before each of main BPF
237	 * programs are processed and relocated and is used to determined
238	 * whether sub-program was already appended to the main program, and
239	 * if yes, at which instruction offset.
240	 */
241	size_t sub_insn_off;
242
243	char *name;
244	/* sec_name with / replaced by _; makes recursive pinning
245	 * in bpf_object__pin_programs easier
246	 */
247	char *pin_name;
248
249	/* instructions that belong to BPF program; insns[0] is located at
250	 * sec_insn_off instruction within its ELF section in ELF file, so
251	 * when mapping ELF file instruction index to the local instruction,
252	 * one needs to subtract sec_insn_off; and vice versa.
253	 */
254	struct bpf_insn *insns;
255	/* actual number of instruction in this BPF program's image; for
256	 * entry-point BPF programs this includes the size of main program
257	 * itself plus all the used sub-programs, appended at the end
258	 */
259	size_t insns_cnt;
260
261	struct reloc_desc *reloc_desc;
262	int nr_reloc;
263	int log_level;
264
265	struct {
266		int nr;
267		int *fds;
268	} instances;
269	bpf_program_prep_t preprocessor;
270
271	struct bpf_object *obj;
272	void *priv;
273	bpf_program_clear_priv_t clear_priv;
274
275	bool load;
276	enum bpf_prog_type type;
277	enum bpf_attach_type expected_attach_type;
278	int prog_ifindex;
279	__u32 attach_btf_id;
280	__u32 attach_prog_fd;
281	void *func_info;
282	__u32 func_info_rec_size;
283	__u32 func_info_cnt;
284
285	void *line_info;
286	__u32 line_info_rec_size;
287	__u32 line_info_cnt;
288	__u32 prog_flags;
289};
290
291struct bpf_struct_ops {
292	const char *tname;
293	const struct btf_type *type;
294	struct bpf_program **progs;
295	__u32 *kern_func_off;
296	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
297	void *data;
298	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
299	 *      btf_vmlinux's format.
300	 * struct bpf_struct_ops_tcp_congestion_ops {
301	 *	[... some other kernel fields ...]
302	 *	struct tcp_congestion_ops data;
303	 * }
304	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
305	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
306	 * from "data".
307	 */
308	void *kern_vdata;
309	__u32 type_id;
310};
311
312#define DATA_SEC ".data"
313#define BSS_SEC ".bss"
314#define RODATA_SEC ".rodata"
315#define KCONFIG_SEC ".kconfig"
316#define KSYMS_SEC ".ksyms"
317#define STRUCT_OPS_SEC ".struct_ops"
318
319enum libbpf_map_type {
320	LIBBPF_MAP_UNSPEC,
321	LIBBPF_MAP_DATA,
322	LIBBPF_MAP_BSS,
323	LIBBPF_MAP_RODATA,
324	LIBBPF_MAP_KCONFIG,
325};
326
327static const char * const libbpf_type_to_btf_name[] = {
328	[LIBBPF_MAP_DATA]	= DATA_SEC,
329	[LIBBPF_MAP_BSS]	= BSS_SEC,
330	[LIBBPF_MAP_RODATA]	= RODATA_SEC,
331	[LIBBPF_MAP_KCONFIG]	= KCONFIG_SEC,
332};
333
334struct bpf_map {
335	char *name;
336	int fd;
337	int sec_idx;
338	size_t sec_offset;
339	int map_ifindex;
340	int inner_map_fd;
341	struct bpf_map_def def;
342	__u32 numa_node;
343	__u32 btf_var_idx;
344	__u32 btf_key_type_id;
345	__u32 btf_value_type_id;
346	__u32 btf_vmlinux_value_type_id;
347	void *priv;
348	bpf_map_clear_priv_t clear_priv;
349	enum libbpf_map_type libbpf_type;
350	void *mmaped;
351	struct bpf_struct_ops *st_ops;
352	struct bpf_map *inner_map;
353	void **init_slots;
354	int init_slots_sz;
355	char *pin_path;
356	bool pinned;
357	bool reused;
358};
359
360enum extern_type {
361	EXT_UNKNOWN,
362	EXT_KCFG,
363	EXT_KSYM,
364};
365
366enum kcfg_type {
367	KCFG_UNKNOWN,
368	KCFG_CHAR,
369	KCFG_BOOL,
370	KCFG_INT,
371	KCFG_TRISTATE,
372	KCFG_CHAR_ARR,
373};
374
375struct extern_desc {
376	enum extern_type type;
377	int sym_idx;
378	int btf_id;
379	int sec_btf_id;
380	const char *name;
381	bool is_set;
382	bool is_weak;
383	union {
384		struct {
385			enum kcfg_type type;
386			int sz;
387			int align;
388			int data_off;
389			bool is_signed;
390		} kcfg;
391		struct {
392			unsigned long long addr;
393
394			/* target btf_id of the corresponding kernel var. */
395			int vmlinux_btf_id;
396
397			/* local btf_id of the ksym extern's type. */
398			__u32 type_id;
399		} ksym;
400	};
401};
402
403static LIST_HEAD(bpf_objects_list);
404
405struct bpf_object {
406	char name[BPF_OBJ_NAME_LEN];
407	char license[64];
408	__u32 kern_version;
409
410	struct bpf_program *programs;
411	size_t nr_programs;
412	struct bpf_map *maps;
413	size_t nr_maps;
414	size_t maps_cap;
415
416	char *kconfig;
417	struct extern_desc *externs;
418	int nr_extern;
419	int kconfig_map_idx;
420	int rodata_map_idx;
421
422	bool loaded;
423	bool has_subcalls;
424
425	/*
426	 * Information when doing elf related work. Only valid if fd
427	 * is valid.
428	 */
429	struct {
430		int fd;
431		const void *obj_buf;
432		size_t obj_buf_sz;
433		Elf *elf;
434		GElf_Ehdr ehdr;
435		Elf_Data *symbols;
436		Elf_Data *data;
437		Elf_Data *rodata;
438		Elf_Data *bss;
439		Elf_Data *st_ops_data;
440		size_t shstrndx; /* section index for section name strings */
441		size_t strtabidx;
442		struct {
443			GElf_Shdr shdr;
444			Elf_Data *data;
445		} *reloc_sects;
446		int nr_reloc_sects;
447		int maps_shndx;
448		int btf_maps_shndx;
449		__u32 btf_maps_sec_btf_id;
450		int text_shndx;
451		int symbols_shndx;
452		int data_shndx;
453		int rodata_shndx;
454		int bss_shndx;
455		int st_ops_shndx;
456	} efile;
457	/*
458	 * All loaded bpf_object is linked in a list, which is
459	 * hidden to caller. bpf_objects__<func> handlers deal with
460	 * all objects.
461	 */
462	struct list_head list;
463
464	struct btf *btf;
465	/* Parse and load BTF vmlinux if any of the programs in the object need
466	 * it at load time.
467	 */
468	struct btf *btf_vmlinux;
469	struct btf_ext *btf_ext;
470
471	void *priv;
472	bpf_object_clear_priv_t clear_priv;
473
474	char path[];
475};
476#define obj_elf_valid(o)	((o)->efile.elf)
477
478static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
479static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
480static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
481static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
482static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr);
483static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
484static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
485static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx,
486			      size_t off, __u32 sym_type, GElf_Sym *sym);
487
488void bpf_program__unload(struct bpf_program *prog)
489{
490	int i;
491
492	if (!prog)
493		return;
494
495	/*
496	 * If the object is opened but the program was never loaded,
497	 * it is possible that prog->instances.nr == -1.
498	 */
499	if (prog->instances.nr > 0) {
500		for (i = 0; i < prog->instances.nr; i++)
501			zclose(prog->instances.fds[i]);
502	} else if (prog->instances.nr != -1) {
503		pr_warn("Internal error: instances.nr is %d\n",
504			prog->instances.nr);
505	}
506
507	prog->instances.nr = -1;
508	zfree(&prog->instances.fds);
509
510	zfree(&prog->func_info);
511	zfree(&prog->line_info);
512}
513
514static void bpf_program__exit(struct bpf_program *prog)
515{
516	if (!prog)
517		return;
518
519	if (prog->clear_priv)
520		prog->clear_priv(prog, prog->priv);
521
522	prog->priv = NULL;
523	prog->clear_priv = NULL;
524
525	bpf_program__unload(prog);
526	zfree(&prog->name);
527	zfree(&prog->sec_name);
528	zfree(&prog->pin_name);
529	zfree(&prog->insns);
530	zfree(&prog->reloc_desc);
531
532	prog->nr_reloc = 0;
533	prog->insns_cnt = 0;
534	prog->sec_idx = -1;
535}
536
537static char *__bpf_program__pin_name(struct bpf_program *prog)
538{
539	char *name, *p;
540
541	name = p = strdup(prog->sec_name);
542	while ((p = strchr(p, '/')))
543		*p = '_';
544
545	return name;
546}
547
548static bool insn_is_subprog_call(const struct bpf_insn *insn)
549{
550	return BPF_CLASS(insn->code) == BPF_JMP &&
551	       BPF_OP(insn->code) == BPF_CALL &&
552	       BPF_SRC(insn->code) == BPF_K &&
553	       insn->src_reg == BPF_PSEUDO_CALL &&
554	       insn->dst_reg == 0 &&
555	       insn->off == 0;
556}
557
558static int
559bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
560		      const char *name, size_t sec_idx, const char *sec_name,
561		      size_t sec_off, void *insn_data, size_t insn_data_sz)
562{
563	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
564		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
565			sec_name, name, sec_off, insn_data_sz);
566		return -EINVAL;
567	}
568
569	memset(prog, 0, sizeof(*prog));
570	prog->obj = obj;
571
572	prog->sec_idx = sec_idx;
573	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
574	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
575	/* insns_cnt can later be increased by appending used subprograms */
576	prog->insns_cnt = prog->sec_insn_cnt;
577
578	prog->type = BPF_PROG_TYPE_UNSPEC;
579	prog->load = true;
580
581	prog->instances.fds = NULL;
582	prog->instances.nr = -1;
583
584	prog->sec_name = strdup(sec_name);
585	if (!prog->sec_name)
586		goto errout;
587
588	prog->name = strdup(name);
589	if (!prog->name)
590		goto errout;
591
592	prog->pin_name = __bpf_program__pin_name(prog);
593	if (!prog->pin_name)
594		goto errout;
595
596	prog->insns = malloc(insn_data_sz);
597	if (!prog->insns)
598		goto errout;
599	memcpy(prog->insns, insn_data, insn_data_sz);
600
601	return 0;
602errout:
603	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
604	bpf_program__exit(prog);
605	return -ENOMEM;
606}
607
608static int
609bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
610			 const char *sec_name, int sec_idx)
611{
612	struct bpf_program *prog, *progs;
613	void *data = sec_data->d_buf;
614	size_t sec_sz = sec_data->d_size, sec_off, prog_sz;
615	int nr_progs, err;
616	const char *name;
617	GElf_Sym sym;
618
619	progs = obj->programs;
620	nr_progs = obj->nr_programs;
621	sec_off = 0;
622
623	while (sec_off < sec_sz) {
624		if (elf_sym_by_sec_off(obj, sec_idx, sec_off, STT_FUNC, &sym)) {
625			pr_warn("sec '%s': failed to find program symbol at offset %zu\n",
626				sec_name, sec_off);
627			return -LIBBPF_ERRNO__FORMAT;
628		}
629
630		prog_sz = sym.st_size;
631
632		name = elf_sym_str(obj, sym.st_name);
633		if (!name) {
634			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
635				sec_name, sec_off);
636			return -LIBBPF_ERRNO__FORMAT;
637		}
638
639		if (sec_off + prog_sz > sec_sz) {
640			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
641				sec_name, sec_off);
642			return -LIBBPF_ERRNO__FORMAT;
643		}
644
645		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
646			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
647
648		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
649		if (!progs) {
650			/*
651			 * In this case the original obj->programs
652			 * is still valid, so don't need special treat for
653			 * bpf_close_object().
654			 */
655			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
656				sec_name, name);
657			return -ENOMEM;
658		}
659		obj->programs = progs;
660
661		prog = &progs[nr_progs];
662
663		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
664					    sec_off, data + sec_off, prog_sz);
665		if (err)
666			return err;
667
668		nr_progs++;
669		obj->nr_programs = nr_progs;
670
671		sec_off += prog_sz;
672	}
673
674	return 0;
675}
676
677static __u32 get_kernel_version(void)
678{
679	__u32 major, minor, patch;
680	struct utsname info;
681
682	uname(&info);
683	if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
684		return 0;
685	return KERNEL_VERSION(major, minor, patch);
686}
687
688static const struct btf_member *
689find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
690{
691	struct btf_member *m;
692	int i;
693
694	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
695		if (btf_member_bit_offset(t, i) == bit_offset)
696			return m;
697	}
698
699	return NULL;
700}
701
702static const struct btf_member *
703find_member_by_name(const struct btf *btf, const struct btf_type *t,
704		    const char *name)
705{
706	struct btf_member *m;
707	int i;
708
709	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
710		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
711			return m;
712	}
713
714	return NULL;
715}
716
717#define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
718static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
719				   const char *name, __u32 kind);
720
721static int
722find_struct_ops_kern_types(const struct btf *btf, const char *tname,
723			   const struct btf_type **type, __u32 *type_id,
724			   const struct btf_type **vtype, __u32 *vtype_id,
725			   const struct btf_member **data_member)
726{
727	const struct btf_type *kern_type, *kern_vtype;
728	const struct btf_member *kern_data_member;
729	__s32 kern_vtype_id, kern_type_id;
730	__u32 i;
731
732	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
733	if (kern_type_id < 0) {
734		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
735			tname);
736		return kern_type_id;
737	}
738	kern_type = btf__type_by_id(btf, kern_type_id);
739
740	/* Find the corresponding "map_value" type that will be used
741	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
742	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
743	 * btf_vmlinux.
744	 */
745	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
746						tname, BTF_KIND_STRUCT);
747	if (kern_vtype_id < 0) {
748		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
749			STRUCT_OPS_VALUE_PREFIX, tname);
750		return kern_vtype_id;
751	}
752	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
753
754	/* Find "struct tcp_congestion_ops" from
755	 * struct bpf_struct_ops_tcp_congestion_ops {
756	 *	[ ... ]
757	 *	struct tcp_congestion_ops data;
758	 * }
759	 */
760	kern_data_member = btf_members(kern_vtype);
761	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
762		if (kern_data_member->type == kern_type_id)
763			break;
764	}
765	if (i == btf_vlen(kern_vtype)) {
766		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
767			tname, STRUCT_OPS_VALUE_PREFIX, tname);
768		return -EINVAL;
769	}
770
771	*type = kern_type;
772	*type_id = kern_type_id;
773	*vtype = kern_vtype;
774	*vtype_id = kern_vtype_id;
775	*data_member = kern_data_member;
776
777	return 0;
778}
779
780static bool bpf_map__is_struct_ops(const struct bpf_map *map)
781{
782	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
783}
784
785/* Init the map's fields that depend on kern_btf */
786static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
787					 const struct btf *btf,
788					 const struct btf *kern_btf)
789{
790	const struct btf_member *member, *kern_member, *kern_data_member;
791	const struct btf_type *type, *kern_type, *kern_vtype;
792	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
793	struct bpf_struct_ops *st_ops;
794	void *data, *kern_data;
795	const char *tname;
796	int err;
797
798	st_ops = map->st_ops;
799	type = st_ops->type;
800	tname = st_ops->tname;
801	err = find_struct_ops_kern_types(kern_btf, tname,
802					 &kern_type, &kern_type_id,
803					 &kern_vtype, &kern_vtype_id,
804					 &kern_data_member);
805	if (err)
806		return err;
807
808	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
809		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
810
811	map->def.value_size = kern_vtype->size;
812	map->btf_vmlinux_value_type_id = kern_vtype_id;
813
814	st_ops->kern_vdata = calloc(1, kern_vtype->size);
815	if (!st_ops->kern_vdata)
816		return -ENOMEM;
817
818	data = st_ops->data;
819	kern_data_off = kern_data_member->offset / 8;
820	kern_data = st_ops->kern_vdata + kern_data_off;
821
822	member = btf_members(type);
823	for (i = 0; i < btf_vlen(type); i++, member++) {
824		const struct btf_type *mtype, *kern_mtype;
825		__u32 mtype_id, kern_mtype_id;
826		void *mdata, *kern_mdata;
827		__s64 msize, kern_msize;
828		__u32 moff, kern_moff;
829		__u32 kern_member_idx;
830		const char *mname;
831
832		mname = btf__name_by_offset(btf, member->name_off);
833		kern_member = find_member_by_name(kern_btf, kern_type, mname);
834		if (!kern_member) {
835			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
836				map->name, mname);
837			return -ENOTSUP;
838		}
839
840		kern_member_idx = kern_member - btf_members(kern_type);
841		if (btf_member_bitfield_size(type, i) ||
842		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
843			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
844				map->name, mname);
845			return -ENOTSUP;
846		}
847
848		moff = member->offset / 8;
849		kern_moff = kern_member->offset / 8;
850
851		mdata = data + moff;
852		kern_mdata = kern_data + kern_moff;
853
854		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
855		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
856						    &kern_mtype_id);
857		if (BTF_INFO_KIND(mtype->info) !=
858		    BTF_INFO_KIND(kern_mtype->info)) {
859			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
860				map->name, mname, BTF_INFO_KIND(mtype->info),
861				BTF_INFO_KIND(kern_mtype->info));
862			return -ENOTSUP;
863		}
864
865		if (btf_is_ptr(mtype)) {
866			struct bpf_program *prog;
867
868			prog = st_ops->progs[i];
869			if (!prog)
870				continue;
871
872			kern_mtype = skip_mods_and_typedefs(kern_btf,
873							    kern_mtype->type,
874							    &kern_mtype_id);
875
876			/* mtype->type must be a func_proto which was
877			 * guaranteed in bpf_object__collect_st_ops_relos(),
878			 * so only check kern_mtype for func_proto here.
879			 */
880			if (!btf_is_func_proto(kern_mtype)) {
881				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
882					map->name, mname);
883				return -ENOTSUP;
884			}
885
886			prog->attach_btf_id = kern_type_id;
887			prog->expected_attach_type = kern_member_idx;
888
889			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
890
891			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
892				 map->name, mname, prog->name, moff,
893				 kern_moff);
894
895			continue;
896		}
897
898		msize = btf__resolve_size(btf, mtype_id);
899		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
900		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
901			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
902				map->name, mname, (ssize_t)msize,
903				(ssize_t)kern_msize);
904			return -ENOTSUP;
905		}
906
907		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
908			 map->name, mname, (unsigned int)msize,
909			 moff, kern_moff);
910		memcpy(kern_mdata, mdata, msize);
911	}
912
913	return 0;
914}
915
916static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
917{
918	struct bpf_map *map;
919	size_t i;
920	int err;
921
922	for (i = 0; i < obj->nr_maps; i++) {
923		map = &obj->maps[i];
924
925		if (!bpf_map__is_struct_ops(map))
926			continue;
927
928		err = bpf_map__init_kern_struct_ops(map, obj->btf,
929						    obj->btf_vmlinux);
930		if (err)
931			return err;
932	}
933
934	return 0;
935}
936
937static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
938{
939	const struct btf_type *type, *datasec;
940	const struct btf_var_secinfo *vsi;
941	struct bpf_struct_ops *st_ops;
942	const char *tname, *var_name;
943	__s32 type_id, datasec_id;
944	const struct btf *btf;
945	struct bpf_map *map;
946	__u32 i;
947
948	if (obj->efile.st_ops_shndx == -1)
949		return 0;
950
951	btf = obj->btf;
952	datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
953					    BTF_KIND_DATASEC);
954	if (datasec_id < 0) {
955		pr_warn("struct_ops init: DATASEC %s not found\n",
956			STRUCT_OPS_SEC);
957		return -EINVAL;
958	}
959
960	datasec = btf__type_by_id(btf, datasec_id);
961	vsi = btf_var_secinfos(datasec);
962	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
963		type = btf__type_by_id(obj->btf, vsi->type);
964		var_name = btf__name_by_offset(obj->btf, type->name_off);
965
966		type_id = btf__resolve_type(obj->btf, vsi->type);
967		if (type_id < 0) {
968			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
969				vsi->type, STRUCT_OPS_SEC);
970			return -EINVAL;
971		}
972
973		type = btf__type_by_id(obj->btf, type_id);
974		tname = btf__name_by_offset(obj->btf, type->name_off);
975		if (!tname[0]) {
976			pr_warn("struct_ops init: anonymous type is not supported\n");
977			return -ENOTSUP;
978		}
979		if (!btf_is_struct(type)) {
980			pr_warn("struct_ops init: %s is not a struct\n", tname);
981			return -EINVAL;
982		}
983
984		map = bpf_object__add_map(obj);
985		if (IS_ERR(map))
986			return PTR_ERR(map);
987
988		map->sec_idx = obj->efile.st_ops_shndx;
989		map->sec_offset = vsi->offset;
990		map->name = strdup(var_name);
991		if (!map->name)
992			return -ENOMEM;
993
994		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
995		map->def.key_size = sizeof(int);
996		map->def.value_size = type->size;
997		map->def.max_entries = 1;
998
999		map->st_ops = calloc(1, sizeof(*map->st_ops));
1000		if (!map->st_ops)
1001			return -ENOMEM;
1002		st_ops = map->st_ops;
1003		st_ops->data = malloc(type->size);
1004		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1005		st_ops->kern_func_off = malloc(btf_vlen(type) *
1006					       sizeof(*st_ops->kern_func_off));
1007		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1008			return -ENOMEM;
1009
1010		if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1011			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1012				var_name, STRUCT_OPS_SEC);
1013			return -EINVAL;
1014		}
1015
1016		memcpy(st_ops->data,
1017		       obj->efile.st_ops_data->d_buf + vsi->offset,
1018		       type->size);
1019		st_ops->tname = tname;
1020		st_ops->type = type;
1021		st_ops->type_id = type_id;
1022
1023		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1024			 tname, type_id, var_name, vsi->offset);
1025	}
1026
1027	return 0;
1028}
1029
1030static struct bpf_object *bpf_object__new(const char *path,
1031					  const void *obj_buf,
1032					  size_t obj_buf_sz,
1033					  const char *obj_name)
1034{
1035	struct bpf_object *obj;
1036	char *end;
1037
1038	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1039	if (!obj) {
1040		pr_warn("alloc memory failed for %s\n", path);
1041		return ERR_PTR(-ENOMEM);
1042	}
1043
1044	strcpy(obj->path, path);
1045	if (obj_name) {
1046		strncpy(obj->name, obj_name, sizeof(obj->name) - 1);
1047		obj->name[sizeof(obj->name) - 1] = 0;
1048	} else {
1049		/* Using basename() GNU version which doesn't modify arg. */
1050		strncpy(obj->name, basename((void *)path),
1051			sizeof(obj->name) - 1);
1052		end = strchr(obj->name, '.');
1053		if (end)
1054			*end = 0;
1055	}
1056
1057	obj->efile.fd = -1;
1058	/*
1059	 * Caller of this function should also call
1060	 * bpf_object__elf_finish() after data collection to return
1061	 * obj_buf to user. If not, we should duplicate the buffer to
1062	 * avoid user freeing them before elf finish.
1063	 */
1064	obj->efile.obj_buf = obj_buf;
1065	obj->efile.obj_buf_sz = obj_buf_sz;
1066	obj->efile.maps_shndx = -1;
1067	obj->efile.btf_maps_shndx = -1;
1068	obj->efile.data_shndx = -1;
1069	obj->efile.rodata_shndx = -1;
1070	obj->efile.bss_shndx = -1;
1071	obj->efile.st_ops_shndx = -1;
1072	obj->kconfig_map_idx = -1;
1073	obj->rodata_map_idx = -1;
1074
1075	obj->kern_version = get_kernel_version();
1076	obj->loaded = false;
1077
1078	INIT_LIST_HEAD(&obj->list);
1079	list_add(&obj->list, &bpf_objects_list);
1080	return obj;
1081}
1082
1083static void bpf_object__elf_finish(struct bpf_object *obj)
1084{
1085	if (!obj_elf_valid(obj))
1086		return;
1087
1088	if (obj->efile.elf) {
1089		elf_end(obj->efile.elf);
1090		obj->efile.elf = NULL;
1091	}
1092	obj->efile.symbols = NULL;
1093	obj->efile.data = NULL;
1094	obj->efile.rodata = NULL;
1095	obj->efile.bss = NULL;
1096	obj->efile.st_ops_data = NULL;
1097
1098	zfree(&obj->efile.reloc_sects);
1099	obj->efile.nr_reloc_sects = 0;
1100	zclose(obj->efile.fd);
1101	obj->efile.obj_buf = NULL;
1102	obj->efile.obj_buf_sz = 0;
1103}
1104
1105/* if libelf is old and doesn't support mmap(), fall back to read() */
1106#ifndef ELF_C_READ_MMAP
1107#define ELF_C_READ_MMAP ELF_C_READ
1108#endif
1109
1110static int bpf_object__elf_init(struct bpf_object *obj)
1111{
1112	int err = 0;
1113	GElf_Ehdr *ep;
1114
1115	if (obj_elf_valid(obj)) {
1116		pr_warn("elf: init internal error\n");
1117		return -LIBBPF_ERRNO__LIBELF;
1118	}
1119
1120	if (obj->efile.obj_buf_sz > 0) {
1121		/*
1122		 * obj_buf should have been validated by
1123		 * bpf_object__open_buffer().
1124		 */
1125		obj->efile.elf = elf_memory((char *)obj->efile.obj_buf,
1126					    obj->efile.obj_buf_sz);
1127	} else {
1128		obj->efile.fd = open(obj->path, O_RDONLY);
1129		if (obj->efile.fd < 0) {
1130			char errmsg[STRERR_BUFSIZE], *cp;
1131
1132			err = -errno;
1133			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1134			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1135			return err;
1136		}
1137
1138		obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1139	}
1140
1141	if (!obj->efile.elf) {
1142		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1143		err = -LIBBPF_ERRNO__LIBELF;
1144		goto errout;
1145	}
1146
1147	if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) {
1148		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1149		err = -LIBBPF_ERRNO__FORMAT;
1150		goto errout;
1151	}
1152	ep = &obj->efile.ehdr;
1153
1154	if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) {
1155		pr_warn("elf: failed to get section names section index for %s: %s\n",
1156			obj->path, elf_errmsg(-1));
1157		err = -LIBBPF_ERRNO__FORMAT;
1158		goto errout;
1159	}
1160
1161	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
1162	if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) {
1163		pr_warn("elf: failed to get section names strings from %s: %s\n",
1164			obj->path, elf_errmsg(-1));
1165		err = -LIBBPF_ERRNO__FORMAT;
1166		goto errout;
1167	}
1168
1169	/* Old LLVM set e_machine to EM_NONE */
1170	if (ep->e_type != ET_REL ||
1171	    (ep->e_machine && ep->e_machine != EM_BPF)) {
1172		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1173		err = -LIBBPF_ERRNO__FORMAT;
1174		goto errout;
1175	}
1176
1177	return 0;
1178errout:
1179	bpf_object__elf_finish(obj);
1180	return err;
1181}
1182
1183static int bpf_object__check_endianness(struct bpf_object *obj)
1184{
1185#if __BYTE_ORDER == __LITTLE_ENDIAN
1186	if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB)
1187		return 0;
1188#elif __BYTE_ORDER == __BIG_ENDIAN
1189	if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
1190		return 0;
1191#else
1192# error "Unrecognized __BYTE_ORDER__"
1193#endif
1194	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1195	return -LIBBPF_ERRNO__ENDIAN;
1196}
1197
1198static int
1199bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1200{
1201	memcpy(obj->license, data, min(size, sizeof(obj->license) - 1));
1202	pr_debug("license of %s is %s\n", obj->path, obj->license);
1203	return 0;
1204}
1205
1206static int
1207bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1208{
1209	__u32 kver;
1210
1211	if (size != sizeof(kver)) {
1212		pr_warn("invalid kver section in %s\n", obj->path);
1213		return -LIBBPF_ERRNO__FORMAT;
1214	}
1215	memcpy(&kver, data, sizeof(kver));
1216	obj->kern_version = kver;
1217	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1218	return 0;
1219}
1220
1221static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1222{
1223	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1224	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1225		return true;
1226	return false;
1227}
1228
1229int bpf_object__section_size(const struct bpf_object *obj, const char *name,
1230			     __u32 *size)
1231{
1232	int ret = -ENOENT;
1233
1234	*size = 0;
1235	if (!name) {
1236		return -EINVAL;
1237	} else if (!strcmp(name, DATA_SEC)) {
1238		if (obj->efile.data)
1239			*size = obj->efile.data->d_size;
1240	} else if (!strcmp(name, BSS_SEC)) {
1241		if (obj->efile.bss)
1242			*size = obj->efile.bss->d_size;
1243	} else if (!strcmp(name, RODATA_SEC)) {
1244		if (obj->efile.rodata)
1245			*size = obj->efile.rodata->d_size;
1246	} else if (!strcmp(name, STRUCT_OPS_SEC)) {
1247		if (obj->efile.st_ops_data)
1248			*size = obj->efile.st_ops_data->d_size;
1249	} else {
1250		Elf_Scn *scn = elf_sec_by_name(obj, name);
1251		Elf_Data *data = elf_sec_data(obj, scn);
1252
1253		if (data) {
1254			ret = 0; /* found it */
1255			*size = data->d_size;
1256		}
1257	}
1258
1259	return *size ? 0 : ret;
1260}
1261
1262int bpf_object__variable_offset(const struct bpf_object *obj, const char *name,
1263				__u32 *off)
1264{
1265	Elf_Data *symbols = obj->efile.symbols;
1266	const char *sname;
1267	size_t si;
1268
1269	if (!name || !off)
1270		return -EINVAL;
1271
1272	for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) {
1273		GElf_Sym sym;
1274
1275		if (!gelf_getsym(symbols, si, &sym))
1276			continue;
1277		if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL ||
1278		    GELF_ST_TYPE(sym.st_info) != STT_OBJECT)
1279			continue;
1280
1281		sname = elf_sym_str(obj, sym.st_name);
1282		if (!sname) {
1283			pr_warn("failed to get sym name string for var %s\n",
1284				name);
1285			return -EIO;
1286		}
1287		if (strcmp(name, sname) == 0) {
1288			*off = sym.st_value;
1289			return 0;
1290		}
1291	}
1292
1293	return -ENOENT;
1294}
1295
1296static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1297{
1298	struct bpf_map *new_maps;
1299	size_t new_cap;
1300	int i;
1301
1302	if (obj->nr_maps < obj->maps_cap)
1303		return &obj->maps[obj->nr_maps++];
1304
1305	new_cap = max((size_t)4, obj->maps_cap * 3 / 2);
1306	new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps));
1307	if (!new_maps) {
1308		pr_warn("alloc maps for object failed\n");
1309		return ERR_PTR(-ENOMEM);
1310	}
1311
1312	obj->maps_cap = new_cap;
1313	obj->maps = new_maps;
1314
1315	/* zero out new maps */
1316	memset(obj->maps + obj->nr_maps, 0,
1317	       (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps));
1318	/*
1319	 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin)
1320	 * when failure (zclose won't close negative fd)).
1321	 */
1322	for (i = obj->nr_maps; i < obj->maps_cap; i++) {
1323		obj->maps[i].fd = -1;
1324		obj->maps[i].inner_map_fd = -1;
1325	}
1326
1327	return &obj->maps[obj->nr_maps++];
1328}
1329
1330static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1331{
1332	long page_sz = sysconf(_SC_PAGE_SIZE);
1333	size_t map_sz;
1334
1335	map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1336	map_sz = roundup(map_sz, page_sz);
1337	return map_sz;
1338}
1339
1340static char *internal_map_name(struct bpf_object *obj,
1341			       enum libbpf_map_type type)
1342{
1343	char map_name[BPF_OBJ_NAME_LEN], *p;
1344	const char *sfx = libbpf_type_to_btf_name[type];
1345	int sfx_len = max((size_t)7, strlen(sfx));
1346	int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1,
1347			  strlen(obj->name));
1348
1349	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1350		 sfx_len, libbpf_type_to_btf_name[type]);
1351
1352	/* sanitise map name to characters allowed by kernel */
1353	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1354		if (!isalnum(*p) && *p != '_' && *p != '.')
1355			*p = '_';
1356
1357	return strdup(map_name);
1358}
1359
1360static int
1361bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1362			      int sec_idx, void *data, size_t data_sz)
1363{
1364	struct bpf_map_def *def;
1365	struct bpf_map *map;
1366	int err;
1367
1368	map = bpf_object__add_map(obj);
1369	if (IS_ERR(map))
1370		return PTR_ERR(map);
1371
1372	map->libbpf_type = type;
1373	map->sec_idx = sec_idx;
1374	map->sec_offset = 0;
1375	map->name = internal_map_name(obj, type);
1376	if (!map->name) {
1377		pr_warn("failed to alloc map name\n");
1378		return -ENOMEM;
1379	}
1380
1381	def = &map->def;
1382	def->type = BPF_MAP_TYPE_ARRAY;
1383	def->key_size = sizeof(int);
1384	def->value_size = data_sz;
1385	def->max_entries = 1;
1386	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1387			 ? BPF_F_RDONLY_PROG : 0;
1388	def->map_flags |= BPF_F_MMAPABLE;
1389
1390	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1391		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1392
1393	map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1394			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1395	if (map->mmaped == MAP_FAILED) {
1396		err = -errno;
1397		map->mmaped = NULL;
1398		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1399			map->name, err);
1400		zfree(&map->name);
1401		return err;
1402	}
1403
1404	if (data)
1405		memcpy(map->mmaped, data, data_sz);
1406
1407	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1408	return 0;
1409}
1410
1411static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1412{
1413	int err;
1414
1415	/*
1416	 * Populate obj->maps with libbpf internal maps.
1417	 */
1418	if (obj->efile.data_shndx >= 0) {
1419		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1420						    obj->efile.data_shndx,
1421						    obj->efile.data->d_buf,
1422						    obj->efile.data->d_size);
1423		if (err)
1424			return err;
1425	}
1426	if (obj->efile.rodata_shndx >= 0) {
1427		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1428						    obj->efile.rodata_shndx,
1429						    obj->efile.rodata->d_buf,
1430						    obj->efile.rodata->d_size);
1431		if (err)
1432			return err;
1433
1434		obj->rodata_map_idx = obj->nr_maps - 1;
1435	}
1436	if (obj->efile.bss_shndx >= 0) {
1437		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1438						    obj->efile.bss_shndx,
1439						    NULL,
1440						    obj->efile.bss->d_size);
1441		if (err)
1442			return err;
1443	}
1444	return 0;
1445}
1446
1447
1448static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1449					       const void *name)
1450{
1451	int i;
1452
1453	for (i = 0; i < obj->nr_extern; i++) {
1454		if (strcmp(obj->externs[i].name, name) == 0)
1455			return &obj->externs[i];
1456	}
1457	return NULL;
1458}
1459
1460static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1461			      char value)
1462{
1463	switch (ext->kcfg.type) {
1464	case KCFG_BOOL:
1465		if (value == 'm') {
1466			pr_warn("extern (kcfg) %s=%c should be tristate or char\n",
1467				ext->name, value);
1468			return -EINVAL;
1469		}
1470		*(bool *)ext_val = value == 'y' ? true : false;
1471		break;
1472	case KCFG_TRISTATE:
1473		if (value == 'y')
1474			*(enum libbpf_tristate *)ext_val = TRI_YES;
1475		else if (value == 'm')
1476			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1477		else /* value == 'n' */
1478			*(enum libbpf_tristate *)ext_val = TRI_NO;
1479		break;
1480	case KCFG_CHAR:
1481		*(char *)ext_val = value;
1482		break;
1483	case KCFG_UNKNOWN:
1484	case KCFG_INT:
1485	case KCFG_CHAR_ARR:
1486	default:
1487		pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n",
1488			ext->name, value);
1489		return -EINVAL;
1490	}
1491	ext->is_set = true;
1492	return 0;
1493}
1494
1495static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1496			      const char *value)
1497{
1498	size_t len;
1499
1500	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1501		pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value);
1502		return -EINVAL;
1503	}
1504
1505	len = strlen(value);
1506	if (value[len - 1] != '"') {
1507		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1508			ext->name, value);
1509		return -EINVAL;
1510	}
1511
1512	/* strip quotes */
1513	len -= 2;
1514	if (len >= ext->kcfg.sz) {
1515		pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n",
1516			ext->name, value, len, ext->kcfg.sz - 1);
1517		len = ext->kcfg.sz - 1;
1518	}
1519	memcpy(ext_val, value + 1, len);
1520	ext_val[len] = '\0';
1521	ext->is_set = true;
1522	return 0;
1523}
1524
1525static int parse_u64(const char *value, __u64 *res)
1526{
1527	char *value_end;
1528	int err;
1529
1530	errno = 0;
1531	*res = strtoull(value, &value_end, 0);
1532	if (errno) {
1533		err = -errno;
1534		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1535		return err;
1536	}
1537	if (*value_end) {
1538		pr_warn("failed to parse '%s' as integer completely\n", value);
1539		return -EINVAL;
1540	}
1541	return 0;
1542}
1543
1544static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1545{
1546	int bit_sz = ext->kcfg.sz * 8;
1547
1548	if (ext->kcfg.sz == 8)
1549		return true;
1550
1551	/* Validate that value stored in u64 fits in integer of `ext->sz`
1552	 * bytes size without any loss of information. If the target integer
1553	 * is signed, we rely on the following limits of integer type of
1554	 * Y bits and subsequent transformation:
1555	 *
1556	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1557	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1558	 *            0 <= X + 2^(Y-1) <  2^Y
1559	 *
1560	 *  For unsigned target integer, check that all the (64 - Y) bits are
1561	 *  zero.
1562	 */
1563	if (ext->kcfg.is_signed)
1564		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1565	else
1566		return (v >> bit_sz) == 0;
1567}
1568
1569static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1570			      __u64 value)
1571{
1572	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1573		pr_warn("extern (kcfg) %s=%llu should be integer\n",
1574			ext->name, (unsigned long long)value);
1575		return -EINVAL;
1576	}
1577	if (!is_kcfg_value_in_range(ext, value)) {
1578		pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n",
1579			ext->name, (unsigned long long)value, ext->kcfg.sz);
1580		return -ERANGE;
1581	}
1582	switch (ext->kcfg.sz) {
1583		case 1: *(__u8 *)ext_val = value; break;
1584		case 2: *(__u16 *)ext_val = value; break;
1585		case 4: *(__u32 *)ext_val = value; break;
1586		case 8: *(__u64 *)ext_val = value; break;
1587		default:
1588			return -EINVAL;
1589	}
1590	ext->is_set = true;
1591	return 0;
1592}
1593
1594static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1595					    char *buf, void *data)
1596{
1597	struct extern_desc *ext;
1598	char *sep, *value;
1599	int len, err = 0;
1600	void *ext_val;
1601	__u64 num;
1602
1603	if (strncmp(buf, "CONFIG_", 7))
1604		return 0;
1605
1606	sep = strchr(buf, '=');
1607	if (!sep) {
1608		pr_warn("failed to parse '%s': no separator\n", buf);
1609		return -EINVAL;
1610	}
1611
1612	/* Trim ending '\n' */
1613	len = strlen(buf);
1614	if (buf[len - 1] == '\n')
1615		buf[len - 1] = '\0';
1616	/* Split on '=' and ensure that a value is present. */
1617	*sep = '\0';
1618	if (!sep[1]) {
1619		*sep = '=';
1620		pr_warn("failed to parse '%s': no value\n", buf);
1621		return -EINVAL;
1622	}
1623
1624	ext = find_extern_by_name(obj, buf);
1625	if (!ext || ext->is_set)
1626		return 0;
1627
1628	ext_val = data + ext->kcfg.data_off;
1629	value = sep + 1;
1630
1631	switch (*value) {
1632	case 'y': case 'n': case 'm':
1633		err = set_kcfg_value_tri(ext, ext_val, *value);
1634		break;
1635	case '"':
1636		err = set_kcfg_value_str(ext, ext_val, value);
1637		break;
1638	default:
1639		/* assume integer */
1640		err = parse_u64(value, &num);
1641		if (err) {
1642			pr_warn("extern (kcfg) %s=%s should be integer\n",
1643				ext->name, value);
1644			return err;
1645		}
1646		err = set_kcfg_value_num(ext, ext_val, num);
1647		break;
1648	}
1649	if (err)
1650		return err;
1651	pr_debug("extern (kcfg) %s=%s\n", ext->name, value);
1652	return 0;
1653}
1654
1655static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1656{
1657	char buf[PATH_MAX];
1658	struct utsname uts;
1659	int len, err = 0;
1660	gzFile file;
1661
1662	uname(&uts);
1663	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1664	if (len < 0)
1665		return -EINVAL;
1666	else if (len >= PATH_MAX)
1667		return -ENAMETOOLONG;
1668
1669	/* gzopen also accepts uncompressed files. */
1670	file = gzopen(buf, "r");
1671	if (!file)
1672		file = gzopen("/proc/config.gz", "r");
1673
1674	if (!file) {
1675		pr_warn("failed to open system Kconfig\n");
1676		return -ENOENT;
1677	}
1678
1679	while (gzgets(file, buf, sizeof(buf))) {
1680		err = bpf_object__process_kconfig_line(obj, buf, data);
1681		if (err) {
1682			pr_warn("error parsing system Kconfig line '%s': %d\n",
1683				buf, err);
1684			goto out;
1685		}
1686	}
1687
1688out:
1689	gzclose(file);
1690	return err;
1691}
1692
1693static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1694					const char *config, void *data)
1695{
1696	char buf[PATH_MAX];
1697	int err = 0;
1698	FILE *file;
1699
1700	file = fmemopen((void *)config, strlen(config), "r");
1701	if (!file) {
1702		err = -errno;
1703		pr_warn("failed to open in-memory Kconfig: %d\n", err);
1704		return err;
1705	}
1706
1707	while (fgets(buf, sizeof(buf), file)) {
1708		err = bpf_object__process_kconfig_line(obj, buf, data);
1709		if (err) {
1710			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1711				buf, err);
1712			break;
1713		}
1714	}
1715
1716	fclose(file);
1717	return err;
1718}
1719
1720static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1721{
1722	struct extern_desc *last_ext = NULL, *ext;
1723	size_t map_sz;
1724	int i, err;
1725
1726	for (i = 0; i < obj->nr_extern; i++) {
1727		ext = &obj->externs[i];
1728		if (ext->type == EXT_KCFG)
1729			last_ext = ext;
1730	}
1731
1732	if (!last_ext)
1733		return 0;
1734
1735	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1736	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1737					    obj->efile.symbols_shndx,
1738					    NULL, map_sz);
1739	if (err)
1740		return err;
1741
1742	obj->kconfig_map_idx = obj->nr_maps - 1;
1743
1744	return 0;
1745}
1746
1747static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
1748{
1749	Elf_Data *symbols = obj->efile.symbols;
1750	int i, map_def_sz = 0, nr_maps = 0, nr_syms;
1751	Elf_Data *data = NULL;
1752	Elf_Scn *scn;
1753
1754	if (obj->efile.maps_shndx < 0)
1755		return 0;
1756
1757	if (!symbols)
1758		return -EINVAL;
1759
1760
1761	scn = elf_sec_by_idx(obj, obj->efile.maps_shndx);
1762	data = elf_sec_data(obj, scn);
1763	if (!scn || !data) {
1764		pr_warn("elf: failed to get legacy map definitions for %s\n",
1765			obj->path);
1766		return -EINVAL;
1767	}
1768
1769	/*
1770	 * Count number of maps. Each map has a name.
