1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3/* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13#ifndef _GNU_SOURCE 14#define _GNU_SOURCE 15#endif 16#include <stdlib.h> 17#include <stdio.h> 18#include <stdarg.h> 19#include <libgen.h> 20#include <inttypes.h> 21#include <limits.h> 22#include <string.h> 23#include <unistd.h> 24#include <endian.h> 25#include <fcntl.h> 26#include <errno.h> 27#include <ctype.h> 28#include <asm/unistd.h> 29#include <linux/err.h> 30#include <linux/kernel.h> 31#include <linux/bpf.h> 32#include <linux/btf.h> 33#include <linux/filter.h> 34#include <linux/list.h> 35#include <linux/limits.h> 36#include <linux/perf_event.h> 37#include <linux/ring_buffer.h> 38#include <linux/version.h> 39#include <sys/epoll.h> 40#include <sys/ioctl.h> 41#include <sys/mman.h> 42#include <sys/stat.h> 43#include <sys/types.h> 44#include <sys/vfs.h> 45#include <sys/utsname.h> 46#include <sys/resource.h> 47#include <libelf.h> 48#include <gelf.h> 49#include <zlib.h> 50 51#include "libbpf.h" 52#include "bpf.h" 53#include "btf.h" 54#include "str_error.h" 55#include "libbpf_internal.h" 56#include "hashmap.h" 57 58#ifndef EM_BPF 59#define EM_BPF 247 60#endif 61 62#ifndef BPF_FS_MAGIC 63#define BPF_FS_MAGIC 0xcafe4a11 64#endif 65 66#define BPF_INSN_SZ (sizeof(struct bpf_insn)) 67 68/* vsprintf() in __base_pr() uses nonliteral format string. It may break 69 * compilation if user enables corresponding warning. Disable it explicitly. 70 */ 71#pragma GCC diagnostic ignored "-Wformat-nonliteral" 72 73#define __printf(a, b) __attribute__((format(printf, a, b))) 74 75static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 76static const struct btf_type * 77skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id); 78 79static int __base_pr(enum libbpf_print_level level, const char *format, 80 va_list args) 81{ 82 if (level == LIBBPF_DEBUG) 83 return 0; 84 85 return vfprintf(stderr, format, args); 86} 87 88static libbpf_print_fn_t __libbpf_pr = __base_pr; 89 90libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 91{ 92 libbpf_print_fn_t old_print_fn = __libbpf_pr; 93 94 __libbpf_pr = fn; 95 return old_print_fn; 96} 97 98__printf(2, 3) 99void libbpf_print(enum libbpf_print_level level, const char *format, ...) 100{ 101 va_list args; 102 103 if (!__libbpf_pr) 104 return; 105 106 va_start(args, format); 107 __libbpf_pr(level, format, args); 108 va_end(args); 109} 110 111static void pr_perm_msg(int err) 112{ 113 struct rlimit limit; 114 char buf[100]; 115 116 if (err != -EPERM || geteuid() != 0) 117 return; 118 119 err = getrlimit(RLIMIT_MEMLOCK, &limit); 120 if (err) 121 return; 122 123 if (limit.rlim_cur == RLIM_INFINITY) 124 return; 125 126 if (limit.rlim_cur < 1024) 127 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 128 else if (limit.rlim_cur < 1024*1024) 129 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 130 else 131 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 132 133 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 134 buf); 135} 136 137#define STRERR_BUFSIZE 128 138 139/* Copied from tools/perf/util/util.h */ 140#ifndef zfree 141# define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 142#endif 143 144#ifndef zclose 145# define zclose(fd) ({ \ 146 int ___err = 0; \ 147 if ((fd) >= 0) \ 148 ___err = close((fd)); \ 149 fd = -1; \ 150 ___err; }) 151#endif 152 153static inline __u64 ptr_to_u64(const void *ptr) 154{ 155 return (__u64) (unsigned long) ptr; 156} 157 158enum kern_feature_id { 159 /* v4.14: kernel support for program & map names. */ 160 FEAT_PROG_NAME, 161 /* v5.2: kernel support for global data sections. */ 162 FEAT_GLOBAL_DATA, 163 /* BTF support */ 164 FEAT_BTF, 165 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 166 FEAT_BTF_FUNC, 167 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 168 FEAT_BTF_DATASEC, 169 /* BTF_FUNC_GLOBAL is supported */ 170 FEAT_BTF_GLOBAL_FUNC, 171 /* BPF_F_MMAPABLE is supported for arrays */ 172 FEAT_ARRAY_MMAP, 173 /* kernel support for expected_attach_type in BPF_PROG_LOAD */ 174 FEAT_EXP_ATTACH_TYPE, 175 /* bpf_probe_read_{kernel,user}[_str] helpers */ 176 FEAT_PROBE_READ_KERN, 177 /* BPF_PROG_BIND_MAP is supported */ 178 FEAT_PROG_BIND_MAP, 179 __FEAT_CNT, 180}; 181 182static bool kernel_supports(enum kern_feature_id feat_id); 183 184enum reloc_type { 185 RELO_LD64, 186 RELO_CALL, 187 RELO_DATA, 188 RELO_EXTERN, 189}; 190 191struct reloc_desc { 192 enum reloc_type type; 193 int insn_idx; 194 int map_idx; 195 int sym_off; 196 bool processed; 197}; 198 199struct bpf_sec_def; 200 201typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec, 202 struct bpf_program *prog); 203 204struct bpf_sec_def { 205 const char *sec; 206 size_t len; 207 enum bpf_prog_type prog_type; 208 enum bpf_attach_type expected_attach_type; 209 bool is_exp_attach_type_optional; 210 bool is_attachable; 211 bool is_attach_btf; 212 bool is_sleepable; 213 attach_fn_t attach_fn; 214}; 215 216/* 217 * bpf_prog should be a better name but it has been used in 218 * linux/filter.h. 219 */ 220struct bpf_program { 221 const struct bpf_sec_def *sec_def; 222 char *sec_name; 223 size_t sec_idx; 224 /* this program's instruction offset (in number of instructions) 225 * within its containing ELF section 226 */ 227 size_t sec_insn_off; 228 /* number of original instructions in ELF section belonging to this 229 * program, not taking into account subprogram instructions possible 230 * appended later during relocation 231 */ 232 size_t sec_insn_cnt; 233 /* Offset (in number of instructions) of the start of instruction 234 * belonging to this BPF program within its containing main BPF 235 * program. For the entry-point (main) BPF program, this is always 236 * zero. For a sub-program, this gets reset before each of main BPF 237 * programs are processed and relocated and is used to determined 238 * whether sub-program was already appended to the main program, and 239 * if yes, at which instruction offset. 240 */ 241 size_t sub_insn_off; 242 243 char *name; 244 /* sec_name with / replaced by _; makes recursive pinning 245 * in bpf_object__pin_programs easier 246 */ 247 char *pin_name; 248 249 /* instructions that belong to BPF program; insns[0] is located at 250 * sec_insn_off instruction within its ELF section in ELF file, so 251 * when mapping ELF file instruction index to the local instruction, 252 * one needs to subtract sec_insn_off; and vice versa. 253 */ 254 struct bpf_insn *insns; 255 /* actual number of instruction in this BPF program's image; for 256 * entry-point BPF programs this includes the size of main program 257 * itself plus all the used sub-programs, appended at the end 258 */ 259 size_t insns_cnt; 260 261 struct reloc_desc *reloc_desc; 262 int nr_reloc; 263 int log_level; 264 265 struct { 266 int nr; 267 int *fds; 268 } instances; 269 bpf_program_prep_t preprocessor; 270 271 struct bpf_object *obj; 272 void *priv; 273 bpf_program_clear_priv_t clear_priv; 274 275 bool load; 276 enum bpf_prog_type type; 277 enum bpf_attach_type expected_attach_type; 278 int prog_ifindex; 279 __u32 attach_btf_id; 280 __u32 attach_prog_fd; 281 void *func_info; 282 __u32 func_info_rec_size; 283 __u32 func_info_cnt; 284 285 void *line_info; 286 __u32 line_info_rec_size; 287 __u32 line_info_cnt; 288 __u32 prog_flags; 289}; 290 291struct bpf_struct_ops { 292 const char *tname; 293 const struct btf_type *type; 294 struct bpf_program **progs; 295 __u32 *kern_func_off; 296 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 297 void *data; 298 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 299 * btf_vmlinux's format. 300 * struct bpf_struct_ops_tcp_congestion_ops { 301 * [... some other kernel fields ...] 302 * struct tcp_congestion_ops data; 303 * } 304 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 305 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 306 * from "data". 307 */ 308 void *kern_vdata; 309 __u32 type_id; 310}; 311 312#define DATA_SEC ".data" 313#define BSS_SEC ".bss" 314#define RODATA_SEC ".rodata" 315#define KCONFIG_SEC ".kconfig" 316#define KSYMS_SEC ".ksyms" 317#define STRUCT_OPS_SEC ".struct_ops" 318 319enum libbpf_map_type { 320 LIBBPF_MAP_UNSPEC, 321 LIBBPF_MAP_DATA, 322 LIBBPF_MAP_BSS, 323 LIBBPF_MAP_RODATA, 324 LIBBPF_MAP_KCONFIG, 325}; 326 327static const char * const libbpf_type_to_btf_name[] = { 328 [LIBBPF_MAP_DATA] = DATA_SEC, 329 [LIBBPF_MAP_BSS] = BSS_SEC, 330 [LIBBPF_MAP_RODATA] = RODATA_SEC, 331 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC, 332}; 333 334struct bpf_map { 335 char *name; 336 int fd; 337 int sec_idx; 338 size_t sec_offset; 339 int map_ifindex; 340 int inner_map_fd; 341 struct bpf_map_def def; 342 __u32 numa_node; 343 __u32 btf_var_idx; 344 __u32 btf_key_type_id; 345 __u32 btf_value_type_id; 346 __u32 btf_vmlinux_value_type_id; 347 void *priv; 348 bpf_map_clear_priv_t clear_priv; 349 enum libbpf_map_type libbpf_type; 350 void *mmaped; 351 struct bpf_struct_ops *st_ops; 352 struct bpf_map *inner_map; 353 void **init_slots; 354 int init_slots_sz; 355 char *pin_path; 356 bool pinned; 357 bool reused; 358}; 359 360enum extern_type { 361 EXT_UNKNOWN, 362 EXT_KCFG, 363 EXT_KSYM, 364}; 365 366enum kcfg_type { 367 KCFG_UNKNOWN, 368 KCFG_CHAR, 369 KCFG_BOOL, 370 KCFG_INT, 371 KCFG_TRISTATE, 372 KCFG_CHAR_ARR, 373}; 374 375struct extern_desc { 376 enum extern_type type; 377 int sym_idx; 378 int btf_id; 379 int sec_btf_id; 380 const char *name; 381 bool is_set; 382 bool is_weak; 383 union { 384 struct { 385 enum kcfg_type type; 386 int sz; 387 int align; 388 int data_off; 389 bool is_signed; 390 } kcfg; 391 struct { 392 unsigned long long addr; 393 394 /* target btf_id of the corresponding kernel var. */ 395 int vmlinux_btf_id; 396 397 /* local btf_id of the ksym extern's type. */ 398 __u32 type_id; 399 } ksym; 400 }; 401}; 402 403static LIST_HEAD(bpf_objects_list); 404 405struct bpf_object { 406 char name[BPF_OBJ_NAME_LEN]; 407 char license[64]; 408 __u32 kern_version; 409 410 struct bpf_program *programs; 411 size_t nr_programs; 412 struct bpf_map *maps; 413 size_t nr_maps; 414 size_t maps_cap; 415 416 char *kconfig; 417 struct extern_desc *externs; 418 int nr_extern; 419 int kconfig_map_idx; 420 int rodata_map_idx; 421 422 bool loaded; 423 bool has_subcalls; 424 425 /* 426 * Information when doing elf related work. Only valid if fd 427 * is valid. 428 */ 429 struct { 430 int fd; 431 const void *obj_buf; 432 size_t obj_buf_sz; 433 Elf *elf; 434 GElf_Ehdr ehdr; 435 Elf_Data *symbols; 436 Elf_Data *data; 437 Elf_Data *rodata; 438 Elf_Data *bss; 439 Elf_Data *st_ops_data; 440 size_t shstrndx; /* section index for section name strings */ 441 size_t strtabidx; 442 struct { 443 GElf_Shdr shdr; 444 Elf_Data *data; 445 } *reloc_sects; 446 int nr_reloc_sects; 447 int maps_shndx; 448 int btf_maps_shndx; 449 __u32 btf_maps_sec_btf_id; 450 int text_shndx; 451 int symbols_shndx; 452 int data_shndx; 453 int rodata_shndx; 454 int bss_shndx; 455 int st_ops_shndx; 456 } efile; 457 /* 458 * All loaded bpf_object is linked in a list, which is 459 * hidden to caller. bpf_objects__<func> handlers deal with 460 * all objects. 