1771	 * Array of maps is not supported: only the first element is
1772	 * considered.
1773	 *
1774	 * TODO: Detect array of map and report error.
1775	 */
1776	nr_syms = symbols->d_size / sizeof(GElf_Sym);
1777	for (i = 0; i < nr_syms; i++) {
1778		GElf_Sym sym;
1779
1780		if (!gelf_getsym(symbols, i, &sym))
1781			continue;
1782		if (sym.st_shndx != obj->efile.maps_shndx)
1783			continue;
1784		nr_maps++;
1785	}
1786	/* Assume equally sized map definitions */
1787	pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n",
1788		 nr_maps, data->d_size, obj->path);
1789
1790	if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) {
1791		pr_warn("elf: unable to determine legacy map definition size in %s\n",
1792			obj->path);
1793		return -EINVAL;
1794	}
1795	map_def_sz = data->d_size / nr_maps;
1796
1797	/* Fill obj->maps using data in "maps" section.  */
1798	for (i = 0; i < nr_syms; i++) {
1799		GElf_Sym sym;
1800		const char *map_name;
1801		struct bpf_map_def *def;
1802		struct bpf_map *map;
1803
1804		if (!gelf_getsym(symbols, i, &sym))
1805			continue;
1806		if (sym.st_shndx != obj->efile.maps_shndx)
1807			continue;
1808
1809		map = bpf_object__add_map(obj);
1810		if (IS_ERR(map))
1811			return PTR_ERR(map);
1812
1813		map_name = elf_sym_str(obj, sym.st_name);
1814		if (!map_name) {
1815			pr_warn("failed to get map #%d name sym string for obj %s\n",
1816				i, obj->path);
1817			return -LIBBPF_ERRNO__FORMAT;
1818		}
1819
1820		map->libbpf_type = LIBBPF_MAP_UNSPEC;
1821		map->sec_idx = sym.st_shndx;
1822		map->sec_offset = sym.st_value;
1823		pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n",
1824			 map_name, map->sec_idx, map->sec_offset);
1825		if (sym.st_value + map_def_sz > data->d_size) {
1826			pr_warn("corrupted maps section in %s: last map \"%s\" too small\n",
1827				obj->path, map_name);
1828			return -EINVAL;
1829		}
1830
1831		map->name = strdup(map_name);
1832		if (!map->name) {
1833			pr_warn("failed to alloc map name\n");
1834			return -ENOMEM;
1835		}
1836		pr_debug("map %d is \"%s\"\n", i, map->name);
1837		def = (struct bpf_map_def *)(data->d_buf + sym.st_value);
1838		/*
1839		 * If the definition of the map in the object file fits in
1840		 * bpf_map_def, copy it.  Any extra fields in our version
1841		 * of bpf_map_def will default to zero as a result of the
1842		 * calloc above.
1843		 */
1844		if (map_def_sz <= sizeof(struct bpf_map_def)) {
1845			memcpy(&map->def, def, map_def_sz);
1846		} else {
1847			/*
1848			 * Here the map structure being read is bigger than what
1849			 * we expect, truncate if the excess bits are all zero.
1850			 * If they are not zero, reject this map as
1851			 * incompatible.
1852			 */
1853			char *b;
1854
1855			for (b = ((char *)def) + sizeof(struct bpf_map_def);
1856			     b < ((char *)def) + map_def_sz; b++) {
1857				if (*b != 0) {
1858					pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n",
1859						obj->path, map_name);
1860					if (strict)
1861						return -EINVAL;
1862				}
1863			}
1864			memcpy(&map->def, def, sizeof(struct bpf_map_def));
1865		}
1866	}
1867	return 0;
1868}
1869
1870static const struct btf_type *
1871skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
1872{
1873	const struct btf_type *t = btf__type_by_id(btf, id);
1874
1875	if (res_id)
1876		*res_id = id;
1877
1878	while (btf_is_mod(t) || btf_is_typedef(t)) {
1879		if (res_id)
1880			*res_id = t->type;
1881		t = btf__type_by_id(btf, t->type);
1882	}
1883
1884	return t;
1885}
1886
1887static const struct btf_type *
1888resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
1889{
1890	const struct btf_type *t;
1891
1892	t = skip_mods_and_typedefs(btf, id, NULL);
1893	if (!btf_is_ptr(t))
1894		return NULL;
1895
1896	t = skip_mods_and_typedefs(btf, t->type, res_id);
1897
1898	return btf_is_func_proto(t) ? t : NULL;
1899}
1900
1901static const char *btf_kind_str(const struct btf_type *t)
1902{
1903	switch (btf_kind(t)) {
1904	case BTF_KIND_UNKN: return "void";
1905	case BTF_KIND_INT: return "int";
1906	case BTF_KIND_PTR: return "ptr";
1907	case BTF_KIND_ARRAY: return "array";
1908	case BTF_KIND_STRUCT: return "struct";
1909	case BTF_KIND_UNION: return "union";
1910	case BTF_KIND_ENUM: return "enum";
1911	case BTF_KIND_FWD: return "fwd";
1912	case BTF_KIND_TYPEDEF: return "typedef";
1913	case BTF_KIND_VOLATILE: return "volatile";
1914	case BTF_KIND_CONST: return "const";
1915	case BTF_KIND_RESTRICT: return "restrict";
1916	case BTF_KIND_FUNC: return "func";
1917	case BTF_KIND_FUNC_PROTO: return "func_proto";
1918	case BTF_KIND_VAR: return "var";
1919	case BTF_KIND_DATASEC: return "datasec";
1920	default: return "unknown";
1921	}
1922}
1923
1924/*
1925 * Fetch integer attribute of BTF map definition. Such attributes are
1926 * represented using a pointer to an array, in which dimensionality of array
1927 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
1928 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
1929 * type definition, while using only sizeof(void *) space in ELF data section.
1930 */
1931static bool get_map_field_int(const char *map_name, const struct btf *btf,
1932			      const struct btf_member *m, __u32 *res)
1933{
1934	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
1935	const char *name = btf__name_by_offset(btf, m->name_off);
1936	const struct btf_array *arr_info;
1937	const struct btf_type *arr_t;
1938
1939	if (!btf_is_ptr(t)) {
1940		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
1941			map_name, name, btf_kind_str(t));
1942		return false;
1943	}
1944
1945	arr_t = btf__type_by_id(btf, t->type);
1946	if (!arr_t) {
1947		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
1948			map_name, name, t->type);
1949		return false;
1950	}
1951	if (!btf_is_array(arr_t)) {
1952		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
1953			map_name, name, btf_kind_str(arr_t));
1954		return false;
1955	}
1956	arr_info = btf_array(arr_t);
1957	*res = arr_info->nelems;
1958	return true;
1959}
1960
1961static int build_map_pin_path(struct bpf_map *map, const char *path)
1962{
1963	char buf[PATH_MAX];
1964	int len;
1965
1966	if (!path)
1967		path = "/sys/fs/bpf";
1968
1969	len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
1970	if (len < 0)
1971		return -EINVAL;
1972	else if (len >= PATH_MAX)
1973		return -ENAMETOOLONG;
1974
1975	return bpf_map__set_pin_path(map, buf);
1976}
1977
1978
1979static int parse_btf_map_def(struct bpf_object *obj,
1980			     struct bpf_map *map,
1981			     const struct btf_type *def,
1982			     bool strict, bool is_inner,
1983			     const char *pin_root_path)
1984{
1985	const struct btf_type *t;
1986	const struct btf_member *m;
1987	int vlen, i;
1988
1989	vlen = btf_vlen(def);
1990	m = btf_members(def);
1991	for (i = 0; i < vlen; i++, m++) {
1992		const char *name = btf__name_by_offset(obj->btf, m->name_off);
1993
1994		if (!name) {
1995			pr_warn("map '%s': invalid field #%d.\n", map->name, i);
1996			return -EINVAL;
1997		}
1998		if (strcmp(name, "type") == 0) {
1999			if (!get_map_field_int(map->name, obj->btf, m,
2000					       &map->def.type))
2001				return -EINVAL;
2002			pr_debug("map '%s': found type = %u.\n",
2003				 map->name, map->def.type);
2004		} else if (strcmp(name, "max_entries") == 0) {
2005			if (!get_map_field_int(map->name, obj->btf, m,
2006					       &map->def.max_entries))
2007				return -EINVAL;
2008			pr_debug("map '%s': found max_entries = %u.\n",
2009				 map->name, map->def.max_entries);
2010		} else if (strcmp(name, "map_flags") == 0) {
2011			if (!get_map_field_int(map->name, obj->btf, m,
2012					       &map->def.map_flags))
2013				return -EINVAL;
2014			pr_debug("map '%s': found map_flags = %u.\n",
2015				 map->name, map->def.map_flags);
2016		} else if (strcmp(name, "numa_node") == 0) {
2017			if (!get_map_field_int(map->name, obj->btf, m, &map->numa_node))
2018				return -EINVAL;
2019			pr_debug("map '%s': found numa_node = %u.\n", map->name, map->numa_node);
2020		} else if (strcmp(name, "key_size") == 0) {
2021			__u32 sz;
2022
2023			if (!get_map_field_int(map->name, obj->btf, m, &sz))
2024				return -EINVAL;
2025			pr_debug("map '%s': found key_size = %u.\n",
2026				 map->name, sz);
2027			if (map->def.key_size && map->def.key_size != sz) {
2028				pr_warn("map '%s': conflicting key size %u != %u.\n",
2029					map->name, map->def.key_size, sz);
2030				return -EINVAL;
2031			}
2032			map->def.key_size = sz;
2033		} else if (strcmp(name, "key") == 0) {
2034			__s64 sz;
2035
2036			t = btf__type_by_id(obj->btf, m->type);
2037			if (!t) {
2038				pr_warn("map '%s': key type [%d] not found.\n",
2039					map->name, m->type);
2040				return -EINVAL;
2041			}
2042			if (!btf_is_ptr(t)) {
2043				pr_warn("map '%s': key spec is not PTR: %s.\n",
2044					map->name, btf_kind_str(t));
2045				return -EINVAL;
2046			}
2047			sz = btf__resolve_size(obj->btf, t->type);
2048			if (sz < 0) {
2049				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2050					map->name, t->type, (ssize_t)sz);
2051				return sz;
2052			}
2053			pr_debug("map '%s': found key [%u], sz = %zd.\n",
2054				 map->name, t->type, (ssize_t)sz);
2055			if (map->def.key_size && map->def.key_size != sz) {
2056				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2057					map->name, map->def.key_size, (ssize_t)sz);
2058				return -EINVAL;
2059			}
2060			map->def.key_size = sz;
2061			map->btf_key_type_id = t->type;
2062		} else if (strcmp(name, "value_size") == 0) {
2063			__u32 sz;
2064
2065			if (!get_map_field_int(map->name, obj->btf, m, &sz))
2066				return -EINVAL;
2067			pr_debug("map '%s': found value_size = %u.\n",
2068				 map->name, sz);
2069			if (map->def.value_size && map->def.value_size != sz) {
2070				pr_warn("map '%s': conflicting value size %u != %u.\n",
2071					map->name, map->def.value_size, sz);
2072				return -EINVAL;
2073			}
2074			map->def.value_size = sz;
2075		} else if (strcmp(name, "value") == 0) {
2076			__s64 sz;
2077
2078			t = btf__type_by_id(obj->btf, m->type);
2079			if (!t) {
2080				pr_warn("map '%s': value type [%d] not found.\n",
2081					map->name, m->type);
2082				return -EINVAL;
2083			}
2084			if (!btf_is_ptr(t)) {
2085				pr_warn("map '%s': value spec is not PTR: %s.\n",
2086					map->name, btf_kind_str(t));
2087				return -EINVAL;
2088			}
2089			sz = btf__resolve_size(obj->btf, t->type);
2090			if (sz < 0) {
2091				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2092					map->name, t->type, (ssize_t)sz);
2093				return sz;
2094			}
2095			pr_debug("map '%s': found value [%u], sz = %zd.\n",
2096				 map->name, t->type, (ssize_t)sz);
2097			if (map->def.value_size && map->def.value_size != sz) {
2098				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2099					map->name, map->def.value_size, (ssize_t)sz);
2100				return -EINVAL;
2101			}
2102			map->def.value_size = sz;
2103			map->btf_value_type_id = t->type;
2104		}
2105		else if (strcmp(name, "values") == 0) {
2106			int err;
2107
2108			if (is_inner) {
2109				pr_warn("map '%s': multi-level inner maps not supported.\n",
2110					map->name);
2111				return -ENOTSUP;
2112			}
2113			if (i != vlen - 1) {
2114				pr_warn("map '%s': '%s' member should be last.\n",
2115					map->name, name);
2116				return -EINVAL;
2117			}
2118			if (!bpf_map_type__is_map_in_map(map->def.type)) {
2119				pr_warn("map '%s': should be map-in-map.\n",
2120					map->name);
2121				return -ENOTSUP;
2122			}
2123			if (map->def.value_size && map->def.value_size != 4) {
2124				pr_warn("map '%s': conflicting value size %u != 4.\n",
2125					map->name, map->def.value_size);
2126				return -EINVAL;
2127			}
2128			map->def.value_size = 4;
2129			t = btf__type_by_id(obj->btf, m->type);
2130			if (!t) {
2131				pr_warn("map '%s': map-in-map inner type [%d] not found.\n",
2132					map->name, m->type);
2133				return -EINVAL;
2134			}
2135			if (!btf_is_array(t) || btf_array(t)->nelems) {
2136				pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n",
2137					map->name);
2138				return -EINVAL;
2139			}
2140			t = skip_mods_and_typedefs(obj->btf, btf_array(t)->type,
2141						   NULL);
2142			if (!btf_is_ptr(t)) {
2143				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2144					map->name, btf_kind_str(t));
2145				return -EINVAL;
2146			}
2147			t = skip_mods_and_typedefs(obj->btf, t->type, NULL);
2148			if (!btf_is_struct(t)) {
2149				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2150					map->name, btf_kind_str(t));
2151				return -EINVAL;
2152			}
2153
2154			map->inner_map = calloc(1, sizeof(*map->inner_map));
2155			if (!map->inner_map)
2156				return -ENOMEM;
2157			map->inner_map->sec_idx = obj->efile.btf_maps_shndx;
2158			map->inner_map->name = malloc(strlen(map->name) +
2159						      sizeof(".inner") + 1);
2160			if (!map->inner_map->name)
2161				return -ENOMEM;
2162			sprintf(map->inner_map->name, "%s.inner", map->name);
2163
2164			err = parse_btf_map_def(obj, map->inner_map, t, strict,
2165						true /* is_inner */, NULL);
2166			if (err)
2167				return err;
2168		} else if (strcmp(name, "pinning") == 0) {
2169			__u32 val;
2170			int err;
2171
2172			if (is_inner) {
2173				pr_debug("map '%s': inner def can't be pinned.\n",
2174					 map->name);
2175				return -EINVAL;
2176			}
2177			if (!get_map_field_int(map->name, obj->btf, m, &val))
2178				return -EINVAL;
2179			pr_debug("map '%s': found pinning = %u.\n",
2180				 map->name, val);
2181
2182			if (val != LIBBPF_PIN_NONE &&
2183			    val != LIBBPF_PIN_BY_NAME) {
2184				pr_warn("map '%s': invalid pinning value %u.\n",
2185					map->name, val);
2186				return -EINVAL;
2187			}
2188			if (val == LIBBPF_PIN_BY_NAME) {
2189				err = build_map_pin_path(map, pin_root_path);
2190				if (err) {
2191					pr_warn("map '%s': couldn't build pin path.\n",
2192						map->name);
2193					return err;
2194				}
2195			}
2196		} else {
2197			if (strict) {
2198				pr_warn("map '%s': unknown field '%s'.\n",
2199					map->name, name);
2200				return -ENOTSUP;
2201			}
2202			pr_debug("map '%s': ignoring unknown field '%s'.\n",
2203				 map->name, name);
2204		}
2205	}
2206
2207	if (map->def.type == BPF_MAP_TYPE_UNSPEC) {
2208		pr_warn("map '%s': map type isn't specified.\n", map->name);
2209		return -EINVAL;
2210	}
2211
2212	return 0;
2213}
2214
2215static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2216					 const struct btf_type *sec,
2217					 int var_idx, int sec_idx,
2218					 const Elf_Data *data, bool strict,
2219					 const char *pin_root_path)
2220{
2221	const struct btf_type *var, *def;
2222	const struct btf_var_secinfo *vi;
2223	const struct btf_var *var_extra;
2224	const char *map_name;
2225	struct bpf_map *map;
2226
2227	vi = btf_var_secinfos(sec) + var_idx;
2228	var = btf__type_by_id(obj->btf, vi->type);
2229	var_extra = btf_var(var);
2230	map_name = btf__name_by_offset(obj->btf, var->name_off);
2231
2232	if (map_name == NULL || map_name[0] == '\0') {
2233		pr_warn("map #%d: empty name.\n", var_idx);
2234		return -EINVAL;
2235	}
2236	if ((__u64)vi->offset + vi->size > data->d_size) {
2237		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2238		return -EINVAL;
2239	}
2240	if (!btf_is_var(var)) {
2241		pr_warn("map '%s': unexpected var kind %s.\n",
2242			map_name, btf_kind_str(var));
2243		return -EINVAL;
2244	}
2245	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2246	    var_extra->linkage != BTF_VAR_STATIC) {
2247		pr_warn("map '%s': unsupported var linkage %u.\n",
2248			map_name, var_extra->linkage);
2249		return -EOPNOTSUPP;
2250	}
2251
2252	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2253	if (!btf_is_struct(def)) {
2254		pr_warn("map '%s': unexpected def kind %s.\n",
2255			map_name, btf_kind_str(var));
2256		return -EINVAL;
2257	}
2258	if (def->size > vi->size) {
2259		pr_warn("map '%s': invalid def size.\n", map_name);
2260		return -EINVAL;
2261	}
2262
2263	map = bpf_object__add_map(obj);
2264	if (IS_ERR(map))
2265		return PTR_ERR(map);
2266	map->name = strdup(map_name);
2267	if (!map->name) {
2268		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2269		return -ENOMEM;
2270	}
2271	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2272	map->def.type = BPF_MAP_TYPE_UNSPEC;
2273	map->sec_idx = sec_idx;
2274	map->sec_offset = vi->offset;
2275	map->btf_var_idx = var_idx;
2276	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2277		 map_name, map->sec_idx, map->sec_offset);
2278
2279	return parse_btf_map_def(obj, map, def, strict, false, pin_root_path);
2280}
2281
2282static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2283					  const char *pin_root_path)
2284{
2285	const struct btf_type *sec = NULL;
2286	int nr_types, i, vlen, err;
2287	const struct btf_type *t;
2288	const char *name;
2289	Elf_Data *data;
2290	Elf_Scn *scn;
2291
2292	if (obj->efile.btf_maps_shndx < 0)
2293		return 0;
2294
2295	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2296	data = elf_sec_data(obj, scn);
2297	if (!scn || !data) {
2298		pr_warn("elf: failed to get %s map definitions for %s\n",
2299			MAPS_ELF_SEC, obj->path);
2300		return -EINVAL;
2301	}
2302
2303	nr_types = btf__get_nr_types(obj->btf);
2304	for (i = 1; i <= nr_types; i++) {
2305		t = btf__type_by_id(obj->btf, i);
2306		if (!btf_is_datasec(t))
2307			continue;
2308		name = btf__name_by_offset(obj->btf, t->name_off);
2309		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2310			sec = t;
2311			obj->efile.btf_maps_sec_btf_id = i;
2312			break;
2313		}
2314	}
2315
2316	if (!sec) {
2317		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2318		return -ENOENT;
2319	}
2320
2321	vlen = btf_vlen(sec);
2322	for (i = 0; i < vlen; i++) {
2323		err = bpf_object__init_user_btf_map(obj, sec, i,
2324						    obj->efile.btf_maps_shndx,
2325						    data, strict,
2326						    pin_root_path);
2327		if (err)
2328			return err;
2329	}
2330
2331	return 0;
2332}
2333
2334static int bpf_object__init_maps(struct bpf_object *obj,
2335				 const struct bpf_object_open_opts *opts)
2336{
2337	const char *pin_root_path;
2338	bool strict;
2339	int err;
2340
2341	strict = !OPTS_GET(opts, relaxed_maps, false);
2342	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2343
2344	err = bpf_object__init_user_maps(obj, strict);
2345	err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2346	err = err ?: bpf_object__init_global_data_maps(obj);
2347	err = err ?: bpf_object__init_kconfig_map(obj);
2348	err = err ?: bpf_object__init_struct_ops_maps(obj);
2349	if (err)
2350		return err;
2351
2352	return 0;
2353}
2354
2355static bool section_have_execinstr(struct bpf_object *obj, int idx)
2356{
2357	GElf_Shdr sh;
2358
2359	if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh))
2360		return false;
2361
2362	return sh.sh_flags & SHF_EXECINSTR;
2363}
2364
2365static bool btf_needs_sanitization(struct bpf_object *obj)
2366{
2367	bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2368	bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2369	bool has_func = kernel_supports(FEAT_BTF_FUNC);
2370
2371	return !has_func || !has_datasec || !has_func_global;
2372}
2373
2374static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2375{
2376	bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2377	bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2378	bool has_func = kernel_supports(FEAT_BTF_FUNC);
2379	struct btf_type *t;
2380	int i, j, vlen;
2381
2382	for (i = 1; i <= btf__get_nr_types(btf); i++) {
2383		t = (struct btf_type *)btf__type_by_id(btf, i);
2384
2385		if (!has_datasec && btf_is_var(t)) {
2386			/* replace VAR with INT */
2387			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2388			/*
2389			 * using size = 1 is the safest choice, 4 will be too
2390			 * big and cause kernel BTF validation failure if
2391			 * original variable took less than 4 bytes
2392			 */
2393			t->size = 1;
2394			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2395		} else if (!has_datasec && btf_is_datasec(t)) {
2396			/* replace DATASEC with STRUCT */
2397			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2398			struct btf_member *m = btf_members(t);
2399			struct btf_type *vt;
2400			char *name;
2401
2402			name = (char *)btf__name_by_offset(btf, t->name_off);
2403			while (*name) {
2404				if (*name == '.')
2405					*name = '_';
2406				name++;
2407			}
2408
2409			vlen = btf_vlen(t);
2410			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2411			for (j = 0; j < vlen; j++, v++, m++) {
2412				/* order of field assignments is important */
2413				m->offset = v->offset * 8;
2414				m->type = v->type;
2415				/* preserve variable name as member name */
2416				vt = (void *)btf__type_by_id(btf, v->type);
2417				m->name_off = vt->name_off;
2418			}
2419		} else if (!has_func && btf_is_func_proto(t)) {
2420			/* replace FUNC_PROTO with ENUM */
2421			vlen = btf_vlen(t);
2422			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2423			t->size = sizeof(__u32); /* kernel enforced */
2424		} else if (!has_func && btf_is_func(t)) {
2425			/* replace FUNC with TYPEDEF */
2426			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2427		} else if (!has_func_global && btf_is_func(t)) {
2428			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2429			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2430		}
2431	}
2432}
2433
2434static bool libbpf_needs_btf(const struct bpf_object *obj)
2435{
2436	return obj->efile.btf_maps_shndx >= 0 ||
2437	       obj->efile.st_ops_shndx >= 0 ||
2438	       obj->nr_extern > 0;
2439}
2440
2441static bool kernel_needs_btf(const struct bpf_object *obj)
2442{
2443	return obj->efile.st_ops_shndx >= 0;
2444}
2445
2446static int bpf_object__init_btf(struct bpf_object *obj,
2447				Elf_Data *btf_data,
2448				Elf_Data *btf_ext_data)
2449{
2450	int err = -ENOENT;
2451
2452	if (btf_data) {
2453		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2454		if (IS_ERR(obj->btf)) {
2455			err = PTR_ERR(obj->btf);
2456			obj->btf = NULL;
2457			pr_warn("Error loading ELF section %s: %d.\n",
2458				BTF_ELF_SEC, err);
2459			goto out;
2460		}
2461		/* enforce 8-byte pointers for BPF-targeted BTFs */
2462		btf__set_pointer_size(obj->btf, 8);
2463		err = 0;
2464	}
2465	if (btf_ext_data) {
2466		if (!obj->btf) {
2467			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2468				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2469			goto out;
2470		}
2471		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf,
2472					    btf_ext_data->d_size);
2473		if (IS_ERR(obj->btf_ext)) {
2474			pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n",
2475				BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext));
2476			obj->btf_ext = NULL;
2477			goto out;
2478		}
2479	}
2480out:
2481	if (err && libbpf_needs_btf(obj)) {
2482		pr_warn("BTF is required, but is missing or corrupted.\n");
2483		return err;
2484	}
2485	return 0;
2486}
2487
2488static int bpf_object__finalize_btf(struct bpf_object *obj)
2489{
2490	int err;
2491
2492	if (!obj->btf)
2493		return 0;
2494
2495	err = btf__finalize_data(obj, obj->btf);
2496	if (err) {
2497		pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2498		return err;
2499	}
2500
2501	return 0;
2502}
2503
2504static inline bool libbpf_prog_needs_vmlinux_btf(struct bpf_program *prog)
2505{
2506	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2507	    prog->type == BPF_PROG_TYPE_LSM)
2508		return true;
2509
2510	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2511	 * also need vmlinux BTF
2512	 */
2513	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2514		return true;
2515
2516	return false;
2517}
2518
2519static int bpf_object__load_vmlinux_btf(struct bpf_object *obj)
2520{
2521	bool need_vmlinux_btf = false;
2522	struct bpf_program *prog;
2523	int i, err;
2524
2525	/* CO-RE relocations need kernel BTF */
2526	if (obj->btf_ext && obj->btf_ext->core_relo_info.len)
2527		need_vmlinux_btf = true;
2528
2529	/* Support for typed ksyms needs kernel BTF */
2530	for (i = 0; i < obj->nr_extern; i++) {
2531		const struct extern_desc *ext;
2532
2533		ext = &obj->externs[i];
2534		if (ext->type == EXT_KSYM && ext->ksym.type_id) {
2535			need_vmlinux_btf = true;
2536			break;
2537		}
2538	}
2539
2540	bpf_object__for_each_program(prog, obj) {
2541		if (!prog->load)
2542			continue;
2543		if (libbpf_prog_needs_vmlinux_btf(prog)) {
2544			need_vmlinux_btf = true;
2545			break;
2546		}
2547	}
2548
2549	if (!need_vmlinux_btf)
2550		return 0;
2551
2552	obj->btf_vmlinux = libbpf_find_kernel_btf();
2553	if (IS_ERR(obj->btf_vmlinux)) {
2554		err = PTR_ERR(obj->btf_vmlinux);
2555		pr_warn("Error loading vmlinux BTF: %d\n", err);
2556		obj->btf_vmlinux = NULL;
2557		return err;
2558	}
2559	return 0;
2560}
2561
2562static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
2563{
2564	struct btf *kern_btf = obj->btf;
2565	bool btf_mandatory, sanitize;
2566	int err = 0;
2567
2568	if (!obj->btf)
2569		return 0;
2570
2571	if (!kernel_supports(FEAT_BTF)) {
2572		if (kernel_needs_btf(obj)) {
2573			err = -EOPNOTSUPP;
2574			goto report;
2575		}
2576		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
2577		return 0;
2578	}
2579
2580	sanitize = btf_needs_sanitization(obj);
2581	if (sanitize) {
2582		const void *raw_data;
2583		__u32 sz;
2584
2585		/* clone BTF to sanitize a copy and leave the original intact */
2586		raw_data = btf__get_raw_data(obj->btf, &sz);
2587		kern_btf = btf__new(raw_data, sz);
2588		if (IS_ERR(kern_btf))
2589			return PTR_ERR(kern_btf);
2590
2591		/* enforce 8-byte pointers for BPF-targeted BTFs */
2592		btf__set_pointer_size(obj->btf, 8);
2593		bpf_object__sanitize_btf(obj, kern_btf);
2594	}
2595
2596	err = btf__load(kern_btf);
2597	if (sanitize) {
2598		if (!err) {
2599			/* move fd to libbpf's BTF */
2600			btf__set_fd(obj->btf, btf__fd(kern_btf));
2601			btf__set_fd(kern_btf, -1);
2602		}
2603		btf__free(kern_btf);
2604	}
2605report:
2606	if (err) {
2607		btf_mandatory = kernel_needs_btf(obj);
2608		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
2609			btf_mandatory ? "BTF is mandatory, can't proceed."
2610				      : "BTF is optional, ignoring.");
2611		if (!btf_mandatory)
2612			err = 0;
2613	}
2614	return err;
2615}
2616
2617static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
2618{
2619	const char *name;
2620
2621	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
2622	if (!name) {
2623		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2624			off, obj->path, elf_errmsg(-1));
2625		return NULL;
2626	}
2627
2628	return name;
2629}
2630
2631static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
2632{
2633	const char *name;
2634
2635	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
2636	if (!name) {
2637		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2638			off, obj->path, elf_errmsg(-1));
2639		return NULL;
2640	}
2641
2642	return name;
2643}
2644
2645static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
2646{
2647	Elf_Scn *scn;
2648
2649	scn = elf_getscn(obj->efile.elf, idx);
2650	if (!scn) {
2651		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
2652			idx, obj->path, elf_errmsg(-1));
2653		return NULL;
2654	}
2655	return scn;
2656}
2657
2658static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
2659{
2660	Elf_Scn *scn = NULL;
2661	Elf *elf = obj->efile.elf;
2662	const char *sec_name;
2663
2664	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2665		sec_name = elf_sec_name(obj, scn);
2666		if (!sec_name)
2667			return NULL;
2668
2669		if (strcmp(sec_name, name) != 0)
2670			continue;
2671
2672		return scn;
2673	}
2674	return NULL;
2675}
2676
2677static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr)
2678{
2679	if (!scn)
2680		return -EINVAL;
2681
2682	if (gelf_getshdr(scn, hdr) != hdr) {
2683		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
2684			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2685		return -EINVAL;
2686	}
2687
2688	return 0;
2689}
2690
2691static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
2692{
2693	const char *name;
2694	GElf_Shdr sh;
2695
2696	if (!scn)
2697		return NULL;
2698
2699	if (elf_sec_hdr(obj, scn, &sh))
2700		return NULL;
2701
2702	name = elf_sec_str(obj, sh.sh_name);
2703	if (!name) {
2704		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
2705			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2706		return NULL;
2707	}
2708
2709	return name;
2710}
2711
2712static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
2713{
2714	Elf_Data *data;
2715
2716	if (!scn)
2717		return NULL;
2718
2719	data = elf_getdata(scn, 0);
2720	if (!data) {
2721		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
2722			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
2723			obj->path, elf_errmsg(-1));
2724		return NULL;
2725	}
2726
2727	return data;
2728}
2729
2730static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx,
2731			      size_t off, __u32 sym_type, GElf_Sym *sym)
2732{
2733	Elf_Data *symbols = obj->efile.symbols;
2734	size_t n = symbols->d_size / sizeof(GElf_Sym);
2735	int i;
2736
2737	for (i = 0; i < n; i++) {
2738		if (!gelf_getsym(symbols, i, sym))
2739			continue;
2740		if (sym->st_shndx != sec_idx || sym->st_value != off)
2741			continue;
2742		if (GELF_ST_TYPE(sym->st_info) != sym_type)
2743			continue;
2744		return 0;
2745	}
2746
2747	return -ENOENT;
2748}
2749
2750static bool is_sec_name_dwarf(const char *name)
2751{
2752	/* approximation, but the actual list is too long */
2753	return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0;
2754}
2755
2756static bool ignore_elf_section(GElf_Shdr *hdr, const char *name)
2757{
2758	/* no special handling of .strtab */
2759	if (hdr->sh_type == SHT_STRTAB)
2760		return true;
2761
2762	/* ignore .llvm_addrsig section as well */
2763	if (hdr->sh_type == 0x6FFF4C03 /* SHT_LLVM_ADDRSIG */)
2764		return true;
2765
2766	/* no subprograms will lead to an empty .text section, ignore it */
2767	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
2768	    strcmp(name, ".text") == 0)
2769		return true;
2770
2771	/* DWARF sections */
2772	if (is_sec_name_dwarf(name))
2773		return true;
2774
2775	if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) {
2776		name += sizeof(".rel") - 1;
2777		/* DWARF section relocations */
2778		if (is_sec_name_dwarf(name))
2779			return true;
2780
2781		/* .BTF and .BTF.ext don't need relocations */
2782		if (strcmp(name, BTF_ELF_SEC) == 0 ||
2783		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
2784			return true;
2785	}
2786
2787	return false;
2788}
2789
2790static int cmp_progs(const void *_a, const void *_b)
2791{
2792	const struct bpf_program *a = _a;
2793	const struct bpf_program *b = _b;
2794
2795	if (a->sec_idx != b->sec_idx)
2796		return a->sec_idx < b->sec_idx ? -1 : 1;
2797
2798	/* sec_insn_off can't be the same within the section */
2799	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
2800}
2801
2802static int bpf_object__elf_collect(struct bpf_object *obj)
2803{
2804	Elf *elf = obj->efile.elf;
2805	Elf_Data *btf_ext_data = NULL;
2806	Elf_Data *btf_data = NULL;
2807	int idx = 0, err = 0;
2808	const char *name;
2809	Elf_Data *data;
2810	Elf_Scn *scn;
2811	GElf_Shdr sh;
2812
2813	/* a bunch of ELF parsing functionality depends on processing symbols,
2814	 * so do the first pass and find the symbol table
2815	 */
2816	scn = NULL;
2817	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2818		if (elf_sec_hdr(obj, scn, &sh))
2819			return -LIBBPF_ERRNO__FORMAT;
2820
2821		if (sh.sh_type == SHT_SYMTAB) {
2822			if (obj->efile.symbols) {
2823				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
2824				return -LIBBPF_ERRNO__FORMAT;
2825			}
2826
2827			data = elf_sec_data(obj, scn);
2828			if (!data)
2829				return -LIBBPF_ERRNO__FORMAT;
2830
2831			obj->efile.symbols = data;
2832			obj->efile.symbols_shndx = elf_ndxscn(scn);
2833			obj->efile.strtabidx = sh.sh_link;
2834		}
2835	}
2836
2837	scn = NULL;
2838	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2839		idx++;
2840
2841		if (elf_sec_hdr(obj, scn, &sh))
2842			return -LIBBPF_ERRNO__FORMAT;
2843
2844		name = elf_sec_str(obj, sh.sh_name);
2845		if (!name)
2846			return -LIBBPF_ERRNO__FORMAT;
2847
2848		if (ignore_elf_section(&sh, name))
2849			continue;
2850
2851		data = elf_sec_data(obj, scn);
2852		if (!data)
2853			return -LIBBPF_ERRNO__FORMAT;
2854
2855		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
2856			 idx, name, (unsigned long)data->d_size,
2857			 (int)sh.sh_link, (unsigned long)sh.sh_flags,
2858			 (int)sh.sh_type);
2859
2860		if (strcmp(name, "license") == 0) {
2861			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
2862			if (err)
2863				return err;
2864		} else if (strcmp(name, "version") == 0) {
2865			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
2866			if (err)
2867				return err;
2868		} else if (strcmp(name, "maps") == 0) {
2869			obj->efile.maps_shndx = idx;
2870		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
2871			obj->efile.btf_maps_shndx = idx;
2872		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
2873			btf_data = data;
2874		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
2875			btf_ext_data = data;
2876		} else if (sh.sh_type == SHT_SYMTAB) {
2877			/* already processed during the first pass above */
2878		} else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) {
2879			if (sh.sh_flags & SHF_EXECINSTR) {
2880				if (strcmp(name, ".text") == 0)
2881					obj->efile.text_shndx = idx;
2882				err = bpf_object__add_programs(obj, data, name, idx);
2883				if (err)
2884					return err;
2885			} else if (strcmp(name, DATA_SEC) == 0) {
2886				obj->efile.data = data;
2887				obj->efile.data_shndx = idx;
2888			} else if (strcmp(name, RODATA_SEC) == 0) {
2889				obj->efile.rodata = data;
2890				obj->efile.rodata_shndx = idx;
2891			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
2892				obj->efile.st_ops_data = data;
2893				obj->efile.st_ops_shndx = idx;
2894			} else {
2895				pr_info("elf: skipping unrecognized data section(%d) %s\n",
2896					idx, name);
2897			}
2898		} else if (sh.sh_type == SHT_REL) {
2899			int nr_sects = obj->efile.nr_reloc_sects;
2900			void *sects = obj->efile.reloc_sects;
2901			int sec = sh.sh_info; /* points to other section */
2902
2903			/* Only do relo for section with exec instructions */
2904			if (!section_have_execinstr(obj, sec) &&
2905			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
2906			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
2907				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
2908					idx, name, sec,
2909					elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>");
2910				continue;
2911			}
2912
2913			sects = libbpf_reallocarray(sects, nr_sects + 1,
2914						    sizeof(*obj->efile.reloc_sects));
2915			if (!sects)
2916				return -ENOMEM;
2917
2918			obj->efile.reloc_sects = sects;
2919			obj->efile.nr_reloc_sects++;
2920
2921			obj->efile.reloc_sects[nr_sects].shdr = sh;
2922			obj->efile.reloc_sects[nr_sects].data = data;
2923		} else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
2924			obj->efile.bss = data;
2925			obj->efile.bss_shndx = idx;
2926		} else {
2927			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
2928				(size_t)sh.sh_size);
2929		}
2930	}
2931
2932	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
2933		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
2934		return -LIBBPF_ERRNO__FORMAT;
2935	}
2936
2937	/* sort BPF programs by section name and in-section instruction offset
2938	 * for faster search */
2939	qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
2940
2941	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
2942}
2943
2944static bool sym_is_extern(const GElf_Sym *sym)
2945{
2946	int bind = GELF_ST_BIND(sym->st_info);
2947	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
2948	return sym->st_shndx == SHN_UNDEF &&
2949	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
2950	       GELF_ST_TYPE(sym->st_info) == STT_NOTYPE;
2951}
2952
2953static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
2954{
2955	const struct btf_type *t;
2956	const char *var_name;
2957	int i, n;
2958
2959	if (!btf)
2960		return -ESRCH;
2961
2962	n = btf__get_nr_types(btf);
2963	for (i = 1; i <= n; i++) {
2964		t = btf__type_by_id(btf, i);
2965
2966		if (!btf_is_var(t))
2967			continue;
2968
2969		var_name = btf__name_by_offset(btf, t->name_off);
2970		if (strcmp(var_name, ext_name))
2971			continue;
2972
2973		if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
2974			return -EINVAL;
2975
2976		return i;
2977	}
2978
2979	return -ENOENT;
2980}
2981
2982static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
2983	const struct btf_var_secinfo *vs;
2984	const struct btf_type *t;
2985	int i, j, n;
2986
2987	if (!btf)
2988		return -ESRCH;
2989
2990	n = btf__get_nr_types(btf);
2991	for (i = 1; i <= n; i++) {
2992		t = btf__type_by_id(btf, i);
2993
2994		if (!btf_is_datasec(t))
2995			continue;
2996
2997		vs = btf_var_secinfos(t);
2998		for (j = 0; j < btf_vlen(t); j++, vs++) {
2999			if (vs->type == ext_btf_id)
3000				return i;
3001		}
3002	}
3003
3004	return -ENOENT;
3005}
3006
3007static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3008				     bool *is_signed)
3009{
3010	const struct btf_type *t;
3011	const char *name;
3012
3013	t = skip_mods_and_typedefs(btf, id, NULL);
3014	name = btf__name_by_offset(btf, t->name_off);
3015
3016	if (is_signed)
3017		*is_signed = false;
3018	switch (btf_kind(t)) {
3019	case BTF_KIND_INT: {
3020		int enc = btf_int_encoding(t);
3021
3022		if (enc & BTF_INT_BOOL)
3023			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3024		if (is_signed)
3025			*is_signed = enc & BTF_INT_SIGNED;
3026		if (t->size == 1)
3027			return KCFG_CHAR;
3028		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3029			return KCFG_UNKNOWN;
3030		return KCFG_INT;
3031	}
3032	case BTF_KIND_ENUM:
3033		if (t->size != 4)
3034			return KCFG_UNKNOWN;
3035		if (strcmp(name, "libbpf_tristate"))
3036			return KCFG_UNKNOWN;
3037		return KCFG_TRISTATE;
3038	case BTF_KIND_ARRAY:
3039		if (btf_array(t)->nelems == 0)
3040			return KCFG_UNKNOWN;
3041		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3042			return KCFG_UNKNOWN;
3043		return KCFG_CHAR_ARR;
3044	default:
3045		return KCFG_UNKNOWN;
3046	}
3047}
3048
3049static int cmp_externs(const void *_a, const void *_b)
3050{
3051	const struct extern_desc *a = _a;
3052	const struct extern_desc *b = _b;
3053
3054	if (a->type != b->type)
3055		return a->type < b->type ? -1 : 1;
3056
3057	if (a->type == EXT_KCFG) {
3058		/* descending order by alignment requirements */
3059		if (a->kcfg.align != b->kcfg.align)
3060			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3061		/* ascending order by size, within same alignment class */
3062		if (a->kcfg.sz != b->kcfg.sz)
3063			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3064	}
3065
3066	/* resolve ties by name */
3067	return strcmp(a->name, b->name);
3068}
3069
3070static int find_int_btf_id(const struct btf *btf)
3071{
3072	const struct btf_type *t;
3073	int i, n;
3074
3075	n = btf__get_nr_types(btf);
3076	for (i = 1; i <= n; i++) {
3077		t = btf__type_by_id(btf, i);
3078
3079		if (btf_is_int(t) && btf_int_bits(t) == 32)
3080			return i;
3081	}
3082
3083	return 0;
3084}
3085
3086static int bpf_object__collect_externs(struct bpf_object *obj)
3087{
3088	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3089	const struct btf_type *t;
3090	struct extern_desc *ext;
3091	int i, n, off;
3092	const char *ext_name, *sec_name;
3093	Elf_Scn *scn;
3094	GElf_Shdr sh;
3095
3096	if (!obj->efile.symbols)
3097		return 0;
3098
3099	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3100	if (elf_sec_hdr(obj, scn, &sh))
3101		return -LIBBPF_ERRNO__FORMAT;
3102
3103	n = sh.sh_size / sh.sh_entsize;
3104	pr_debug("looking for externs among %d symbols...\n", n);
3105
3106	for (i = 0; i < n; i++) {
3107		GElf_Sym sym;
3108
3109		if (!gelf_getsym(obj->efile.symbols, i, &sym))
3110			return -LIBBPF_ERRNO__FORMAT;
3111		if (!sym_is_extern(&sym))
3112			continue;
3113		ext_name = elf_sym_str(obj, sym.st_name);
3114		if (!ext_name || !ext_name[0])
3115			continue;
3116
3117		ext = obj->externs;
3118		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3119		if (!ext)
3120			return -ENOMEM;
3121		obj->externs = ext;
3122		ext = &ext[obj->nr_extern];
3123		memset(ext, 0, sizeof(*ext));
3124		obj->nr_extern++;
3125
3126		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3127		if (ext->btf_id <= 0) {
3128			pr_warn("failed to find BTF for extern '%s': %d\n",
3129				ext_name, ext->btf_id);
3130			return ext->btf_id;
3131		}
3132		t = btf__type_by_id(obj->btf, ext->btf_id);
3133		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3134		ext->sym_idx = i;
3135		ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK;
3136
3137		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3138		if (ext->sec_btf_id <= 0) {
3139			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3140				ext_name, ext->btf_id, ext->sec_btf_id);
3141			return ext->sec_btf_id;
3142		}
3143		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3144		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3145
3146		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3147			kcfg_sec = sec;
3148			ext->type = EXT_KCFG;
3149			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3150			if (ext->kcfg.sz <= 0) {
3151				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3152					ext_name, ext->kcfg.sz);
3153				return ext->kcfg.sz;
3154			}
3155			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3156			if (ext->kcfg.align <= 0) {
3157				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3158					ext_name, ext->kcfg.align);
3159				return -EINVAL;
3160			}
3161			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3162						        &ext->kcfg.is_signed);
3163			if (ext->kcfg.type == KCFG_UNKNOWN) {
3164				pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name);
3165				return -ENOTSUP;
3166			}
3167		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3168			ksym_sec = sec;
3169			ext->type = EXT_KSYM;
3170			skip_mods_and_typedefs(obj->btf, t->type,
3171					       &ext->ksym.type_id);
3172		} else {
3173			pr_warn("unrecognized extern section '%s'\n", sec_name);
3174			return -ENOTSUP;
3175		}
3176	}
3177	pr_debug("collected %d externs total\n", obj->nr_extern);
3178
3179	if (!obj->nr_extern)
3180		return 0;
3181
3182	/* sort externs by type, for kcfg ones also by (align, size, name) */
3183	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3184
3185	/* for .ksyms section, we need to turn all externs into allocated
3186	 * variables in BTF to pass kernel verification; we do this by
3187	 * pretending that each extern is a 8-byte variable
3188	 */
3189	if (ksym_sec) {
3190		/* find existing 4-byte integer type in BTF to use for fake
3191		 * extern variables in DATASEC
3192		 */
3193		int int_btf_id = find_int_btf_id(obj->btf);
3194
3195		for (i = 0; i < obj->nr_extern; i++) {
3196			ext = &obj->externs[i];
3197			if (ext->type != EXT_KSYM)
3198				continue;
3199			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3200				 i, ext->sym_idx, ext->name);
3201		}
3202
3203		sec = ksym_sec;
3204		n = btf_vlen(sec);
3205		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3206			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3207			struct btf_type *vt;
3208
3209			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3210			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3211			ext = find_extern_by_name(obj, ext_name);
3212			if (!ext) {
3213				pr_warn("failed to find extern definition for BTF var '%s'\n",
3214					ext_name);
3215				return -ESRCH;
3216			}
3217			btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3218			vt->type = int_btf_id;
3219			vs->offset = off;
3220			vs->size = sizeof(int);
3221		}
3222		sec->size = off;
3223	}
3224
3225	if (kcfg_sec) {
3226		sec = kcfg_sec;
3227		/* for kcfg externs calculate their offsets within a .kconfig map */
3228		off = 0;
3229		for (i = 0; i < obj->nr_extern; i++) {
3230			ext = &obj->externs[i];
3231			if (ext->type != EXT_KCFG)
3232				continue;
3233
3234			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3235			off = ext->kcfg.data_off + ext->kcfg.sz;
3236			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3237				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3238		}
3239		sec->size = off;
3240		n = btf_vlen(sec);
3241		for (i = 0; i < n; i++) {
3242			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3243
3244			t = btf__type_by_id(obj->btf, vs->type);
3245			ext_name = btf__name_by_offset(obj->btf, t->name_off);
3246			ext = find_extern_by_name(obj, ext_name);
3247			if (!ext) {
3248				pr_warn("failed to find extern definition for BTF var '%s'\n",
3249					ext_name);
3250				return -ESRCH;
3251			}
3252			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3253			vs->offset = ext->kcfg.data_off;
3254		}
3255	}
3256	return 0;
3257}
3258
3259struct bpf_program *
3260bpf_object__find_program_by_title(const struct bpf_object *obj,
3261				  const char *title)
3262{
3263	struct bpf_program *pos;
3264
3265	bpf_object__for_each_program(pos, obj) {
3266		if (pos->sec_name && !strcmp(pos->sec_name, title))
3267			return pos;
3268	}
3269	return NULL;
3270}
3271
3272static bool prog_is_subprog(const struct bpf_object *obj,
3273			    const struct bpf_program *prog)
3274{
3275	/* For legacy reasons, libbpf supports an entry-point BPF programs
3276	 * without SEC() attribute, i.e., those in the .text section. But if
3277	 * there are 2 or more such programs in the .text section, they all
3278	 * must be subprograms called from entry-point BPF programs in
3279	 * designated SEC()'tions, otherwise there is no way to distinguish
3280	 * which of those programs should be loaded vs which are a subprogram.