461 */ 462 struct list_head list; 463 464 struct btf *btf; 465 /* Parse and load BTF vmlinux if any of the programs in the object need 466 * it at load time. 467 */ 468 struct btf *btf_vmlinux; 469 struct btf_ext *btf_ext; 470 471 void *priv; 472 bpf_object_clear_priv_t clear_priv; 473 474 char path[]; 475}; 476#define obj_elf_valid(o) ((o)->efile.elf) 477 478static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 479static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 480static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 481static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 482static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr); 483static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 484static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 485static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx, 486 size_t off, __u32 sym_type, GElf_Sym *sym); 487 488void bpf_program__unload(struct bpf_program *prog) 489{ 490 int i; 491 492 if (!prog) 493 return; 494 495 /* 496 * If the object is opened but the program was never loaded, 497 * it is possible that prog->instances.nr == -1. 498 */ 499 if (prog->instances.nr > 0) { 500 for (i = 0; i < prog->instances.nr; i++) 501 zclose(prog->instances.fds[i]); 502 } else if (prog->instances.nr != -1) { 503 pr_warn("Internal error: instances.nr is %d\n", 504 prog->instances.nr); 505 } 506 507 prog->instances.nr = -1; 508 zfree(&prog->instances.fds); 509 510 zfree(&prog->func_info); 511 zfree(&prog->line_info); 512} 513 514static void bpf_program__exit(struct bpf_program *prog) 515{ 516 if (!prog) 517 return; 518 519 if (prog->clear_priv) 520 prog->clear_priv(prog, prog->priv); 521 522 prog->priv = NULL; 523 prog->clear_priv = NULL; 524 525 bpf_program__unload(prog); 526 zfree(&prog->name); 527 zfree(&prog->sec_name); 528 zfree(&prog->pin_name); 529 zfree(&prog->insns); 530 zfree(&prog->reloc_desc); 531 532 prog->nr_reloc = 0; 533 prog->insns_cnt = 0; 534 prog->sec_idx = -1; 535} 536 537static char *__bpf_program__pin_name(struct bpf_program *prog) 538{ 539 char *name, *p; 540 541 name = p = strdup(prog->sec_name); 542 while ((p = strchr(p, '/'))) 543 *p = '_'; 544 545 return name; 546} 547 548static bool insn_is_subprog_call(const struct bpf_insn *insn) 549{ 550 return BPF_CLASS(insn->code) == BPF_JMP && 551 BPF_OP(insn->code) == BPF_CALL && 552 BPF_SRC(insn->code) == BPF_K && 553 insn->src_reg == BPF_PSEUDO_CALL && 554 insn->dst_reg == 0 && 555 insn->off == 0; 556} 557 558static int 559bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 560 const char *name, size_t sec_idx, const char *sec_name, 561 size_t sec_off, void *insn_data, size_t insn_data_sz) 562{ 563 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 564 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 565 sec_name, name, sec_off, insn_data_sz); 566 return -EINVAL; 567 } 568 569 memset(prog, 0, sizeof(*prog)); 570 prog->obj = obj; 571 572 prog->sec_idx = sec_idx; 573 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 574 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 575 /* insns_cnt can later be increased by appending used subprograms */ 576 prog->insns_cnt = prog->sec_insn_cnt; 577 578 prog->type = BPF_PROG_TYPE_UNSPEC; 579 prog->load = true; 580 581 prog->instances.fds = NULL; 582 prog->instances.nr = -1; 583 584 prog->sec_name = strdup(sec_name); 585 if (!prog->sec_name) 586 goto errout; 587 588 prog->name = strdup(name); 589 if (!prog->name) 590 goto errout; 591 592 prog->pin_name = __bpf_program__pin_name(prog); 593 if (!prog->pin_name) 594 goto errout; 595 596 prog->insns = malloc(insn_data_sz); 597 if (!prog->insns) 598 goto errout; 599 memcpy(prog->insns, insn_data, insn_data_sz); 600 601 return 0; 602errout: 603 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 604 bpf_program__exit(prog); 605 return -ENOMEM; 606} 607 608static int 609bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 610 const char *sec_name, int sec_idx) 611{ 612 struct bpf_program *prog, *progs; 613 void *data = sec_data->d_buf; 614 size_t sec_sz = sec_data->d_size, sec_off, prog_sz; 615 int nr_progs, err; 616 const char *name; 617 GElf_Sym sym; 618 619 progs = obj->programs; 620 nr_progs = obj->nr_programs; 621 sec_off = 0; 622 623 while (sec_off < sec_sz) { 624 if (elf_sym_by_sec_off(obj, sec_idx, sec_off, STT_FUNC, &sym)) { 625 pr_warn("sec '%s': failed to find program symbol at offset %zu\n", 626 sec_name, sec_off); 627 return -LIBBPF_ERRNO__FORMAT; 628 } 629 630 prog_sz = sym.st_size; 631 632 name = elf_sym_str(obj, sym.st_name); 633 if (!name) { 634 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 635 sec_name, sec_off); 636 return -LIBBPF_ERRNO__FORMAT; 637 } 638 639 if (sec_off + prog_sz > sec_sz) { 640 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 641 sec_name, sec_off); 642 return -LIBBPF_ERRNO__FORMAT; 643 } 644 645 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 646 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 647 648 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 649 if (!progs) { 650 /* 651 * In this case the original obj->programs 652 * is still valid, so don't need special treat for 653 * bpf_close_object(). 654 */ 655 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 656 sec_name, name); 657 return -ENOMEM; 658 } 659 obj->programs = progs; 660 661 prog = &progs[nr_progs]; 662 663 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 664 sec_off, data + sec_off, prog_sz); 665 if (err) 666 return err; 667 668 nr_progs++; 669 obj->nr_programs = nr_progs; 670 671 sec_off += prog_sz; 672 } 673 674 return 0; 675} 676 677static __u32 get_kernel_version(void) 678{ 679 __u32 major, minor, patch; 680 struct utsname info; 681 682 uname(&info); 683 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 684 return 0; 685 return KERNEL_VERSION(major, minor, patch); 686} 687 688static const struct btf_member * 689find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 690{ 691 struct btf_member *m; 692 int i; 693 694 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 695 if (btf_member_bit_offset(t, i) == bit_offset) 696 return m; 697 } 698 699 return NULL; 700} 701 702static const struct btf_member * 703find_member_by_name(const struct btf *btf, const struct btf_type *t, 704 const char *name) 705{ 706 struct btf_member *m; 707 int i; 708 709 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 710 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 711 return m; 712 } 713 714 return NULL; 715} 716 717#define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 718static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 719 const char *name, __u32 kind); 720 721static int 722find_struct_ops_kern_types(const struct btf *btf, const char *tname, 723 const struct btf_type **type, __u32 *type_id, 724 const struct btf_type **vtype, __u32 *vtype_id, 725 const struct btf_member **data_member) 726{ 727 const struct btf_type *kern_type, *kern_vtype; 728 const struct btf_member *kern_data_member; 729 __s32 kern_vtype_id, kern_type_id; 730 __u32 i; 731 732 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 733 if (kern_type_id < 0) { 734 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 735 tname); 736 return kern_type_id; 737 } 738 kern_type = btf__type_by_id(btf, kern_type_id); 739 740 /* Find the corresponding "map_value" type that will be used 741 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 742 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 743 * btf_vmlinux. 744 */ 745 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 746 tname, BTF_KIND_STRUCT); 747 if (kern_vtype_id < 0) { 748 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 749 STRUCT_OPS_VALUE_PREFIX, tname); 750 return kern_vtype_id; 751 } 752 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 753 754 /* Find "struct tcp_congestion_ops" from 755 * struct bpf_struct_ops_tcp_congestion_ops { 756 * [ ... ] 757 * struct tcp_congestion_ops data; 758 * } 759 */ 760 kern_data_member = btf_members(kern_vtype); 761 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 762 if (kern_data_member->type == kern_type_id) 763 break; 764 } 765 if (i == btf_vlen(kern_vtype)) { 766 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 767 tname, STRUCT_OPS_VALUE_PREFIX, tname); 768 return -EINVAL; 769 } 770 771 *type = kern_type; 772 *type_id = kern_type_id; 773 *vtype = kern_vtype; 774 *vtype_id = kern_vtype_id; 775 *data_member = kern_data_member; 776 777 return 0; 778} 779 780static bool bpf_map__is_struct_ops(const struct bpf_map *map) 781{ 782 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 783} 784 785/* Init the map's fields that depend on kern_btf */ 786static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 787 const struct btf *btf, 788 const struct btf *kern_btf) 789{ 790 const struct btf_member *member, *kern_member, *kern_data_member; 791 const struct btf_type *type, *kern_type, *kern_vtype; 792 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 793 struct bpf_struct_ops *st_ops; 794 void *data, *kern_data; 795 const char *tname; 796 int err; 797 798 st_ops = map->st_ops; 799 type = st_ops->type; 800 tname = st_ops->tname; 801 err = find_struct_ops_kern_types(kern_btf, tname, 802 &kern_type, &kern_type_id, 803 &kern_vtype, &kern_vtype_id, 804 &kern_data_member); 805 if (err) 806 return err; 807 808 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 809 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 810 811 map->def.value_size = kern_vtype->size; 812 map->btf_vmlinux_value_type_id = kern_vtype_id; 813 814 st_ops->kern_vdata = calloc(1, kern_vtype->size); 815 if (!st_ops->kern_vdata) 816 return -ENOMEM; 817 818 data = st_ops->data; 819 kern_data_off = kern_data_member->offset / 8; 820 kern_data = st_ops->kern_vdata + kern_data_off; 821 822 member = btf_members(type); 823 for (i = 0; i < btf_vlen(type); i++, member++) { 824 const struct btf_type *mtype, *kern_mtype; 825 __u32 mtype_id, kern_mtype_id; 826 void *mdata, *kern_mdata; 827 __s64 msize, kern_msize; 828 __u32 moff, kern_moff; 829 __u32 kern_member_idx; 830 const char *mname; 831 832 mname = btf__name_by_offset(btf, member->name_off); 833 kern_member = find_member_by_name(kern_btf, kern_type, mname); 834 if (!kern_member) { 835 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 836 map->name, mname); 837 return -ENOTSUP; 838 } 839 840 kern_member_idx = kern_member - btf_members(kern_type); 841 if (btf_member_bitfield_size(type, i) || 842 btf_member_bitfield_size(kern_type, kern_member_idx)) { 843 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 844 map->name, mname); 845 return -ENOTSUP; 846 } 847 848 moff = member->offset / 8; 849 kern_moff = kern_member->offset / 8; 850 851 mdata = data + moff; 852 kern_mdata = kern_data + kern_moff; 853 854 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 855 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 856 &kern_mtype_id); 857 if (BTF_INFO_KIND(mtype->info) != 858 BTF_INFO_KIND(kern_mtype->info)) { 859 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 860 map->name, mname, BTF_INFO_KIND(mtype->info), 861 BTF_INFO_KIND(kern_mtype->info)); 862 return -ENOTSUP; 863 } 864 865 if (btf_is_ptr(mtype)) { 866 struct bpf_program *prog; 867 868 prog = st_ops->progs[i]; 869 if (!prog) 870 continue; 871 872 kern_mtype = skip_mods_and_typedefs(kern_btf, 873 kern_mtype->type, 874 &kern_mtype_id); 875 876 /* mtype->type must be a func_proto which was 877 * guaranteed in bpf_object__collect_st_ops_relos(), 878 * so only check kern_mtype for func_proto here. 879 */ 880 if (!btf_is_func_proto(kern_mtype)) { 881 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 882 map->name, mname); 883 return -ENOTSUP; 884 } 885 886 prog->attach_btf_id = kern_type_id; 887 prog->expected_attach_type = kern_member_idx; 888 889 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 890 891 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 892 map->name, mname, prog->name, moff, 893 kern_moff); 894 895 continue; 896 } 897 898 msize = btf__resolve_size(btf, mtype_id); 899 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 900 