3281	 * Similarly, if there is a function/program in .text and at least one
3282	 * other BPF program with custom SEC() attribute, then we just assume
3283	 * .text programs are subprograms (even if they are not called from
3284	 * other programs), because libbpf never explicitly supported mixing
3285	 * SEC()-designated BPF programs and .text entry-point BPF programs.
3286	 */
3287	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3288}
3289
3290struct bpf_program *
3291bpf_object__find_program_by_name(const struct bpf_object *obj,
3292				 const char *name)
3293{
3294	struct bpf_program *prog;
3295
3296	bpf_object__for_each_program(prog, obj) {
3297		if (prog_is_subprog(obj, prog))
3298			continue;
3299		if (!strcmp(prog->name, name))
3300			return prog;
3301	}
3302	return NULL;
3303}
3304
3305static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3306				      int shndx)
3307{
3308	return shndx == obj->efile.data_shndx ||
3309	       shndx == obj->efile.bss_shndx ||
3310	       shndx == obj->efile.rodata_shndx;
3311}
3312
3313static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3314				      int shndx)
3315{
3316	return shndx == obj->efile.maps_shndx ||
3317	       shndx == obj->efile.btf_maps_shndx;
3318}
3319
3320static enum libbpf_map_type
3321bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3322{
3323	if (shndx == obj->efile.data_shndx)
3324		return LIBBPF_MAP_DATA;
3325	else if (shndx == obj->efile.bss_shndx)
3326		return LIBBPF_MAP_BSS;
3327	else if (shndx == obj->efile.rodata_shndx)
3328		return LIBBPF_MAP_RODATA;
3329	else if (shndx == obj->efile.symbols_shndx)
3330		return LIBBPF_MAP_KCONFIG;
3331	else
3332		return LIBBPF_MAP_UNSPEC;
3333}
3334
3335static int bpf_program__record_reloc(struct bpf_program *prog,
3336				     struct reloc_desc *reloc_desc,
3337				     __u32 insn_idx, const char *sym_name,
3338				     const GElf_Sym *sym, const GElf_Rel *rel)
3339{
3340	struct bpf_insn *insn = &prog->insns[insn_idx];
3341	size_t map_idx, nr_maps = prog->obj->nr_maps;
3342	struct bpf_object *obj = prog->obj;
3343	__u32 shdr_idx = sym->st_shndx;
3344	enum libbpf_map_type type;
3345	const char *sym_sec_name;
3346	struct bpf_map *map;
3347
3348	reloc_desc->processed = false;
3349
3350	/* sub-program call relocation */
3351	if (insn->code == (BPF_JMP | BPF_CALL)) {
3352		if (insn->src_reg != BPF_PSEUDO_CALL) {
3353			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3354			return -LIBBPF_ERRNO__RELOC;
3355		}
3356		/* text_shndx can be 0, if no default "main" program exists */
3357		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3358			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3359			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3360				prog->name, sym_name, sym_sec_name);
3361			return -LIBBPF_ERRNO__RELOC;
3362		}
3363		if (sym->st_value % BPF_INSN_SZ) {
3364			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
3365				prog->name, sym_name, (size_t)sym->st_value);
3366			return -LIBBPF_ERRNO__RELOC;
3367		}
3368		reloc_desc->type = RELO_CALL;
3369		reloc_desc->insn_idx = insn_idx;
3370		reloc_desc->sym_off = sym->st_value;
3371		return 0;
3372	}
3373
3374	if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) {
3375		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3376			prog->name, sym_name, insn_idx, insn->code);
3377		return -LIBBPF_ERRNO__RELOC;
3378	}
3379
3380	if (sym_is_extern(sym)) {
3381		int sym_idx = GELF_R_SYM(rel->r_info);
3382		int i, n = obj->nr_extern;
3383		struct extern_desc *ext;
3384
3385		for (i = 0; i < n; i++) {
3386			ext = &obj->externs[i];
3387			if (ext->sym_idx == sym_idx)
3388				break;
3389		}
3390		if (i >= n) {
3391			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3392				prog->name, sym_name, sym_idx);
3393			return -LIBBPF_ERRNO__RELOC;
3394		}
3395		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3396			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3397		reloc_desc->type = RELO_EXTERN;
3398		reloc_desc->insn_idx = insn_idx;
3399		reloc_desc->sym_off = i; /* sym_off stores extern index */
3400		return 0;
3401	}
3402
3403	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
3404		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
3405			prog->name, sym_name, shdr_idx);
3406		return -LIBBPF_ERRNO__RELOC;
3407	}
3408
3409	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
3410	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3411
3412	/* generic map reference relocation */
3413	if (type == LIBBPF_MAP_UNSPEC) {
3414		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
3415			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
3416				prog->name, sym_name, sym_sec_name);
3417			return -LIBBPF_ERRNO__RELOC;
3418		}
3419		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3420			map = &obj->maps[map_idx];
3421			if (map->libbpf_type != type ||
3422			    map->sec_idx != sym->st_shndx ||
3423			    map->sec_offset != sym->st_value)
3424				continue;
3425			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
3426				 prog->name, map_idx, map->name, map->sec_idx,
3427				 map->sec_offset, insn_idx);
3428			break;
3429		}
3430		if (map_idx >= nr_maps) {
3431			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
3432				prog->name, sym_sec_name, (size_t)sym->st_value);
3433			return -LIBBPF_ERRNO__RELOC;
3434		}
3435		reloc_desc->type = RELO_LD64;
3436		reloc_desc->insn_idx = insn_idx;
3437		reloc_desc->map_idx = map_idx;
3438		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
3439		return 0;
3440	}
3441
3442	/* global data map relocation */
3443	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
3444		pr_warn("prog '%s': bad data relo against section '%s'\n",
3445			prog->name, sym_sec_name);
3446		return -LIBBPF_ERRNO__RELOC;
3447	}
3448	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3449		map = &obj->maps[map_idx];
3450		if (map->libbpf_type != type)
3451			continue;
3452		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
3453			 prog->name, map_idx, map->name, map->sec_idx,
3454			 map->sec_offset, insn_idx);
3455		break;
3456	}
3457	if (map_idx >= nr_maps) {
3458		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
3459			prog->name, sym_sec_name);
3460		return -LIBBPF_ERRNO__RELOC;
3461	}
3462
3463	reloc_desc->type = RELO_DATA;
3464	reloc_desc->insn_idx = insn_idx;
3465	reloc_desc->map_idx = map_idx;
3466	reloc_desc->sym_off = sym->st_value;
3467	return 0;
3468}
3469
3470static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
3471{
3472	return insn_idx >= prog->sec_insn_off &&
3473	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
3474}
3475
3476static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
3477						 size_t sec_idx, size_t insn_idx)
3478{
3479	int l = 0, r = obj->nr_programs - 1, m;
3480	struct bpf_program *prog;
3481
3482	if (!obj->nr_programs)
3483		return NULL;
3484
3485	while (l < r) {
3486		m = l + (r - l + 1) / 2;
3487		prog = &obj->programs[m];
3488
3489		if (prog->sec_idx < sec_idx ||
3490		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
3491			l = m;
3492		else
3493			r = m - 1;
3494	}
3495	/* matching program could be at index l, but it still might be the
3496	 * wrong one, so we need to double check conditions for the last time
3497	 */
3498	prog = &obj->programs[l];
3499	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
3500		return prog;
3501	return NULL;
3502}
3503
3504static int
3505bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data)
3506{
3507	Elf_Data *symbols = obj->efile.symbols;
3508	const char *relo_sec_name, *sec_name;
3509	size_t sec_idx = shdr->sh_info;
3510	struct bpf_program *prog;
3511	struct reloc_desc *relos;
3512	int err, i, nrels;
3513	const char *sym_name;
3514	__u32 insn_idx;
3515	GElf_Sym sym;
3516	GElf_Rel rel;
3517
3518	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
3519	sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
3520	if (!relo_sec_name || !sec_name)
3521		return -EINVAL;
3522
3523	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
3524		 relo_sec_name, sec_idx, sec_name);
3525	nrels = shdr->sh_size / shdr->sh_entsize;
3526
3527	for (i = 0; i < nrels; i++) {
3528		if (!gelf_getrel(data, i, &rel)) {
3529			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
3530			return -LIBBPF_ERRNO__FORMAT;
3531		}
3532		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
3533			pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n",
3534				relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3535			return -LIBBPF_ERRNO__FORMAT;
3536		}
3537		if (rel.r_offset % BPF_INSN_SZ) {
3538			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
3539				relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3540			return -LIBBPF_ERRNO__FORMAT;
3541		}
3542
3543		insn_idx = rel.r_offset / BPF_INSN_SZ;
3544		/* relocations against static functions are recorded as
3545		 * relocations against the section that contains a function;
3546		 * in such case, symbol will be STT_SECTION and sym.st_name
3547		 * will point to empty string (0), so fetch section name
3548		 * instead
3549		 */
3550		if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0)
3551			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx));
3552		else
3553			sym_name = elf_sym_str(obj, sym.st_name);
3554		sym_name = sym_name ?: "<?";
3555
3556		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
3557			 relo_sec_name, i, insn_idx, sym_name);
3558
3559		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
3560		if (!prog) {
3561			pr_warn("sec '%s': relo #%d: program not found in section '%s' for insn #%u\n",
3562				relo_sec_name, i, sec_name, insn_idx);
3563			return -LIBBPF_ERRNO__RELOC;
3564		}
3565
3566		relos = libbpf_reallocarray(prog->reloc_desc,
3567					    prog->nr_reloc + 1, sizeof(*relos));
3568		if (!relos)
3569			return -ENOMEM;
3570		prog->reloc_desc = relos;
3571
3572		/* adjust insn_idx to local BPF program frame of reference */
3573		insn_idx -= prog->sec_insn_off;
3574		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
3575						insn_idx, sym_name, &sym, &rel);
3576		if (err)
3577			return err;
3578
3579		prog->nr_reloc++;
3580	}
3581	return 0;
3582}
3583
3584static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
3585{
3586	struct bpf_map_def *def = &map->def;
3587	__u32 key_type_id = 0, value_type_id = 0;
3588	int ret;
3589
3590	/* if it's BTF-defined map, we don't need to search for type IDs.
3591	 * For struct_ops map, it does not need btf_key_type_id and
3592	 * btf_value_type_id.
3593	 */
3594	if (map->sec_idx == obj->efile.btf_maps_shndx ||
3595	    bpf_map__is_struct_ops(map))
3596		return 0;
3597
3598	if (!bpf_map__is_internal(map)) {
3599		ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size,
3600					   def->value_size, &key_type_id,
3601					   &value_type_id);
3602	} else {
3603		/*
3604		 * LLVM annotates global data differently in BTF, that is,
3605		 * only as '.data', '.bss' or '.rodata'.
3606		 */
3607		ret = btf__find_by_name(obj->btf,
3608				libbpf_type_to_btf_name[map->libbpf_type]);
3609	}
3610	if (ret < 0)
3611		return ret;
3612
3613	map->btf_key_type_id = key_type_id;
3614	map->btf_value_type_id = bpf_map__is_internal(map) ?
3615				 ret : value_type_id;
3616	return 0;
3617}
3618
3619static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
3620{
3621	char file[PATH_MAX], buff[4096];
3622	FILE *fp;
3623	__u32 val;
3624	int err;
3625
3626	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
3627	memset(info, 0, sizeof(*info));
3628
3629	fp = fopen(file, "r");
3630	if (!fp) {
3631		err = -errno;
3632		pr_warn("failed to open %s: %d. No procfs support?\n", file,
3633			err);
3634		return err;
3635	}
3636
3637	while (fgets(buff, sizeof(buff), fp)) {
3638		if (sscanf(buff, "map_type:\t%u", &val) == 1)
3639			info->type = val;
3640		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
3641			info->key_size = val;
3642		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
3643			info->value_size = val;
3644		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
3645			info->max_entries = val;
3646		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
3647			info->map_flags = val;
3648	}
3649
3650	fclose(fp);
3651
3652	return 0;
3653}
3654
3655int bpf_map__reuse_fd(struct bpf_map *map, int fd)
3656{
3657	struct bpf_map_info info = {};
3658	__u32 len = sizeof(info), name_len;
3659	int new_fd, err;
3660	char *new_name;
3661
3662	err = bpf_obj_get_info_by_fd(fd, &info, &len);
3663	if (err && errno == EINVAL)
3664		err = bpf_get_map_info_from_fdinfo(fd, &info);
3665	if (err)
3666		return err;
3667
3668	name_len = strlen(info.name);
3669	if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
3670		new_name = strdup(map->name);
3671	else
3672		new_name = strdup(info.name);
3673
3674	if (!new_name)
3675		return -errno;
3676
3677	new_fd = open("/", O_RDONLY | O_CLOEXEC);
3678	if (new_fd < 0) {
3679		err = -errno;
3680		goto err_free_new_name;
3681	}
3682
3683	new_fd = dup3(fd, new_fd, O_CLOEXEC);
3684	if (new_fd < 0) {
3685		err = -errno;
3686		goto err_close_new_fd;
3687	}
3688
3689	err = zclose(map->fd);
3690	if (err) {
3691		err = -errno;
3692		goto err_close_new_fd;
3693	}
3694	free(map->name);
3695
3696	map->fd = new_fd;
3697	map->name = new_name;
3698	map->def.type = info.type;
3699	map->def.key_size = info.key_size;
3700	map->def.value_size = info.value_size;
3701	map->def.max_entries = info.max_entries;
3702	map->def.map_flags = info.map_flags;
3703	map->btf_key_type_id = info.btf_key_type_id;
3704	map->btf_value_type_id = info.btf_value_type_id;
3705	map->reused = true;
3706
3707	return 0;
3708
3709err_close_new_fd:
3710	close(new_fd);
3711err_free_new_name:
3712	free(new_name);
3713	return err;
3714}
3715
3716__u32 bpf_map__max_entries(const struct bpf_map *map)
3717{
3718	return map->def.max_entries;
3719}
3720
3721int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
3722{
3723	if (map->fd >= 0)
3724		return -EBUSY;
3725	map->def.max_entries = max_entries;
3726	return 0;
3727}
3728
3729int bpf_map__resize(struct bpf_map *map, __u32 max_entries)
3730{
3731	if (!map || !max_entries)
3732		return -EINVAL;
3733
3734	return bpf_map__set_max_entries(map, max_entries);
3735}
3736
3737static int
3738bpf_object__probe_loading(struct bpf_object *obj)
3739{
3740	struct bpf_load_program_attr attr;
3741	char *cp, errmsg[STRERR_BUFSIZE];
3742	struct bpf_insn insns[] = {
3743		BPF_MOV64_IMM(BPF_REG_0, 0),
3744		BPF_EXIT_INSN(),
3745	};
3746	int ret;
3747
3748	/* make sure basic loading works */
3749
3750	memset(&attr, 0, sizeof(attr));
3751	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3752	attr.insns = insns;
3753	attr.insns_cnt = ARRAY_SIZE(insns);
3754	attr.license = "GPL";
3755
3756	ret = bpf_load_program_xattr(&attr, NULL, 0);
3757	if (ret < 0) {
3758		ret = errno;
3759		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3760		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
3761			"program. Make sure your kernel supports BPF "
3762			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
3763			"set to big enough value.\n", __func__, cp, ret);
3764		return -ret;
3765	}
3766	close(ret);
3767
3768	return 0;
3769}
3770
3771static int probe_fd(int fd)
3772{
3773	if (fd >= 0)
3774		close(fd);
3775	return fd >= 0;
3776}
3777
3778static int probe_kern_prog_name(void)
3779{
3780	struct bpf_load_program_attr attr;
3781	struct bpf_insn insns[] = {
3782		BPF_MOV64_IMM(BPF_REG_0, 0),
3783		BPF_EXIT_INSN(),
3784	};
3785	int ret;
3786
3787	/* make sure loading with name works */
3788
3789	memset(&attr, 0, sizeof(attr));
3790	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3791	attr.insns = insns;
3792	attr.insns_cnt = ARRAY_SIZE(insns);
3793	attr.license = "GPL";
3794	attr.name = "test";
3795	ret = bpf_load_program_xattr(&attr, NULL, 0);
3796	return probe_fd(ret);
3797}
3798
3799static int probe_kern_global_data(void)
3800{
3801	struct bpf_load_program_attr prg_attr;
3802	struct bpf_create_map_attr map_attr;
3803	char *cp, errmsg[STRERR_BUFSIZE];
3804	struct bpf_insn insns[] = {
3805		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
3806		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
3807		BPF_MOV64_IMM(BPF_REG_0, 0),
3808		BPF_EXIT_INSN(),
3809	};
3810	int ret, map;
3811
3812	memset(&map_attr, 0, sizeof(map_attr));
3813	map_attr.map_type = BPF_MAP_TYPE_ARRAY;
3814	map_attr.key_size = sizeof(int);
3815	map_attr.value_size = 32;
3816	map_attr.max_entries = 1;
3817
3818	map = bpf_create_map_xattr(&map_attr);
3819	if (map < 0) {
3820		ret = -errno;
3821		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3822		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
3823			__func__, cp, -ret);
3824		return ret;
3825	}
3826
3827	insns[0].imm = map;
3828
3829	memset(&prg_attr, 0, sizeof(prg_attr));
3830	prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3831	prg_attr.insns = insns;
3832	prg_attr.insns_cnt = ARRAY_SIZE(insns);
3833	prg_attr.license = "GPL";
3834
3835	ret = bpf_load_program_xattr(&prg_attr, NULL, 0);
3836	close(map);
3837	return probe_fd(ret);
3838}
3839
3840static int probe_kern_btf(void)
3841{
3842	static const char strs[] = "\0int";
3843	__u32 types[] = {
3844		/* int */
3845		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
3846	};
3847
3848	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3849					     strs, sizeof(strs)));
3850}
3851
3852static int probe_kern_btf_func(void)
3853{
3854	static const char strs[] = "\0int\0x\0a";
3855	/* void x(int a) {} */
3856	__u32 types[] = {
3857		/* int */
3858		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3859		/* FUNC_PROTO */                                /* [2] */
3860		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
3861		BTF_PARAM_ENC(7, 1),
3862		/* FUNC x */                                    /* [3] */
3863		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
3864	};
3865
3866	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3867					     strs, sizeof(strs)));
3868}
3869
3870static int probe_kern_btf_func_global(void)
3871{
3872	static const char strs[] = "\0int\0x\0a";
3873	/* static void x(int a) {} */
3874	__u32 types[] = {
3875		/* int */
3876		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3877		/* FUNC_PROTO */                                /* [2] */
3878		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
3879		BTF_PARAM_ENC(7, 1),
3880		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
3881		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
3882	};
3883
3884	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3885					     strs, sizeof(strs)));
3886}
3887
3888static int probe_kern_btf_datasec(void)
3889{
3890	static const char strs[] = "\0x\0.data";
3891	/* static int a; */
3892	__u32 types[] = {
3893		/* int */
3894		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3895		/* VAR x */                                     /* [2] */
3896		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
3897		BTF_VAR_STATIC,
3898		/* DATASEC val */                               /* [3] */
3899		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
3900		BTF_VAR_SECINFO_ENC(2, 0, 4),
3901	};
3902
3903	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3904					     strs, sizeof(strs)));
3905}
3906
3907static int probe_kern_array_mmap(void)
3908{
3909	struct bpf_create_map_attr attr = {
3910		.map_type = BPF_MAP_TYPE_ARRAY,
3911		.map_flags = BPF_F_MMAPABLE,
3912		.key_size = sizeof(int),
3913		.value_size = sizeof(int),
3914		.max_entries = 1,
3915	};
3916
3917	return probe_fd(bpf_create_map_xattr(&attr));
3918}
3919
3920static int probe_kern_exp_attach_type(void)
3921{
3922	struct bpf_load_program_attr attr;
3923	struct bpf_insn insns[] = {
3924		BPF_MOV64_IMM(BPF_REG_0, 0),
3925		BPF_EXIT_INSN(),
3926	};
3927
3928	memset(&attr, 0, sizeof(attr));
3929	/* use any valid combination of program type and (optional)
3930	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
3931	 * to see if kernel supports expected_attach_type field for
3932	 * BPF_PROG_LOAD command
3933	 */
3934	attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK;
3935	attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE;
3936	attr.insns = insns;
3937	attr.insns_cnt = ARRAY_SIZE(insns);
3938	attr.license = "GPL";
3939
3940	return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
3941}
3942
3943static int probe_kern_probe_read_kernel(void)
3944{
3945	struct bpf_load_program_attr attr;
3946	struct bpf_insn insns[] = {
3947		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
3948		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
3949		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
3950		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
3951		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
3952		BPF_EXIT_INSN(),
3953	};
3954
3955	memset(&attr, 0, sizeof(attr));
3956	attr.prog_type = BPF_PROG_TYPE_KPROBE;
3957	attr.insns = insns;
3958	attr.insns_cnt = ARRAY_SIZE(insns);
3959	attr.license = "GPL";
3960
3961	return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
3962}
3963
3964static int probe_prog_bind_map(void)
3965{
3966	struct bpf_load_program_attr prg_attr;
3967	struct bpf_create_map_attr map_attr;
3968	char *cp, errmsg[STRERR_BUFSIZE];
3969	struct bpf_insn insns[] = {
3970		BPF_MOV64_IMM(BPF_REG_0, 0),
3971		BPF_EXIT_INSN(),
3972	};
3973	int ret, map, prog;
3974
3975	memset(&map_attr, 0, sizeof(map_attr));
3976	map_attr.map_type = BPF_MAP_TYPE_ARRAY;
3977	map_attr.key_size = sizeof(int);
3978	map_attr.value_size = 32;
3979	map_attr.max_entries = 1;
3980
3981	map = bpf_create_map_xattr(&map_attr);
3982	if (map < 0) {
3983		ret = -errno;
3984		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3985		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
3986			__func__, cp, -ret);
3987		return ret;
3988	}
3989
3990	memset(&prg_attr, 0, sizeof(prg_attr));
3991	prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3992	prg_attr.insns = insns;
3993	prg_attr.insns_cnt = ARRAY_SIZE(insns);
3994	prg_attr.license = "GPL";
3995
3996	prog = bpf_load_program_xattr(&prg_attr, NULL, 0);
3997	if (prog < 0) {
3998		close(map);
3999		return 0;
4000	}
4001
4002	ret = bpf_prog_bind_map(prog, map, NULL);
4003
4004	close(map);
4005	close(prog);
4006
4007	return ret >= 0;
4008}
4009
4010enum kern_feature_result {
4011	FEAT_UNKNOWN = 0,
4012	FEAT_SUPPORTED = 1,
4013	FEAT_MISSING = 2,
4014};
4015
4016typedef int (*feature_probe_fn)(void);
4017
4018static struct kern_feature_desc {
4019	const char *desc;
4020	feature_probe_fn probe;
4021	enum kern_feature_result res;
4022} feature_probes[__FEAT_CNT] = {
4023	[FEAT_PROG_NAME] = {
4024		"BPF program name", probe_kern_prog_name,
4025	},
4026	[FEAT_GLOBAL_DATA] = {
4027		"global variables", probe_kern_global_data,
4028	},
4029	[FEAT_BTF] = {
4030		"minimal BTF", probe_kern_btf,
4031	},
4032	[FEAT_BTF_FUNC] = {
4033		"BTF functions", probe_kern_btf_func,
4034	},
4035	[FEAT_BTF_GLOBAL_FUNC] = {
4036		"BTF global function", probe_kern_btf_func_global,
4037	},
4038	[FEAT_BTF_DATASEC] = {
4039		"BTF data section and variable", probe_kern_btf_datasec,
4040	},
4041	[FEAT_ARRAY_MMAP] = {
4042		"ARRAY map mmap()", probe_kern_array_mmap,
4043	},
4044	[FEAT_EXP_ATTACH_TYPE] = {
4045		"BPF_PROG_LOAD expected_attach_type attribute",
4046		probe_kern_exp_attach_type,
4047	},
4048	[FEAT_PROBE_READ_KERN] = {
4049		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4050	},
4051	[FEAT_PROG_BIND_MAP] = {
4052		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4053	}
4054};
4055
4056static bool kernel_supports(enum kern_feature_id feat_id)
4057{
4058	struct kern_feature_desc *feat = &feature_probes[feat_id];
4059	int ret;
4060
4061	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4062		ret = feat->probe();
4063		if (ret > 0) {
4064			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4065		} else if (ret == 0) {
4066			WRITE_ONCE(feat->res, FEAT_MISSING);
4067		} else {
4068			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4069			WRITE_ONCE(feat->res, FEAT_MISSING);
4070		}
4071	}
4072
4073	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4074}
4075
4076static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4077{
4078	struct bpf_map_info map_info = {};
4079	char msg[STRERR_BUFSIZE];
4080	__u32 map_info_len;
4081	int err;
4082
4083	map_info_len = sizeof(map_info);
4084
4085	err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len);
4086	if (err && errno == EINVAL)
4087		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4088	if (err) {
4089		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4090			libbpf_strerror_r(errno, msg, sizeof(msg)));
4091		return false;
4092	}
4093
4094	return (map_info.type == map->def.type &&
4095		map_info.key_size == map->def.key_size &&
4096		map_info.value_size == map->def.value_size &&
4097		map_info.max_entries == map->def.max_entries &&
4098		map_info.map_flags == map->def.map_flags);
4099}
4100
4101static int
4102bpf_object__reuse_map(struct bpf_map *map)
4103{
4104	char *cp, errmsg[STRERR_BUFSIZE];
4105	int err, pin_fd;
4106
4107	pin_fd = bpf_obj_get(map->pin_path);
4108	if (pin_fd < 0) {
4109		err = -errno;
4110		if (err == -ENOENT) {
4111			pr_debug("found no pinned map to reuse at '%s'\n",
4112				 map->pin_path);
4113			return 0;
4114		}
4115
4116		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4117		pr_warn("couldn't retrieve pinned map '%s': %s\n",
4118			map->pin_path, cp);
4119		return err;
4120	}
4121
4122	if (!map_is_reuse_compat(map, pin_fd)) {
4123		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4124			map->pin_path);
4125		close(pin_fd);
4126		return -EINVAL;
4127	}
4128
4129	err = bpf_map__reuse_fd(map, pin_fd);
4130	if (err) {
4131		close(pin_fd);
4132		return err;
4133	}
4134	map->pinned = true;
4135	pr_debug("reused pinned map at '%s'\n", map->pin_path);
4136
4137	return 0;
4138}
4139
4140static int
4141bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4142{
4143	enum libbpf_map_type map_type = map->libbpf_type;
4144	char *cp, errmsg[STRERR_BUFSIZE];
4145	int err, zero = 0;
4146
4147	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4148	if (err) {
4149		err = -errno;
4150		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4151		pr_warn("Error setting initial map(%s) contents: %s\n",
4152			map->name, cp);
4153		return err;
4154	}
4155
4156	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
4157	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4158		err = bpf_map_freeze(map->fd);
4159		if (err) {
4160			err = -errno;
4161			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4162			pr_warn("Error freezing map(%s) as read-only: %s\n",
4163				map->name, cp);
4164			return err;
4165		}
4166	}
4167	return 0;
4168}
4169
4170static void bpf_map__destroy(struct bpf_map *map);
4171
4172static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map)
4173{
4174	struct bpf_create_map_attr create_attr;
4175	struct bpf_map_def *def = &map->def;
4176	int err = 0;
4177
4178	memset(&create_attr, 0, sizeof(create_attr));
4179
4180	if (kernel_supports(FEAT_PROG_NAME))
4181		create_attr.name = map->name;
4182	create_attr.map_ifindex = map->map_ifindex;
4183	create_attr.map_type = def->type;
4184	create_attr.map_flags = def->map_flags;
4185	create_attr.key_size = def->key_size;
4186	create_attr.value_size = def->value_size;
4187	create_attr.numa_node = map->numa_node;
4188
4189	if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) {
4190		int nr_cpus;
4191
4192		nr_cpus = libbpf_num_possible_cpus();
4193		if (nr_cpus < 0) {
4194			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
4195				map->name, nr_cpus);
4196			return nr_cpus;
4197		}
4198		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
4199		create_attr.max_entries = nr_cpus;
4200	} else {
4201		create_attr.max_entries = def->max_entries;
4202	}
4203
4204	if (bpf_map__is_struct_ops(map))
4205		create_attr.btf_vmlinux_value_type_id =
4206			map->btf_vmlinux_value_type_id;
4207
4208	create_attr.btf_fd = 0;
4209	create_attr.btf_key_type_id = 0;
4210	create_attr.btf_value_type_id = 0;
4211	if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) {
4212		create_attr.btf_fd = btf__fd(obj->btf);
4213		create_attr.btf_key_type_id = map->btf_key_type_id;
4214		create_attr.btf_value_type_id = map->btf_value_type_id;
4215	}
4216
4217	if (bpf_map_type__is_map_in_map(def->type)) {
4218		if (map->inner_map) {
4219			err = bpf_object__create_map(obj, map->inner_map);
4220			if (err) {
4221				pr_warn("map '%s': failed to create inner map: %d\n",
4222					map->name, err);
4223				return err;
4224			}
4225			map->inner_map_fd = bpf_map__fd(map->inner_map);
4226		}
4227		if (map->inner_map_fd >= 0)
4228			create_attr.inner_map_fd = map->inner_map_fd;
4229	}
4230
4231	map->fd = bpf_create_map_xattr(&create_attr);
4232	if (map->fd < 0 && (create_attr.btf_key_type_id ||
4233			    create_attr.btf_value_type_id)) {
4234		char *cp, errmsg[STRERR_BUFSIZE];
4235
4236		err = -errno;
4237		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4238		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
4239			map->name, cp, err);
4240		create_attr.btf_fd = 0;
4241		create_attr.btf_key_type_id = 0;
4242		create_attr.btf_value_type_id = 0;
4243		map->btf_key_type_id = 0;
4244		map->btf_value_type_id = 0;
4245		map->fd = bpf_create_map_xattr(&create_attr);
4246	}
4247
4248	err = map->fd < 0 ? -errno : 0;
4249
4250	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
4251		bpf_map__destroy(map->inner_map);
4252		zfree(&map->inner_map);
4253	}
4254
4255	return err;
4256}
4257
4258static int init_map_slots(struct bpf_map *map)
4259{
4260	const struct bpf_map *targ_map;
4261	unsigned int i;
4262	int fd, err;
4263
4264	for (i = 0; i < map->init_slots_sz; i++) {
4265		if (!map->init_slots[i])
4266			continue;
4267
4268		targ_map = map->init_slots[i];
4269		fd = bpf_map__fd(targ_map);
4270		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
4271		if (err) {
4272			err = -errno;
4273			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
4274				map->name, i, targ_map->name,
4275				fd, err);
4276			return err;
4277		}
4278		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
4279			 map->name, i, targ_map->name, fd);
4280	}
4281
4282	zfree(&map->init_slots);
4283	map->init_slots_sz = 0;
4284
4285	return 0;
4286}
4287
4288static int
4289bpf_object__create_maps(struct bpf_object *obj)
4290{
4291	struct bpf_map *map;
4292	char *cp, errmsg[STRERR_BUFSIZE];
4293	unsigned int i, j;
4294	int err;
4295	bool retried;
4296
4297	for (i = 0; i < obj->nr_maps; i++) {
4298		map = &obj->maps[i];
4299
4300		retried = false;
4301retry:
4302		if (map->pin_path) {
4303			err = bpf_object__reuse_map(map);
4304			if (err) {
4305				pr_warn("map '%s': error reusing pinned map\n",
4306					map->name);
4307				goto err_out;
4308			}
4309			if (retried && map->fd < 0) {
4310				pr_warn("map '%s': cannot find pinned map\n",
4311					map->name);
4312				err = -ENOENT;
4313				goto err_out;
4314			}
4315		}
4316
4317		if (map->fd >= 0) {
4318			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
4319				 map->name, map->fd);
4320		} else {
4321			err = bpf_object__create_map(obj, map);
4322			if (err)
4323				goto err_out;
4324
4325			pr_debug("map '%s': created successfully, fd=%d\n",
4326				 map->name, map->fd);
4327
4328			if (bpf_map__is_internal(map)) {
4329				err = bpf_object__populate_internal_map(obj, map);
4330				if (err < 0) {
4331					zclose(map->fd);
4332					goto err_out;
4333				}
4334			}
4335
4336			if (map->init_slots_sz) {
4337				err = init_map_slots(map);
4338				if (err < 0) {
4339					zclose(map->fd);
4340					goto err_out;
4341				}
4342			}
4343		}
4344
4345		if (map->pin_path && !map->pinned) {
4346			err = bpf_map__pin(map, NULL);
4347			if (err) {
4348				zclose(map->fd);
4349				if (!retried && err == -EEXIST) {
4350					retried = true;
4351					goto retry;
4352				}
4353				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
4354					map->name, map->pin_path, err);
4355				goto err_out;
4356			}
4357		}
4358	}
4359
4360	return 0;
4361
4362err_out:
4363	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4364	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
4365	pr_perm_msg(err);
4366	for (j = 0; j < i; j++)
4367		zclose(obj->maps[j].fd);
4368	return err;
4369}
4370
4371#define BPF_CORE_SPEC_MAX_LEN 64
4372
4373/* represents BPF CO-RE field or array element accessor */
4374struct bpf_core_accessor {
4375	__u32 type_id;		/* struct/union type or array element type */
4376	__u32 idx;		/* field index or array index */
4377	const char *name;	/* field name or NULL for array accessor */
4378};
4379
4380struct bpf_core_spec {
4381	const struct btf *btf;
4382	/* high-level spec: named fields and array indices only */
4383	struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN];
4384	/* original unresolved (no skip_mods_or_typedefs) root type ID */
4385	__u32 root_type_id;
4386	/* CO-RE relocation kind */
4387	enum bpf_core_relo_kind relo_kind;
4388	/* high-level spec length */
4389	int len;
4390	/* raw, low-level spec: 1-to-1 with accessor spec string */
4391	int raw_spec[BPF_CORE_SPEC_MAX_LEN];
4392	/* raw spec length */
4393	int raw_len;
4394	/* field bit offset represented by spec */
4395	__u32 bit_offset;
4396};
4397
4398static bool str_is_empty(const char *s)
4399{
4400	return !s || !s[0];
4401}
4402
4403static bool is_flex_arr(const struct btf *btf,
4404			const struct bpf_core_accessor *acc,
4405			const struct btf_array *arr)
4406{
4407	const struct btf_type *t;
4408
4409	/* not a flexible array, if not inside a struct or has non-zero size */
4410	if (!acc->name || arr->nelems > 0)
4411		return false;
4412
4413	/* has to be the last member of enclosing struct */
4414	t = btf__type_by_id(btf, acc->type_id);
4415	return acc->idx == btf_vlen(t) - 1;
4416}
4417
4418static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
4419{
4420	switch (kind) {
4421	case BPF_FIELD_BYTE_OFFSET: return "byte_off";
4422	case BPF_FIELD_BYTE_SIZE: return "byte_sz";
4423	case BPF_FIELD_EXISTS: return "field_exists";
4424	case BPF_FIELD_SIGNED: return "signed";
4425	case BPF_FIELD_LSHIFT_U64: return "lshift_u64";
4426	case BPF_FIELD_RSHIFT_U64: return "rshift_u64";
4427	case BPF_TYPE_ID_LOCAL: return "local_type_id";
4428	case BPF_TYPE_ID_TARGET: return "target_type_id";
4429	case BPF_TYPE_EXISTS: return "type_exists";
4430	case BPF_TYPE_SIZE: return "type_size";
4431	case BPF_ENUMVAL_EXISTS: return "enumval_exists";
4432	case BPF_ENUMVAL_VALUE: return "enumval_value";
4433	default: return "unknown";
4434	}
4435}
4436
4437static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
4438{
4439	switch (kind) {
4440	case BPF_FIELD_BYTE_OFFSET:
4441	case BPF_FIELD_BYTE_SIZE:
4442	case BPF_FIELD_EXISTS:
4443	case BPF_FIELD_SIGNED:
4444	case BPF_FIELD_LSHIFT_U64:
4445	case BPF_FIELD_RSHIFT_U64:
4446		return true;
4447	default:
4448		return false;
4449	}
4450}
4451
4452static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
4453{
4454	switch (kind) {
4455	case BPF_TYPE_ID_LOCAL:
4456	case BPF_TYPE_ID_TARGET:
4457	case BPF_TYPE_EXISTS:
4458	case BPF_TYPE_SIZE:
4459		return true;
4460	default:
4461		return false;
4462	}
4463}
4464
4465static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
4466{
4467	switch (kind) {
4468	case BPF_ENUMVAL_EXISTS:
4469	case BPF_ENUMVAL_VALUE:
4470		return true;
4471	default:
4472		return false;
4473	}
4474}
4475
4476/*
4477 * Turn bpf_core_relo into a low- and high-level spec representation,
4478 * validating correctness along the way, as well as calculating resulting
4479 * field bit offset, specified by accessor string. Low-level spec captures
4480 * every single level of nestedness, including traversing anonymous
4481 * struct/union members. High-level one only captures semantically meaningful
4482 * "turning points": named fields and array indicies.