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 901 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 902 map->name, mname, (ssize_t)msize, 903 (ssize_t)kern_msize); 904 return -ENOTSUP; 905 } 906 907 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 908 map->name, mname, (unsigned int)msize, 909 moff, kern_moff); 910 memcpy(kern_mdata, mdata, msize); 911 } 912 913 return 0; 914} 915 916static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 917{ 918 struct bpf_map *map; 919 size_t i; 920 int err; 921 922 for (i = 0; i < obj->nr_maps; i++) { 923 map = &obj->maps[i]; 924 925 if (!bpf_map__is_struct_ops(map)) 926 continue; 927 928 err = bpf_map__init_kern_struct_ops(map, obj->btf, 929 obj->btf_vmlinux); 930 if (err) 931 return err; 932 } 933 934 return 0; 935} 936 937static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 938{ 939 const struct btf_type *type, *datasec; 940 const struct btf_var_secinfo *vsi; 941 struct bpf_struct_ops *st_ops; 942 const char *tname, *var_name; 943 __s32 type_id, datasec_id; 944 const struct btf *btf; 945 struct bpf_map *map; 946 __u32 i; 947 948 if (obj->efile.st_ops_shndx == -1) 949 return 0; 950 951 btf = obj->btf; 952 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 953 BTF_KIND_DATASEC); 954 if (datasec_id < 0) { 955 pr_warn("struct_ops init: DATASEC %s not found\n", 956 STRUCT_OPS_SEC); 957 return -EINVAL; 958 } 959 960 datasec = btf__type_by_id(btf, datasec_id); 961 vsi = btf_var_secinfos(datasec); 962 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 963 type = btf__type_by_id(obj->btf, vsi->type); 964 var_name = btf__name_by_offset(obj->btf, type->name_off); 965 966 type_id = btf__resolve_type(obj->btf, vsi->type); 967 if (type_id < 0) { 968 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 969 vsi->type, STRUCT_OPS_SEC); 970 return -EINVAL; 971 } 972 973 type = btf__type_by_id(obj->btf, type_id); 974 tname = btf__name_by_offset(obj->btf, type->name_off); 975 if (!tname[0]) { 976 pr_warn("struct_ops init: anonymous type is not supported\n"); 977 return -ENOTSUP; 978 } 979 if (!btf_is_struct(type)) { 980 pr_warn("struct_ops init: %s is not a struct\n", tname); 981 return -EINVAL; 982 } 983 984 map = bpf_object__add_map(obj); 985 if (IS_ERR(map)) 986 return PTR_ERR(map); 987 988 map->sec_idx = obj->efile.st_ops_shndx; 989 map->sec_offset = vsi->offset; 990 map->name = strdup(var_name); 991 if (!map->name) 992 return -ENOMEM; 993 994 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 995 map->def.key_size = sizeof(int); 996 map->def.value_size = type->size; 997 map->def.max_entries = 1; 998 999 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1000 if (!map->st_ops) 1001 return -ENOMEM; 1002 st_ops = map->st_ops; 1003 st_ops->data = malloc(type->size); 1004 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1005 st_ops->kern_func_off = malloc(btf_vlen(type) * 1006 sizeof(*st_ops->kern_func_off)); 1007 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1008 return -ENOMEM; 1009 1010 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1011 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1012 var_name, STRUCT_OPS_SEC); 1013 return -EINVAL; 1014 } 1015 1016 memcpy(st_ops->data, 1017 obj->efile.st_ops_data->d_buf + vsi->offset, 1018 type->size); 1019 st_ops->tname = tname; 1020 st_ops->type = type; 1021 st_ops->type_id = type_id; 1022 1023 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1024 tname, type_id, var_name, vsi->offset); 1025 } 1026 1027 return 0; 1028} 1029 1030static struct bpf_object *bpf_object__new(const char *path, 1031 const void *obj_buf, 1032 size_t obj_buf_sz, 1033 const char *obj_name) 1034{ 1035 struct bpf_object *obj; 1036 char *end; 1037 1038 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1039 if (!obj) { 1040 pr_warn("alloc memory failed for %s\n", path); 1041 return ERR_PTR(-ENOMEM); 1042 } 1043 1044 strcpy(obj->path, path); 1045 if (obj_name) { 1046 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 1047 obj->name[sizeof(obj->name) - 1] = 0; 1048 } else { 1049 /* Using basename() GNU version which doesn't modify arg. */ 1050 strncpy(obj->name, basename((void *)path), 1051 sizeof(obj->name) - 1); 1052 end = strchr(obj->name, '.'); 1053 if (end) 1054 *end = 0; 1055 } 1056 1057 obj->efile.fd = -1; 1058 /* 1059 * Caller of this function should also call 1060 * bpf_object__elf_finish() after data collection to return 1061 * obj_buf to user. If not, we should duplicate the buffer to 1062 * avoid user freeing them before elf finish. 1063 */ 1064 obj->efile.obj_buf = obj_buf; 1065 obj->efile.obj_buf_sz = obj_buf_sz; 1066 obj->efile.maps_shndx = -1; 1067 obj->efile.btf_maps_shndx = -1; 1068 obj->efile.data_shndx = -1; 1069 obj->efile.rodata_shndx = -1; 1070 obj->efile.bss_shndx = -1; 1071 obj->efile.st_ops_shndx = -1; 1072 obj->kconfig_map_idx = -1; 1073 obj->rodata_map_idx = -1; 1074 1075 obj->kern_version = get_kernel_version(); 1076 obj->loaded = false; 1077 1078 INIT_LIST_HEAD(&obj->list); 1079 list_add(&obj->list, &bpf_objects_list); 1080 return obj; 1081} 1082 1083static void bpf_object__elf_finish(struct bpf_object *obj) 1084{ 1085 if (!obj_elf_valid(obj)) 1086 return; 1087 1088 if (obj->efile.elf) { 1089 elf_end(obj->efile.elf); 1090 obj->efile.elf = NULL; 1091 } 1092 obj->efile.symbols = NULL; 1093 obj->efile.data = NULL; 1094 obj->efile.rodata = NULL; 1095 obj->efile.bss = NULL; 1096 obj->efile.st_ops_data = NULL; 1097 1098 zfree(&obj->efile.reloc_sects); 1099 obj->efile.nr_reloc_sects = 0; 1100 zclose(obj->efile.fd); 1101 obj->efile.obj_buf = NULL; 1102 obj->efile.obj_buf_sz = 0; 1103} 1104 1105/* if libelf is old and doesn't support mmap(), fall back to read() */ 1106#ifndef ELF_C_READ_MMAP 1107#define ELF_C_READ_MMAP ELF_C_READ 1108#endif 1109 1110static int bpf_object__elf_init(struct bpf_object *obj) 1111{ 1112 int err = 0; 1113 GElf_Ehdr *ep; 1114 1115 if (obj_elf_valid(obj)) { 1116 pr_warn("elf: init internal error\n"); 1117 return -LIBBPF_ERRNO__LIBELF; 1118 } 1119 1120 if (obj->efile.obj_buf_sz > 0) { 1121 /* 1122 * obj_buf should have been validated by 1123 * bpf_object__open_buffer(). 1124 */ 1125 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf, 1126 obj->efile.obj_buf_sz); 1127 } else { 1128 obj->efile.fd = open(obj->path, O_RDONLY); 1129 if (obj->efile.fd < 0) { 1130 char errmsg[STRERR_BUFSIZE], *cp; 1131 1132 err = -errno; 1133 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1134 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1135 return err; 1136 } 1137 1138 obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1139 } 1140 1141 if (!obj->efile.elf) { 1142 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1143 err = -LIBBPF_ERRNO__LIBELF; 1144 goto errout; 1145 } 1146 1147 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) { 1148 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1149 err = -LIBBPF_ERRNO__FORMAT; 1150 goto errout; 1151 } 1152 ep = &obj->efile.ehdr; 1153 1154 if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) { 1155 pr_warn("elf: failed to get section names section index for %s: %s\n", 1156 obj->path, elf_errmsg(-1)); 1157 err = -LIBBPF_ERRNO__FORMAT; 1158 goto errout; 1159 } 1160 1161 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1162 if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) { 1163 pr_warn("elf: failed to get section names strings from %s: %s\n", 1164 obj->path, elf_errmsg(-1)); 1165 err = -LIBBPF_ERRNO__FORMAT; 1166 goto errout; 1167 } 1168 1169 /* Old LLVM set e_machine to EM_NONE */ 1170 if (ep->e_type != ET_REL || 1171 (ep->e_machine && ep->e_machine != EM_BPF)) { 1172 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1173 err = -LIBBPF_ERRNO__FORMAT; 1174 goto errout; 1175 } 1176 1177 return 0; 1178errout: 1179 bpf_object__elf_finish(obj); 1180 return err; 1181} 1182 1183static int bpf_object__check_endianness(struct bpf_object *obj) 1184{ 1185#if __BYTE_ORDER == __LITTLE_ENDIAN 1186 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB) 1187 return 0; 1188#elif __BYTE_ORDER == __BIG_ENDIAN 1189 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB) 1190 return 0; 1191#else 1192# error "Unrecognized __BYTE_ORDER__" 1193#endif 1194 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1195 return -LIBBPF_ERRNO__ENDIAN; 1196} 1197 1198static int 1199bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1200{ 1201 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 1202 pr_debug("license of %s is %s\n", obj->path, obj->license); 1203 return 0; 1204} 1205 1206static int 1207bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1208{ 1209 __u32 kver; 1210 1211 if (size != sizeof(kver)) { 1212 pr_warn("invalid kver section in %s\n", obj->path); 1213 return -LIBBPF_ERRNO__FORMAT; 1214 } 1215 memcpy(&kver, data, sizeof(kver)); 1216 obj->kern_version = kver; 1217 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1218 return 0; 1219} 1220 1221static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1222{ 1223 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1224 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1225 return true; 1226 return false; 1227} 1228 1229int bpf_object__section_size(const struct bpf_object *obj, const char *name, 1230 __u32 *size) 1231{ 1232 int ret = -ENOENT; 1233 1234 *size = 0; 1235 if (!name) { 1236 return -EINVAL; 1237 } else if (!strcmp(name, DATA_SEC)) { 1238 if (obj->efile.data) 1239 *size = obj->efile.data->d_size; 1240 } else if (!strcmp(name, BSS_SEC)) { 1241 if (obj->efile.bss) 1242 *size = obj->efile.bss->d_size; 1243 } else if (!strcmp(name, RODATA_SEC)) { 1244 if (obj->efile.rodata) 1245 *size = obj->efile.rodata->d_size; 1246 } else if (!strcmp(name, STRUCT_OPS_SEC)) { 1247 if (obj->efile.st_ops_data) 1248 *size = obj->efile.st_ops_data->d_size; 1249 } else { 1250 Elf_Scn *scn = elf_sec_by_name(obj, name); 1251 Elf_Data *data = elf_sec_data(obj, scn); 1252 1253 if (data) { 1254 ret = 0; /* found it */ 1255 *size = data->d_size; 1256 } 1257 } 1258 1259 return *size ? 0 : ret; 1260} 1261 1262int bpf_object__variable_offset(const struct bpf_object *obj, const char *name, 1263 __u32 *off) 1264{ 1265 Elf_Data *symbols = obj->efile.symbols; 1266 const char *sname; 1267 size_t si; 1268 1269 if (!name || !off) 1270 return -EINVAL; 1271 1272 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) { 1273 GElf_Sym sym; 1274 1275 if (!gelf_getsym(symbols, si, &sym)) 1276 continue; 1277 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL || 1278 GELF_ST_TYPE(sym.st_info) != STT_OBJECT) 1279 continue; 1280 1281 sname = elf_sym_str(obj, sym.st_name); 1282 if (!sname) { 1283 pr_warn("failed to get sym name string for var %s\n", 1284 name); 1285 return -EIO; 1286 } 1287 if (strcmp(name, sname) == 0) { 1288 *off = sym.st_value; 1289 return 0; 1290 } 1291 } 1292 1293 return -ENOENT; 1294} 1295 1296static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1297{ 1298 struct bpf_map *new_maps; 1299 size_t new_cap; 1300 int i; 1301 1302 if (obj->nr_maps < obj->maps_cap) 1303 return &obj->maps[obj->nr_maps++]; 1304 1305 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1306 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1307 if (!new_maps) { 1308 pr_warn("alloc maps for object failed\n"); 1309 return ERR_PTR(-ENOMEM); 1310 } 1311 1312 obj->maps_cap = new_cap; 1313 obj->maps = new_maps; 1314 1315 /* zero out new maps */ 1316 memset(obj->maps + obj->nr_maps, 0, 1317 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1318 /* 1319 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1320 * when failure (zclose won't close negative fd)). 