4483 * E.g., for this case:
4484 *
4485 *   struct sample {
4486 *       int __unimportant;
4487 *       struct {
4488 *           int __1;
4489 *           int __2;
4490 *           int a[7];
4491 *       };
4492 *   };
4493 *
4494 *   struct sample *s = ...;
4495 *
4496 *   int x = &s->a[3]; // access string = '0:1:2:3'
4497 *
4498 * Low-level spec has 1:1 mapping with each element of access string (it's
4499 * just a parsed access string representation): [0, 1, 2, 3].
4500 *
4501 * High-level spec will capture only 3 points:
4502 *   - intial zero-index access by pointer (&s->... is the same as &s[0]...);
4503 *   - field 'a' access (corresponds to '2' in low-level spec);
4504 *   - array element #3 access (corresponds to '3' in low-level spec).
4505 *
4506 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE,
4507 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
4508 * spec and raw_spec are kept empty.
4509 *
4510 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
4511 * string to specify enumerator's value index that need to be relocated.
4512 */
4513static int bpf_core_parse_spec(const struct btf *btf,
4514			       __u32 type_id,
4515			       const char *spec_str,
4516			       enum bpf_core_relo_kind relo_kind,
4517			       struct bpf_core_spec *spec)
4518{
4519	int access_idx, parsed_len, i;
4520	struct bpf_core_accessor *acc;
4521	const struct btf_type *t;
4522	const char *name;
4523	__u32 id;
4524	__s64 sz;
4525
4526	if (str_is_empty(spec_str) || *spec_str == ':')
4527		return -EINVAL;
4528
4529	memset(spec, 0, sizeof(*spec));
4530	spec->btf = btf;
4531	spec->root_type_id = type_id;
4532	spec->relo_kind = relo_kind;
4533
4534	/* type-based relocations don't have a field access string */
4535	if (core_relo_is_type_based(relo_kind)) {
4536		if (strcmp(spec_str, "0"))
4537			return -EINVAL;
4538		return 0;
4539	}
4540
4541	/* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
4542	while (*spec_str) {
4543		if (*spec_str == ':')
4544			++spec_str;
4545		if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
4546			return -EINVAL;
4547		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4548			return -E2BIG;
4549		spec_str += parsed_len;
4550		spec->raw_spec[spec->raw_len++] = access_idx;
4551	}
4552
4553	if (spec->raw_len == 0)
4554		return -EINVAL;
4555
4556	t = skip_mods_and_typedefs(btf, type_id, &id);
4557	if (!t)
4558		return -EINVAL;
4559
4560	access_idx = spec->raw_spec[0];
4561	acc = &spec->spec[0];
4562	acc->type_id = id;
4563	acc->idx = access_idx;
4564	spec->len++;
4565
4566	if (core_relo_is_enumval_based(relo_kind)) {
4567		if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
4568			return -EINVAL;
4569
4570		/* record enumerator name in a first accessor */
4571		acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off);
4572		return 0;
4573	}
4574
4575	if (!core_relo_is_field_based(relo_kind))
4576		return -EINVAL;
4577
4578	sz = btf__resolve_size(btf, id);
4579	if (sz < 0)
4580		return sz;
4581	spec->bit_offset = access_idx * sz * 8;
4582
4583	for (i = 1; i < spec->raw_len; i++) {
4584		t = skip_mods_and_typedefs(btf, id, &id);
4585		if (!t)
4586			return -EINVAL;
4587
4588		access_idx = spec->raw_spec[i];
4589		acc = &spec->spec[spec->len];
4590
4591		if (btf_is_composite(t)) {
4592			const struct btf_member *m;
4593			__u32 bit_offset;
4594
4595			if (access_idx >= btf_vlen(t))
4596				return -EINVAL;
4597
4598			bit_offset = btf_member_bit_offset(t, access_idx);
4599			spec->bit_offset += bit_offset;
4600
4601			m = btf_members(t) + access_idx;
4602			if (m->name_off) {
4603				name = btf__name_by_offset(btf, m->name_off);
4604				if (str_is_empty(name))
4605					return -EINVAL;
4606
4607				acc->type_id = id;
4608				acc->idx = access_idx;
4609				acc->name = name;
4610				spec->len++;
4611			}
4612
4613			id = m->type;
4614		} else if (btf_is_array(t)) {
4615			const struct btf_array *a = btf_array(t);
4616			bool flex;
4617
4618			t = skip_mods_and_typedefs(btf, a->type, &id);
4619			if (!t)
4620				return -EINVAL;
4621
4622			flex = is_flex_arr(btf, acc - 1, a);
4623			if (!flex && access_idx >= a->nelems)
4624				return -EINVAL;
4625
4626			spec->spec[spec->len].type_id = id;
4627			spec->spec[spec->len].idx = access_idx;
4628			spec->len++;
4629
4630			sz = btf__resolve_size(btf, id);
4631			if (sz < 0)
4632				return sz;
4633			spec->bit_offset += access_idx * sz * 8;
4634		} else {
4635			pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
4636				type_id, spec_str, i, id, btf_kind_str(t));
4637			return -EINVAL;
4638		}
4639	}
4640
4641	return 0;
4642}
4643
4644static bool bpf_core_is_flavor_sep(const char *s)
4645{
4646	/* check X___Y name pattern, where X and Y are not underscores */
4647	return s[0] != '_' &&				      /* X */
4648	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
4649	       s[4] != '_';				      /* Y */
4650}
4651
4652/* Given 'some_struct_name___with_flavor' return the length of a name prefix
4653 * before last triple underscore. Struct name part after last triple
4654 * underscore is ignored by BPF CO-RE relocation during relocation matching.
4655 */
4656static size_t bpf_core_essential_name_len(const char *name)
4657{
4658	size_t n = strlen(name);
4659	int i;
4660
4661	for (i = n - 5; i >= 0; i--) {
4662		if (bpf_core_is_flavor_sep(name + i))
4663			return i + 1;
4664	}
4665	return n;
4666}
4667
4668/* dynamically sized list of type IDs */
4669struct ids_vec {
4670	__u32 *data;
4671	int len;
4672};
4673
4674static void bpf_core_free_cands(struct ids_vec *cand_ids)
4675{
4676	free(cand_ids->data);
4677	free(cand_ids);
4678}
4679
4680static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf,
4681					   __u32 local_type_id,
4682					   const struct btf *targ_btf)
4683{
4684	size_t local_essent_len, targ_essent_len;
4685	const char *local_name, *targ_name;
4686	const struct btf_type *t, *local_t;
4687	struct ids_vec *cand_ids;
4688	__u32 *new_ids;
4689	int i, err, n;
4690
4691	local_t = btf__type_by_id(local_btf, local_type_id);
4692	if (!local_t)
4693		return ERR_PTR(-EINVAL);
4694
4695	local_name = btf__name_by_offset(local_btf, local_t->name_off);
4696	if (str_is_empty(local_name))
4697		return ERR_PTR(-EINVAL);
4698	local_essent_len = bpf_core_essential_name_len(local_name);
4699
4700	cand_ids = calloc(1, sizeof(*cand_ids));
4701	if (!cand_ids)
4702		return ERR_PTR(-ENOMEM);
4703
4704	n = btf__get_nr_types(targ_btf);
4705	for (i = 1; i <= n; i++) {
4706		t = btf__type_by_id(targ_btf, i);
4707		if (btf_kind(t) != btf_kind(local_t))
4708			continue;
4709
4710		targ_name = btf__name_by_offset(targ_btf, t->name_off);
4711		if (str_is_empty(targ_name))
4712			continue;
4713
4714		targ_essent_len = bpf_core_essential_name_len(targ_name);
4715		if (targ_essent_len != local_essent_len)
4716			continue;
4717
4718		if (strncmp(local_name, targ_name, local_essent_len) == 0) {
4719			pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s\n",
4720				 local_type_id, btf_kind_str(local_t),
4721				 local_name, i, btf_kind_str(t), targ_name);
4722			new_ids = libbpf_reallocarray(cand_ids->data,
4723						      cand_ids->len + 1,
4724						      sizeof(*cand_ids->data));
4725			if (!new_ids) {
4726				err = -ENOMEM;
4727				goto err_out;
4728			}
4729			cand_ids->data = new_ids;
4730			cand_ids->data[cand_ids->len++] = i;
4731		}
4732	}
4733	return cand_ids;
4734err_out:
4735	bpf_core_free_cands(cand_ids);
4736	return ERR_PTR(err);
4737}
4738
4739/* Check two types for compatibility for the purpose of field access
4740 * relocation. const/volatile/restrict and typedefs are skipped to ensure we
4741 * are relocating semantically compatible entities:
4742 *   - any two STRUCTs/UNIONs are compatible and can be mixed;
4743 *   - any two FWDs are compatible, if their names match (modulo flavor suffix);
4744 *   - any two PTRs are always compatible;
4745 *   - for ENUMs, names should be the same (ignoring flavor suffix) or at
4746 *     least one of enums should be anonymous;
4747 *   - for ENUMs, check sizes, names are ignored;
4748 *   - for INT, size and signedness are ignored;
4749 *   - for ARRAY, dimensionality is ignored, element types are checked for
4750 *     compatibility recursively;
4751 *   - everything else shouldn't be ever a target of relocation.
4752 * These rules are not set in stone and probably will be adjusted as we get
4753 * more experience with using BPF CO-RE relocations.
4754 */
4755static int bpf_core_fields_are_compat(const struct btf *local_btf,
4756				      __u32 local_id,
4757				      const struct btf *targ_btf,
4758				      __u32 targ_id)
4759{
4760	const struct btf_type *local_type, *targ_type;
4761
4762recur:
4763	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
4764	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4765	if (!local_type || !targ_type)
4766		return -EINVAL;
4767
4768	if (btf_is_composite(local_type) && btf_is_composite(targ_type))
4769		return 1;
4770	if (btf_kind(local_type) != btf_kind(targ_type))
4771		return 0;
4772
4773	switch (btf_kind(local_type)) {
4774	case BTF_KIND_PTR:
4775		return 1;
4776	case BTF_KIND_FWD:
4777	case BTF_KIND_ENUM: {
4778		const char *local_name, *targ_name;
4779		size_t local_len, targ_len;
4780
4781		local_name = btf__name_by_offset(local_btf,
4782						 local_type->name_off);
4783		targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
4784		local_len = bpf_core_essential_name_len(local_name);
4785		targ_len = bpf_core_essential_name_len(targ_name);
4786		/* one of them is anonymous or both w/ same flavor-less names */
4787		return local_len == 0 || targ_len == 0 ||
4788		       (local_len == targ_len &&
4789			strncmp(local_name, targ_name, local_len) == 0);
4790	}
4791	case BTF_KIND_INT:
4792		/* just reject deprecated bitfield-like integers; all other
4793		 * integers are by default compatible between each other
4794		 */
4795		return btf_int_offset(local_type) == 0 &&
4796		       btf_int_offset(targ_type) == 0;
4797	case BTF_KIND_ARRAY:
4798		local_id = btf_array(local_type)->type;
4799		targ_id = btf_array(targ_type)->type;
4800		goto recur;
4801	default:
4802		pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n",
4803			btf_kind(local_type), local_id, targ_id);
4804		return 0;
4805	}
4806}
4807
4808/*
4809 * Given single high-level named field accessor in local type, find
4810 * corresponding high-level accessor for a target type. Along the way,
4811 * maintain low-level spec for target as well. Also keep updating target
4812 * bit offset.
4813 *
4814 * Searching is performed through recursive exhaustive enumeration of all
4815 * fields of a struct/union. If there are any anonymous (embedded)
4816 * structs/unions, they are recursively searched as well. If field with
4817 * desired name is found, check compatibility between local and target types,
4818 * before returning result.
4819 *
4820 * 1 is returned, if field is found.
4821 * 0 is returned if no compatible field is found.
4822 * <0 is returned on error.
4823 */
4824static int bpf_core_match_member(const struct btf *local_btf,
4825				 const struct bpf_core_accessor *local_acc,
4826				 const struct btf *targ_btf,
4827				 __u32 targ_id,
4828				 struct bpf_core_spec *spec,
4829				 __u32 *next_targ_id)
4830{
4831	const struct btf_type *local_type, *targ_type;
4832	const struct btf_member *local_member, *m;
4833	const char *local_name, *targ_name;
4834	__u32 local_id;
4835	int i, n, found;
4836
4837	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4838	if (!targ_type)
4839		return -EINVAL;
4840	if (!btf_is_composite(targ_type))
4841		return 0;
4842
4843	local_id = local_acc->type_id;
4844	local_type = btf__type_by_id(local_btf, local_id);
4845	local_member = btf_members(local_type) + local_acc->idx;
4846	local_name = btf__name_by_offset(local_btf, local_member->name_off);
4847
4848	n = btf_vlen(targ_type);
4849	m = btf_members(targ_type);
4850	for (i = 0; i < n; i++, m++) {
4851		__u32 bit_offset;
4852
4853		bit_offset = btf_member_bit_offset(targ_type, i);
4854
4855		/* too deep struct/union/array nesting */
4856		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4857			return -E2BIG;
4858
4859		/* speculate this member will be the good one */
4860		spec->bit_offset += bit_offset;
4861		spec->raw_spec[spec->raw_len++] = i;
4862
4863		targ_name = btf__name_by_offset(targ_btf, m->name_off);
4864		if (str_is_empty(targ_name)) {
4865			/* embedded struct/union, we need to go deeper */
4866			found = bpf_core_match_member(local_btf, local_acc,
4867						      targ_btf, m->type,
4868						      spec, next_targ_id);
4869			if (found) /* either found or error */
4870				return found;
4871		} else if (strcmp(local_name, targ_name) == 0) {
4872			/* matching named field */
4873			struct bpf_core_accessor *targ_acc;
4874
4875			targ_acc = &spec->spec[spec->len++];
4876			targ_acc->type_id = targ_id;
4877			targ_acc->idx = i;
4878			targ_acc->name = targ_name;
4879
4880			*next_targ_id = m->type;
4881			found = bpf_core_fields_are_compat(local_btf,
4882							   local_member->type,
4883							   targ_btf, m->type);
4884			if (!found)
4885				spec->len--; /* pop accessor */
4886			return found;
4887		}
4888		/* member turned out not to be what we looked for */
4889		spec->bit_offset -= bit_offset;
4890		spec->raw_len--;
4891	}
4892
4893	return 0;
4894}
4895
4896/* Check local and target types for compatibility. This check is used for
4897 * type-based CO-RE relocations and follow slightly different rules than
4898 * field-based relocations. This function assumes that root types were already
4899 * checked for name match. Beyond that initial root-level name check, names
4900 * are completely ignored. Compatibility rules are as follows:
4901 *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
4902 *     kind should match for local and target types (i.e., STRUCT is not
4903 *     compatible with UNION);
4904 *   - for ENUMs, the size is ignored;
4905 *   - for INT, size and signedness are ignored;
4906 *   - for ARRAY, dimensionality is ignored, element types are checked for
4907 *     compatibility recursively;
4908 *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
4909 *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
4910 *   - FUNC_PROTOs are compatible if they have compatible signature: same
4911 *     number of input args and compatible return and argument types.
4912 * These rules are not set in stone and probably will be adjusted as we get
4913 * more experience with using BPF CO-RE relocations.
4914 */
4915static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
4916				     const struct btf *targ_btf, __u32 targ_id)
4917{
4918	const struct btf_type *local_type, *targ_type;
4919	int depth = 32; /* max recursion depth */
4920
4921	/* caller made sure that names match (ignoring flavor suffix) */
4922	local_type = btf__type_by_id(local_btf, local_id);
4923	targ_type = btf__type_by_id(targ_btf, targ_id);
4924	if (btf_kind(local_type) != btf_kind(targ_type))
4925		return 0;
4926
4927recur:
4928	depth--;
4929	if (depth < 0)
4930		return -EINVAL;
4931
4932	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
4933	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4934	if (!local_type || !targ_type)
4935		return -EINVAL;
4936
4937	if (btf_kind(local_type) != btf_kind(targ_type))
4938		return 0;
4939
4940	switch (btf_kind(local_type)) {
4941	case BTF_KIND_UNKN:
4942	case BTF_KIND_STRUCT:
4943	case BTF_KIND_UNION:
4944	case BTF_KIND_ENUM:
4945	case BTF_KIND_FWD:
4946		return 1;
4947	case BTF_KIND_INT:
4948		/* just reject deprecated bitfield-like integers; all other
4949		 * integers are by default compatible between each other
4950		 */
4951		return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
4952	case BTF_KIND_PTR:
4953		local_id = local_type->type;
4954		targ_id = targ_type->type;
4955		goto recur;
4956	case BTF_KIND_ARRAY:
4957		local_id = btf_array(local_type)->type;
4958		targ_id = btf_array(targ_type)->type;
4959		goto recur;
4960	case BTF_KIND_FUNC_PROTO: {
4961		struct btf_param *local_p = btf_params(local_type);
4962		struct btf_param *targ_p = btf_params(targ_type);
4963		__u16 local_vlen = btf_vlen(local_type);
4964		__u16 targ_vlen = btf_vlen(targ_type);
4965		int i, err;
4966
4967		if (local_vlen != targ_vlen)
4968			return 0;
4969
4970		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
4971			skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
4972			skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
4973			err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id);
4974			if (err <= 0)
4975				return err;
4976		}
4977
4978		/* tail recurse for return type check */
4979		skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
4980		skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
4981		goto recur;
4982	}
4983	default:
4984		pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
4985			btf_kind_str(local_type), local_id, targ_id);
4986		return 0;
4987	}
4988}
4989
4990/*
4991 * Try to match local spec to a target type and, if successful, produce full
4992 * target spec (high-level, low-level + bit offset).
4993 */
4994static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
4995			       const struct btf *targ_btf, __u32 targ_id,
4996			       struct bpf_core_spec *targ_spec)
4997{
4998	const struct btf_type *targ_type;
4999	const struct bpf_core_accessor *local_acc;
5000	struct bpf_core_accessor *targ_acc;
5001	int i, sz, matched;
5002
5003	memset(targ_spec, 0, sizeof(*targ_spec));
5004	targ_spec->btf = targ_btf;
5005	targ_spec->root_type_id = targ_id;
5006	targ_spec->relo_kind = local_spec->relo_kind;
5007
5008	if (core_relo_is_type_based(local_spec->relo_kind)) {
5009		return bpf_core_types_are_compat(local_spec->btf,
5010						 local_spec->root_type_id,
5011						 targ_btf, targ_id);
5012	}
5013
5014	local_acc = &local_spec->spec[0];
5015	targ_acc = &targ_spec->spec[0];
5016
5017	if (core_relo_is_enumval_based(local_spec->relo_kind)) {
5018		size_t local_essent_len, targ_essent_len;
5019		const struct btf_enum *e;
5020		const char *targ_name;
5021
5022		/* has to resolve to an enum */
5023		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
5024		if (!btf_is_enum(targ_type))
5025			return 0;
5026
5027		local_essent_len = bpf_core_essential_name_len(local_acc->name);
5028
5029		for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) {
5030			targ_name = btf__name_by_offset(targ_spec->btf, e->name_off);
5031			targ_essent_len = bpf_core_essential_name_len(targ_name);
5032			if (targ_essent_len != local_essent_len)
5033				continue;
5034			if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
5035				targ_acc->type_id = targ_id;
5036				targ_acc->idx = i;
5037				targ_acc->name = targ_name;
5038				targ_spec->len++;
5039				targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5040				targ_spec->raw_len++;
5041				return 1;
5042			}
5043		}
5044		return 0;
5045	}
5046
5047	if (!core_relo_is_field_based(local_spec->relo_kind))
5048		return -EINVAL;
5049
5050	for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
5051		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
5052						   &targ_id);
5053		if (!targ_type)
5054			return -EINVAL;
5055
5056		if (local_acc->name) {
5057			matched = bpf_core_match_member(local_spec->btf,
5058							local_acc,
5059							targ_btf, targ_id,
5060							targ_spec, &targ_id);
5061			if (matched <= 0)
5062				return matched;
5063		} else {
5064			/* for i=0, targ_id is already treated as array element
5065			 * type (because it's the original struct), for others
5066			 * we should find array element type first
5067			 */
5068			if (i > 0) {
5069				const struct btf_array *a;
5070				bool flex;
5071
5072				if (!btf_is_array(targ_type))
5073					return 0;
5074
5075				a = btf_array(targ_type);
5076				flex = is_flex_arr(targ_btf, targ_acc - 1, a);
5077				if (!flex && local_acc->idx >= a->nelems)
5078					return 0;
5079				if (!skip_mods_and_typedefs(targ_btf, a->type,
5080							    &targ_id))
5081					return -EINVAL;
5082			}
5083
5084			/* too deep struct/union/array nesting */
5085			if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
5086				return -E2BIG;
5087
5088			targ_acc->type_id = targ_id;
5089			targ_acc->idx = local_acc->idx;
5090			targ_acc->name = NULL;
5091			targ_spec->len++;
5092			targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5093			targ_spec->raw_len++;
5094
5095			sz = btf__resolve_size(targ_btf, targ_id);
5096			if (sz < 0)
5097				return sz;
5098			targ_spec->bit_offset += local_acc->idx * sz * 8;
5099		}
5100	}
5101
5102	return 1;
5103}
5104
5105static int bpf_core_calc_field_relo(const struct bpf_program *prog,
5106				    const struct bpf_core_relo *relo,
5107				    const struct bpf_core_spec *spec,
5108				    __u32 *val, __u32 *field_sz, __u32 *type_id,
5109				    bool *validate)
5110{
5111	const struct bpf_core_accessor *acc;
5112	const struct btf_type *t;
5113	__u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id;
5114	const struct btf_member *m;
5115	const struct btf_type *mt;
5116	bool bitfield;
5117	__s64 sz;
5118
5119	*field_sz = 0;
5120
5121	if (relo->kind == BPF_FIELD_EXISTS) {
5122		*val = spec ? 1 : 0;
5123		return 0;
5124	}
5125
5126	if (!spec)
5127		return -EUCLEAN; /* request instruction poisoning */
5128
5129	acc = &spec->spec[spec->len - 1];
5130	t = btf__type_by_id(spec->btf, acc->type_id);
5131
5132	/* a[n] accessor needs special handling */
5133	if (!acc->name) {
5134		if (relo->kind == BPF_FIELD_BYTE_OFFSET) {
5135			*val = spec->bit_offset / 8;
5136			/* remember field size for load/store mem size */
5137			sz = btf__resolve_size(spec->btf, acc->type_id);
5138			if (sz < 0)
5139				return -EINVAL;
5140			*field_sz = sz;
5141			*type_id = acc->type_id;
5142		} else if (relo->kind == BPF_FIELD_BYTE_SIZE) {
5143			sz = btf__resolve_size(spec->btf, acc->type_id);
5144			if (sz < 0)
5145				return -EINVAL;
5146			*val = sz;
5147		} else {
5148			pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
5149				prog->name, relo->kind, relo->insn_off / 8);
5150			return -EINVAL;
5151		}
5152		if (validate)
5153			*validate = true;
5154		return 0;
5155	}
5156
5157	m = btf_members(t) + acc->idx;
5158	mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
5159	bit_off = spec->bit_offset;
5160	bit_sz = btf_member_bitfield_size(t, acc->idx);
5161
5162	bitfield = bit_sz > 0;
5163	if (bitfield) {
5164		byte_sz = mt->size;
5165		byte_off = bit_off / 8 / byte_sz * byte_sz;
5166		/* figure out smallest int size necessary for bitfield load */
5167		while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
5168			if (byte_sz >= 8) {
5169				/* bitfield can't be read with 64-bit read */
5170				pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
5171					prog->name, relo->kind, relo->insn_off / 8);
5172				return -E2BIG;
5173			}
5174			byte_sz *= 2;
5175			byte_off = bit_off / 8 / byte_sz * byte_sz;
5176		}
5177	} else {
5178		sz = btf__resolve_size(spec->btf, field_type_id);
5179		if (sz < 0)
5180			return -EINVAL;
5181		byte_sz = sz;
5182		byte_off = spec->bit_offset / 8;
5183		bit_sz = byte_sz * 8;
5184	}
5185
5186	/* for bitfields, all the relocatable aspects are ambiguous and we
5187	 * might disagree with compiler, so turn off validation of expected
5188	 * value, except for signedness
5189	 */
5190	if (validate)
5191		*validate = !bitfield;
5192
5193	switch (relo->kind) {
5194	case BPF_FIELD_BYTE_OFFSET:
5195		*val = byte_off;
5196		if (!bitfield) {
5197			*field_sz = byte_sz;
5198			*type_id = field_type_id;
5199		}
5200		break;
5201	case BPF_FIELD_BYTE_SIZE:
5202		*val = byte_sz;
5203		break;
5204	case BPF_FIELD_SIGNED:
5205		/* enums will be assumed unsigned */
5206		*val = btf_is_enum(mt) ||
5207		       (btf_int_encoding(mt) & BTF_INT_SIGNED);
5208		if (validate)
5209			*validate = true; /* signedness is never ambiguous */
5210		break;
5211	case BPF_FIELD_LSHIFT_U64:
5212#if __BYTE_ORDER == __LITTLE_ENDIAN
5213		*val = 64 - (bit_off + bit_sz - byte_off  * 8);
5214#else
5215		*val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
5216#endif
5217		break;
5218	case BPF_FIELD_RSHIFT_U64:
5219		*val = 64 - bit_sz;
5220		if (validate)
5221			*validate = true; /* right shift is never ambiguous */
5222		break;
5223	case BPF_FIELD_EXISTS:
5224	default:
5225		return -EOPNOTSUPP;
5226	}
5227
5228	return 0;
5229}
5230
5231static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
5232				   const struct bpf_core_spec *spec,
5233				   __u32 *val)
5234{
5235	__s64 sz;
5236
5237	/* type-based relos return zero when target type is not found */
5238	if (!spec) {
5239		*val = 0;
5240		return 0;
5241	}
5242
5243	switch (relo->kind) {
5244	case BPF_TYPE_ID_TARGET:
5245		*val = spec->root_type_id;
5246		break;
5247	case BPF_TYPE_EXISTS:
5248		*val = 1;
5249		break;
5250	case BPF_TYPE_SIZE:
5251		sz = btf__resolve_size(spec->btf, spec->root_type_id);
5252		if (sz < 0)
5253			return -EINVAL;
5254		*val = sz;
5255		break;
5256	case BPF_TYPE_ID_LOCAL:
5257	/* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */
5258	default:
5259		return -EOPNOTSUPP;
5260	}
5261
5262	return 0;
5263}
5264
5265static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
5266				      const struct bpf_core_spec *spec,
5267				      __u32 *val)
5268{
5269	const struct btf_type *t;
5270	const struct btf_enum *e;
5271
5272	switch (relo->kind) {
5273	case BPF_ENUMVAL_EXISTS:
5274		*val = spec ? 1 : 0;
5275		break;
5276	case BPF_ENUMVAL_VALUE:
5277		if (!spec)
5278			return -EUCLEAN; /* request instruction poisoning */
5279		t = btf__type_by_id(spec->btf, spec->spec[0].type_id);
5280		e = btf_enum(t) + spec->spec[0].idx;
5281		*val = e->val;
5282		break;
5283	default:
5284		return -EOPNOTSUPP;
5285	}
5286
5287	return 0;
5288}
5289
5290struct bpf_core_relo_res
5291{
5292	/* expected value in the instruction, unless validate == false */
5293	__u32 orig_val;
5294	/* new value that needs to be patched up to */
5295	__u32 new_val;
5296	/* relocation unsuccessful, poison instruction, but don't fail load */
5297	bool poison;
5298	/* some relocations can't be validated against orig_val */
5299	bool validate;
5300	/* for field byte offset relocations or the forms:
5301	 *     *(T *)(rX + <off>) = rY
5302	 *     rX = *(T *)(rY + <off>),
5303	 * we remember original and resolved field size to adjust direct
5304	 * memory loads of pointers and integers; this is necessary for 32-bit
5305	 * host kernel architectures, but also allows to automatically
5306	 * relocate fields that were resized from, e.g., u32 to u64, etc.
5307	 */
5308	bool fail_memsz_adjust;
5309	__u32 orig_sz;
5310	__u32 orig_type_id;
5311	__u32 new_sz;
5312	__u32 new_type_id;
5313};
5314
5315/* Calculate original and target relocation values, given local and target
5316 * specs and relocation kind. These values are calculated for each candidate.
5317 * If there are multiple candidates, resulting values should all be consistent
5318 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
5319 * If instruction has to be poisoned, *poison will be set to true.
5320 */
5321static int bpf_core_calc_relo(const struct bpf_program *prog,
5322			      const struct bpf_core_relo *relo,
5323			      int relo_idx,
5324			      const struct bpf_core_spec *local_spec,
5325			      const struct bpf_core_spec *targ_spec,
5326			      struct bpf_core_relo_res *res)
5327{
5328	int err = -EOPNOTSUPP;
5329
5330	res->orig_val = 0;
5331	res->new_val = 0;
5332	res->poison = false;
5333	res->validate = true;
5334	res->fail_memsz_adjust = false;
5335	res->orig_sz = res->new_sz = 0;
5336	res->orig_type_id = res->new_type_id = 0;
5337
5338	if (core_relo_is_field_based(relo->kind)) {
5339		err = bpf_core_calc_field_relo(prog, relo, local_spec,
5340					       &res->orig_val, &res->orig_sz,
5341					       &res->orig_type_id, &res->validate);
5342		err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec,
5343						      &res->new_val, &res->new_sz,
5344						      &res->new_type_id, NULL);
5345		if (err)
5346			goto done;
5347		/* Validate if it's safe to adjust load/store memory size.
5348		 * Adjustments are performed only if original and new memory
5349		 * sizes differ.
5350		 */
5351		res->fail_memsz_adjust = false;
5352		if (res->orig_sz != res->new_sz) {
5353			const struct btf_type *orig_t, *new_t;
5354
5355			orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id);
5356			new_t = btf__type_by_id(targ_spec->btf, res->new_type_id);
5357
5358			/* There are two use cases in which it's safe to
5359			 * adjust load/store's mem size:
5360			 *   - reading a 32-bit kernel pointer, while on BPF
5361			 *   size pointers are always 64-bit; in this case
5362			 *   it's safe to "downsize" instruction size due to
5363			 *   pointer being treated as unsigned integer with
5364			 *   zero-extended upper 32-bits;
5365			 *   - reading unsigned integers, again due to
5366			 *   zero-extension is preserving the value correctly.
5367			 *
5368			 * In all other cases it's incorrect to attempt to
5369			 * load/store field because read value will be
5370			 * incorrect, so we poison relocated instruction.
5371			 */
5372			if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
5373				goto done;
5374			if (btf_is_int(orig_t) && btf_is_int(new_t) &&
5375			    btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
5376			    btf_int_encoding(new_t) != BTF_INT_SIGNED)
5377				goto done;
5378
5379			/* mark as invalid mem size adjustment, but this will
5380			 * only be checked for LDX/STX/ST insns
5381			 */
5382			res->fail_memsz_adjust = true;
5383		}
5384	} else if (core_relo_is_type_based(relo->kind)) {
5385		err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val);
5386		err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val);
5387	} else if (core_relo_is_enumval_based(relo->kind)) {
5388		err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
5389		err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
5390	}
5391
5392done:
5393	if (err == -EUCLEAN) {
5394		/* EUCLEAN is used to signal instruction poisoning request */
5395		res->poison = true;
5396		err = 0;
5397	} else if (err == -EOPNOTSUPP) {
5398		/* EOPNOTSUPP means unknown/unsupported relocation */
5399		pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
5400			prog->name, relo_idx, core_relo_kind_str(relo->kind),
5401			relo->kind, relo->insn_off / 8);
5402	}
5403
5404	return err;
5405}
5406
5407/*
5408 * Turn instruction for which CO_RE relocation failed into invalid one with
5409 * distinct signature.
5410 */
5411static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx,
5412				 int insn_idx, struct bpf_insn *insn)
5413{
5414	pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
5415		 prog->name, relo_idx, insn_idx);
5416	insn->code = BPF_JMP | BPF_CALL;
5417	insn->dst_reg = 0;
5418	insn->src_reg = 0;
5419	insn->off = 0;
5420	/* if this instruction is reachable (not a dead code),
5421	 * verifier will complain with the following message:
5422	 * invalid func unknown#195896080
5423	 */
5424	insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
5425}
5426
5427static bool is_ldimm64(struct bpf_insn *insn)
5428{
5429	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
5430}
5431
5432static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
5433{
5434	switch (BPF_SIZE(insn->code)) {
5435	case BPF_DW: return 8;
5436	case BPF_W: return 4;
5437	case BPF_H: return 2;
5438	case BPF_B: return 1;
5439	default: return -1;
5440	}
5441}
5442
5443static int insn_bytes_to_bpf_size(__u32 sz)
5444{
5445	switch (sz) {
5446	case 8: return BPF_DW;
5447	case 4: return BPF_W;
5448	case 2: return BPF_H;
5449	case 1: return BPF_B;
5450	default: return -1;
5451	}
5452}
5453
5454/*
5455 * Patch relocatable BPF instruction.
5456 *
5457 * Patched value is determined by relocation kind and target specification.
5458 * For existence relocations target spec will be NULL if field/type is not found.
5459 * Expected insn->imm value is determined using relocation kind and local
5460 * spec, and is checked before patching instruction. If actual insn->imm value
5461 * is wrong, bail out with error.
5462 *
5463 * Currently supported classes of BPF instruction are:
5464 * 1. rX = <imm> (assignment with immediate operand);
5465 * 2. rX += <imm> (arithmetic operations with immediate operand);
5466 * 3. rX = <imm64> (load with 64-bit immediate value);
5467 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
5468 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
5469 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
5470 */
5471static int bpf_core_patch_insn(struct bpf_program *prog,
5472			       const struct bpf_core_relo *relo,
5473			       int relo_idx,
5474			       const struct bpf_core_relo_res *res)
5475{
5476	__u32 orig_val, new_val;
5477	struct bpf_insn *insn;
5478	int insn_idx;
5479	__u8 class;
5480
5481	if (relo->insn_off % BPF_INSN_SZ)
5482		return -EINVAL;
5483	insn_idx = relo->insn_off / BPF_INSN_SZ;
5484	/* adjust insn_idx from section frame of reference to the local
5485	 * program's frame of reference; (sub-)program code is not yet
5486	 * relocated, so it's enough to just subtract in-section offset
5487	 */
5488	insn_idx = insn_idx - prog->sec_insn_off;
5489	insn = &prog->insns[insn_idx];
5490	class = BPF_CLASS(insn->code);
5491
5492	if (res->poison) {
5493poison:
5494		/* poison second part of ldimm64 to avoid confusing error from
5495		 * verifier about "unknown opcode 00"
5496		 */
5497		if (is_ldimm64(insn))
5498			bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1);
5499		bpf_core_poison_insn(prog, relo_idx, insn_idx, insn);
5500		return 0;
5501	}
5502
5503	orig_val = res->orig_val;
5504	new_val = res->new_val;
5505
5506	switch (class) {
5507	case BPF_ALU:
5508	case BPF_ALU64:
5509		if (BPF_SRC(insn->code) != BPF_K)
5510			return -EINVAL;
5511		if (res->validate && insn->imm != orig_val) {
5512			pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n",
5513				prog->name, relo_idx,
5514				insn_idx, insn->imm, orig_val, new_val);
5515			return -EINVAL;
5516		}
5517		orig_val = insn->imm;
5518		insn->imm = new_val;
5519		pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n",
5520			 prog->name, relo_idx, insn_idx,
5521			 orig_val, new_val);
5522		break;
5523	case BPF_LDX:
5524	case BPF_ST:
5525	case BPF_STX:
5526		if (res->validate && insn->off != orig_val) {
5527			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n",
5528				prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val);
5529			return -EINVAL;
5530		}
5531		if (new_val > SHRT_MAX) {
5532			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n",
5533				prog->name, relo_idx, insn_idx, new_val);
5534			return -ERANGE;
5535		}
5536		if (res->fail_memsz_adjust) {
5537			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
5538				"Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
5539				prog->name, relo_idx, insn_idx);
5540			goto poison;
5541		}
5542
5543		orig_val = insn->off;
5544		insn->off = new_val;
5545		pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n",
5546			 prog->name, relo_idx, insn_idx, orig_val, new_val);
5547
5548		if (res->new_sz != res->orig_sz) {
5549			int insn_bytes_sz, insn_bpf_sz;
5550
5551			insn_bytes_sz = insn_bpf_size_to_bytes(insn);
5552			if (insn_bytes_sz != res->orig_sz) {
5553				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
5554					prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
5555				return -EINVAL;
5556			}
5557
5558			insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
5559			if (insn_bpf_sz < 0) {
5560				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
5561					prog->name, relo_idx, insn_idx, res->new_sz);
5562				return -EINVAL;
5563			}
5564
5565			insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
5566			pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
5567				 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
5568		}
5569		break;
5570	case BPF_LD: {
5571		__u64 imm;
5572
5573		if (!is_ldimm64(insn) ||
5574		    insn[0].src_reg != 0 || insn[0].off != 0 ||
5575		    insn_idx + 1 >= prog->insns_cnt ||
5576		    insn[1].code != 0 || insn[1].dst_reg != 0 ||
5577		    insn[1].src_reg != 0 || insn[1].off != 0) {
5578			pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
5579				prog->name, relo_idx, insn_idx);
5580			return -EINVAL;
5581		}
5582
5583		imm = insn[0].imm + ((__u64)insn[1].imm << 32);
5584		if (res->validate && imm != orig_val) {
5585			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n",
5586				prog->name, relo_idx,
5587				insn_idx, (unsigned long long)imm,
5588				orig_val, new_val);
5589			return -EINVAL;
5590		}
5591
5592		insn[0].imm = new_val;
5593		insn[1].imm = 0; /* currently only 32-bit values are supported */
5594		pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n",
5595			 prog->name, relo_idx, insn_idx,
5596			 (unsigned long long)imm, new_val);
5597		break;
5598	}
5599	default:
5600		pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
5601			prog->name, relo_idx, insn_idx, insn->code,
5602			insn->src_reg, insn->dst_reg, insn->off, insn->imm);
5603		return -EINVAL;
5604	}
5605
5606	return 0;
5607}
5608
5609/* Output spec definition in the format:
5610 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
5611 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
5612 */
5613static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec)
5614{
5615	const struct btf_type *t;
5616	const struct btf_enum *e;
5617	const char *s;
5618	__u32 type_id;
5619	int i;
5620
5621	type_id = spec->root_type_id;
5622	t = btf__type_by_id(spec->btf, type_id);
5623	s = btf__name_by_offset(spec->btf, t->name_off);
5624
5625	libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
5626
5627	if (core_relo_is_type_based(spec->relo_kind))
5628		return;
5629
5630	if (core_relo_is_enumval_based(spec->relo_kind)) {
5631		t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
5632		e = btf_enum(t) + spec->raw_spec[0];
5633		s = btf__name_by_offset(spec->btf, e->name_off);
5634
5635		libbpf_print(level, "::%s = %u", s, e->val);
5636		return;
5637	}
5638
5639	if (core_relo_is_field_based(spec->relo_kind)) {
5640		for (i = 0; i < spec->len; i++) {
5641			if (spec->spec[i].name)
5642				libbpf_print(level, ".%s", spec->spec[i].name);
5643			else if (i > 0 || spec->spec[i].idx > 0)
5644				libbpf_print(level, "[%u]", spec->spec[i].idx);
5645		}
5646
5647		libbpf_print(level, " (");
5648		for (i = 0; i < spec->raw_len; i++)
5649			libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
5650
5651		if (spec->bit_offset % 8)
5652			libbpf_print(level, " @ offset %u.%u)",
5653				     spec->bit_offset / 8, spec->bit_offset % 8);
5654		else
5655			libbpf_print(level, " @ offset %u)", spec->bit_offset / 8);
5656		return;
5657	}
5658}
5659
5660static size_t bpf_core_hash_fn(const void *key, void *ctx)
5661{
5662	return (size_t)key;
5663}
5664
5665static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5666{
5667	return k1 == k2;
5668}
5669
5670static void *u32_as_hash_key(__u32 x)
5671{
5672	return (void *)(uintptr_t)x;
5673}
5674
5675/*
5676 * CO-RE relocate single instruction.