1321 */ 1322 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1323 obj->maps[i].fd = -1; 1324 obj->maps[i].inner_map_fd = -1; 1325 } 1326 1327 return &obj->maps[obj->nr_maps++]; 1328} 1329 1330static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1331{ 1332 long page_sz = sysconf(_SC_PAGE_SIZE); 1333 size_t map_sz; 1334 1335 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1336 map_sz = roundup(map_sz, page_sz); 1337 return map_sz; 1338} 1339 1340static char *internal_map_name(struct bpf_object *obj, 1341 enum libbpf_map_type type) 1342{ 1343 char map_name[BPF_OBJ_NAME_LEN], *p; 1344 const char *sfx = libbpf_type_to_btf_name[type]; 1345 int sfx_len = max((size_t)7, strlen(sfx)); 1346 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, 1347 strlen(obj->name)); 1348 1349 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1350 sfx_len, libbpf_type_to_btf_name[type]); 1351 1352 /* sanitise map name to characters allowed by kernel */ 1353 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1354 if (!isalnum(*p) && *p != '_' && *p != '.') 1355 *p = '_'; 1356 1357 return strdup(map_name); 1358} 1359 1360static int 1361bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1362 int sec_idx, void *data, size_t data_sz) 1363{ 1364 struct bpf_map_def *def; 1365 struct bpf_map *map; 1366 int err; 1367 1368 map = bpf_object__add_map(obj); 1369 if (IS_ERR(map)) 1370 return PTR_ERR(map); 1371 1372 map->libbpf_type = type; 1373 map->sec_idx = sec_idx; 1374 map->sec_offset = 0; 1375 map->name = internal_map_name(obj, type); 1376 if (!map->name) { 1377 pr_warn("failed to alloc map name\n"); 1378 return -ENOMEM; 1379 } 1380 1381 def = &map->def; 1382 def->type = BPF_MAP_TYPE_ARRAY; 1383 def->key_size = sizeof(int); 1384 def->value_size = data_sz; 1385 def->max_entries = 1; 1386 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1387 ? BPF_F_RDONLY_PROG : 0; 1388 def->map_flags |= BPF_F_MMAPABLE; 1389 1390 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1391 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1392 1393 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1394 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1395 if (map->mmaped == MAP_FAILED) { 1396 err = -errno; 1397 map->mmaped = NULL; 1398 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1399 map->name, err); 1400 zfree(&map->name); 1401 return err; 1402 } 1403 1404 if (data) 1405 memcpy(map->mmaped, data, data_sz); 1406 1407 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1408 return 0; 1409} 1410 1411static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1412{ 1413 int err; 1414 1415 /* 1416 * Populate obj->maps with libbpf internal maps. 1417 */ 1418 if (obj->efile.data_shndx >= 0) { 1419 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1420 obj->efile.data_shndx, 1421 obj->efile.data->d_buf, 1422 obj->efile.data->d_size); 1423 if (err) 1424 return err; 1425 } 1426 if (obj->efile.rodata_shndx >= 0) { 1427 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1428 obj->efile.rodata_shndx, 1429 obj->efile.rodata->d_buf, 1430 obj->efile.rodata->d_size); 1431 if (err) 1432 return err; 1433 1434 obj->rodata_map_idx = obj->nr_maps - 1; 1435 } 1436 if (obj->efile.bss_shndx >= 0) { 1437 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1438 obj->efile.bss_shndx, 1439 NULL, 1440 obj->efile.bss->d_size); 1441 if (err) 1442 return err; 1443 } 1444 return 0; 1445} 1446 1447 1448static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1449 const void *name) 1450{ 1451 int i; 1452 1453 for (i = 0; i < obj->nr_extern; i++) { 1454 if (strcmp(obj->externs[i].name, name) == 0) 1455 return &obj->externs[i]; 1456 } 1457 return NULL; 1458} 1459 1460static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1461 char value) 1462{ 1463 switch (ext->kcfg.type) { 1464 case KCFG_BOOL: 1465 if (value == 'm') { 1466 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1467 ext->name, value); 1468 return -EINVAL; 1469 } 1470 *(bool *)ext_val = value == 'y' ? true : false; 1471 break; 1472 case KCFG_TRISTATE: 1473 if (value == 'y') 1474 *(enum libbpf_tristate *)ext_val = TRI_YES; 1475 else if (value == 'm') 1476 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1477 else /* value == 'n' */ 1478 *(enum libbpf_tristate *)ext_val = TRI_NO; 1479 break; 1480 case KCFG_CHAR: 1481 *(char *)ext_val = value; 1482 break; 1483 case KCFG_UNKNOWN: 1484 case KCFG_INT: 1485 case KCFG_CHAR_ARR: 1486 default: 1487 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1488 ext->name, value); 1489 return -EINVAL; 1490 } 1491 ext->is_set = true; 1492 return 0; 1493} 1494 1495static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1496 const char *value) 1497{ 1498 size_t len; 1499 1500 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1501 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1502 return -EINVAL; 1503 } 1504 1505 len = strlen(value); 1506 if (value[len - 1] != '"') { 1507 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1508 ext->name, value); 1509 return -EINVAL; 1510 } 1511 1512 /* strip quotes */ 1513 len -= 2; 1514 if (len >= ext->kcfg.sz) { 1515 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1516 ext->name, value, len, ext->kcfg.sz - 1); 1517 len = ext->kcfg.sz - 1; 1518 } 1519 memcpy(ext_val, value + 1, len); 1520 ext_val[len] = '\0'; 1521 ext->is_set = true; 1522 return 0; 1523} 1524 1525static int parse_u64(const char *value, __u64 *res) 1526{ 1527 char *value_end; 1528 int err; 1529 1530 errno = 0; 1531 *res = strtoull(value, &value_end, 0); 1532 if (errno) { 1533 err = -errno; 1534 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1535 return err; 1536 } 1537 if (*value_end) { 1538 pr_warn("failed to parse '%s' as integer completely\n", value); 1539 return -EINVAL; 1540 } 1541 return 0; 1542} 1543 1544static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1545{ 