5677 *
5678 * The outline and important points of the algorithm:
5679 * 1. For given local type, find corresponding candidate target types.
5680 *    Candidate type is a type with the same "essential" name, ignoring
5681 *    everything after last triple underscore (___). E.g., `sample`,
5682 *    `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
5683 *    for each other. Names with triple underscore are referred to as
5684 *    "flavors" and are useful, among other things, to allow to
5685 *    specify/support incompatible variations of the same kernel struct, which
5686 *    might differ between different kernel versions and/or build
5687 *    configurations.
5688 *
5689 *    N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
5690 *    converter, when deduplicated BTF of a kernel still contains more than
5691 *    one different types with the same name. In that case, ___2, ___3, etc
5692 *    are appended starting from second name conflict. But start flavors are
5693 *    also useful to be defined "locally", in BPF program, to extract same
5694 *    data from incompatible changes between different kernel
5695 *    versions/configurations. For instance, to handle field renames between
5696 *    kernel versions, one can use two flavors of the struct name with the
5697 *    same common name and use conditional relocations to extract that field,
5698 *    depending on target kernel version.
5699 * 2. For each candidate type, try to match local specification to this
5700 *    candidate target type. Matching involves finding corresponding
5701 *    high-level spec accessors, meaning that all named fields should match,
5702 *    as well as all array accesses should be within the actual bounds. Also,
5703 *    types should be compatible (see bpf_core_fields_are_compat for details).
5704 * 3. It is supported and expected that there might be multiple flavors
5705 *    matching the spec. As long as all the specs resolve to the same set of
5706 *    offsets across all candidates, there is no error. If there is any
5707 *    ambiguity, CO-RE relocation will fail. This is necessary to accomodate
5708 *    imprefection of BTF deduplication, which can cause slight duplication of
5709 *    the same BTF type, if some directly or indirectly referenced (by
5710 *    pointer) type gets resolved to different actual types in different
5711 *    object files. If such situation occurs, deduplicated BTF will end up
5712 *    with two (or more) structurally identical types, which differ only in
5713 *    types they refer to through pointer. This should be OK in most cases and
5714 *    is not an error.
5715 * 4. Candidate types search is performed by linearly scanning through all
5716 *    types in target BTF. It is anticipated that this is overall more
5717 *    efficient memory-wise and not significantly worse (if not better)
5718 *    CPU-wise compared to prebuilding a map from all local type names to
5719 *    a list of candidate type names. It's also sped up by caching resolved
5720 *    list of matching candidates per each local "root" type ID, that has at
5721 *    least one bpf_core_relo associated with it. This list is shared
5722 *    between multiple relocations for the same type ID and is updated as some
5723 *    of the candidates are pruned due to structural incompatibility.
5724 */
5725static int bpf_core_apply_relo(struct bpf_program *prog,
5726			       const struct bpf_core_relo *relo,
5727			       int relo_idx,
5728			       const struct btf *local_btf,
5729			       const struct btf *targ_btf,
5730			       struct hashmap *cand_cache)
5731{
5732	struct bpf_core_spec local_spec, cand_spec, targ_spec = {};
5733	const void *type_key = u32_as_hash_key(relo->type_id);
5734	struct bpf_core_relo_res cand_res, targ_res;
5735	const struct btf_type *local_type;
5736	const char *local_name;
5737	struct ids_vec *cand_ids;
5738	__u32 local_id, cand_id;
5739	const char *spec_str;
5740	int i, j, err;
5741
5742	local_id = relo->type_id;
5743	local_type = btf__type_by_id(local_btf, local_id);
5744	if (!local_type)
5745		return -EINVAL;
5746
5747	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5748	if (!local_name)
5749		return -EINVAL;
5750
5751	spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
5752	if (str_is_empty(spec_str))
5753		return -EINVAL;
5754
5755	err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec);
5756	if (err) {
5757		pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
5758			prog->name, relo_idx, local_id, btf_kind_str(local_type),
5759			str_is_empty(local_name) ? "<anon>" : local_name,
5760			spec_str, err);
5761		return -EINVAL;
5762	}
5763
5764	pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name,
5765		 relo_idx, core_relo_kind_str(relo->kind), relo->kind);
5766	bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec);
5767	libbpf_print(LIBBPF_DEBUG, "\n");
5768
5769	/* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
5770	if (relo->kind == BPF_TYPE_ID_LOCAL) {
5771		targ_res.validate = true;
5772		targ_res.poison = false;
5773		targ_res.orig_val = local_spec.root_type_id;
5774		targ_res.new_val = local_spec.root_type_id;
5775		goto patch_insn;
5776	}
5777
5778	/* libbpf doesn't support candidate search for anonymous types */
5779	if (str_is_empty(spec_str)) {
5780		pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
5781			prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
5782		return -EOPNOTSUPP;
5783	}
5784
5785	if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) {
5786		cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf);
5787		if (IS_ERR(cand_ids)) {
5788			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld",
5789				prog->name, relo_idx, local_id, btf_kind_str(local_type),
5790				local_name, PTR_ERR(cand_ids));
5791			return PTR_ERR(cand_ids);
5792		}
5793		err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL);
5794		if (err) {
5795			bpf_core_free_cands(cand_ids);
5796			return err;
5797		}
5798	}
5799
5800	for (i = 0, j = 0; i < cand_ids->len; i++) {
5801		cand_id = cand_ids->data[i];
5802		err = bpf_core_spec_match(&local_spec, targ_btf, cand_id, &cand_spec);
5803		if (err < 0) {
5804			pr_warn("prog '%s': relo #%d: error matching candidate #%d ",
5805				prog->name, relo_idx, i);
5806			bpf_core_dump_spec(LIBBPF_WARN, &cand_spec);
5807			libbpf_print(LIBBPF_WARN, ": %d\n", err);
5808			return err;
5809		}
5810
5811		pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name,
5812			 relo_idx, err == 0 ? "non-matching" : "matching", i);
5813		bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec);
5814		libbpf_print(LIBBPF_DEBUG, "\n");
5815
5816		if (err == 0)
5817			continue;
5818
5819		err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res);
5820		if (err)
5821			return err;
5822
5823		if (j == 0) {
5824			targ_res = cand_res;
5825			targ_spec = cand_spec;
5826		} else if (cand_spec.bit_offset != targ_spec.bit_offset) {
5827			/* if there are many field relo candidates, they
5828			 * should all resolve to the same bit offset
5829			 */
5830			pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
5831				prog->name, relo_idx, cand_spec.bit_offset,
5832				targ_spec.bit_offset);
5833			return -EINVAL;
5834		} else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) {
5835			/* all candidates should result in the same relocation
5836			 * decision and value, otherwise it's dangerous to
5837			 * proceed due to ambiguity
5838			 */
5839			pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n",
5840				prog->name, relo_idx,
5841				cand_res.poison ? "failure" : "success", cand_res.new_val,
5842				targ_res.poison ? "failure" : "success", targ_res.new_val);
5843			return -EINVAL;
5844		}
5845
5846		cand_ids->data[j++] = cand_spec.root_type_id;
5847	}
5848
5849	/*
5850	 * For BPF_FIELD_EXISTS relo or when used BPF program has field
5851	 * existence checks or kernel version/config checks, it's expected
5852	 * that we might not find any candidates. In this case, if field
5853	 * wasn't found in any candidate, the list of candidates shouldn't
5854	 * change at all, we'll just handle relocating appropriately,
5855	 * depending on relo's kind.
5856	 */
5857	if (j > 0)
5858		cand_ids->len = j;
5859
5860	/*
5861	 * If no candidates were found, it might be both a programmer error,
5862	 * as well as expected case, depending whether instruction w/
5863	 * relocation is guarded in some way that makes it unreachable (dead
5864	 * code) if relocation can't be resolved. This is handled in
5865	 * bpf_core_patch_insn() uniformly by replacing that instruction with
5866	 * BPF helper call insn (using invalid helper ID). If that instruction
5867	 * is indeed unreachable, then it will be ignored and eliminated by
5868	 * verifier. If it was an error, then verifier will complain and point
5869	 * to a specific instruction number in its log.
5870	 */
5871	if (j == 0) {
5872		pr_debug("prog '%s': relo #%d: no matching targets found\n",
5873			 prog->name, relo_idx);
5874
5875		/* calculate single target relo result explicitly */
5876		err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res);
5877		if (err)
5878			return err;
5879	}
5880
5881patch_insn:
5882	/* bpf_core_patch_insn() should know how to handle missing targ_spec */
5883	err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res);
5884	if (err) {
5885		pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n",
5886			prog->name, relo_idx, relo->insn_off, err);
5887		return -EINVAL;
5888	}
5889
5890	return 0;
5891}
5892
5893static int
5894bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5895{
5896	const struct btf_ext_info_sec *sec;
5897	const struct bpf_core_relo *rec;
5898	const struct btf_ext_info *seg;
5899	struct hashmap_entry *entry;
5900	struct hashmap *cand_cache = NULL;
5901	struct bpf_program *prog;
5902	struct btf *targ_btf;
5903	const char *sec_name;
5904	int i, err = 0, insn_idx, sec_idx;
5905
5906	if (obj->btf_ext->core_relo_info.len == 0)
5907		return 0;
5908
5909	if (targ_btf_path)
5910		targ_btf = btf__parse(targ_btf_path, NULL);
5911	else
5912		targ_btf = obj->btf_vmlinux;
5913	if (IS_ERR_OR_NULL(targ_btf)) {
5914		pr_warn("failed to get target BTF: %ld\n", PTR_ERR(targ_btf));
5915		return PTR_ERR(targ_btf);
5916	}
5917
5918	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5919	if (IS_ERR(cand_cache)) {
5920		err = PTR_ERR(cand_cache);
5921		goto out;
5922	}
5923
5924	seg = &obj->btf_ext->core_relo_info;
5925	for_each_btf_ext_sec(seg, sec) {
5926		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5927		if (str_is_empty(sec_name)) {
5928			err = -EINVAL;
5929			goto out;
5930		}
5931		/* bpf_object's ELF is gone by now so it's not easy to find
5932		 * section index by section name, but we can find *any*
5933		 * bpf_program within desired section name and use it's
5934		 * prog->sec_idx to do a proper search by section index and
5935		 * instruction offset
5936		 */
5937		prog = NULL;
5938		for (i = 0; i < obj->nr_programs; i++) {
5939			if (strcmp(obj->programs[i].sec_name, sec_name) == 0) {
5940				prog = &obj->programs[i];
5941				break;
5942			}
5943		}
5944		if (!prog) {
5945			pr_warn("sec '%s': failed to find a BPF program\n", sec_name);
5946			return -ENOENT;
5947		}
5948		sec_idx = prog->sec_idx;
5949
5950		pr_debug("sec '%s': found %d CO-RE relocations\n",
5951			 sec_name, sec->num_info);
5952
5953		for_each_btf_ext_rec(seg, sec, i, rec) {
5954			insn_idx = rec->insn_off / BPF_INSN_SZ;
5955			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5956			if (!prog) {
5957				/* When __weak subprog is "overridden" by another instance
5958				 * of the subprog from a different object file, linker still
5959				 * appends all the .BTF.ext info that used to belong to that
5960				 * eliminated subprogram.
5961				 * This is similar to what x86-64 linker does for relocations.
5962				 * So just ignore such relocations just like we ignore
5963				 * subprog instructions when discovering subprograms.
5964				 */
5965				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5966					 sec_name, i, insn_idx);
5967				continue;
5968			}
5969			/* no need to apply CO-RE relocation if the program is
5970			 * not going to be loaded
5971			 */
5972			if (!prog->load)
5973				continue;
5974
5975			err = bpf_core_apply_relo(prog, rec, i, obj->btf,
5976						  targ_btf, cand_cache);
5977			if (err) {
5978				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5979					prog->name, i, err);
5980				goto out;
5981			}
5982		}
5983	}
5984
5985out:
5986	/* obj->btf_vmlinux is freed at the end of object load phase */
5987	if (targ_btf != obj->btf_vmlinux)
5988		btf__free(targ_btf);
5989	if (!IS_ERR_OR_NULL(cand_cache)) {
5990		hashmap__for_each_entry(cand_cache, entry, i) {
5991			bpf_core_free_cands(entry->value);
5992		}
5993		hashmap__free(cand_cache);
5994	}
5995	return err;
5996}
5997
5998/* Relocate data references within program code:
5999 *  - map references;
6000 *  - global variable references;
6001 *  - extern references.
6002 */
6003static int
6004bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6005{
6006	int i;
6007
6008	for (i = 0; i < prog->nr_reloc; i++) {
6009		struct reloc_desc *relo = &prog->reloc_desc[i];
6010		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6011		struct extern_desc *ext;
6012
6013		switch (relo->type) {
6014		case RELO_LD64:
6015			insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6016			insn[0].imm = obj->maps[relo->map_idx].fd;
6017			relo->processed = true;
6018			break;
6019		case RELO_DATA:
6020			insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6021			insn[1].imm = insn[0].imm + relo->sym_off;
6022			insn[0].imm = obj->maps[relo->map_idx].fd;
6023			relo->processed = true;
6024			break;
6025		case RELO_EXTERN:
6026			ext = &obj->externs[relo->sym_off];
6027			if (ext->type == EXT_KCFG) {
6028				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6029				insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6030				insn[1].imm = ext->kcfg.data_off;
6031			} else /* EXT_KSYM */ {
6032				if (ext->ksym.type_id) { /* typed ksyms */
6033					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6034					insn[0].imm = ext->ksym.vmlinux_btf_id;
6035				} else { /* typeless ksyms */
6036					insn[0].imm = (__u32)ext->ksym.addr;
6037					insn[1].imm = ext->ksym.addr >> 32;
6038				}
6039			}
6040			relo->processed = true;
6041			break;
6042		case RELO_CALL:
6043			/* will be handled as a follow up pass */
6044			break;
6045		default:
6046			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6047				prog->name, i, relo->type);
6048			return -EINVAL;
6049		}
6050	}
6051
6052	return 0;
6053}
6054
6055static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6056				    const struct bpf_program *prog,
6057				    const struct btf_ext_info *ext_info,
6058				    void **prog_info, __u32 *prog_rec_cnt,
6059				    __u32 *prog_rec_sz)
6060{
6061	void *copy_start = NULL, *copy_end = NULL;
6062	void *rec, *rec_end, *new_prog_info;
6063	const struct btf_ext_info_sec *sec;
6064	size_t old_sz, new_sz;
6065	const char *sec_name;
6066	int i, off_adj;
6067
6068	for_each_btf_ext_sec(ext_info, sec) {
6069		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
6070		if (!sec_name)
6071			return -EINVAL;
6072		if (strcmp(sec_name, prog->sec_name) != 0)
6073			continue;
6074
6075		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6076			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6077
6078			if (insn_off < prog->sec_insn_off)
6079				continue;
6080			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6081				break;
6082
6083			if (!copy_start)
6084				copy_start = rec;
6085			copy_end = rec + ext_info->rec_size;
6086		}
6087
6088		if (!copy_start)
6089			return -ENOENT;
6090
6091		/* append func/line info of a given (sub-)program to the main
6092		 * program func/line info
6093		 */
6094		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6095		new_sz = old_sz + (copy_end - copy_start);
6096		new_prog_info = realloc(*prog_info, new_sz);
6097		if (!new_prog_info)
6098			return -ENOMEM;
6099		*prog_info = new_prog_info;
6100		*prog_rec_cnt = new_sz / ext_info->rec_size;
6101		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6102
6103		/* Kernel instruction offsets are in units of 8-byte
6104		 * instructions, while .BTF.ext instruction offsets generated
6105		 * by Clang are in units of bytes. So convert Clang offsets
6106		 * into kernel offsets and adjust offset according to program
6107		 * relocated position.
6108		 */
6109		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6110		rec = new_prog_info + old_sz;
6111		rec_end = new_prog_info + new_sz;
6112		for (; rec < rec_end; rec += ext_info->rec_size) {
6113			__u32 *insn_off = rec;
6114
6115			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6116		}
6117		*prog_rec_sz = ext_info->rec_size;
6118		return 0;
6119	}
6120
6121	return -ENOENT;
6122}
6123
6124static int
6125reloc_prog_func_and_line_info(const struct bpf_object *obj,
6126			      struct bpf_program *main_prog,
6127			      const struct bpf_program *prog)
6128{
6129	int err;
6130
6131	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6132	 * supprot func/line info
6133	 */
6134	if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC))
6135		return 0;
6136
6137	/* only attempt func info relocation if main program's func_info
6138	 * relocation was successful
6139	 */
6140	if (main_prog != prog && !main_prog->func_info)
6141		goto line_info;
6142
6143	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6144				       &main_prog->func_info,
6145				       &main_prog->func_info_cnt,
6146				       &main_prog->func_info_rec_size);
6147	if (err) {
6148		if (err != -ENOENT) {
6149			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6150				prog->name, err);
6151			return err;
6152		}
6153		if (main_prog->func_info) {
6154			/*
6155			 * Some info has already been found but has problem
6156			 * in the last btf_ext reloc. Must have to error out.
6157			 */
6158			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6159			return err;
6160		}
6161		/* Have problem loading the very first info. Ignore the rest. */
6162		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6163			prog->name);
6164	}
6165
6166line_info:
6167	/* don't relocate line info if main program's relocation failed */
6168	if (main_prog != prog && !main_prog->line_info)
6169		return 0;
6170
6171	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6172				       &main_prog->line_info,
6173				       &main_prog->line_info_cnt,
6174				       &main_prog->line_info_rec_size);
6175	if (err) {
6176		if (err != -ENOENT) {
6177			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6178				prog->name, err);
6179			return err;
6180		}
6181		if (main_prog->line_info) {
6182			/*
6183			 * Some info has already been found but has problem
6184			 * in the last btf_ext reloc. Must have to error out.
6185			 */
6186			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6187			return err;
6188		}
6189		/* Have problem loading the very first info. Ignore the rest. */
6190		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6191			prog->name);
6192	}
6193	return 0;
6194}
6195
6196static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6197{
6198	size_t insn_idx = *(const size_t *)key;
6199	const struct reloc_desc *relo = elem;
6200
6201	if (insn_idx == relo->insn_idx)
6202		return 0;
6203	return insn_idx < relo->insn_idx ? -1 : 1;
6204}
6205
6206static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6207{
6208	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6209		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6210}
6211
6212static int
6213bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6214		       struct bpf_program *prog)
6215{
6216	size_t sub_insn_idx, insn_idx, new_cnt;
6217	struct bpf_program *subprog;
6218	struct bpf_insn *insns, *insn;
6219	struct reloc_desc *relo;
6220	int err;
6221
6222	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6223	if (err)
6224		return err;
6225
6226	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6227		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6228		if (!insn_is_subprog_call(insn))
6229			continue;
6230
6231		relo = find_prog_insn_relo(prog, insn_idx);
6232		if (relo && relo->type != RELO_CALL) {
6233			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6234				prog->name, insn_idx, relo->type);
6235			return -LIBBPF_ERRNO__RELOC;
6236		}
6237		if (relo) {
6238			/* sub-program instruction index is a combination of
6239			 * an offset of a symbol pointed to by relocation and
6240			 * call instruction's imm field; for global functions,
6241			 * call always has imm = -1, but for static functions
6242			 * relocation is against STT_SECTION and insn->imm
6243			 * points to a start of a static function
6244			 */
6245			sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6246		} else {
6247			/* if subprogram call is to a static function within
6248			 * the same ELF section, there won't be any relocation
6249			 * emitted, but it also means there is no additional
6250			 * offset necessary, insns->imm is relative to
6251			 * instruction's original position within the section
6252			 */
6253			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6254		}
6255
6256		/* we enforce that sub-programs should be in .text section */
6257		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6258		if (!subprog) {
6259			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6260				prog->name);
6261			return -LIBBPF_ERRNO__RELOC;
6262		}
6263
6264		/* if it's the first call instruction calling into this
6265		 * subprogram (meaning this subprog hasn't been processed
6266		 * yet) within the context of current main program:
6267		 *   - append it at the end of main program's instructions blog;
6268		 *   - process is recursively, while current program is put on hold;
6269		 *   - if that subprogram calls some other not yet processes
6270		 *   subprogram, same thing will happen recursively until
6271		 *   there are no more unprocesses subprograms left to append
6272		 *   and relocate.
6273		 */
6274		if (subprog->sub_insn_off == 0) {
6275			subprog->sub_insn_off = main_prog->insns_cnt;
6276
6277			new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6278			insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6279			if (!insns) {
6280				pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6281				return -ENOMEM;
6282			}
6283			main_prog->insns = insns;
6284			main_prog->insns_cnt = new_cnt;
6285
6286			memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6287			       subprog->insns_cnt * sizeof(*insns));
6288
6289			pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6290				 main_prog->name, subprog->insns_cnt, subprog->name);
6291
6292			err = bpf_object__reloc_code(obj, main_prog, subprog);
6293			if (err)
6294				return err;
6295		}
6296
6297		/* main_prog->insns memory could have been re-allocated, so
6298		 * calculate pointer again
6299		 */
6300		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6301		/* calculate correct instruction position within current main
6302		 * prog; each main prog can have a different set of
6303		 * subprograms appended (potentially in different order as
6304		 * well), so position of any subprog can be different for
6305		 * different main programs */
6306		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6307
6308		if (relo)
6309			relo->processed = true;
6310
6311		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6312			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6313	}
6314
6315	return 0;
6316}
6317
6318/*
6319 * Relocate sub-program calls.
6320 *
6321 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6322 * main prog) is processed separately. For each subprog (non-entry functions,
6323 * that can be called from either entry progs or other subprogs) gets their
6324 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6325 * hasn't been yet appended and relocated within current main prog. Once its
6326 * relocated, sub_insn_off will point at the position within current main prog
6327 * where given subprog was appended. This will further be used to relocate all
6328 * the call instructions jumping into this subprog.
6329 *
6330 * We start with main program and process all call instructions. If the call
6331 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6332 * is zero), subprog instructions are appended at the end of main program's
6333 * instruction array. Then main program is "put on hold" while we recursively
6334 * process newly appended subprogram. If that subprogram calls into another
6335 * subprogram that hasn't been appended, new subprogram is appended again to
6336 * the *main* prog's instructions (subprog's instructions are always left
6337 * untouched, as they need to be in unmodified state for subsequent main progs
6338 * and subprog instructions are always sent only as part of a main prog) and
6339 * the process continues recursively. Once all the subprogs called from a main
6340 * prog or any of its subprogs are appended (and relocated), all their
6341 * positions within finalized instructions array are known, so it's easy to
6342 * rewrite call instructions with correct relative offsets, corresponding to
6343 * desired target subprog.
6344 *
6345 * Its important to realize that some subprogs might not be called from some
6346 * main prog and any of its called/used subprogs. Those will keep their
6347 * subprog->sub_insn_off as zero at all times and won't be appended to current
6348 * main prog and won't be relocated within the context of current main prog.
6349 * They might still be used from other main progs later.
6350 *
6351 * Visually this process can be shown as below. Suppose we have two main
6352 * programs mainA and mainB and BPF object contains three subprogs: subA,
6353 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6354 * subC both call subB:
6355 *
6356 *        +--------+ +-------+
6357 *        |        v v       |
6358 *     +--+---+ +--+-+-+ +---+--+
6359 *     | subA | | subB | | subC |
6360 *     +--+---+ +------+ +---+--+
6361 *        ^                  ^
6362 *        |                  |
6363 *    +---+-------+   +------+----+
6364 *    |   mainA   |   |   mainB   |
6365 *    +-----------+   +-----------+
6366 *
6367 * We'll start relocating mainA, will find subA, append it and start
6368 * processing sub A recursively:
6369 *
6370 *    +-----------+------+
6371 *    |   mainA   | subA |
6372 *    +-----------+------+
6373 *
6374 * At this point we notice that subB is used from subA, so we append it and
6375 * relocate (there are no further subcalls from subB):
6376 *
6377 *    +-----------+------+------+
6378 *    |   mainA   | subA | subB |
6379 *    +-----------+------+------+
6380 *
6381 * At this point, we relocate subA calls, then go one level up and finish with
6382 * relocatin mainA calls. mainA is done.
6383 *
6384 * For mainB process is similar but results in different order. We start with
6385 * mainB and skip subA and subB, as mainB never calls them (at least
6386 * directly), but we see subC is needed, so we append and start processing it:
6387 *
6388 *    +-----------+------+
6389 *    |   mainB   | subC |
6390 *    +-----------+------+
6391 * Now we see subC needs subB, so we go back to it, append and relocate it:
6392 *
6393 *    +-----------+------+------+
6394 *    |   mainB   | subC | subB |
6395 *    +-----------+------+------+
6396 *
6397 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6398 */
6399static int
6400bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6401{
6402	struct bpf_program *subprog;
6403	int i, j, err;
6404
6405	/* mark all subprogs as not relocated (yet) within the context of
6406	 * current main program
6407	 */
6408	for (i = 0; i < obj->nr_programs; i++) {
6409		subprog = &obj->programs[i];
6410		if (!prog_is_subprog(obj, subprog))
6411			continue;
6412
6413		subprog->sub_insn_off = 0;
6414		for (j = 0; j < subprog->nr_reloc; j++)
6415			if (subprog->reloc_desc[j].type == RELO_CALL)
6416				subprog->reloc_desc[j].processed = false;
6417	}
6418
6419	err = bpf_object__reloc_code(obj, prog, prog);
6420	if (err)
6421		return err;
6422
6423
6424	return 0;
6425}
6426
6427static int
6428bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6429{
6430	struct bpf_program *prog;
6431	size_t i;
6432	int err;
6433
6434	if (obj->btf_ext) {
6435		err = bpf_object__relocate_core(obj, targ_btf_path);
6436		if (err) {
6437			pr_warn("failed to perform CO-RE relocations: %d\n",
6438				err);
6439			return err;
6440		}
6441	}
6442	/* relocate data references first for all programs and sub-programs,
6443	 * as they don't change relative to code locations, so subsequent
6444	 * subprogram processing won't need to re-calculate any of them
6445	 */
6446	for (i = 0; i < obj->nr_programs; i++) {
6447		prog = &obj->programs[i];
6448		err = bpf_object__relocate_data(obj, prog);
6449		if (err) {
6450			pr_warn("prog '%s': failed to relocate data references: %d\n",
6451				prog->name, err);
6452			return err;
6453		}
6454	}
6455	/* now relocate subprogram calls and append used subprograms to main
6456	 * programs; each copy of subprogram code needs to be relocated
6457	 * differently for each main program, because its code location might
6458	 * have changed
6459	 */
6460	for (i = 0; i < obj->nr_programs; i++) {
6461		prog = &obj->programs[i];
6462		/* sub-program's sub-calls are relocated within the context of
6463		 * its main program only
6464		 */
6465		if (prog_is_subprog(obj, prog))
6466			continue;
6467
6468		err = bpf_object__relocate_calls(obj, prog);
6469		if (err) {
6470			pr_warn("prog '%s': failed to relocate calls: %d\n",
6471				prog->name, err);
6472			return err;
6473		}
6474	}
6475	/* free up relocation descriptors */
6476	for (i = 0; i < obj->nr_programs; i++) {
6477		prog = &obj->programs[i];
6478		zfree(&prog->reloc_desc);
6479		prog->nr_reloc = 0;
6480	}
6481	return 0;
6482}
6483
6484static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6485					    GElf_Shdr *shdr, Elf_Data *data);
6486
6487static int bpf_object__collect_map_relos(struct bpf_object *obj,
6488					 GElf_Shdr *shdr, Elf_Data *data)
6489{
6490	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6491	int i, j, nrels, new_sz;
6492	const struct btf_var_secinfo *vi = NULL;
6493	const struct btf_type *sec, *var, *def;
6494	struct bpf_map *map = NULL, *targ_map;
6495	const struct btf_member *member;
6496	const char *name, *mname;
6497	Elf_Data *symbols;
6498	unsigned int moff;
6499	GElf_Sym sym;
6500	GElf_Rel rel;
6501	void *tmp;
6502
6503	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6504		return -EINVAL;
6505	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6506	if (!sec)
6507		return -EINVAL;
6508
6509	symbols = obj->efile.symbols;
6510	nrels = shdr->sh_size / shdr->sh_entsize;
6511	for (i = 0; i < nrels; i++) {
6512		if (!gelf_getrel(data, i, &rel)) {
6513			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6514			return -LIBBPF_ERRNO__FORMAT;
6515		}
6516		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
6517			pr_warn(".maps relo #%d: symbol %zx not found\n",
6518				i, (size_t)GELF_R_SYM(rel.r_info));
6519			return -LIBBPF_ERRNO__FORMAT;
6520		}
6521		name = elf_sym_str(obj, sym.st_name) ?: "<?>";
6522		if (sym.st_shndx != obj->efile.btf_maps_shndx) {
6523			pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6524				i, name);
6525			return -LIBBPF_ERRNO__RELOC;
6526		}
6527
6528		pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n",
6529			 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value,
6530			 (size_t)rel.r_offset, sym.st_name, name);
6531
6532		for (j = 0; j < obj->nr_maps; j++) {
6533			map = &obj->maps[j];
6534			if (map->sec_idx != obj->efile.btf_maps_shndx)
6535				continue;
6536
6537			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6538			if (vi->offset <= rel.r_offset &&
6539			    rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6540				break;
6541		}
6542		if (j == obj->nr_maps) {
6543			pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n",
6544				i, name, (size_t)rel.r_offset);
6545			return -EINVAL;
6546		}
6547
6548		if (!bpf_map_type__is_map_in_map(map->def.type))
6549			return -EINVAL;
6550		if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6551		    map->def.key_size != sizeof(int)) {
6552			pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6553				i, map->name, sizeof(int));
6554			return -EINVAL;
6555		}
6556
6557		targ_map = bpf_object__find_map_by_name(obj, name);
6558		if (!targ_map)
6559			return -ESRCH;
6560
6561		var = btf__type_by_id(obj->btf, vi->type);
6562		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6563		if (btf_vlen(def) == 0)
6564			return -EINVAL;
6565		member = btf_members(def) + btf_vlen(def) - 1;
6566		mname = btf__name_by_offset(obj->btf, member->name_off);
6567		if (strcmp(mname, "values"))
6568			return -EINVAL;
6569
6570		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6571		if (rel.r_offset - vi->offset < moff)
6572			return -EINVAL;
6573
6574		moff = rel.r_offset - vi->offset - moff;
6575		/* here we use BPF pointer size, which is always 64 bit, as we
6576		 * are parsing ELF that was built for BPF target
6577		 */
6578		if (moff % bpf_ptr_sz)
6579			return -EINVAL;
6580		moff /= bpf_ptr_sz;
6581		if (moff >= map->init_slots_sz) {
6582			new_sz = moff + 1;
6583			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6584			if (!tmp)
6585				return -ENOMEM;
6586			map->init_slots = tmp;
6587			memset(map->init_slots + map->init_slots_sz, 0,
6588			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6589			map->init_slots_sz = new_sz;
6590		}
6591		map->init_slots[moff] = targ_map;
6592
6593		pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n",
6594			 i, map->name, moff, name);
6595	}
6596
6597	return 0;
6598}
6599
6600static int cmp_relocs(const void *_a, const void *_b)
6601{
6602	const struct reloc_desc *a = _a;
6603	const struct reloc_desc *b = _b;
6604
6605	if (a->insn_idx != b->insn_idx)
6606		return a->insn_idx < b->insn_idx ? -1 : 1;
6607
6608	/* no two relocations should have the same insn_idx, but ... */
6609	if (a->type != b->type)
6610		return a->type < b->type ? -1 : 1;
6611
6612	return 0;
6613}
6614
6615static int bpf_object__collect_relos(struct bpf_object *obj)
6616{
6617	int i, err;
6618
6619	for (i = 0; i < obj->efile.nr_reloc_sects; i++) {
6620		GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr;
6621		Elf_Data *data = obj->efile.reloc_sects[i].data;
6622		int idx = shdr->sh_info;
6623
6624		if (shdr->sh_type != SHT_REL) {
6625			pr_warn("internal error at %d\n", __LINE__);
6626			return -LIBBPF_ERRNO__INTERNAL;
6627		}
6628
6629		if (idx == obj->efile.st_ops_shndx)
6630			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6631		else if (idx == obj->efile.btf_maps_shndx)
6632			err = bpf_object__collect_map_relos(obj, shdr, data);
6633		else
6634			err = bpf_object__collect_prog_relos(obj, shdr, data);
6635		if (err)
6636			return err;
6637	}
6638
6639	for (i = 0; i < obj->nr_programs; i++) {
6640		struct bpf_program *p = &obj->programs[i];
6641
6642		if (!p->nr_reloc)
6643			continue;
6644
6645		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6646	}
6647	return 0;
6648}
6649
6650static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6651{
6652	if (BPF_CLASS(insn->code) == BPF_JMP &&
6653	    BPF_OP(insn->code) == BPF_CALL &&
6654	    BPF_SRC(insn->code) == BPF_K &&
6655	    insn->src_reg == 0 &&
6656	    insn->dst_reg == 0) {
6657		    *func_id = insn->imm;
6658		    return true;
6659	}
6660	return false;
6661}
6662
6663static int bpf_object__sanitize_prog(struct bpf_object* obj, struct bpf_program *prog)
6664{
6665	struct bpf_insn *insn = prog->insns;
6666	enum bpf_func_id func_id;
6667	int i;
6668
6669	for (i = 0; i < prog->insns_cnt; i++, insn++) {
6670		if (!insn_is_helper_call(insn, &func_id))
6671			continue;
6672
6673		/* on kernels that don't yet support
6674		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6675		 * to bpf_probe_read() which works well for old kernels
6676		 */
6677		switch (func_id) {
6678		case BPF_FUNC_probe_read_kernel:
6679		case BPF_FUNC_probe_read_user:
6680			if (!kernel_supports(FEAT_PROBE_READ_KERN))
6681				insn->imm = BPF_FUNC_probe_read;
6682			break;
6683		case BPF_FUNC_probe_read_kernel_str:
6684		case BPF_FUNC_probe_read_user_str:
6685			if (!kernel_supports(FEAT_PROBE_READ_KERN))
6686				insn->imm = BPF_FUNC_probe_read_str;
6687			break;
6688		default:
6689			break;
6690		}
6691	}
6692	return 0;
6693}
6694
6695static int
6696load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt,
6697	     char *license, __u32 kern_version, int *pfd)
6698{
6699	struct bpf_load_program_attr load_attr;
6700	char *cp, errmsg[STRERR_BUFSIZE];
6701	size_t log_buf_size = 0;
6702	char *log_buf = NULL;
6703	int btf_fd, ret;
6704
6705	if (!insns || !insns_cnt)
6706		return -EINVAL;
6707
6708	memset(&load_attr, 0, sizeof(struct bpf_load_program_attr));
6709	load_attr.prog_type = prog->type;
6710	/* old kernels might not support specifying expected_attach_type */
6711	if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def &&
6712	    prog->sec_def->is_exp_attach_type_optional)
6713		load_attr.expected_attach_type = 0;
6714	else
6715		load_attr.expected_attach_type = prog->expected_attach_type;
6716	if (kernel_supports(FEAT_PROG_NAME))
6717		load_attr.name = prog->name;
6718	load_attr.insns = insns;
6719	load_attr.insns_cnt = insns_cnt;
6720	load_attr.license = license;
6721	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
6722	    prog->type == BPF_PROG_TYPE_LSM) {
6723		load_attr.attach_btf_id = prog->attach_btf_id;
6724	} else if (prog->type == BPF_PROG_TYPE_TRACING ||
6725		   prog->type == BPF_PROG_TYPE_EXT) {
6726		load_attr.attach_prog_fd = prog->attach_prog_fd;
6727		load_attr.attach_btf_id = prog->attach_btf_id;
6728	} else {
6729		load_attr.kern_version = kern_version;
6730		load_attr.prog_ifindex = prog->prog_ifindex;
6731	}
6732	/* specify func_info/line_info only if kernel supports them */
6733	btf_fd = bpf_object__btf_fd(prog->obj);
6734	if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) {
6735		load_attr.prog_btf_fd = btf_fd;
6736		load_attr.func_info = prog->func_info;
6737		load_attr.func_info_rec_size = prog->func_info_rec_size;
6738		load_attr.func_info_cnt = prog->func_info_cnt;
6739		load_attr.line_info = prog->line_info;
6740		load_attr.line_info_rec_size = prog->line_info_rec_size;
6741		load_attr.line_info_cnt = prog->line_info_cnt;
6742	}
6743	load_attr.log_level = prog->log_level;
6744	load_attr.prog_flags = prog->prog_flags;
6745
6746retry_load:
6747	if (log_buf_size) {
6748		log_buf = malloc(log_buf_size);
6749		if (!log_buf)
6750			return -ENOMEM;
6751
6752		*log_buf = 0;
6753	}
6754
6755	ret = bpf_load_program_xattr(&load_attr, log_buf, log_buf_size);
6756
6757	if (ret >= 0) {
6758		if (log_buf && load_attr.log_level)
6759			pr_debug("verifier log:\n%s", log_buf);
6760
6761		if (prog->obj->rodata_map_idx >= 0 &&
6762		    kernel_supports(FEAT_PROG_BIND_MAP)) {
6763			struct bpf_map *rodata_map =
6764				&prog->obj->maps[prog->obj->rodata_map_idx];
6765
6766			if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) {
6767				cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6768				pr_warn("prog '%s': failed to bind .rodata map: %s\n",
6769					prog->name, cp);
6770				/* Don't fail hard if can't bind rodata. */
6771			}
6772		}
6773
6774		*pfd = ret;
6775		ret = 0;
6776		goto out;
6777	}
6778
6779	if (!log_buf || errno == ENOSPC) {
6780		log_buf_size = max((size_t)BPF_LOG_BUF_SIZE,
6781				   log_buf_size << 1);
6782
6783		free(log_buf);
6784		goto retry_load;
6785	}
6786	ret = errno ? -errno : -LIBBPF_ERRNO__LOAD;
6787	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6788	pr_warn("load bpf program failed: %s\n", cp);
6789	pr_perm_msg(ret);
6790
6791	if (log_buf && log_buf[0] != '\0') {
6792		ret = -LIBBPF_ERRNO__VERIFY;
6793		pr_warn("-- BEGIN DUMP LOG ---\n");
6794		pr_warn("\n%s\n", log_buf);
6795		pr_warn("-- END LOG --\n");
6796	} else if (load_attr.insns_cnt >= BPF_MAXINSNS) {
6797		pr_warn("Program too large (%zu insns), at most %d insns\n",
6798			load_attr.insns_cnt, BPF_MAXINSNS);
6799		ret = -LIBBPF_ERRNO__PROG2BIG;
6800	} else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) {
6801		/* Wrong program type? */
6802		int fd;
6803
6804		load_attr.prog_type = BPF_PROG_TYPE_KPROBE;
6805		load_attr.expected_attach_type = 0;
6806		fd = bpf_load_program_xattr(&load_attr, NULL, 0);
6807		if (fd >= 0) {
6808			close(fd);
6809			ret = -LIBBPF_ERRNO__PROGTYPE;
6810			goto out;
6811		}
6812	}
6813
6814out:
6815	free(log_buf);
6816	return ret;
6817}
6818
6819static int libbpf_find_attach_btf_id(struct bpf_program *prog);
6820
6821int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver)
6822{
6823	int err = 0, fd, i, btf_id;
6824
6825	if (prog->obj->loaded) {
6826		pr_warn("prog '%s': can't load after object was loaded\n", prog->name);
6827		return -EINVAL;
6828	}
6829
6830	if ((prog->type == BPF_PROG_TYPE_TRACING ||
6831	     prog->type == BPF_PROG_TYPE_LSM ||
6832	     prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) {
6833		btf_id = libbpf_find_attach_btf_id(prog);
6834		if (btf_id <= 0)
6835			return btf_id;
6836		prog->attach_btf_id = btf_id;
6837	}
6838
6839	if (prog->instances.nr < 0 || !prog->instances.fds) {
6840		if (prog->preprocessor) {
6841			pr_warn("Internal error: can't load program '%s'\n",
6842				prog->name);
6843			return -LIBBPF_ERRNO__INTERNAL;
6844		}
6845
6846		prog->instances.fds = malloc(sizeof(int));
6847		if (!prog->instances.fds) {
6848			pr_warn("Not enough memory for BPF fds\n");
6849			return -ENOMEM;
6850		}
6851		prog->instances.nr = 1;
6852		prog->instances.fds[0] = -1;
6853	}
6854
6855	if (!prog->preprocessor) {
6856		if (prog->instances.nr != 1) {
6857			pr_warn("prog '%s': inconsistent nr(%d) != 1\n",
6858				prog->name, prog->instances.nr);
6859		}
6860		err = load_program(prog, prog->insns, prog->insns_cnt,
6861				   license, kern_ver, &fd);
6862		if (!err)
6863			prog->instances.fds[0] = fd;
6864		goto out;
6865	}
6866
6867	for (i = 0; i < prog->instances.nr; i++) {
6868		struct bpf_prog_prep_result result;
6869		bpf_program_prep_t preprocessor = prog->preprocessor;
6870
6871		memset(&result, 0, sizeof(result));
6872		err = preprocessor(prog, i, prog->insns,
6873				   prog->insns_cnt, &result);
6874		if (err) {
6875			pr_warn("Preprocessing the %dth instance of program '%s' failed\n",
6876				i, prog->name);
6877			goto out;
6878		}
6879
6880		if (!result.new_insn_ptr || !result.new_insn_cnt) {
6881			pr_debug("Skip loading the %dth instance of program '%s'\n",
6882				 i, prog->name);
6883			prog->instances.fds[i] = -1;
6884			if (result.pfd)
6885				*result.pfd = -1;
6886			continue;
6887		}
6888
6889		err = load_program(prog, result.new_insn_ptr,
6890				   result.new_insn_cnt, license, kern_ver, &fd);
6891		if (err) {
6892			pr_warn("Loading the %dth instance of program '%s' failed\n",
6893				i, prog->name);
6894			goto out;
6895		}
6896
6897		if (result.pfd)
6898			*result.pfd = fd;
6899		prog->instances.fds[i] = fd;
6900	}
6901out:
6902	if (err)
6903		pr_warn("failed to load program '%s'\n", prog->name);
6904	zfree(&prog->insns);
6905	prog->insns_cnt = 0;
6906	return err;
6907}
6908
6909static int
6910bpf_object__load_progs(struct bpf_object *obj, int log_level)
6911{
6912	struct bpf_program *prog;
6913	size_t i;
6914	int err;
6915
6916	for (i = 0; i < obj->nr_programs; i++) {
6917		prog = &obj->programs[i];
6918		err = bpf_object__sanitize_prog(obj, prog);
6919		if (err)
6920			return err;
6921	}
6922
6923	for (i = 0; i < obj->nr_programs; i++) {
6924		prog = &obj->programs[i];
6925		if (prog_is_subprog(obj, prog))
6926			continue;
6927		if (!prog->load) {
6928			pr_debug("prog '%s': skipped loading\n", prog->name);
6929			continue;
6930		}
6931		prog->log_level |= log_level;
6932		err = bpf_program__load(prog, obj->license, obj->kern_version);
6933		if (err)
6934			return err;
6935	}
6936	return 0;
6937}
6938
6939static const struct bpf_sec_def *find_sec_def(const char *sec_name);
6940
6941static struct bpf_object *
6942__bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz,
6943		   const struct bpf_object_open_opts *opts)
6944{
6945	const char *obj_name, *kconfig;
6946	struct bpf_program *prog;
6947	struct bpf_object *obj;
6948	char tmp_name[64];
6949	int err;
6950
6951	if (elf_version(EV_CURRENT) == EV_NONE) {
6952		pr_warn("failed to init libelf for %s\n",
6953			path ? : "(mem buf)");
6954		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
6955	}
6956
6957	if (!OPTS_VALID(opts, bpf_object_open_opts))
6958		return ERR_PTR(-EINVAL);
6959
6960	obj_name = OPTS_GET(opts, object_name, NULL);
6961	if (obj_buf) {
6962		if (!obj_name) {
6963			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
6964				 (unsigned long)obj_buf,
6965				 (unsigned long)obj_buf_sz);
6966			obj_name = tmp_name;
6967		}
6968		path = obj_name;
6969		pr_debug("loading object '%s' from buffer\n", obj_name);
6970	}
6971
6972	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
6973	if (IS_ERR(obj))
6974		return obj;
6975
6976	kconfig = OPTS_GET(opts, kconfig, NULL);
6977	if (kconfig) {
6978		obj->kconfig = strdup(kconfig);
6979		if (!obj->kconfig) {
6980			err = -ENOMEM;
6981			goto out;
6982		}
6983	}
6984
6985	err = bpf_object__elf_init(obj);
6986	err = err ? : bpf_object__check_endianness(obj);
6987	err = err ? : bpf_object__elf_collect(obj);
6988	err = err ? : bpf_object__collect_externs(obj);
6989	err = err ? : bpf_object__finalize_btf(obj);
6990	err = err ? : bpf_object__init_maps(obj, opts);
6991	err = err ? : bpf_object__collect_relos(obj);
6992	if (err)
6993		goto out;
6994	bpf_object__elf_finish(obj);
6995
6996	bpf_object__for_each_program(prog, obj) {
6997		prog->sec_def = find_sec_def(prog->sec_name);
6998		if (!prog->sec_def)
6999			/* couldn't guess, but user might manually specify */
7000			continue;
7001
7002		if (prog->sec_def->is_sleepable)
7003			prog->prog_flags |= BPF_F_SLEEPABLE;
7004		bpf_program__set_type(prog, prog->sec_def->prog_type);
7005		bpf_program__set_expected_attach_type(prog,
7006				prog->sec_def->expected_attach_type);
7007
7008		if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING ||
7009		    prog->sec_def->prog_type == BPF_PROG_TYPE_EXT)
7010			prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0);
7011	}
7012
7013	return obj;
7014out:
7015	bpf_object__close(obj);
7016	return ERR_PTR(err);
7017}
7018
7019static struct bpf_object *
7020__bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags)
7021{
7022	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7023		.relaxed_maps = flags & MAPS_RELAX_COMPAT,
7024	);
7025
7026	/* param validation */
7027	if (!attr->file)
7028		return NULL;
7029
7030	pr_debug("loading %s\n", attr->file);
7031	return __bpf_object__open(attr->file, NULL, 0, &opts);
7032}
7033
7034struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr)
7035{
7036	return __bpf_object__open_xattr(attr, 0);
7037}
7038
7039struct bpf_object *bpf_object__open(const char *path)
7040{
7041	struct bpf_object_open_attr attr = {
7042		.file		= path,
7043		.prog_type	= BPF_PROG_TYPE_UNSPEC,
7044	};
7045
7046	return bpf_object__open_xattr(&attr);
7047}
7048
7049struct bpf_object *
7050bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7051{
7052	if (!path)
7053		return ERR_PTR(-EINVAL);
7054
7055	pr_debug("loading %s\n", path);
7056
7057	return __bpf_object__open(path, NULL, 0, opts);
7058}
7059
7060struct bpf_object *
7061bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7062		     const struct bpf_object_open_opts *opts)
7063{
7064	if (!obj_buf || obj_buf_sz == 0)
7065		return ERR_PTR(-EINVAL);
7066
7067	return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts);
7068}
7069
7070struct bpf_object *
7071bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz,
7072			const char *name)
7073{
7074	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7075		.object_name = name,
7076		/* wrong default, but backwards-compatible */
7077		.relaxed_maps = true,
7078	);
7079
7080	/* returning NULL is wrong, but backwards-compatible */
7081	if (!obj_buf || obj_buf_sz == 0)
7082		return NULL;
7083
7084	return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts);
7085}
7086
7087int bpf_object__unload(struct bpf_object *obj)
7088{
7089	size_t i;
7090
7091	if (!obj)
7092		return -EINVAL;
7093
7094	for (i = 0; i < obj->nr_maps; i++) {
7095		zclose(obj->maps[i].fd);
7096		if (obj->maps[i].st_ops)
7097			zfree(&obj->maps[i].st_ops->kern_vdata);
7098	}
7099
7100	for (i = 0; i < obj->nr_programs; i++)
7101		bpf_program__unload(&obj->programs[i]);
7102
7103	return 0;
7104}
7105
7106static int bpf_object__sanitize_maps(struct bpf_object *obj)
7107{
7108	struct bpf_map *m;
7109
7110	bpf_object__for_each_map(m, obj) {
7111		if (!bpf_map__is_internal(m))
7112			continue;
7113		if (!kernel_supports(FEAT_GLOBAL_DATA)) {
7114			pr_warn("kernel doesn't support global data\n");
7115			return -ENOTSUP;
7116		}
7117		if (!kernel_supports(FEAT_ARRAY_MMAP))
7118			m->def.map_flags ^= BPF_F_MMAPABLE;
7119	}
7120
7121	return 0;
7122}
7123
7124static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7125{
7126	char sym_type, sym_name[500];
7127	unsigned long long sym_addr;
7128	struct extern_desc *ext;
7129	int ret, err = 0;
7130	FILE *f;
7131
7132	f = fopen("/proc/kallsyms", "r");
7133	if (!f) {
7134		err = -errno;
7135		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7136		return err;
7137	}
7138
7139	while (true) {
7140		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7141			     &sym_addr, &sym_type, sym_name);
7142		if (ret == EOF && feof(f))
7143			break;
7144		if (ret != 3) {
7145			pr_warn("failed to read kallsyms entry: %d\n", ret);
7146			err = -EINVAL;
7147			goto out;
7148		}
7149
7150		ext = find_extern_by_name(obj, sym_name);
7151		if (!ext || ext->type != EXT_KSYM)
7152			continue;
7153
7154		if (ext->is_set && ext->ksym.addr != sym_addr) {
7155			pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n",
7156				sym_name, ext->ksym.addr, sym_addr);
7157			err = -EINVAL;
7158			goto out;
7159		}
7160		if (!ext->is_set) {
7161			ext->is_set = true;
7162			ext->ksym.addr = sym_addr;
7163			pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr);
7164		}
7165	}
7166
7167out:
7168	fclose(f);
7169	return err;
7170}
7171
7172static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7173{
7174	struct extern_desc *ext;
7175	int i, id;
7176
7177	for (i = 0; i < obj->nr_extern; i++) {
7178		const struct btf_type *targ_var, *targ_type;
7179		__u32 targ_type_id, local_type_id;
7180		const char *targ_var_name;
7181		int ret;
7182
7183		ext = &obj->externs[i];
7184		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7185			continue;
7186
7187		id = btf__find_by_name_kind(obj->btf_vmlinux, ext->name,
7188					    BTF_KIND_VAR);
7189		if (id <= 0) {
7190			pr_warn("extern (ksym) '%s': failed to find BTF ID in vmlinux BTF.\n",
7191				ext->name);
7192			return -ESRCH;
7193		}
7194
7195		/* find local type_id */
7196		local_type_id = ext->ksym.type_id;
7197
7198		/* find target type_id */
7199		targ_var = btf__type_by_id(obj->btf_vmlinux, id);
7200		targ_var_name = btf__name_by_offset(obj->btf_vmlinux,
7201						    targ_var->name_off);
7202		targ_type = skip_mods_and_typedefs(obj->btf_vmlinux,
7203						   targ_var->type,
7204						   &targ_type_id);
7205
7206		ret = bpf_core_types_are_compat(obj->btf, local_type_id,
7207						obj->btf_vmlinux, targ_type_id);
7208		if (ret <= 0) {
7209			const struct btf_type *local_type;
7210			const char *targ_name, *local_name;
7211
7212			local_type = btf__type_by_id(obj->btf, local_type_id);
7213			local_name = btf__name_by_offset(obj->btf,
7214							 local_type->name_off);
7215			targ_name = btf__name_by_offset(obj->btf_vmlinux,
7216							targ_type->name_off);
7217
7218			pr_warn("extern (ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7219				ext->name, local_type_id,
7220				btf_kind_str(local_type), local_name, targ_type_id,
7221				btf_kind_str(targ_type), targ_name);
7222			return -EINVAL;
7223		}
7224
7225		ext->is_set = true;
7226		ext->ksym.vmlinux_btf_id = id;
7227		pr_debug("extern (ksym) '%s': resolved to [%d] %s %s\n",
7228			 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7229	}
7230	return 0;
7231}
7232
7233static int bpf_object__resolve_externs(struct bpf_object *obj,
7234				       const char *extra_kconfig)
7235{
7236	bool need_config = false, need_kallsyms = false;
7237	bool need_vmlinux_btf = false;
7238	struct extern_desc *ext;
7239	void *kcfg_data = NULL;
7240	int err, i;
7241
7242	if (obj->nr_extern == 0)
7243		return 0;
7244
7245	if (obj->kconfig_map_idx >= 0)
7246		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7247
7248	for (i = 0; i < obj->nr_extern; i++) {
7249		ext = &obj->externs[i];
7250
7251		if (ext->type == EXT_KCFG &&
7252		    strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7253			void *ext_val = kcfg_data + ext->kcfg.data_off;
7254			__u32 kver = get_kernel_version();
7255
7256			if (!kver) {
7257				pr_warn("failed to get kernel version\n");
7258				return -EINVAL;
7259			}
7260			err = set_kcfg_value_num(ext, ext_val, kver);
7261			if (err)
7262				return err;
7263			pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver);
7264		} else if (ext->type == EXT_KCFG &&
7265			   strncmp(ext->name, "CONFIG_", 7) == 0) {
7266			need_config = true;
7267		} else if (ext->type == EXT_KSYM) {
7268			if (ext->ksym.type_id)
7269				need_vmlinux_btf = true;
7270			else
7271				need_kallsyms = true;
7272		} else {
7273			pr_warn("unrecognized extern '%s'\n", ext->name);
7274			return -EINVAL;
7275		}
7276	}
7277	if (need_config && extra_kconfig) {
7278		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7279		if (err)
7280			return -EINVAL;
7281		need_config = false;
7282		for (i = 0; i < obj->nr_extern; i++) {
7283			ext = &obj->externs[i];
7284			if (ext->type == EXT_KCFG && !ext->is_set) {
7285				need_config = true;
7286				break;
7287			}
7288		}
7289	}
7290	if (need_config) {
7291		err = bpf_object__read_kconfig_file(obj, kcfg_data);
7292		if (err)
7293			return -EINVAL;
7294	}
7295	if (need_kallsyms) {
7296		err = bpf_object__read_kallsyms_file(obj);
7297		if (err)
7298			return -EINVAL;
7299	}
7300	if (need_vmlinux_btf) {
7301		err = bpf_object__resolve_ksyms_btf_id(obj);
7302		if (err)
7303			return -EINVAL;
7304	}
7305	for (i = 0; i < obj->nr_extern; i++) {
7306		ext = &obj->externs[i];
7307
7308		if (!ext->is_set && !ext->is_weak) {
7309			pr_warn("extern %s (strong) not resolved\n", ext->name);
7310			return -ESRCH;
7311		} else if (!ext->is_set) {
7312			pr_debug("extern %s (weak) not resolved, defaulting to zero\n",
7313				 ext->name);
7314		}
7315	}
7316
7317	return 0;
7318}
7319
7320int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
7321{
7322	struct bpf_object *obj;
7323	int err, i;
7324
7325	if (!attr)
7326		return -EINVAL;
7327	obj = attr->obj;
7328	if (!obj)
7329		return -EINVAL;
7330
7331	if (obj->loaded) {
7332		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7333		return -EINVAL;
7334	}
7335
7336	err = bpf_object__probe_loading(obj);
7337	err = err ? : bpf_object__load_vmlinux_btf(obj);
7338	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7339	err = err ? : bpf_object__sanitize_and_load_btf(obj);
7340	err = err ? : bpf_object__sanitize_maps(obj);
7341	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7342	err = err ? : bpf_object__create_maps(obj);
7343	err = err ? : bpf_object__relocate(obj, attr->target_btf_path);
7344	err = err ? : bpf_object__load_progs(obj, attr->log_level);
7345
7346	btf__free(obj->btf_vmlinux);
7347	obj->btf_vmlinux = NULL;
7348
7349	obj->loaded = true; /* doesn't matter if successfully or not */
7350
7351	if (err)
7352		goto out;
7353
7354	return 0;
7355out:
7356	/* unpin any maps that were auto-pinned during load */
7357	for (i = 0; i < obj->nr_maps; i++)
7358		if (obj->maps[i].pinned && !obj->maps[i].reused)
7359			bpf_map__unpin(&obj->maps[i], NULL);
7360
7361	bpf_object__unload(obj);
7362	pr_warn("failed to load object '%s'\n", obj->path);
7363	return err;
7364}
7365
7366int bpf_object__load(struct bpf_object *obj)
7367{
7368	struct bpf_object_load_attr attr = {
7369		.obj = obj,
7370	};
7371
7372	return bpf_object__load_xattr(&attr);
7373}
7374
7375static int make_parent_dir(const char *path)
7376{
7377	char *cp, errmsg[STRERR_BUFSIZE];
7378	char *dname, *dir;
7379	int err = 0;
7380
7381	dname = strdup(path);
7382	if (dname == NULL)
7383		return -ENOMEM;
7384
7385	dir = dirname(dname);
7386	if (mkdir(dir, 0700) && errno != EEXIST)
7387		err = -errno;
7388
7389	free(dname);
7390	if (err) {
7391		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7392		pr_warn("failed to mkdir %s: %s\n", path, cp);
7393	}
7394	return err;
7395}
7396
7397static int check_path(const char *path)
7398{
7399	char *cp, errmsg[STRERR_BUFSIZE];
7400	struct statfs st_fs;
7401	char *dname, *dir;
7402	int err = 0;
7403
7404	if (path == NULL)
7405		return -EINVAL;
7406
7407	dname = strdup(path);
7408	if (dname == NULL)
7409		return -ENOMEM;
7410
7411	dir = dirname(dname);
7412	if (statfs(dir, &st_fs)) {
7413		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7414		pr_warn("failed to statfs %s: %s\n", dir, cp);
7415		err = -errno;
7416	}
7417	free(dname);
7418
7419	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7420		pr_warn("specified path %s is not on BPF FS\n", path);
7421		err = -EINVAL;
7422	}
7423
7424	return err;
7425}
7426
7427int bpf_program__pin_instance(struct bpf_program *prog, const char *path,
7428			      int instance)
7429{
7430	char *cp, errmsg[STRERR_BUFSIZE];
7431	int err;
7432
7433	err = make_parent_dir(path);
7434	if (err)
7435		return err;
7436
7437	err = check_path(path);
7438	if (err)
7439		return err;
7440
7441	if (prog == NULL) {
7442		pr_warn("invalid program pointer\n");
7443		return -EINVAL;
7444	}
7445
7446	if (instance < 0 || instance >= prog->instances.nr) {
7447		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7448			instance, prog->name, prog->instances.nr);
7449		return -EINVAL;
7450	}
7451
7452	if (bpf_obj_pin(prog->instances.fds[instance], path)) {
7453		err = -errno;
7454		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7455		pr_warn("failed to pin program: %s\n", cp);
7456		return err;
7457	}
7458	pr_debug("pinned program '%s'\n", path);
7459
7460	return 0;
7461}
7462
7463int bpf_program__unpin_instance(struct bpf_program *prog, const char *path,
7464				int instance)
7465{
7466	int err;
7467
7468	err = check_path(path);
7469	if (err)
7470		return err;
7471
7472	if (prog == NULL) {
7473		pr_warn("invalid program pointer\n");
7474		return -EINVAL;
7475	}
7476
7477	if (instance < 0 || instance >= prog->instances.nr) {
7478		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7479			instance, prog->name, prog->instances.nr);
7480		return -EINVAL;
7481	}
7482
7483	err = unlink(path);
7484	if (err != 0)
7485		return -errno;
7486	pr_debug("unpinned program '%s'\n", path);
7487
7488	return 0;
7489}
7490
7491int bpf_program__pin(struct bpf_program *prog, const char *path)
7492{
7493	int i, err;
7494
7495	err = make_parent_dir(path);
7496	if (err)
7497		return err;
7498
7499	err = check_path(path);
7500	if (err)
7501		return err;
7502
7503	if (prog == NULL) {
7504		pr_warn("invalid program pointer\n");
7505		return -EINVAL;
7506	}
7507
7508	if (prog->instances.nr <= 0) {
7509		pr_warn("no instances of prog %s to pin\n", prog->name);
7510		return -EINVAL;
7511	}
7512
7513	if (prog->instances.nr == 1) {
7514		/* don't create subdirs when pinning single instance */
7515		return bpf_program__pin_instance(prog, path, 0);
7516	}
7517
7518	for (i = 0; i < prog->instances.nr; i++) {
7519		char buf[PATH_MAX];
7520		int len;
7521
7522		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7523		if (len < 0) {
7524			err = -EINVAL;
7525			goto err_unpin;
7526		} else if (len >= PATH_MAX) {
7527			err = -ENAMETOOLONG;
7528			goto err_unpin;
7529		}
7530
7531		err = bpf_program__pin_instance(prog, buf, i);
7532		if (err)
7533			goto err_unpin;
7534	}
7535
7536	return 0;
7537
7538err_unpin:
7539	for (i = i - 1; i >= 0; i--) {
7540		char buf[PATH_MAX];
7541		int len;
7542
7543		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7544		if (len < 0)
7545			continue;
7546		else if (len >= PATH_MAX)
7547			continue;
7548
7549		bpf_program__unpin_instance(prog, buf, i);
7550	}
7551
7552	rmdir(path);
7553
7554	return err;
7555}
7556
7557int bpf_program__unpin(struct bpf_program *prog, const char *path)
7558{
7559	int i, err;
7560
7561	err = check_path(path);
7562	if (err)
7563		return err;
7564
7565	if (prog == NULL) {
7566		pr_warn("invalid program pointer\n");
7567		return -EINVAL;
7568	}
7569
7570	if (prog->instances.nr <= 0) {
7571		pr_warn("no instances of prog %s to pin\n", prog->name);
7572		return -EINVAL;
7573	}
7574
7575	if (prog->instances.nr == 1) {
7576		/* don't create subdirs when pinning single instance */
7577		return bpf_program__unpin_instance(prog, path, 0);
7578	}
7579
7580	for (i = 0; i < prog->instances.nr; i++) {
7581		char buf[PATH_MAX];
7582		int len;
7583
7584		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7585		if (len < 0)
7586			return -EINVAL;
7587		else if (len >= PATH_MAX)
7588			return -ENAMETOOLONG;
7589
7590		err = bpf_program__unpin_instance(prog, buf, i);
7591		if (err)
7592			return err;
7593	}
7594
7595	err = rmdir(path);
7596	if (err)
7597		return -errno;
7598
7599	return 0;
7600}
7601
7602int bpf_map__pin(struct bpf_map *map, const char *path)
7603{
7604	char *cp, errmsg[STRERR_BUFSIZE];
7605	int err;
7606
7607	if (map == NULL) {
7608		pr_warn("invalid map pointer\n");
7609		return -EINVAL;
7610	}
7611
7612	if (map->pin_path) {
7613		if (path && strcmp(path, map->pin_path)) {
7614			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7615				bpf_map__name(map), map->pin_path, path);
7616			return -EINVAL;
7617		} else if (map->pinned) {
7618			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7619				 bpf_map__name(map), map->pin_path);
7620			return 0;
7621		}
7622	} else {
7623		if (!path) {
7624			pr_warn("missing a path to pin map '%s' at\n",
7625				bpf_map__name(map));
7626			return -EINVAL;
7627		} else if (map->pinned) {
7628			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7629			return -EEXIST;
7630		}
7631
7632		map->pin_path = strdup(path);
7633		if (!map->pin_path) {
7634			err = -errno;
7635			goto out_err;
7636		}
7637	}
7638
7639	err = make_parent_dir(map->pin_path);
7640	if (err)
7641		return err;
7642
7643	err = check_path(map->pin_path);
7644	if (err)
7645		return err;
7646
7647	if (bpf_obj_pin(map->fd, map->pin_path)) {
7648		err = -errno;
7649		goto out_err;
7650	}
7651
7652	map->pinned = true;
7653	pr_debug("pinned map '%s'\n", map->pin_path);
7654
7655	return 0;
7656
7657out_err:
7658	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7659	pr_warn("failed to pin map: %s\n", cp);
7660	return err;
7661}
7662
7663int bpf_map__unpin(struct bpf_map *map, const char *path)
7664{
7665	int err;
7666
7667	if (map == NULL) {
7668		pr_warn("invalid map pointer\n");
7669		return -EINVAL;
7670	}
7671
7672	if (map->pin_path) {
7673		if (path && strcmp(path, map->pin_path)) {
7674			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7675				bpf_map__name(map), map->pin_path, path);
7676			return -EINVAL;
7677		}
7678		path = map->pin_path;
7679	} else if (!path) {
7680		pr_warn("no path to unpin map '%s' from\n",
7681			bpf_map__name(map));
7682		return -EINVAL;
7683	}
7684
7685	err = check_path(path);
7686	if (err)
7687		return err;
7688
7689	err = unlink(path);
7690	if (err != 0)
7691		return -errno;
7692
7693	map->pinned = false;
7694	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7695
7696	return 0;
7697}
7698
7699int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7700{
7701	char *new = NULL;
7702
7703	if (path) {
7704		new = strdup(path);
7705		if (!new)
7706			return -errno;
7707	}
7708
7709	free(map->pin_path);
7710	map->pin_path = new;
7711	return 0;
7712}
7713
7714const char *bpf_map__get_pin_path(const struct bpf_map *map)
7715{
7716	return map->pin_path;
7717}
7718
7719bool bpf_map__is_pinned(const struct bpf_map *map)
7720{
7721	return map->pinned;
7722}
7723
7724static void sanitize_pin_path(char *s)
7725{
7726	/* bpffs disallows periods in path names */
7727	while (*s) {
7728		if (*s == '.')
7729			*s = '_';
7730		s++;
7731	}
7732}
7733
7734int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7735{
7736	struct bpf_map *map;
7737	int err;
7738
7739	if (!obj)
7740		return -ENOENT;
7741
7742	if (!obj->loaded) {
7743		pr_warn("object not yet loaded; load it first\n");
7744		return -ENOENT;
7745	}
7746
7747	bpf_object__for_each_map(map, obj) {
7748		char *pin_path = NULL;
7749		char buf[PATH_MAX];
7750
7751		if (path) {
7752			int len;
7753
7754			len = snprintf(buf, PATH_MAX, "%s/%s", path,
7755				       bpf_map__name(map));
7756			if (len < 0) {
7757				err = -EINVAL;
7758				goto err_unpin_maps;
7759			} else if (len >= PATH_MAX) {
7760				err = -ENAMETOOLONG;
7761				goto err_unpin_maps;
7762			}
7763			sanitize_pin_path(buf);
7764			pin_path = buf;
7765		} else if (!map->pin_path) {
7766			continue;
7767		}
7768
7769		err = bpf_map__pin(map, pin_path);
7770		if (err)
7771			goto err_unpin_maps;
7772	}
7773
7774	return 0;
7775
7776err_unpin_maps:
7777	while ((map = bpf_map__prev(map, obj))) {
7778		if (!map->pin_path)
7779			continue;
7780
7781		bpf_map__unpin(map, NULL);
7782	}
7783
7784	return err;
7785}
7786
7787int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
7788{
7789	struct bpf_map *map;
7790	int err;
7791
7792	if (!obj)
7793		return -ENOENT;
7794
7795	bpf_object__for_each_map(map, obj) {
7796		char *pin_path = NULL;
7797		char buf[PATH_MAX];
7798
7799		if (path) {
7800			int len;
7801
7802			len = snprintf(buf, PATH_MAX, "%s/%s", path,
7803				       bpf_map__name(map));
7804			if (len < 0)
7805				return -EINVAL;
7806			else if (len >= PATH_MAX)
7807				return -ENAMETOOLONG;
7808			sanitize_pin_path(buf);
7809			pin_path = buf;
7810		} else if (!map->pin_path) {
7811			continue;
7812		}
7813
7814		err = bpf_map__unpin(map, pin_path);
7815		if (err)
7816			return err;
7817	}
7818
7819	return 0;
7820}
7821
7822int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
7823{
7824	struct bpf_program *prog;
7825	int err;
7826
7827	if (!obj)
7828		return -ENOENT;
7829
7830	if (!obj->loaded) {
7831		pr_warn("object not yet loaded; load it first\n");
7832		return -ENOENT;
7833	}
7834
7835	bpf_object__for_each_program(prog, obj) {
7836		char buf[PATH_MAX];
7837		int len;
7838
7839		len = snprintf(buf, PATH_MAX, "%s/%s", path,
7840			       prog->pin_name);
7841		if (len < 0) {
7842			err = -EINVAL;
7843			goto err_unpin_programs;
7844		} else if (len >= PATH_MAX) {
7845			err = -ENAMETOOLONG;
7846			goto err_unpin_programs;
7847		}
7848
7849		err = bpf_program__pin(prog, buf);
7850		if (err)
7851			goto err_unpin_programs;
7852	}
7853
7854	return 0;
7855
7856err_unpin_programs:
7857	while ((prog = bpf_program__prev(prog, obj))) {
7858		char buf[PATH_MAX];
7859		int len;
7860
7861		len = snprintf(buf, PATH_MAX, "%s/%s", path,
7862			       prog->pin_name);
7863		if (len < 0)
7864			continue;
7865		else if (len >= PATH_MAX)
7866			continue;
7867
7868		bpf_program__unpin(prog, buf);
7869	}
7870
7871	return err;
7872}
7873
7874int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
7875{
7876	struct bpf_program *prog;
7877	int err;
7878
7879	if (!obj)
7880		return -ENOENT;
7881
7882	bpf_object__for_each_program(prog, obj) {
7883		char buf[PATH_MAX];
7884		int len;
7885
7886		len = snprintf(buf, PATH_MAX, "%s/%s", path,
7887			       prog->pin_name);
7888		if (len < 0)
7889			return -EINVAL;
7890		else if (len >= PATH_MAX)
7891			return -ENAMETOOLONG;
7892
7893		err = bpf_program__unpin(prog, buf);
7894		if (err)
7895			return err;
7896	}
7897
7898	return 0;
7899}
7900
7901int bpf_object__pin(struct bpf_object *obj, const char *path)
7902{
7903	int err;
7904
7905	err = bpf_object__pin_maps(obj, path);
7906	if (err)
7907		return err;
7908
7909	err = bpf_object__pin_programs(obj, path);
7910	if (err) {
7911		bpf_object__unpin_maps(obj, path);
7912		return err;
7913	}
7914
7915	return 0;
7916}
7917
7918static void bpf_map__destroy(struct bpf_map *map)
7919{
7920	if (map->clear_priv)
7921		map->clear_priv(map, map->priv);
7922	map->priv = NULL;
7923	map->clear_priv = NULL;
7924
7925	if (map->inner_map) {
7926		bpf_map__destroy(map->inner_map);
7927		zfree(&map->inner_map);
7928	}
7929
7930	zfree(&map->init_slots);
7931	map->init_slots_sz = 0;
7932
7933	if (map->mmaped) {
7934		munmap(map->mmaped, bpf_map_mmap_sz(map));
7935		map->mmaped = NULL;
7936	}
7937
7938	if (map->st_ops) {
7939		zfree(&map->st_ops->data);
7940		zfree(&map->st_ops->progs);
7941		zfree(&map->st_ops->kern_func_off);
7942		zfree(&map->st_ops);
7943	}
7944
7945	zfree(&map->name);
7946	zfree(&map->pin_path);
7947
7948	if (map->fd >= 0)
7949		zclose(map->fd);
7950}
7951
7952void bpf_object__close(struct bpf_object *obj)
7953{
7954	size_t i;
7955
7956	if (IS_ERR_OR_NULL(obj))
7957		return;
7958
7959	if (obj->clear_priv)
7960		obj->clear_priv(obj, obj->priv);
7961
7962	bpf_object__elf_finish(obj);
7963	bpf_object__unload(obj);
7964	btf__free(obj->btf);
7965	btf_ext__free(obj->btf_ext);
7966
7967	for (i = 0; i < obj->nr_maps; i++)
7968		bpf_map__destroy(&obj->maps[i]);
7969
7970	zfree(&obj->kconfig);
7971	zfree(&obj->externs);
7972	obj->nr_extern = 0;
7973
7974	zfree(&obj->maps);
7975	obj->nr_maps = 0;
7976
7977	if (obj->programs && obj->nr_programs) {
7978		for (i = 0; i < obj->nr_programs; i++)
7979			bpf_program__exit(&obj->programs[i]);
7980	}
7981	zfree(&obj->programs);
7982
7983	list_del(&obj->list);
7984	free(obj);
7985}
7986
7987struct bpf_object *
7988bpf_object__next(struct bpf_object *prev)
7989{
7990	struct bpf_object *next;
7991
7992	if (!prev)
7993		next = list_first_entry(&bpf_objects_list,
7994					struct bpf_object,
7995					list);
7996	else
7997		next = list_next_entry(prev, list);
7998
7999	/* Empty list is noticed here so don't need checking on entry. */
8000	if (&next->list == &bpf_objects_list)
8001		return NULL;
8002
8003	return next;
8004}
8005
8006const char *bpf_object__name(const struct bpf_object *obj)
8007{
8008	return obj ? obj->name : ERR_PTR(-EINVAL);
8009}
8010
8011unsigned int bpf_object__kversion(const struct bpf_object *obj)
8012{
8013	return obj ? obj->kern_version : 0;
8014}
8015
8016struct btf *bpf_object__btf(const struct bpf_object *obj)
8017{
8018	return obj ? obj->btf : NULL;
8019}
8020
8021int bpf_object__btf_fd(const struct bpf_object *obj)
8022{
8023	return obj->btf ? btf__fd(obj->btf) : -1;
8024}
8025
8026int bpf_object__set_priv(struct bpf_object *obj, void *priv,
8027			 bpf_object_clear_priv_t clear_priv)
8028{
8029	if (obj->priv && obj->clear_priv)
8030		obj->clear_priv(obj, obj->priv);
8031
8032	obj->priv = priv;
8033	obj->clear_priv = clear_priv;
8034	return 0;
8035}
8036
8037void *bpf_object__priv(const struct bpf_object *obj)
8038{
8039	return obj ? obj->priv : ERR_PTR(-EINVAL);
8040}
8041
8042static struct bpf_program *
8043__bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8044		    bool forward)
8045{
8046	size_t nr_programs = obj->nr_programs;
8047	ssize_t idx;
8048
8049	if (!nr_programs)
8050		return NULL;
8051
8052	if (!p)
8053		/* Iter from the beginning */
8054		return forward ? &obj->programs[0] :
8055			&obj->programs[nr_programs - 1];
8056
8057	if (p->obj != obj) {
8058		pr_warn("error: program handler doesn't match object\n");
8059		return NULL;
8060	}
8061
8062	idx = (p - obj->programs) + (forward ? 1 : -1);
8063	if (idx >= obj->nr_programs || idx < 0)
8064		return NULL;
8065	return &obj->programs[idx];
8066}
8067
8068struct bpf_program *
8069bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj)
8070{
8071	struct bpf_program *prog = prev;
8072
8073	do {
8074		prog = __bpf_program__iter(prog, obj, true);
8075	} while (prog && prog_is_subprog(obj, prog));
8076
8077	return prog;
8078}
8079
8080struct bpf_program *
8081bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj)
8082{
8083	struct bpf_program *prog = next;
8084
8085	do {
8086		prog = __bpf_program__iter(prog, obj, false);
8087	} while (prog && prog_is_subprog(obj, prog));
8088
8089	return prog;
8090}
8091
8092int bpf_program__set_priv(struct bpf_program *prog, void *priv,
8093			  bpf_program_clear_priv_t clear_priv)
8094{
8095	if (prog->priv && prog->clear_priv)
8096		prog->clear_priv(prog, prog->priv);
8097
8098	prog->priv = priv;
8099	prog->clear_priv = clear_priv;
8100	return 0;
8101}
8102
8103void *bpf_program__priv(const struct bpf_program *prog)
8104{
8105	return prog ? prog->priv : ERR_PTR(-EINVAL);
8106}
8107
8108void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8109{
8110	prog->prog_ifindex = ifindex;
8111}
8112
8113const char *bpf_program__name(const struct bpf_program *prog)
8114{
8115	return prog->name;
8116}
8117
8118const char *bpf_program__section_name(const struct bpf_program *prog)
8119{
8120	return prog->sec_name;
8121}
8122
8123const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy)
8124{
8125	const char *title;
8126
8127	title = prog->sec_name;
8128	if (needs_copy) {
8129		title = strdup(title);
8130		if (!title) {
8131			pr_warn("failed to strdup program title\n");
8132			return ERR_PTR(-ENOMEM);
8133		}
8134	}
8135
8136	return title;
8137}
8138
8139bool bpf_program__autoload(const struct bpf_program *prog)
8140{
8141	return prog->load;
8142}
8143
8144int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8145{
8146	if (prog->obj->loaded)
8147		return -EINVAL;
8148
8149	prog->load = autoload;
8150	return 0;
8151}
8152
8153int bpf_program__fd(const struct bpf_program *prog)
8154{
8155	return bpf_program__nth_fd(prog, 0);
8156}
8157
8158size_t bpf_program__size(const struct bpf_program *prog)
8159{
8160	return prog->insns_cnt * BPF_INSN_SZ;
8161}
8162
8163int bpf_program__set_prep(struct bpf_program *prog, int nr_instances,
8164			  bpf_program_prep_t prep)
8165{
8166	int *instances_fds;
8167
8168	if (nr_instances <= 0 || !prep)
8169		return -EINVAL;
8170
8171	if (prog->instances.nr > 0 || prog->instances.fds) {
8172		pr_warn("Can't set pre-processor after loading\n");
8173		return -EINVAL;
8174	}
8175
8176	instances_fds = malloc(sizeof(int) * nr_instances);
8177	if (!instances_fds) {
8178		pr_warn("alloc memory failed for fds\n");
8179		return -ENOMEM;
8180	}
8181
8182	/* fill all fd with -1 */
8183	memset(instances_fds, -1, sizeof(int) * nr_instances);
8184
8185	prog->instances.nr = nr_instances;
8186	prog->instances.fds = instances_fds;
8187	prog->preprocessor = prep;
8188	return 0;
8189}
8190
8191int bpf_program__nth_fd(const struct bpf_program *prog, int n)
8192{
8193	int fd;
8194
8195	if (!prog)
8196		return -EINVAL;
8197
8198	if (n >= prog->instances.nr || n < 0) {
8199		pr_warn("Can't get the %dth fd from program %s: only %d instances\n",
8200			n, prog->name, prog->instances.nr);
8201		return -EINVAL;
8202	}
8203
8204	fd = prog->instances.fds[n];
8205	if (fd < 0) {
8206		pr_warn("%dth instance of program '%s' is invalid\n",
8207			n, prog->name);
8208		return -ENOENT;
8209	}
8210
8211	return fd;
8212}
8213
8214enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog)
8215{
8216	return prog->type;
8217}
8218
8219void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8220{
8221	prog->type = type;
8222}
8223
8224static bool bpf_program__is_type(const struct bpf_program *prog,
8225				 enum bpf_prog_type type)
8226{
8227	return prog ? (prog->type == type) : false;
8228}
8229
8230#define BPF_PROG_TYPE_FNS(NAME, TYPE)				\
8231int bpf_program__set_##NAME(struct bpf_program *prog)		\
8232{								\
8233	if (!prog)						\
8234		return -EINVAL;					\
8235	bpf_program__set_type(prog, TYPE);			\
8236	return 0;						\
8237}								\
8238								\
8239bool bpf_program__is_##NAME(const struct bpf_program *prog)	\
8240{								\
8241	return bpf_program__is_type(prog, TYPE);		\
8242}								\
8243
8244BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER);
8245BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM);
8246BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE);
8247BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS);
8248BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT);
8249BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT);
8250BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT);
8251BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP);
8252BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT);
8253BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING);
8254BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS);
8255BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT);
8256BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP);
8257
8258enum bpf_attach_type
8259bpf_program__get_expected_attach_type(struct bpf_program *prog)
8260{
8261	return prog->expected_attach_type;
8262}
8263
8264void bpf_program__set_expected_attach_type(struct bpf_program *prog,
8265					   enum bpf_attach_type type)
8266{
8267	prog->expected_attach_type = type;
8268}
8269
8270#define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional,	    \
8271			  attachable, attach_btf)			    \
8272	{								    \
8273		.sec = string,						    \
8274		.len = sizeof(string) - 1,				    \
8275		.prog_type = ptype,					    \
8276		.expected_attach_type = eatype,				    \
8277		.is_exp_attach_type_optional = eatype_optional,		    \
8278		.is_attachable = attachable,				    \
8279		.is_attach_btf = attach_btf,				    \
8280	}
8281
8282/* Programs that can NOT be attached. */
8283#define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0)
8284
8285/* Programs that can be attached. */
8286#define BPF_APROG_SEC(string, ptype, atype) \
8287	BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0)
8288
8289/* Programs that must specify expected attach type at load time. */
8290#define BPF_EAPROG_SEC(string, ptype, eatype) \
8291	BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0)
8292
8293/* Programs that use BTF to identify attach point */
8294#define BPF_PROG_BTF(string, ptype, eatype) \
8295	BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1)
8296
8297/* Programs that can be attached but attach type can't be identified by section
8298 * name. Kept for backward compatibility.
8299 */
8300#define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype)
8301
8302#define SEC_DEF(sec_pfx, ptype, ...) {					    \
8303	.sec = sec_pfx,							    \
8304	.len = sizeof(sec_pfx) - 1,					    \
8305	.prog_type = BPF_PROG_TYPE_##ptype,				    \
8306	__VA_ARGS__							    \
8307}
8308
8309static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
8310				      struct bpf_program *prog);
8311static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
8312				  struct bpf_program *prog);
8313static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
8314				      struct bpf_program *prog);
8315static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
8316				     struct bpf_program *prog);
8317static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
8318				   struct bpf_program *prog);
8319static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
8320				    struct bpf_program *prog);
8321
8322static const struct bpf_sec_def section_defs[] = {
8323	BPF_PROG_SEC("socket",			BPF_PROG_TYPE_SOCKET_FILTER),
8324	BPF_PROG_SEC("sk_reuseport",		BPF_PROG_TYPE_SK_REUSEPORT),
8325	SEC_DEF("kprobe/", KPROBE,
8326		.attach_fn = attach_kprobe),
8327	BPF_PROG_SEC("uprobe/",			BPF_PROG_TYPE_KPROBE),
8328	SEC_DEF("kretprobe/", KPROBE,
8329		.attach_fn = attach_kprobe),
8330	BPF_PROG_SEC("uretprobe/",		BPF_PROG_TYPE_KPROBE),
8331	BPF_PROG_SEC("classifier",		BPF_PROG_TYPE_SCHED_CLS),
8332	BPF_PROG_SEC("action",			BPF_PROG_TYPE_SCHED_ACT),
8333	SEC_DEF("tracepoint/", TRACEPOINT,
8334		.attach_fn = attach_tp),
8335	SEC_DEF("tp/", TRACEPOINT,
8336		.attach_fn = attach_tp),
8337	SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT,
8338		.attach_fn = attach_raw_tp),
8339	SEC_DEF("raw_tp/", RAW_TRACEPOINT,
8340		.attach_fn = attach_raw_tp),
8341	SEC_DEF("tp_btf/", TRACING,
8342		.expected_attach_type = BPF_TRACE_RAW_TP,
8343		.is_attach_btf = true,
8344		.attach_fn = attach_trace),
8345	SEC_DEF("fentry/", TRACING,
8346		.expected_attach_type = BPF_TRACE_FENTRY,
8347		.is_attach_btf = true,
8348		.attach_fn = attach_trace),
8349	SEC_DEF("fmod_ret/", TRACING,
8350		.expected_attach_type = BPF_MODIFY_RETURN,
8351		.is_attach_btf = true,
8352		.attach_fn = attach_trace),
8353	SEC_DEF("fexit/", TRACING,
8354		.expected_attach_type = BPF_TRACE_FEXIT,
8355		.is_attach_btf = true,
8356		.attach_fn = attach_trace),
8357	SEC_DEF("fentry.s/", TRACING,
8358		.expected_attach_type = BPF_TRACE_FENTRY,
8359		.is_attach_btf = true,
8360		.is_sleepable = true,
8361		.attach_fn = attach_trace),
8362	SEC_DEF("fmod_ret.s/", TRACING,
8363		.expected_attach_type = BPF_MODIFY_RETURN,
8364		.is_attach_btf = true,
8365		.is_sleepable = true,
8366		.attach_fn = attach_trace),
8367	SEC_DEF("fexit.s/", TRACING,
8368		.expected_attach_type = BPF_TRACE_FEXIT,
8369		.is_attach_btf = true,
8370		.is_sleepable = true,
8371		.attach_fn = attach_trace),
8372	SEC_DEF("freplace/", EXT,
8373		.is_attach_btf = true,
8374		.attach_fn = attach_trace),
8375	SEC_DEF("lsm/", LSM,
8376		.is_attach_btf = true,
8377		.expected_attach_type = BPF_LSM_MAC,
8378		.attach_fn = attach_lsm),
8379	SEC_DEF("lsm.s/", LSM,
8380		.is_attach_btf = true,
8381		.is_sleepable = true,
8382		.expected_attach_type = BPF_LSM_MAC,
8383		.attach_fn = attach_lsm),
8384	SEC_DEF("iter/", TRACING,
8385		.expected_attach_type = BPF_TRACE_ITER,
8386		.is_attach_btf = true,
8387		.attach_fn = attach_iter),
8388	BPF_EAPROG_SEC("xdp_devmap/",		BPF_PROG_TYPE_XDP,
8389						BPF_XDP_DEVMAP),
8390	BPF_EAPROG_SEC("xdp_cpumap/",		BPF_PROG_TYPE_XDP,
8391						BPF_XDP_CPUMAP),
8392	BPF_APROG_SEC("xdp",			BPF_PROG_TYPE_XDP,
8393						BPF_XDP),
8394	BPF_PROG_SEC("perf_event",		BPF_PROG_TYPE_PERF_EVENT),
8395	BPF_PROG_SEC("lwt_in",			BPF_PROG_TYPE_LWT_IN),
8396	BPF_PROG_SEC("lwt_out",			BPF_PROG_TYPE_LWT_OUT),
8397	BPF_PROG_SEC("lwt_xmit",		BPF_PROG_TYPE_LWT_XMIT),
8398	BPF_PROG_SEC("lwt_seg6local",		BPF_PROG_TYPE_LWT_SEG6LOCAL),
8399	BPF_APROG_SEC("cgroup_skb/ingress",	BPF_PROG_TYPE_CGROUP_SKB,
8400						BPF_CGROUP_INET_INGRESS),
8401	BPF_APROG_SEC("cgroup_skb/egress",	BPF_PROG_TYPE_CGROUP_SKB,
8402						BPF_CGROUP_INET_EGRESS),
8403	BPF_APROG_COMPAT("cgroup/skb",		BPF_PROG_TYPE_CGROUP_SKB),
8404	BPF_EAPROG_SEC("cgroup/sock_create",	BPF_PROG_TYPE_CGROUP_SOCK,
8405						BPF_CGROUP_INET_SOCK_CREATE),
8406	BPF_EAPROG_SEC("cgroup/sock_release",	BPF_PROG_TYPE_CGROUP_SOCK,
8407						BPF_CGROUP_INET_SOCK_RELEASE),
8408	BPF_APROG_SEC("cgroup/sock",		BPF_PROG_TYPE_CGROUP_SOCK,
8409						BPF_CGROUP_INET_SOCK_CREATE),
8410	BPF_EAPROG_SEC("cgroup/post_bind4",	BPF_PROG_TYPE_CGROUP_SOCK,
8411						BPF_CGROUP_INET4_POST_BIND),
8412	BPF_EAPROG_SEC("cgroup/post_bind6",	BPF_PROG_TYPE_CGROUP_SOCK,
8413						BPF_CGROUP_INET6_POST_BIND),
8414	BPF_APROG_SEC("cgroup/dev",		BPF_PROG_TYPE_CGROUP_DEVICE,
8415						BPF_CGROUP_DEVICE),
8416	BPF_APROG_SEC("sockops",		BPF_PROG_TYPE_SOCK_OPS,
8417						BPF_CGROUP_SOCK_OPS),
8418	BPF_APROG_SEC("sk_skb/stream_parser",	BPF_PROG_TYPE_SK_SKB,
8419						BPF_SK_SKB_STREAM_PARSER),
8420	BPF_APROG_SEC("sk_skb/stream_verdict",	BPF_PROG_TYPE_SK_SKB,
8421						BPF_SK_SKB_STREAM_VERDICT),
8422	BPF_APROG_COMPAT("sk_skb",		BPF_PROG_TYPE_SK_SKB),
8423	BPF_APROG_SEC("sk_msg",			BPF_PROG_TYPE_SK_MSG,
8424						BPF_SK_MSG_VERDICT),
8425	BPF_APROG_SEC("lirc_mode2",		BPF_PROG_TYPE_LIRC_MODE2,
8426						BPF_LIRC_MODE2),
8427	BPF_APROG_SEC("flow_dissector",		BPF_PROG_TYPE_FLOW_DISSECTOR,
8428						BPF_FLOW_DISSECTOR),
8429	BPF_EAPROG_SEC("cgroup/bind4",		BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8430						BPF_CGROUP_INET4_BIND),
8431	BPF_EAPROG_SEC("cgroup/bind6",		BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8432						BPF_CGROUP_INET6_BIND),
8433	BPF_EAPROG_SEC("cgroup/connect4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8434						BPF_CGROUP_INET4_CONNECT),
8435	BPF_EAPROG_SEC("cgroup/connect6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8436						BPF_CGROUP_INET6_CONNECT),
8437	BPF_EAPROG_SEC("cgroup/sendmsg4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8438						BPF_CGROUP_UDP4_SENDMSG),
8439	BPF_EAPROG_SEC("cgroup/sendmsg6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8440						BPF_CGROUP_UDP6_SENDMSG),
8441	BPF_EAPROG_SEC("cgroup/recvmsg4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8442						BPF_CGROUP_UDP4_RECVMSG),
8443	BPF_EAPROG_SEC("cgroup/recvmsg6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8444						BPF_CGROUP_UDP6_RECVMSG),
8445	BPF_EAPROG_SEC("cgroup/getpeername4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8446						BPF_CGROUP_INET4_GETPEERNAME),
8447	BPF_EAPROG_SEC("cgroup/getpeername6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8448						BPF_CGROUP_INET6_GETPEERNAME),
8449	BPF_EAPROG_SEC("cgroup/getsockname4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8450						BPF_CGROUP_INET4_GETSOCKNAME),
8451	BPF_EAPROG_SEC("cgroup/getsockname6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8452						BPF_CGROUP_INET6_GETSOCKNAME),
8453	BPF_EAPROG_SEC("cgroup/sysctl",		BPF_PROG_TYPE_CGROUP_SYSCTL,
8454						BPF_CGROUP_SYSCTL),
8455	BPF_EAPROG_SEC("cgroup/getsockopt",	BPF_PROG_TYPE_CGROUP_SOCKOPT,
8456						BPF_CGROUP_GETSOCKOPT),
8457	BPF_EAPROG_SEC("cgroup/setsockopt",	BPF_PROG_TYPE_CGROUP_SOCKOPT,
8458						BPF_CGROUP_SETSOCKOPT),
8459	BPF_PROG_SEC("struct_ops",		BPF_PROG_TYPE_STRUCT_OPS),
8460	BPF_EAPROG_SEC("sk_lookup/",		BPF_PROG_TYPE_SK_LOOKUP,
8461						BPF_SK_LOOKUP),
8462};
8463
8464#undef BPF_PROG_SEC_IMPL
8465#undef BPF_PROG_SEC
8466#undef BPF_APROG_SEC
8467#undef BPF_EAPROG_SEC
8468#undef BPF_APROG_COMPAT
8469#undef SEC_DEF
8470
8471#define MAX_TYPE_NAME_SIZE 32
8472
8473static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8474{
8475	int i, n = ARRAY_SIZE(section_defs);
8476
8477	for (i = 0; i < n; i++) {
8478		if (strncmp(sec_name,
8479			    section_defs[i].sec, section_defs[i].len))
8480			continue;
8481		return &section_defs[i];
8482	}
8483	return NULL;
8484}
8485
8486static char *libbpf_get_type_names(bool attach_type)
8487{
8488	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8489	char *buf;
8490
8491	buf = malloc(len);
8492	if (!buf)
8493		return NULL;
8494
8495	buf[0] = '\0';
8496	/* Forge string buf with all available names */
8497	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8498		if (attach_type && !section_defs[i].is_attachable)
8499			continue;
8500
8501		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8502			free(buf);
8503			return NULL;
8504		}
8505		strcat(buf, " ");
8506		strcat(buf, section_defs[i].sec);
8507	}
8508
8509	return buf;
8510}
8511
8512int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8513			     enum bpf_attach_type *expected_attach_type)
8514{
8515	const struct bpf_sec_def *sec_def;
8516	char *type_names;
8517
8518	if (!name)
8519		return -EINVAL;
8520
8521	sec_def = find_sec_def(name);
8522	if (sec_def) {
8523		*prog_type = sec_def->prog_type;
8524		*expected_attach_type = sec_def->expected_attach_type;
8525		return 0;
8526	}
8527
8528	pr_debug("failed to guess program type from ELF section '%s'\n", name);
8529	type_names = libbpf_get_type_names(false);
8530	if (type_names != NULL) {
8531		pr_debug("supported section(type) names are:%s\n", type_names);
8532		free(type_names);
8533	}
8534
8535	return -ESRCH;
8536}
8537
8538static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8539						     size_t offset)
8540{
8541	struct bpf_map *map;
8542	size_t i;
8543
8544	for (i = 0; i < obj->nr_maps; i++) {
8545		map = &obj->maps[i];
8546		if (!bpf_map__is_struct_ops(map))
8547			continue;
8548		if (map->sec_offset <= offset &&
8549		    offset - map->sec_offset < map->def.value_size)
8550			return map;
8551	}
8552
8553	return NULL;
8554}
8555
8556/* Collect the reloc from ELF and populate the st_ops->progs[] */
8557static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8558					    GElf_Shdr *shdr, Elf_Data *data)
8559{
8560	const struct btf_member *member;
8561	struct bpf_struct_ops *st_ops;
8562	struct bpf_program *prog;
8563	unsigned int shdr_idx;
8564	const struct btf *btf;
8565	struct bpf_map *map;
8566	Elf_Data *symbols;
8567	unsigned int moff, insn_idx;
8568	const char *name;
8569	__u32 member_idx;
8570	GElf_Sym sym;
8571	GElf_Rel rel;
8572	int i, nrels;
8573
8574	symbols = obj->efile.symbols;
8575	btf = obj->btf;
8576	nrels = shdr->sh_size / shdr->sh_entsize;
8577	for (i = 0; i < nrels; i++) {
8578		if (!gelf_getrel(data, i, &rel)) {
8579			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8580			return -LIBBPF_ERRNO__FORMAT;
8581		}
8582
8583		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
8584			pr_warn("struct_ops reloc: symbol %zx not found\n",
8585				(size_t)GELF_R_SYM(rel.r_info));
8586			return -LIBBPF_ERRNO__FORMAT;
8587		}
8588
8589		name = elf_sym_str(obj, sym.st_name) ?: "<?>";
8590		map = find_struct_ops_map_by_offset(obj, rel.r_offset);
8591		if (!map) {
8592			pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n",
8593				(size_t)rel.r_offset);
8594			return -EINVAL;
8595		}
8596
8597		moff = rel.r_offset - map->sec_offset;
8598		shdr_idx = sym.st_shndx;
8599		st_ops = map->st_ops;
8600		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8601			 map->name,
8602			 (long long)(rel.r_info >> 32),
8603			 (long long)sym.st_value,
8604			 shdr_idx, (size_t)rel.r_offset,
8605			 map->sec_offset, sym.st_name, name);
8606
8607		if (shdr_idx >= SHN_LORESERVE) {
8608			pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n",
8609				map->name, (size_t)rel.r_offset, shdr_idx);
8610			return -LIBBPF_ERRNO__RELOC;
8611		}
8612		if (sym.st_value % BPF_INSN_SZ) {
8613			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8614				map->name, (unsigned long long)sym.st_value);
8615			return -LIBBPF_ERRNO__FORMAT;
8616		}
8617		insn_idx = sym.st_value / BPF_INSN_SZ;
8618
8619		member = find_member_by_offset(st_ops->type, moff * 8);
8620		if (!member) {
8621			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8622				map->name, moff);
8623			return -EINVAL;
8624		}
8625		member_idx = member - btf_members(st_ops->type);
8626		name = btf__name_by_offset(btf, member->name_off);
8627
8628		if (!resolve_func_ptr(btf, member->type, NULL)) {
8629			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8630				map->name, name);
8631			return -EINVAL;
8632		}
8633
8634		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8635		if (!prog) {
8636			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8637				map->name, shdr_idx, name);
8638			return -EINVAL;
8639		}
8640
8641		if (prog->type == BPF_PROG_TYPE_UNSPEC) {
8642			const struct bpf_sec_def *sec_def;
8643
8644			sec_def = find_sec_def(prog->sec_name);
8645			if (sec_def &&
8646			    sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) {
8647				/* for pr_warn */
8648				prog->type = sec_def->prog_type;
8649				goto invalid_prog;
8650			}
8651
8652			prog->type = BPF_PROG_TYPE_STRUCT_OPS;
8653			prog->attach_btf_id = st_ops->type_id;
8654			prog->expected_attach_type = member_idx;
8655		} else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS ||
8656			   prog->attach_btf_id != st_ops->type_id ||
8657			   prog->expected_attach_type != member_idx) {
8658			goto invalid_prog;
8659		}
8660		st_ops->progs[member_idx] = prog;
8661	}
8662
8663	return 0;
8664
8665invalid_prog:
8666	pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8667		map->name, prog->name, prog->sec_name, prog->type,
8668		prog->attach_btf_id, prog->expected_attach_type, name);
8669	return -EINVAL;
8670}
8671
8672#define BTF_TRACE_PREFIX "btf_trace_"
8673#define BTF_LSM_PREFIX "bpf_lsm_"
8674#define BTF_ITER_PREFIX "bpf_iter_"
8675#define BTF_MAX_NAME_SIZE 128
8676
8677static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
8678				   const char *name, __u32 kind)
8679{
8680	char btf_type_name[BTF_MAX_NAME_SIZE];
8681	int ret;
8682
8683	ret = snprintf(btf_type_name, sizeof(btf_type_name),
8684		       "%s%s", prefix, name);
8685	/* snprintf returns the number of characters written excluding the
8686	 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
8687	 * indicates truncation.
8688	 */
8689	if (ret < 0 || ret >= sizeof(btf_type_name))
8690		return -ENAMETOOLONG;
8691	return btf__find_by_name_kind(btf, btf_type_name, kind);
8692}
8693
8694static inline int __find_vmlinux_btf_id(struct btf *btf, const char *name,
8695					enum bpf_attach_type attach_type)
8696{
8697	int err;
8698
8699	if (attach_type == BPF_TRACE_RAW_TP)
8700		err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name,
8701					      BTF_KIND_TYPEDEF);
8702	else if (attach_type == BPF_LSM_MAC)
8703		err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name,
8704					      BTF_KIND_FUNC);
8705	else if (attach_type == BPF_TRACE_ITER)
8706		err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name,
8707					      BTF_KIND_FUNC);
8708	else
8709		err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8710
8711	if (err <= 0)
8712		pr_warn("%s is not found in vmlinux BTF\n", name);
8713
8714	return err;
8715}
8716
8717int libbpf_find_vmlinux_btf_id(const char *name,
8718			       enum bpf_attach_type attach_type)
8719{
8720	struct btf *btf;
8721	int err;
8722
8723	btf = libbpf_find_kernel_btf();
8724	if (IS_ERR(btf)) {
8725		pr_warn("vmlinux BTF is not found\n");
8726		return -EINVAL;
8727	}
8728
8729	err = __find_vmlinux_btf_id(btf, name, attach_type);
8730	btf__free(btf);
8731	return err;
8732}
8733
8734static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
8735{
8736	struct bpf_prog_info_linear *info_linear;
8737	struct bpf_prog_info *info;
8738	struct btf *btf = NULL;
8739	int err = -EINVAL;
8740
8741	info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0);
8742	if (IS_ERR_OR_NULL(info_linear)) {
8743		pr_warn("failed get_prog_info_linear for FD %d\n",
8744			attach_prog_fd);
8745		return -EINVAL;
8746	}
8747	info = &info_linear->info;
8748	if (!info->btf_id) {
8749		pr_warn("The target program doesn't have BTF\n");
8750		goto out;
8751	}
8752	if (btf__get_from_id(info->btf_id, &btf)) {
8753		pr_warn("Failed to get BTF of the program\n");
8754		goto out;
8755	}
8756	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8757	btf__free(btf);
8758	if (err <= 0) {
8759		pr_warn("%s is not found in prog's BTF\n", name);
8760		goto out;
8761	}
8762out:
8763	free(info_linear);
8764	return err;
8765}
8766
8767static int libbpf_find_attach_btf_id(struct bpf_program *prog)
8768{
8769	enum bpf_attach_type attach_type = prog->expected_attach_type;
8770	__u32 attach_prog_fd = prog->attach_prog_fd;
8771	const char *name = prog->sec_name;
8772	int i, err;
8773
8774	if (!name)
8775		return -EINVAL;
8776
8777	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8778		if (!section_defs[i].is_attach_btf)
8779			continue;
8780		if (strncmp(name, section_defs[i].sec, section_defs[i].len))
8781			continue;
8782		if (attach_prog_fd)
8783			err = libbpf_find_prog_btf_id(name + section_defs[i].len,
8784						      attach_prog_fd);
8785		else
8786			err = __find_vmlinux_btf_id(prog->obj->btf_vmlinux,
8787						    name + section_defs[i].len,
8788						    attach_type);
8789		return err;
8790	}
8791	pr_warn("failed to identify btf_id based on ELF section name '%s'\n", name);
8792	return -ESRCH;
8793}
8794
8795int libbpf_attach_type_by_name(const char *name,
8796			       enum bpf_attach_type *attach_type)
8797{
8798	char *type_names;
8799	int i;
8800
8801	if (!name)
8802		return -EINVAL;
8803
8804	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8805		if (strncmp(name, section_defs[i].sec, section_defs[i].len))
8806			continue;
8807		if (!section_defs[i].is_attachable)
8808			return -EINVAL;
8809		*attach_type = section_defs[i].expected_attach_type;
8810		return 0;
8811	}
8812	pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
8813	type_names = libbpf_get_type_names(true);
8814	if (type_names != NULL) {
8815		pr_debug("attachable section(type) names are:%s\n", type_names);
8816		free(type_names);
8817	}
8818
8819	return -EINVAL;
8820}
8821
8822int bpf_map__fd(const struct bpf_map *map)
8823{
8824	return map ? map->fd : -EINVAL;
8825}
8826
8827const struct bpf_map_def *bpf_map__def(const struct bpf_map *map)
8828{
8829	return map ? &map->def : ERR_PTR(-EINVAL);
8830}
8831
8832const char *bpf_map__name(const struct bpf_map *map)
8833{
8834	return map ? map->name : NULL;
8835}
8836
8837enum bpf_map_type bpf_map__type(const struct bpf_map *map)
8838{
8839	return map->def.type;
8840}
8841
8842int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
8843{
8844	if (map->fd >= 0)
8845		return -EBUSY;
8846	map->def.type = type;
8847	return 0;
8848}
8849
8850__u32 bpf_map__map_flags(const struct bpf_map *map)
8851{
8852	return map->def.map_flags;
8853}
8854
8855int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
8856{
8857	if (map->fd >= 0)
8858		return -EBUSY;
8859	map->def.map_flags = flags;
8860	return 0;
8861}
8862
8863__u32 bpf_map__numa_node(const struct bpf_map *map)
8864{
8865	return map->numa_node;
8866}
8867
8868int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
8869{
8870	if (map->fd >= 0)
8871		return -EBUSY;
8872	map->numa_node = numa_node;
8873	return 0;
8874}
8875
8876__u32 bpf_map__key_size(const struct bpf_map *map)
8877{
8878	return map->def.key_size;
8879}
8880
8881int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
8882{
8883	if (map->fd >= 0)
8884		return -EBUSY;
8885	map->def.key_size = size;
8886	return 0;
8887}
8888
8889__u32 bpf_map__value_size(const struct bpf_map *map)
8890{
8891	return map->def.value_size;
8892}
8893
8894int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
8895{
8896	if (map->fd >= 0)
8897		return -EBUSY;
8898	map->def.value_size = size;
8899	return 0;
8900}
8901
8902__u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
8903{
8904	return map ? map->btf_key_type_id : 0;
8905}
8906
8907__u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
8908{
8909	return map ? map->btf_value_type_id : 0;
8910}
8911
8912int bpf_map__set_priv(struct bpf_map *map, void *priv,
8913		     bpf_map_clear_priv_t clear_priv)
8914{
8915	if (!map)
8916		return -EINVAL;
8917
8918	if (map->priv) {
8919		if (map->clear_priv)
8920			map->clear_priv(map, map->priv);
8921	}
8922
8923	map->priv = priv;
8924	map->clear_priv = clear_priv;
8925	return 0;
8926}
8927
8928void *bpf_map__priv(const struct bpf_map *map)
8929{
8930	return map ? map->priv : ERR_PTR(-EINVAL);
8931}
8932
8933int bpf_map__set_initial_value(struct bpf_map *map,
8934			       const void *data, size_t size)
8935{
8936	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
8937	    size != map->def.value_size || map->fd >= 0)
8938		return -EINVAL;
8939
8940	memcpy(map->mmaped, data, size);
8941	return 0;
8942}
8943
8944bool bpf_map__is_offload_neutral(const struct bpf_map *map)
8945{
8946	return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
8947}
8948
8949bool bpf_map__is_internal(const struct bpf_map *map)
8950{
8951	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
8952}
8953
8954__u32 bpf_map__ifindex(const struct bpf_map *map)
8955{
8956	return map->map_ifindex;
8957}
8958
8959int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
8960{
8961	if (map->fd >= 0)
8962		return -EBUSY;
8963	map->map_ifindex = ifindex;
8964	return 0;
8965}
8966
8967int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
8968{
8969	if (!bpf_map_type__is_map_in_map(map->def.type)) {
8970		pr_warn("error: unsupported map type\n");
8971		return -EINVAL;
8972	}
8973	if (map->inner_map_fd != -1) {
8974		pr_warn("error: inner_map_fd already specified\n");
8975		return -EINVAL;
8976	}
8977	map->inner_map_fd = fd;
8978	return 0;
8979}
8980
8981static struct bpf_map *
8982__bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
8983{
8984	ssize_t idx;
8985	struct bpf_map *s, *e;
8986
8987	if (!obj || !obj->maps)
8988		return NULL;
8989
8990	s = obj->maps;
8991	e = obj->maps + obj->nr_maps;
8992
8993	if ((m < s) || (m >= e)) {
8994		pr_warn("error in %s: map handler doesn't belong to object\n",
8995			 __func__);
8996		return NULL;
8997	}
8998
8999	idx = (m - obj->maps) + i;
9000	if (idx >= obj->nr_maps || idx < 0)
9001		return NULL;
9002	return &obj->maps[idx];
9003}
9004
9005struct bpf_map *
9006bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj)
9007{
9008	if (prev == NULL)
9009		return obj->maps;
9010
9011	return __bpf_map__iter(prev, obj, 1);
9012}
9013
9014struct bpf_map *
9015bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj)
9016{
9017	if (next == NULL) {
9018		if (!obj->nr_maps)
9019			return NULL;
9020		return obj->maps + obj->nr_maps - 1;
9021	}
9022
9023	return __bpf_map__iter(next, obj, -1);
9024}
9025
9026struct bpf_map *
9027bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9028{
9029	struct bpf_map *pos;
9030
9031	bpf_object__for_each_map(pos, obj) {
9032		if (pos->name && !strcmp(pos->name, name))
9033			return pos;
9034	}
9035	return NULL;
9036}
9037
9038int
9039bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9040{
9041	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9042}
9043
9044struct bpf_map *
9045bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset)
9046{
9047	return ERR_PTR(-ENOTSUP);
9048}
9049
9050long libbpf_get_error(const void *ptr)
9051{
9052	return PTR_ERR_OR_ZERO(ptr);
9053}
9054
9055int bpf_prog_load(const char *file, enum bpf_prog_type type,
9056		  struct bpf_object **pobj, int *prog_fd)
9057{
9058	struct bpf_prog_load_attr attr;
9059
9060	memset(&attr, 0, sizeof(struct bpf_prog_load_attr));
9061	attr.file = file;
9062	attr.prog_type = type;
9063	attr.expected_attach_type = 0;
9064
9065	return bpf_prog_load_xattr(&attr, pobj, prog_fd);
9066}
9067
9068int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
9069			struct bpf_object **pobj, int *prog_fd)
9070{
9071	struct bpf_object_open_attr open_attr = {};
9072	struct bpf_program *prog, *first_prog = NULL;
9073	struct bpf_object *obj;
9074	struct bpf_map *map;
9075	int err;
9076
9077	if (!attr)
9078		return -EINVAL;
9079	if (!attr->file)
9080		return -EINVAL;
9081
9082	open_attr.file = attr->file;
9083	open_attr.prog_type = attr->prog_type;
9084
9085	obj = bpf_object__open_xattr(&open_attr);
9086	if (IS_ERR_OR_NULL(obj))
9087		return -ENOENT;
9088
9089	bpf_object__for_each_program(prog, obj) {
9090		enum bpf_attach_type attach_type = attr->expected_attach_type;
9091		/*
9092		 * to preserve backwards compatibility, bpf_prog_load treats
9093		 * attr->prog_type, if specified, as an override to whatever
9094		 * bpf_object__open guessed
9095		 */
9096		if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) {
9097			bpf_program__set_type(prog, attr->prog_type);
9098			bpf_program__set_expected_attach_type(prog,
9099							      attach_type);
9100		}
9101		if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) {
9102			/*
9103			 * we haven't guessed from section name and user
9104			 * didn't provide a fallback type, too bad...
9105			 */
9106			bpf_object__close(obj);
9107			return -EINVAL;
9108		}
9109
9110		prog->prog_ifindex = attr->ifindex;
9111		prog->log_level = attr->log_level;
9112		prog->prog_flags |= attr->prog_flags;
9113		if (!first_prog)
9114			first_prog = prog;
9115	}
9116
9117	bpf_object__for_each_map(map, obj) {
9118		if (!bpf_map__is_offload_neutral(map))
9119			map->map_ifindex = attr->ifindex;
9120	}
9121
9122	if (!first_prog) {
9123		pr_warn("object file doesn't contain bpf program\n");
9124		bpf_object__close(obj);
9125		return -ENOENT;
9126	}
9127
9128	err = bpf_object__load(obj);
9129	if (err) {
9130		bpf_object__close(obj);
9131		return err;
9132	}
9133
9134	*pobj = obj;
9135	*prog_fd = bpf_program__fd(first_prog);
9136	return 0;
9137}
9138
9139struct bpf_link {
9140	int (*detach)(struct bpf_link *link);
9141	int (*destroy)(struct bpf_link *link);
9142	char *pin_path;		/* NULL, if not pinned */
9143	int fd;			/* hook FD, -1 if not applicable */
9144	bool disconnected;
9145};
9146
9147/* Replace link's underlying BPF program with the new one */
9148int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9149{
9150	return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9151}
9152
9153/* Release "ownership" of underlying BPF resource (typically, BPF program
9154 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9155 * link, when destructed through bpf_link__destroy() call won't attempt to
9156 * detach/unregisted that BPF resource. This is useful in situations where,
9157 * say, attached BPF program has to outlive userspace program that attached it
9158 * in the system. Depending on type of BPF program, though, there might be
9159 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9160 * exit of userspace program doesn't trigger automatic detachment and clean up
9161 * inside the kernel.
9162 */
9163void bpf_link__disconnect(struct bpf_link *link)
9164{
9165	link->disconnected = true;
9166}
9167
9168int bpf_link__destroy(struct bpf_link *link)
9169{
9170	int err = 0;
9171
9172	if (IS_ERR_OR_NULL(link))
9173		return 0;
9174
9175	if (!link->disconnected && link->detach)
9176		err = link->detach(link);
9177	if (link->destroy)
9178		link->destroy(link);
9179	if (link->pin_path)
9180		free(link->pin_path);
9181	free(link);
9182
9183	return err;
9184}
9185
9186int bpf_link__fd(const struct bpf_link *link)
9187{
9188	return link->fd;
9189}
9190
9191const char *bpf_link__pin_path(const struct bpf_link *link)
9192{
9193	return link->pin_path;
9194}
9195
9196static int bpf_link__detach_fd(struct bpf_link *link)
9197{
9198	return close(link->fd);
9199}
9200
9201struct bpf_link *bpf_link__open(const char *path)
9202{
9203	struct bpf_link *link;
9204	int fd;
9205
9206	fd = bpf_obj_get(path);
9207	if (fd < 0) {
9208		fd = -errno;
9209		pr_warn("failed to open link at %s: %d\n", path, fd);
9210		return ERR_PTR(fd);
9211	}
9212
9213	link = calloc(1, sizeof(*link));
9214	if (!link) {
9215		close(fd);
9216		return ERR_PTR(-ENOMEM);
9217	}
9218	link->detach = &bpf_link__detach_fd;
9219	link->fd = fd;
9220
9221	link->pin_path = strdup(path);
9222	if (!link->pin_path) {
9223		bpf_link__destroy(link);
9224		return ERR_PTR(-ENOMEM);
9225	}
9226
9227	return link;
9228}
9229
9230int bpf_link__detach(struct bpf_link *link)
9231{
9232	return bpf_link_detach(link->fd) ? -errno : 0;
9233}
9234
9235int bpf_link__pin(struct bpf_link *link, const char *path)
9236{
9237	int err;
9238
9239	if (link->pin_path)
9240		return -EBUSY;
9241	err = make_parent_dir(path);
9242	if (err)
9243		return err;
9244	err = check_path(path);
9245	if (err)
9246		return err;
9247
9248	link->pin_path = strdup(path);
9249	if (!link->pin_path)
9250		return -ENOMEM;
9251
9252	if (bpf_obj_pin(link->fd, link->pin_path)) {
9253		err = -errno;
9254		zfree(&link->pin_path);
9255		return err;
9256	}
9257
9258	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9259	return 0;
9260}
9261
9262int bpf_link__unpin(struct bpf_link *link)
9263{
9264	int err;
9265
9266	if (!link->pin_path)
9267		return -EINVAL;
9268
9269	err = unlink(link->pin_path);
9270	if (err != 0)
9271		return -errno;
9272
9273	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9274	zfree(&link->pin_path);
9275	return 0;
9276}
9277
9278static int bpf_link__detach_perf_event(struct bpf_link *link)
9279{
9280	int err;
9281
9282	err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0);
9283	if (err)
9284		err = -errno;
9285
9286	close(link->fd);
9287	return err;
9288}
9289
9290struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog,
9291						int pfd)
9292{
9293	char errmsg[STRERR_BUFSIZE];
9294	struct bpf_link *link;
9295	int prog_fd, err;
9296
9297	if (pfd < 0) {
9298		pr_warn("prog '%s': invalid perf event FD %d\n",
9299			prog->name, pfd);
9300		return ERR_PTR(-EINVAL);
9301	}
9302	prog_fd = bpf_program__fd(prog);
9303	if (prog_fd < 0) {
9304		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9305			prog->name);
9306		return ERR_PTR(-EINVAL);
9307	}
9308
9309	link = calloc(1, sizeof(*link));
9310	if (!link)
9311		return ERR_PTR(-ENOMEM);
9312	link->detach = &bpf_link__detach_perf_event;
9313	link->fd = pfd;
9314
9315	if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9316		err = -errno;
9317		free(link);
9318		pr_warn("prog '%s': failed to attach to pfd %d: %s\n",
9319			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9320		if (err == -EPROTO)
9321			pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9322				prog->name, pfd);
9323		return ERR_PTR(err);
9324	}
9325	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9326		err = -errno;
9327		free(link);
9328		pr_warn("prog '%s': failed to enable pfd %d: %s\n",
9329			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9330		return ERR_PTR(err);
9331	}
9332	return link;
9333}
9334
9335/*
9336 * this function is expected to parse integer in the range of [0, 2^31-1] from
9337 * given file using scanf format string fmt. If actual parsed value is
9338 * negative, the result might be indistinguishable from error
9339 */
9340static int parse_uint_from_file(const char *file, const char *fmt)
9341{
9342	char buf[STRERR_BUFSIZE];
9343	int err, ret;
9344	FILE *f;
9345
9346	f = fopen(file, "r");
9347	if (!f) {
9348		err = -errno;
9349		pr_debug("failed to open '%s': %s\n", file,
9350			 libbpf_strerror_r(err, buf, sizeof(buf)));
9351		return err;
9352	}
9353	err = fscanf(f, fmt, &ret);
9354	if (err != 1) {
9355		err = err == EOF ? -EIO : -errno;
9356		pr_debug("failed to parse '%s': %s\n", file,
9357			libbpf_strerror_r(err, buf, sizeof(buf)));
9358		fclose(f);
9359		return err;
9360	}
9361	fclose(f);
9362	return ret;
9363}
9364
9365static int determine_kprobe_perf_type(void)
9366{
9367	const char *file = "/sys/bus/event_source/devices/kprobe/type";
9368
9369	return parse_uint_from_file(file, "%d\n");
9370}
9371
9372static int determine_uprobe_perf_type(void)
9373{
9374	const char *file = "/sys/bus/event_source/devices/uprobe/type";
9375
9376	return parse_uint_from_file(file, "%d\n");
9377}
9378
9379static int determine_kprobe_retprobe_bit(void)
9380{
9381	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9382
9383	return parse_uint_from_file(file, "config:%d\n");
9384}
9385
9386static int determine_uprobe_retprobe_bit(void)
9387{
9388	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9389
9390	return parse_uint_from_file(file, "config:%d\n");
9391}
9392
9393static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9394				 uint64_t offset, int pid)
9395{
9396	struct perf_event_attr attr = {};
9397	char errmsg[STRERR_BUFSIZE];
9398	int type, pfd, err;
9399
9400	type = uprobe ? determine_uprobe_perf_type()
9401		      : determine_kprobe_perf_type();
9402	if (type < 0) {
9403		pr_warn("failed to determine %s perf type: %s\n",
9404			uprobe ? "uprobe" : "kprobe",
9405			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9406		return type;
9407	}
9408	if (retprobe) {
9409		int bit = uprobe ? determine_uprobe_retprobe_bit()
9410				 : determine_kprobe_retprobe_bit();
9411
9412		if (bit < 0) {
9413			pr_warn("failed to determine %s retprobe bit: %s\n",
9414				uprobe ? "uprobe" : "kprobe",
9415				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9416			return bit;
9417		}
9418		attr.config |= 1 << bit;
9419	}
9420	attr.size = sizeof(attr);
9421	attr.type = type;
9422	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9423	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
9424
9425	/* pid filter is meaningful only for uprobes */
9426	pfd = syscall(__NR_perf_event_open, &attr,
9427		      pid < 0 ? -1 : pid /* pid */,
9428		      pid == -1 ? 0 : -1 /* cpu */,
9429		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9430	if (pfd < 0) {
9431		err = -errno;
9432		pr_warn("%s perf_event_open() failed: %s\n",
9433			uprobe ? "uprobe" : "kprobe",
9434			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9435		return err;
9436	}
9437	return pfd;
9438}
9439
9440struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog,
9441					    bool retprobe,
9442					    const char *func_name)
9443{
9444	char errmsg[STRERR_BUFSIZE];
9445	struct bpf_link *link;
9446	int pfd, err;
9447
9448	pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name,
9449				    0 /* offset */, -1 /* pid */);
9450	if (pfd < 0) {
9451		pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n",
9452			prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
9453			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9454		return ERR_PTR(pfd);
9455	}
9456	link = bpf_program__attach_perf_event(prog, pfd);
9457	if (IS_ERR(link)) {
9458		close(pfd);
9459		err = PTR_ERR(link);
9460		pr_warn("prog '%s': failed to attach to %s '%s': %s\n",
9461			prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
9462			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9463		return link;
9464	}
9465	return link;
9466}
9467
9468static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
9469				      struct bpf_program *prog)
9470{
9471	const char *func_name;
9472	bool retprobe;
9473
9474	func_name = prog->sec_name + sec->len;
9475	retprobe = strcmp(sec->sec, "kretprobe/") == 0;
9476
9477	return bpf_program__attach_kprobe(prog, retprobe, func_name);
9478}
9479
9480struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog,
9481					    bool retprobe, pid_t pid,
9482					    const char *binary_path,
9483					    size_t func_offset)
9484{
9485	char errmsg[STRERR_BUFSIZE];
9486	struct bpf_link *link;
9487	int pfd, err;
9488
9489	pfd = perf_event_open_probe(true /* uprobe */, retprobe,
9490				    binary_path, func_offset, pid);
9491	if (pfd < 0) {
9492		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
9493			prog->name, retprobe ? "uretprobe" : "uprobe",
9494			binary_path, func_offset,
9495			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9496		return ERR_PTR(pfd);
9497	}
9498	link = bpf_program__attach_perf_event(prog, pfd);
9499	if (IS_ERR(link)) {
9500		close(pfd);
9501		err = PTR_ERR(link);
9502		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
9503			prog->name, retprobe ? "uretprobe" : "uprobe",
9504			binary_path, func_offset,
9505			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9506		return link;
9507	}
9508	return link;
9509}
9510
9511static int determine_tracepoint_id(const char *tp_category,
9512				   const char *tp_name)
9513{
9514	char file[PATH_MAX];
9515	int ret;
9516
9517	ret = snprintf(file, sizeof(file),
9518		       "/sys/kernel/debug/tracing/events/%s/%s/id",
9519		       tp_category, tp_name);
9520	if (ret < 0)
9521		return -errno;
9522	if (ret >= sizeof(file)) {
9523		pr_debug("tracepoint %s/%s path is too long\n",
9524			 tp_category, tp_name);
9525		return -E2BIG;
9526	}
9527	return parse_uint_from_file(file, "%d\n");
9528}
9529
9530static int perf_event_open_tracepoint(const char *tp_category,
9531				      const char *tp_name)
9532{
9533	struct perf_event_attr attr = {};
9534	char errmsg[STRERR_BUFSIZE];
9535	int tp_id, pfd, err;
9536
9537	tp_id = determine_tracepoint_id(tp_category, tp_name);
9538	if (tp_id < 0) {
9539		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
9540			tp_category, tp_name,
9541			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
9542		return tp_id;
9543	}
9544
9545	attr.type = PERF_TYPE_TRACEPOINT;
9546	attr.size = sizeof(attr);
9547	attr.config = tp_id;
9548
9549	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
9550		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9551	if (pfd < 0) {
9552		err = -errno;
9553		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
9554			tp_category, tp_name,
9555			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9556		return err;
9557	}
9558	return pfd;
9559}
9560
9561struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog,
9562						const char *tp_category,
9563						const char *tp_name)
9564{
9565	char errmsg[STRERR_BUFSIZE];
9566	struct bpf_link *link;
9567	int pfd, err;
9568
9569	pfd = perf_event_open_tracepoint(tp_category, tp_name);
9570	if (pfd < 0) {
9571		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
9572			prog->name, tp_category, tp_name,
9573			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9574		return ERR_PTR(pfd);
9575	}
9576	link = bpf_program__attach_perf_event(prog, pfd);
9577	if (IS_ERR(link)) {
9578		close(pfd);
9579		err = PTR_ERR(link);
9580		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
9581			prog->name, tp_category, tp_name,
9582			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9583		return link;
9584	}
9585	return link;
9586}
9587
9588static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
9589				  struct bpf_program *prog)
9590{
9591	char *sec_name, *tp_cat, *tp_name;
9592	struct bpf_link *link;
9593
9594	sec_name = strdup(prog->sec_name);
9595	if (!sec_name)
9596		return ERR_PTR(-ENOMEM);
9597
9598	/* extract "tp/<category>/<name>" */
9599	tp_cat = sec_name + sec->len;
9600	tp_name = strchr(tp_cat, '/');
9601	if (!tp_name) {
9602		link = ERR_PTR(-EINVAL);
9603		goto out;
9604	}
9605	*tp_name = '\0';
9606	tp_name++;
9607
9608	link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
9609out:
9610	free(sec_name);
9611	return link;
9612}
9613
9614struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog,
9615						    const char *tp_name)
9616{
9617	char errmsg[STRERR_BUFSIZE];
9618	struct bpf_link *link;
9619	int prog_fd, pfd;
9620
9621	prog_fd = bpf_program__fd(prog);
9622	if (prog_fd < 0) {
9623		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9624		return ERR_PTR(-EINVAL);
9625	}
9626
9627	link = calloc(1, sizeof(*link));
9628	if (!link)
9629		return ERR_PTR(-ENOMEM);
9630	link->detach = &bpf_link__detach_fd;
9631
9632	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
9633	if (pfd < 0) {
9634		pfd = -errno;
9635		free(link);
9636		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
9637			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9638		return ERR_PTR(pfd);
9639	}
9640	link->fd = pfd;
9641	return link;
9642}
9643
9644static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
9645				      struct bpf_program *prog)
9646{
9647	const char *tp_name = prog->sec_name + sec->len;
9648
9649	return bpf_program__attach_raw_tracepoint(prog, tp_name);
9650}
9651
9652/* Common logic for all BPF program types that attach to a btf_id */
9653static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog)
9654{
9655	char errmsg[STRERR_BUFSIZE];
9656	struct bpf_link *link;
9657	int prog_fd, pfd;
9658
9659	prog_fd = bpf_program__fd(prog);
9660	if (prog_fd < 0) {
9661		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9662		return ERR_PTR(-EINVAL);
9663	}
9664
9665	link = calloc(1, sizeof(*link));
9666	if (!link)
9667		return ERR_PTR(-ENOMEM);
9668	link->detach = &bpf_link__detach_fd;
9669
9670	pfd = bpf_raw_tracepoint_open(NULL, prog_fd);
9671	if (pfd < 0) {
9672		pfd = -errno;
9673		free(link);
9674		pr_warn("prog '%s': failed to attach: %s\n",
9675			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9676		return ERR_PTR(pfd);
9677	}
9678	link->fd = pfd;
9679	return (struct bpf_link *)link;
9680}
9681
9682struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog)
9683{
9684	return bpf_program__attach_btf_id(prog);
9685}
9686
9687struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog)
9688{
9689	return bpf_program__attach_btf_id(prog);
9690}
9691
9692static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
9693				     struct bpf_program *prog)
9694{
9695	return bpf_program__attach_trace(prog);
9696}
9697
9698static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
9699				   struct bpf_program *prog)
9700{
9701	return bpf_program__attach_lsm(prog);
9702}
9703
9704static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
9705				    struct bpf_program *prog)
9706{
9707	return bpf_program__attach_iter(prog, NULL);
9708}
9709
9710static struct bpf_link *
9711bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id,
9712		       const char *target_name)
9713{
9714	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
9715			    .target_btf_id = btf_id);
9716	enum bpf_attach_type attach_type;
9717	char errmsg[STRERR_BUFSIZE];
9718	struct bpf_link *link;
9719	int prog_fd, link_fd;
9720
9721	prog_fd = bpf_program__fd(prog);
9722	if (prog_fd < 0) {
9723		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9724		return ERR_PTR(-EINVAL);
9725	}
9726
9727	link = calloc(1, sizeof(*link));
9728	if (!link)
9729		return ERR_PTR(-ENOMEM);
9730	link->detach = &bpf_link__detach_fd;
9731
9732	attach_type = bpf_program__get_expected_attach_type(prog);
9733	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
9734	if (link_fd < 0) {
9735		link_fd = -errno;
9736		free(link);
9737		pr_warn("prog '%s': failed to attach to %s: %s\n",
9738			prog->name, target_name,
9739			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
9740		return ERR_PTR(link_fd);
9741	}
9742	link->fd = link_fd;
9743	return link;
9744}
9745
9746struct bpf_link *
9747bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd)
9748{
9749	return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
9750}
9751
9752struct bpf_link *
9753bpf_program__attach_netns(struct bpf_program *prog, int netns_fd)
9754{
9755	return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
9756}
9757
9758struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex)
9759{
9760	/* target_fd/target_ifindex use the same field in LINK_CREATE */
9761	return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
9762}
9763
9764struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog,
9765					      int target_fd,
9766					      const char *attach_func_name)
9767{
9768	int btf_id;
9769
9770	if (!!target_fd != !!attach_func_name) {
9771		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
9772			prog->name);
9773		return ERR_PTR(-EINVAL);
9774	}
9775
9776	if (prog->type != BPF_PROG_TYPE_EXT) {
9777		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
9778			prog->name);
9779		return ERR_PTR(-EINVAL);
9780	}
9781
9782	if (target_fd) {
9783		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
9784		if (btf_id < 0)
9785			return ERR_PTR(btf_id);
9786
9787		return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
9788	} else {
9789		/* no target, so use raw_tracepoint_open for compatibility
9790		 * with old kernels
9791		 */
9792		return bpf_program__attach_trace(prog);
9793	}
9794}
9795
9796struct bpf_link *
9797bpf_program__attach_iter(struct bpf_program *prog,
9798			 const struct bpf_iter_attach_opts *opts)
9799{
9800	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
9801	char errmsg[STRERR_BUFSIZE];
9802	struct bpf_link *link;
9803	int prog_fd, link_fd;
9804	__u32 target_fd = 0;
9805
9806	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
9807		return ERR_PTR(-EINVAL);
9808
9809	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
9810	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
9811
9812	prog_fd = bpf_program__fd(prog);
9813	if (prog_fd < 0) {
9814		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9815		return ERR_PTR(-EINVAL);
9816	}
9817
9818	link = calloc(1, sizeof(*link));
9819	if (!link)
9820		return ERR_PTR(-ENOMEM);
9821	link->detach = &bpf_link__detach_fd;
9822
9823	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
9824				  &link_create_opts);
9825	if (link_fd < 0) {
9826		link_fd = -errno;
9827		free(link);
9828		pr_warn("prog '%s': failed to attach to iterator: %s\n",
9829			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
9830		return ERR_PTR(link_fd);
9831	}
9832	link->fd = link_fd;
9833	return link;
9834}
9835
9836struct bpf_link *bpf_program__attach(struct bpf_program *prog)
9837{
9838	const struct bpf_sec_def *sec_def;
9839
9840	sec_def = find_sec_def(prog->sec_name);
9841	if (!sec_def || !sec_def->attach_fn)
9842		return ERR_PTR(-ESRCH);
9843
9844	return sec_def->attach_fn(sec_def, prog);
9845}
9846
9847static int bpf_link__detach_struct_ops(struct bpf_link *link)
9848{
9849	__u32 zero = 0;
9850
9851	if (bpf_map_delete_elem(link->fd, &zero))
9852		return -errno;
9853
9854	return 0;
9855}
9856
9857struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map)
9858{
9859	struct bpf_struct_ops *st_ops;
9860	struct bpf_link *link;
9861	__u32 i, zero = 0;
9862	int err;
9863
9864	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
9865		return ERR_PTR(-EINVAL);
9866
9867	link = calloc(1, sizeof(*link));
9868	if (!link)
9869		return ERR_PTR(-EINVAL);
9870
9871	st_ops = map->st_ops;
9872	for (i = 0; i < btf_vlen(st_ops->type); i++) {
9873		struct bpf_program *prog = st_ops->progs[i];
9874		void *kern_data;
9875		int prog_fd;
9876
9877		if (!prog)
9878			continue;
9879
9880		prog_fd = bpf_program__fd(prog);
9881		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
9882		*(unsigned long *)kern_data = prog_fd;
9883	}
9884
9885	err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
9886	if (err) {
9887		err = -errno;
9888		free(link);
9889		return ERR_PTR(err);
9890	}
9891
9892	link->detach = bpf_link__detach_struct_ops;
9893	link->fd = map->fd;
9894
9895	return link;
9896}
9897
9898enum bpf_perf_event_ret
9899bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
9900			   void **copy_mem, size_t *copy_size,
9901			   bpf_perf_event_print_t fn, void *private_data)
9902{
9903	struct perf_event_mmap_page *header = mmap_mem;
9904	__u64 data_head = ring_buffer_read_head(header);
9905	__u64 data_tail = header->data_tail;
9906	void *base = ((__u8 *)header) + page_size;
9907	int ret = LIBBPF_PERF_EVENT_CONT;
9908	struct perf_event_header *ehdr;
9909	size_t ehdr_size;
9910
9911	while (data_head != data_tail) {
9912		ehdr = base + (data_tail & (mmap_size - 1));
9913		ehdr_size = ehdr->size;
9914
9915		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
9916			void *copy_start = ehdr;
9917			size_t len_first = base + mmap_size - copy_start;
9918			size_t len_secnd = ehdr_size - len_first;
9919
9920			if (*copy_size < ehdr_size) {
9921				free(*copy_mem);
9922				*copy_mem = malloc(ehdr_size);
9923				if (!*copy_mem) {
9924					*copy_size = 0;
9925					ret = LIBBPF_PERF_EVENT_ERROR;
9926					break;
9927				}
9928				*copy_size = ehdr_size;
9929			}
9930
9931			memcpy(*copy_mem, copy_start, len_first);
9932			memcpy(*copy_mem + len_first, base, len_secnd);
9933			ehdr = *copy_mem;
9934		}
9935
9936		ret = fn(ehdr, private_data);
9937		data_tail += ehdr_size;
9938		if (ret != LIBBPF_PERF_EVENT_CONT)
9939			break;
9940	}
9941
9942	ring_buffer_write_tail(header, data_tail);
9943	return ret;
9944}
9945
9946struct perf_buffer;
9947
9948struct perf_buffer_params {
9949	struct perf_event_attr *attr;
9950	/* if event_cb is specified, it takes precendence */
9951	perf_buffer_event_fn event_cb;
9952	/* sample_cb and lost_cb are higher-level common-case callbacks */
9953	perf_buffer_sample_fn sample_cb;
9954	perf_buffer_lost_fn lost_cb;
9955	void *ctx;
9956	int cpu_cnt;
9957	int *cpus;
9958	int *map_keys;
9959};
9960
9961struct perf_cpu_buf {
9962	struct perf_buffer *pb;
9963	void *base; /* mmap()'ed memory */
9964	void *buf; /* for reconstructing segmented data */
9965	size_t buf_size;
9966	int fd;
9967	int cpu;
9968	int map_key;
9969};
9970
9971struct perf_buffer {
9972	perf_buffer_event_fn event_cb;
9973	perf_buffer_sample_fn sample_cb;
9974	perf_buffer_lost_fn lost_cb;
9975	void *ctx; /* passed into callbacks */
9976
9977	size_t page_size;
9978	size_t mmap_size;
9979	struct perf_cpu_buf **cpu_bufs;
9980	struct epoll_event *events;
9981	int cpu_cnt; /* number of allocated CPU buffers */
9982	int epoll_fd; /* perf event FD */
9983	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
9984};
9985
9986static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
9987				      struct perf_cpu_buf *cpu_buf)
9988{
9989	if (!cpu_buf)
9990		return;
9991	if (cpu_buf->base &&
9992	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
9993		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
9994	if (cpu_buf->fd >= 0) {
9995		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
9996		close(cpu_buf->fd);
9997	}
9998	free(cpu_buf->buf);
9999	free(cpu_buf);
10000}
10001
10002void perf_buffer__free(struct perf_buffer *pb)
10003{
10004	int i;
10005
10006	if (IS_ERR_OR_NULL(pb))
10007		return;
10008	if (pb->cpu_bufs) {
10009		for (i = 0; i < pb->cpu_cnt; i++) {
10010			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10011
10012			if (!cpu_buf)
10013				continue;
10014
10015			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
10016			perf_buffer__free_cpu_buf(pb, cpu_buf);
10017		}
10018		free(pb->cpu_bufs);
10019	}
10020	if (pb->epoll_fd >= 0)
10021		close(pb->epoll_fd);
10022	free(pb->events);
10023	free(pb);
10024}
10025
10026static struct perf_cpu_buf *
10027perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
10028			  int cpu, int map_key)
10029{
10030	struct perf_cpu_buf *cpu_buf;
10031	char msg[STRERR_BUFSIZE];
10032	int err;
10033
10034	cpu_buf = calloc(1, sizeof(*cpu_buf));
10035	if (!cpu_buf)
10036		return ERR_PTR(-ENOMEM);
10037
10038	cpu_buf->pb = pb;
10039	cpu_buf->cpu = cpu;
10040	cpu_buf->map_key = map_key;
10041
10042	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
10043			      -1, PERF_FLAG_FD_CLOEXEC);
10044	if (cpu_buf->fd < 0) {
10045		err = -errno;
10046		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
10047			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10048		goto error;
10049	}
10050
10051	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
10052			     PROT_READ | PROT_WRITE, MAP_SHARED,
10053			     cpu_buf->fd, 0);
10054	if (cpu_buf->base == MAP_FAILED) {
10055		cpu_buf->base = NULL;
10056		err = -errno;
10057		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
10058			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10059		goto error;
10060	}
10061
10062	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10063		err = -errno;
10064		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
10065			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10066		goto error;
10067	}
10068
10069	return cpu_buf;
10070
10071error:
10072	perf_buffer__free_cpu_buf(pb, cpu_buf);
10073	return (struct perf_cpu_buf *)ERR_PTR(err);
10074}
10075
10076static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10077					      struct perf_buffer_params *p);
10078
10079struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
10080				     const struct perf_buffer_opts *opts)
10081{
10082	struct perf_buffer_params p = {};
10083	struct perf_event_attr attr = { 0, };
10084
10085	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
10086	attr.type = PERF_TYPE_SOFTWARE;
10087	attr.sample_type = PERF_SAMPLE_RAW;
10088	attr.sample_period = 1;
10089	attr.wakeup_events = 1;
10090
10091	p.attr = &attr;
10092	p.sample_cb = opts ? opts->sample_cb : NULL;
10093	p.lost_cb = opts ? opts->lost_cb : NULL;
10094	p.ctx = opts ? opts->ctx : NULL;
10095
10096	return __perf_buffer__new(map_fd, page_cnt, &p);
10097}
10098
10099struct perf_buffer *
10100perf_buffer__new_raw(int map_fd, size_t page_cnt,
10101		     const struct perf_buffer_raw_opts *opts)
10102{
10103	struct perf_buffer_params p = {};
10104
10105	p.attr = opts->attr;
10106	p.event_cb = opts->event_cb;
10107	p.ctx = opts->ctx;
10108	p.cpu_cnt = opts->cpu_cnt;
10109	p.cpus = opts->cpus;
10110	p.map_keys = opts->map_keys;
10111
10112	return __perf_buffer__new(map_fd, page_cnt, &p);
10113}
10114
10115static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10116					      struct perf_buffer_params *p)
10117{
10118	const char *online_cpus_file = "/sys/devices/system/cpu/online";
10119	struct bpf_map_info map;
10120	char msg[STRERR_BUFSIZE];
10121	struct perf_buffer *pb;
10122	bool *online = NULL;
10123	__u32 map_info_len;
10124	int err, i, j, n;
10125
10126	if (page_cnt & (page_cnt - 1)) {
10127		pr_warn("page count should be power of two, but is %zu\n",
10128			page_cnt);
10129		return ERR_PTR(-EINVAL);
10130	}
10131
10132	/* best-effort sanity checks */
10133	memset(&map, 0, sizeof(map));
10134	map_info_len = sizeof(map);
10135	err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
10136	if (err) {
10137		err = -errno;
10138		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
10139		 * -EBADFD, -EFAULT, or -E2BIG on real error
10140		 */
10141		if (err != -EINVAL) {
10142			pr_warn("failed to get map info for map FD %d: %s\n",
10143				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
10144			return ERR_PTR(err);
10145		}
10146		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
10147			 map_fd);
10148	} else {
10149		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
10150			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
10151				map.name);
10152			return ERR_PTR(-EINVAL);
10153		}
10154	}
10155
10156	pb = calloc(1, sizeof(*pb));
10157	if (!pb)
10158		return ERR_PTR(-ENOMEM);
10159
10160	pb->event_cb = p->event_cb;
10161	pb->sample_cb = p->sample_cb;
10162	pb->lost_cb = p->lost_cb;
10163	pb->ctx = p->ctx;
10164
10165	pb->page_size = getpagesize();
10166	pb->mmap_size = pb->page_size * page_cnt;
10167	pb->map_fd = map_fd;
10168
10169	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
10170	if (pb->epoll_fd < 0) {
10171		err = -errno;
10172		pr_warn("failed to create epoll instance: %s\n",
10173			libbpf_strerror_r(err, msg, sizeof(msg)));
10174		goto error;
10175	}
10176
10177	if (p->cpu_cnt > 0) {
10178		pb->cpu_cnt = p->cpu_cnt;
10179	} else {
10180		pb->cpu_cnt = libbpf_num_possible_cpus();
10181		if (pb->cpu_cnt < 0) {
10182			err = pb->cpu_cnt;
10183			goto error;
10184		}
10185		if (map.max_entries && map.max_entries < pb->cpu_cnt)
10186			pb->cpu_cnt = map.max_entries;
10187	}
10188
10189	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
10190	if (!pb->events) {
10191		err = -ENOMEM;
10192		pr_warn("failed to allocate events: out of memory\n");
10193		goto error;
10194	}
10195	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
10196	if (!pb->cpu_bufs) {
10197		err = -ENOMEM;
10198		pr_warn("failed to allocate buffers: out of memory\n");
10199		goto error;
10200	}
10201
10202	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
10203	if (err) {
10204		pr_warn("failed to get online CPU mask: %d\n", err);
10205		goto error;
10206	}
10207
10208	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
10209		struct perf_cpu_buf *cpu_buf;
10210		int cpu, map_key;
10211
10212		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
10213		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
10214
10215		/* in case user didn't explicitly requested particular CPUs to
10216		 * be attached to, skip offline/not present CPUs
10217		 */
10218		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
10219			continue;
10220
10221		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
10222		if (IS_ERR(cpu_buf)) {
10223			err = PTR_ERR(cpu_buf);
10224			goto error;
10225		}
10226
10227		pb->cpu_bufs[j] = cpu_buf;
10228
10229		err = bpf_map_update_elem(pb->map_fd, &map_key,
10230					  &cpu_buf->fd, 0);
10231		if (err) {
10232			err = -errno;
10233			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
10234				cpu, map_key, cpu_buf->fd,
10235				libbpf_strerror_r(err, msg, sizeof(msg)));
10236			goto error;
10237		}
10238
10239		pb->events[j].events = EPOLLIN;
10240		pb->events[j].data.ptr = cpu_buf;
10241		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
10242			      &pb->events[j]) < 0) {
10243			err = -errno;
10244			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
10245				cpu, cpu_buf->fd,
10246				libbpf_strerror_r(err, msg, sizeof(msg)));
10247			goto error;
10248		}
10249		j++;
10250	}
10251	pb->cpu_cnt = j;
10252	free(online);
10253
10254	return pb;
10255
10256error:
10257	free(online);
10258	if (pb)
10259		perf_buffer__free(pb);
10260	return ERR_PTR(err);
10261}
10262
10263struct perf_sample_raw {
10264	struct perf_event_header header;
10265	uint32_t size;
10266	char data[];
10267};
10268
10269struct perf_sample_lost {
10270	struct perf_event_header header;
10271	uint64_t id;
10272	uint64_t lost;
10273	uint64_t sample_id;
10274};
10275
10276static enum bpf_perf_event_ret
10277perf_buffer__process_record(struct perf_event_header *e, void *ctx)
10278{
10279	struct perf_cpu_buf *cpu_buf = ctx;
10280	struct perf_buffer *pb = cpu_buf->pb;
10281	void *data = e;
10282
10283	/* user wants full control over parsing perf event */
10284	if (pb->event_cb)
10285		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
10286
10287	switch (e->type) {
10288	case PERF_RECORD_SAMPLE: {
10289		struct perf_sample_raw *s = data;
10290
10291		if (pb->sample_cb)
10292			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
10293		break;
10294	}
10295	case PERF_RECORD_LOST: {
10296		struct perf_sample_lost *s = data;
10297
10298		if (pb->lost_cb)
10299			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
10300		break;
10301	}
10302	default:
10303		pr_warn("unknown perf sample type %d\n", e->type);
10304		return LIBBPF_PERF_EVENT_ERROR;
10305	}
10306	return LIBBPF_PERF_EVENT_CONT;
10307}
10308
10309static int perf_buffer__process_records(struct perf_buffer *pb,
10310					struct perf_cpu_buf *cpu_buf)
10311{
10312	enum bpf_perf_event_ret ret;
10313
10314	ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size,
10315					 pb->page_size, &cpu_buf->buf,
10316					 &cpu_buf->buf_size,
10317					 perf_buffer__process_record, cpu_buf);
10318	if (ret != LIBBPF_PERF_EVENT_CONT)
10319		return ret;
10320	return 0;
10321}
10322
10323int perf_buffer__epoll_fd(const struct perf_buffer *pb)
10324{
10325	return pb->epoll_fd;
10326}
10327
10328int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
10329{
10330	int i, cnt, err;
10331
10332	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
10333	for (i = 0; i < cnt; i++) {
10334		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
10335
10336		err = perf_buffer__process_records(pb, cpu_buf);
10337		if (err) {
10338			pr_warn("error while processing records: %d\n", err);
10339			return err;
10340		}
10341	}
10342	return cnt < 0 ? -errno : cnt;
10343}
10344
10345/* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
10346 * manager.
10347 */
10348size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
10349{
10350	return pb->cpu_cnt;
10351}
10352
10353/*
10354 * Return perf_event FD of a ring buffer in *buf_idx* slot of
10355 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
10356 * select()/poll()/epoll() Linux syscalls.
10357 */
10358int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
10359{
10360	struct perf_cpu_buf *cpu_buf;
10361
10362	if (buf_idx >= pb->cpu_cnt)
10363		return -EINVAL;
10364
10365	cpu_buf = pb->cpu_bufs[buf_idx];
10366	if (!cpu_buf)
10367		return -ENOENT;
10368
10369	return cpu_buf->fd;
10370}
10371
10372/*
10373 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
10374 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
10375 * consume, do nothing and return success.
10376 * Returns:
10377 *   - 0 on success;
10378 *   - <0 on failure.
10379 */
10380int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
10381{
10382	struct perf_cpu_buf *cpu_buf;
10383
10384	if (buf_idx >= pb->cpu_cnt)
10385		return -EINVAL;
10386
10387	cpu_buf = pb->cpu_bufs[buf_idx];
10388	if (!cpu_buf)
10389		return -ENOENT;
10390
10391	return perf_buffer__process_records(pb, cpu_buf);
10392}
10393
10394int perf_buffer__consume(struct perf_buffer *pb)
10395{
10396	int i, err;
10397
10398	for (i = 0; i < pb->cpu_cnt; i++) {
10399		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10400
10401		if (!cpu_buf)
10402			continue;
10403
10404		err = perf_buffer__process_records(pb, cpu_buf);
10405		if (err) {
10406			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
10407			return err;
10408		}
10409	}
10410	return 0;
10411}
10412
10413struct bpf_prog_info_array_desc {
10414	int	array_offset;	/* e.g. offset of jited_prog_insns */
10415	int	count_offset;	/* e.g. offset of jited_prog_len */
10416	int	size_offset;	/* > 0: offset of rec size,
10417				 * < 0: fix size of -size_offset
10418				 */
10419};
10420
10421static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = {
10422	[BPF_PROG_INFO_JITED_INSNS] = {
10423		offsetof(struct bpf_prog_info, jited_prog_insns),
10424		offsetof(struct bpf_prog_info, jited_prog_len),
10425		-1,
10426	},
10427	[BPF_PROG_INFO_XLATED_INSNS] = {
10428		offsetof(struct bpf_prog_info, xlated_prog_insns),
10429		offsetof(struct bpf_prog_info, xlated_prog_len),
10430		-1,
10431	},
10432	[BPF_PROG_INFO_MAP_IDS] = {
10433		offsetof(struct bpf_prog_info, map_ids),
10434		offsetof(struct bpf_prog_info, nr_map_ids),
10435		-(int)sizeof(__u32),
10436	},
10437	[BPF_PROG_INFO_JITED_KSYMS] = {
10438		offsetof(struct bpf_prog_info, jited_ksyms),
10439		offsetof(struct bpf_prog_info, nr_jited_ksyms),
10440		-(int)sizeof(__u64),
10441	},
10442	[BPF_PROG_INFO_JITED_FUNC_LENS] = {
10443		offsetof(struct bpf_prog_info, jited_func_lens),
10444		offsetof(struct bpf_prog_info, nr_jited_func_lens),
10445		-(int)sizeof(__u32),
10446	},
10447	[BPF_PROG_INFO_FUNC_INFO] = {
10448		offsetof(struct bpf_prog_info, func_info),
10449		offsetof(struct bpf_prog_info, nr_func_info),
10450		offsetof(struct bpf_prog_info, func_info_rec_size),
10451	},
10452	[BPF_PROG_INFO_LINE_INFO] = {
10453		offsetof(struct bpf_prog_info, line_info),
10454		offsetof(struct bpf_prog_info, nr_line_info),
10455		offsetof(struct bpf_prog_info, line_info_rec_size),
10456	},
10457	[BPF_PROG_INFO_JITED_LINE_INFO] = {
10458		offsetof(struct bpf_prog_info, jited_line_info),
10459		offsetof(struct bpf_prog_info, nr_jited_line_info),
10460		offsetof(struct bpf_prog_info, jited_line_info_rec_size),
10461	},
10462	[BPF_PROG_INFO_PROG_TAGS] = {
10463		offsetof(struct bpf_prog_info, prog_tags),
10464		offsetof(struct bpf_prog_info, nr_prog_tags),
10465		-(int)sizeof(__u8) * BPF_TAG_SIZE,
10466	},
10467
10468};
10469
10470static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info,
10471					   int offset)
10472{
10473	__u32 *array = (__u32 *)info;
10474
10475	if (offset >= 0)
10476		return array[offset / sizeof(__u32)];
10477	return -(int)offset;
10478}
10479
10480static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info,
10481					   int offset)
10482{
10483	__u64 *array = (__u64 *)info;
10484
10485	if (offset >= 0)
10486		return array[offset / sizeof(__u64)];
10487	return -(int)offset;
10488}
10489
10490static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset,
10491					 __u32 val)
10492{
10493	__u32 *array = (__u32 *)info;
10494
10495	if (offset >= 0)
10496		array[offset / sizeof(__u32)] = val;
10497}
10498
10499static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset,
10500					 __u64 val)
10501{
10502	__u64 *array = (__u64 *)info;
10503
10504	if (offset >= 0)
10505		array[offset / sizeof(__u64)] = val;
10506}
10507
10508struct bpf_prog_info_linear *
10509bpf_program__get_prog_info_linear(int fd, __u64 arrays)
10510{
10511	struct bpf_prog_info_linear *info_linear;
10512	struct bpf_prog_info info = {};
10513	__u32 info_len = sizeof(info);
10514	__u32 data_len = 0;
10515	int i, err;
10516	void *ptr;
10517
10518	if (arrays >> BPF_PROG_INFO_LAST_ARRAY)
10519		return ERR_PTR(-EINVAL);
10520
10521	/* step 1: get array dimensions */
10522	err = bpf_obj_get_info_by_fd(fd, &info, &info_len);
10523	if (err) {
10524		pr_debug("can't get prog info: %s", strerror(errno));
10525		return ERR_PTR(-EFAULT);
10526	}
10527
10528	/* step 2: calculate total size of all arrays */
10529	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10530		bool include_array = (arrays & (1UL << i)) > 0;
10531		struct bpf_prog_info_array_desc *desc;
10532		__u32 count, size;
10533
10534		desc = bpf_prog_info_array_desc + i;
10535
10536		/* kernel is too old to support this field */
10537		if (info_len < desc->array_offset + sizeof(__u32) ||
10538		    info_len < desc->count_offset + sizeof(__u32) ||
10539		    (desc->size_offset > 0 && info_len < desc->size_offset))
10540			include_array = false;
10541
10542		if (!include_array) {
10543			arrays &= ~(1UL << i);	/* clear the bit */
10544			continue;
10545		}
10546
10547		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10548		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10549
10550		data_len += count * size;
10551	}
10552
10553	/* step 3: allocate continuous memory */
10554	data_len = roundup(data_len, sizeof(__u64));
10555	info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len);
10556	if (!info_linear)
10557		return ERR_PTR(-ENOMEM);
10558
10559	/* step 4: fill data to info_linear->info */
10560	info_linear->arrays = arrays;
10561	memset(&info_linear->info, 0, sizeof(info));
10562	ptr = info_linear->data;
10563
10564	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10565		struct bpf_prog_info_array_desc *desc;
10566		__u32 count, size;
10567
10568		if ((arrays & (1UL << i)) == 0)
10569			continue;
10570
10571		desc  = bpf_prog_info_array_desc + i;
10572		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10573		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10574		bpf_prog_info_set_offset_u32(&info_linear->info,
10575					     desc->count_offset, count);
10576		bpf_prog_info_set_offset_u32(&info_linear->info,
10577					     desc->size_offset, size);
10578		bpf_prog_info_set_offset_u64(&info_linear->info,
10579					     desc->array_offset,
10580					     ptr_to_u64(ptr));
10581		ptr += count * size;
10582	}
10583
10584	/* step 5: call syscall again to get required arrays */
10585	err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len);
10586	if (err) {
10587		pr_debug("can't get prog info: %s", strerror(errno));
10588		free(info_linear);
10589		return ERR_PTR(-EFAULT);
10590	}
10591
10592	/* step 6: verify the data */
10593	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10594		struct bpf_prog_info_array_desc *desc;
10595		__u32 v1, v2;
10596
10597		if ((arrays & (1UL << i)) == 0)
10598			continue;
10599
10600		desc = bpf_prog_info_array_desc + i;
10601		v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10602		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
10603						   desc->count_offset);
10604		if (v1 != v2)
10605			pr_warn("%s: mismatch in element count\n", __func__);
10606
10607		v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10608		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
10609						   desc->size_offset);
10610		if (v1 != v2)
10611			pr_warn("%s: mismatch in rec size\n", __func__);
10612	}
10613
10614	/* step 7: update info_len and data_len */
10615	info_linear->info_len = sizeof(struct bpf_prog_info);
10616	info_linear->data_len = data_len;
10617
10618	return info_linear;
10619}
10620
10621void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear)
10622{
10623	int i;
10624
10625	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10626		struct bpf_prog_info_array_desc *desc;
10627		__u64 addr, offs;
10628
10629		if ((info_linear->arrays & (1UL << i)) == 0)
10630			continue;
10631
10632		desc = bpf_prog_info_array_desc + i;
10633		addr = bpf_prog_info_read_offset_u64(&info_linear->info,
10634						     desc->array_offset);
10635		offs = addr - ptr_to_u64(info_linear->data);
10636		bpf_prog_info_set_offset_u64(&info_linear->info,
10637					     desc->array_offset, offs);
10638	}
10639}
10640
10641void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear)
10642{
10643	int i;
10644
10645	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10646		struct bpf_prog_info_array_desc *desc;
10647		__u64 addr, offs;
10648
10649		if ((info_linear->arrays & (1UL << i)) == 0)
10650			continue;
10651
10652		desc = bpf_prog_info_array_desc + i;
10653		offs = bpf_prog_info_read_offset_u64(&info_linear->info,
10654						     desc->array_offset);
10655		addr = offs + ptr_to_u64(info_linear->data);
10656		bpf_prog_info_set_offset_u64(&info_linear->info,
10657					     desc->array_offset, addr);
10658	}
10659}
10660
10661int bpf_program__set_attach_target(struct bpf_program *prog,
10662				   int attach_prog_fd,
10663				   const char *attach_func_name)
10664{
10665	int btf_id;
10666
10667	if (!prog || attach_prog_fd < 0 || !attach_func_name)
10668		return -EINVAL;
10669
10670	if (attach_prog_fd)
10671		btf_id = libbpf_find_prog_btf_id(attach_func_name,
10672						 attach_prog_fd);
10673	else
10674		btf_id = libbpf_find_vmlinux_btf_id(attach_func_name,
10675						    prog->expected_attach_type);
10676
10677	if (btf_id < 0)
10678		return btf_id;
10679
10680	prog->attach_btf_id = btf_id;
10681	prog->attach_prog_fd = attach_prog_fd;
10682	return 0;
10683}
10684
10685int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
10686{
10687	int err = 0, n, len, start, end = -1;
10688	bool *tmp;
10689
10690	*mask = NULL;
10691	*mask_sz = 0;
10692
10693	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
10694	while (*s) {
10695		if (*s == ',' || *s == '\n') {
10696			s++;
10697			continue;
10698		}
10699		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
10700		if (n <= 0 || n > 2) {
10701			pr_warn("Failed to get CPU range %s: %d\n", s, n);
10702			err = -EINVAL;
10703			goto cleanup;
10704		} else if (n == 1) {
10705			end = start;
10706		}
10707		if (start < 0 || start > end) {
10708			pr_warn("Invalid CPU range [%d,%d] in %s\n",
10709				start, end, s);
10710			err = -EINVAL;
10711			goto cleanup;
10712		}
10713		tmp = realloc(*mask, end + 1);
10714		if (!tmp) {
10715			err = -ENOMEM;
10716			goto cleanup;
10717		}
10718		*mask = tmp;
10719		memset(tmp + *mask_sz, 0, start - *mask_sz);
10720		memset(tmp + start, 1, end - start + 1);
10721		*mask_sz = end + 1;
10722		s += len;
10723	}
10724	if (!*mask_sz) {
10725		pr_warn("Empty CPU range\n");
10726		return -EINVAL;
10727	}
10728	return 0;
10729cleanup:
10730	free(*mask);
10731	*mask = NULL;
10732	return err;
10733}
10734
10735int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
10736{
10737	int fd, err = 0, len;
10738	char buf[128];
10739
10740	fd = open(fcpu, O_RDONLY);
10741	if (fd < 0) {
10742		err = -errno;
10743		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
10744		return err;
10745	}
10746	len = read(fd, buf, sizeof(buf));
10747	close(fd);
10748	if (len <= 0) {
10749		err = len ? -errno : -EINVAL;
10750		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
10751		return err;
10752	}
10753	if (len >= sizeof(buf)) {
10754		pr_warn("CPU mask is too big in file %s\n", fcpu);
10755		return -E2BIG;
10756	}
10757	buf[len] = '\0';
10758
10759	return parse_cpu_mask_str(buf, mask, mask_sz);
10760}
10761
10762int libbpf_num_possible_cpus(void)
10763{
10764	static const char *fcpu = "/sys/devices/system/cpu/possible";
10765	static int cpus;
10766	int err, n, i, tmp_cpus;
10767	bool *mask;
10768
10769	tmp_cpus = READ_ONCE(cpus);
10770	if (tmp_cpus > 0)
10771		return tmp_cpus;
10772
10773	err = parse_cpu_mask_file(fcpu, &mask, &n);
10774	if (err)
10775		return err;
10776
10777	tmp_cpus = 0;
10778	for (i = 0; i < n; i++) {
10779		if (mask[i])
10780			tmp_cpus++;
10781	}
10782	free(mask);
10783
10784	WRITE_ONCE(cpus, tmp_cpus);
10785	return tmp_cpus;
10786}
10787
10788int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
10789			      const struct bpf_object_open_opts *opts)
10790{
10791	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
10792		.object_name = s->name,
10793	);
10794	struct bpf_object *obj;
10795	int i;
10796
10797	/* Attempt to preserve opts->object_name, unless overriden by user
10798	 * explicitly. Overwriting object name for skeletons is discouraged,
10799	 * as it breaks global data maps, because they contain object name
10800	 * prefix as their own map name prefix. When skeleton is generated,
10801	 * bpftool is making an assumption that this name will stay the same.
10802	 */
10803	if (opts) {
10804		memcpy(&skel_opts, opts, sizeof(*opts));
10805		if (!opts->object_name)
10806			skel_opts.object_name = s->name;
10807	}
10808
10809	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
10810	if (IS_ERR(obj)) {
10811		pr_warn("failed to initialize skeleton BPF object '%s': %ld\n",
10812			s->name, PTR_ERR(obj));
10813		return PTR_ERR(obj);
10814	}
10815
10816	*s->obj = obj;
10817
10818	for (i = 0; i < s->map_cnt; i++) {
10819		struct bpf_map **map = s->maps[i].map;
10820		const char *name = s->maps[i].name;
10821		void **mmaped = s->maps[i].mmaped;
10822
10823		*map = bpf_object__find_map_by_name(obj, name);
10824		if (!*map) {
10825			pr_warn("failed to find skeleton map '%s'\n", name);
10826			return -ESRCH;
10827		}
10828
10829		/* externs shouldn't be pre-setup from user code */
10830		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
10831			*mmaped = (*map)->mmaped;
10832	}
10833
10834	for (i = 0; i < s->prog_cnt; i++) {
10835		struct bpf_program **prog = s->progs[i].prog;
10836		const char *name = s->progs[i].name;
10837
10838		*prog = bpf_object__find_program_by_name(obj, name);
10839		if (!*prog) {
10840			pr_warn("failed to find skeleton program '%s'\n", name);
10841			return -ESRCH;
10842		}
10843	}
10844
10845	return 0;
10846}
10847
10848int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
10849{
10850	int i, err;
10851
10852	err = bpf_object__load(*s->obj);
10853	if (err) {
10854		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
10855		return err;
10856	}
10857
10858	for (i = 0; i < s->map_cnt; i++) {
10859		struct bpf_map *map = *s->maps[i].map;
10860		size_t mmap_sz = bpf_map_mmap_sz(map);
10861		int prot, map_fd = bpf_map__fd(map);
10862		void **mmaped = s->maps[i].mmaped;
10863
10864		if (!mmaped)
10865			continue;
10866
10867		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
10868			*mmaped = NULL;
10869			continue;
10870		}
10871
10872		if (map->def.map_flags & BPF_F_RDONLY_PROG)
10873			prot = PROT_READ;
10874		else
10875			prot = PROT_READ | PROT_WRITE;
10876
10877		/* Remap anonymous mmap()-ed "map initialization image" as
10878		 * a BPF map-backed mmap()-ed memory, but preserving the same
10879		 * memory address. This will cause kernel to change process'
10880		 * page table to point to a different piece of kernel memory,
10881		 * but from userspace point of view memory address (and its
10882		 * contents, being identical at this point) will stay the
10883		 * same. This mapping will be released by bpf_object__close()
10884		 * as per normal clean up procedure, so we don't need to worry
10885		 * about it from skeleton's clean up perspective.
10886		 */
10887		*mmaped = mmap(map->mmaped, mmap_sz, prot,
10888				MAP_SHARED | MAP_FIXED, map_fd, 0);
10889		if (*mmaped == MAP_FAILED) {
10890			err = -errno;
10891			*mmaped = NULL;
10892			pr_warn("failed to re-mmap() map '%s': %d\n",
10893				 bpf_map__name(map), err);
10894			return err;
10895		}
10896	}
10897
10898	return 0;
10899}
10900
10901int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
10902{
10903	int i;
10904
10905	for (i = 0; i < s->prog_cnt; i++) {
10906		struct bpf_program *prog = *s->progs[i].prog;
10907		struct bpf_link **link = s->progs[i].link;
10908		const struct bpf_sec_def *sec_def;
10909
10910		if (!prog->load)
10911			continue;
10912
10913		sec_def = find_sec_def(prog->sec_name);
10914		if (!sec_def || !sec_def->attach_fn)
10915			continue;
10916
10917		*link = sec_def->attach_fn(sec_def, prog);
10918		if (IS_ERR(*link)) {
10919			pr_warn("failed to auto-attach program '%s': %ld\n",
10920				bpf_program__name(prog), PTR_ERR(*link));
10921			return PTR_ERR(*link);
10922		}
10923	}
10924
10925	return 0;
10926}
10927
10928void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
10929{
10930	int i;
10931
10932	for (i = 0; i < s->prog_cnt; i++) {
10933		struct bpf_link **link = s->progs[i].link;
10934
10935		bpf_link__destroy(*link);
10936		*link = NULL;
10937	}
10938}
10939
10940void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
10941{
10942	if (!s)
10943		return;
10944
10945	if (s->progs)
10946		bpf_object__detach_skeleton(s);
10947	if (s->obj)
10948		bpf_object__close(*s->obj);
10949	free(s->maps);
10950	free(s->progs);
10951	free(s);
10952}
10953