1546 int bit_sz = ext->kcfg.sz * 8; 1547 1548 if (ext->kcfg.sz == 8) 1549 return true; 1550 1551 /* Validate that value stored in u64 fits in integer of `ext->sz` 1552 * bytes size without any loss of information. If the target integer 1553 * is signed, we rely on the following limits of integer type of 1554 * Y bits and subsequent transformation: 1555 * 1556 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1557 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1558 * 0 <= X + 2^(Y-1) < 2^Y 1559 * 1560 * For unsigned target integer, check that all the (64 - Y) bits are 1561 * zero. 1562 */ 1563 if (ext->kcfg.is_signed) 1564 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1565 else 1566 return (v >> bit_sz) == 0; 1567} 1568 1569static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1570 __u64 value) 1571{ 1572 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1573 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1574 ext->name, (unsigned long long)value); 1575 return -EINVAL; 1576 } 1577 if (!is_kcfg_value_in_range(ext, value)) { 1578 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1579 ext->name, (unsigned long long)value, ext->kcfg.sz); 1580 return -ERANGE; 1581 } 1582 switch (ext->kcfg.sz) { 1583 case 1: *(__u8 *)ext_val = value; break; 1584 case 2: *(__u16 *)ext_val = value; break; 1585 case 4: *(__u32 *)ext_val = value; break; 1586 case 8: *(__u64 *)ext_val = value; break; 1587 default: 1588 return -EINVAL; 1589 } 1590 ext->is_set = true; 1591 return 0; 1592} 1593 1594static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1595 char *buf, void *data) 1596{ 1597 struct extern_desc *ext; 1598 char *sep, *value; 1599 int len, err = 0; 1600 void *ext_val; 1601 __u64 num; 1602 1603 if (strncmp(buf, "CONFIG_", 7)) 1604 return 0; 1605 1606 sep = strchr(buf, '='); 1607 if (!sep) { 1608 pr_warn("failed to parse '%s': no separator\n", buf); 1609 return -EINVAL; 1610 } 1611 1612 /* Trim ending '\n' */ 1613 len = strlen(buf); 1614 if (buf[len - 1] == '\n') 1615 buf[len - 1] = '\0'; 1616 /* Split on '=' and ensure that a value is present. */ 1617 *sep = '\0'; 1618 if (!sep[1]) { 1619 *sep = '='; 1620 pr_warn("failed to parse '%s': no value\n", buf); 1621 return -EINVAL; 1622 } 1623 1624 ext = find_extern_by_name(obj, buf); 1625 if (!ext || ext->is_set) 1626 return 0; 1627 1628 ext_val = data + ext->kcfg.data_off; 1629 value = sep + 1; 1630 1631 switch (*value) { 1632 case 'y': case 'n': case 'm': 1633 err = set_kcfg_value_tri(ext, ext_val, *value); 1634 break; 1635 case '"': 1636 err = set_kcfg_value_str(ext, ext_val, value); 1637 break; 1638 default: 1639 /* assume integer */ 1640 err = parse_u64(value, &num); 1641 if (err) { 1642 pr_warn("extern (kcfg) %s=%s should be integer\n", 1643 ext->name, value); 1644 return err; 1645 } 1646 err = set_kcfg_value_num(ext, ext_val, num); 1647 break; 1648 } 1649 if (err) 1650 return err; 1651 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1652 return 0; 1653} 1654 1655static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1656{ 1657 char buf[PATH_MAX]; 1658 struct utsname uts; 1659 int len, err = 0; 1660 gzFile file; 1661 1662 uname(&uts); 1663 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1664 if (len < 0) 1665 return -EINVAL; 1666 else if (len >= PATH_MAX) 1667 return -ENAMETOOLONG; 1668 1669 /* gzopen also accepts uncompressed files. */ 1670 file = gzopen(buf, "r"); 1671 if (!file) 1672 file = gzopen("/proc/config.gz", "r"); 1673 1674 if (!file) { 1675 pr_warn("failed to open system Kconfig\n"); 1676 return -ENOENT; 1677 } 1678 1679 while (gzgets(file, buf, sizeof(buf))) { 1680 err = bpf_object__process_kconfig_line(obj, buf, data); 1681 if (err) { 1682 pr_warn("error parsing system Kconfig line '%s': %d\n", 1683 buf, err); 1684 goto out; 1685 } 1686 } 1687 1688out: 1689 gzclose(file); 1690 return err; 1691} 1692 1693static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1694 const char *config, void *data) 1695{ 1696 char buf[PATH_MAX]; 1697 int err = 0; 1698 FILE *file; 1699 1700 file = fmemopen((void *)config, strlen(config), "r"); 1701 if (!file) { 1702 err = -errno; 1703 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1704 return err; 1705 } 1706 1707 while (fgets(buf, sizeof(buf), file)) { 1708 err = bpf_object__process_kconfig_line(obj, buf, data); 1709 if (err) { 1710 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1711 buf, err); 1712 break; 1713 } 1714 } 1715 1716 fclose(file); 1717 return err; 1718} 1719 1720static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1721{ 1722 struct extern_desc *last_ext = NULL, *ext; 1723 size_t map_sz; 1724 int i, err; 1725 1726 for (i = 0; i < obj->nr_extern; i++) { 1727 ext = &obj->externs[i]; 1728 if (ext->type == EXT_KCFG) 1729 last_ext = ext; 1730 } 1731 1732 if (!last_ext) 1733 return 0; 1734 1735 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1736 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1737 obj->efile.symbols_shndx, 1738 NULL, map_sz); 1739 if (err) 1740 return err; 1741 1742 obj->kconfig_map_idx = obj->nr_maps - 1; 1743 1744 return 0; 1745} 1746 1747static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1748{ 1749 Elf_Data *symbols = obj->efile.symbols; 1750 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1751 Elf_Data *data = NULL; 1752 Elf_Scn *scn; 1753 1754 if (obj->efile.maps_shndx < 0) 1755 return 0; 1756 1757 if (!symbols) 1758 return -EINVAL; 1759 1760 1761 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1762 data = elf_sec_data(obj, scn); 1763 if (!scn || !data) { 1764 pr_warn("elf: failed to get legacy map definitions for %s\n", 1765 obj->path); 1766 return -EINVAL; 1767 } 1768 1769 /* 1770 * Count number of maps. Each map has a name. 1771 * Array of maps is not supported: only the first element is 1772 * considered. 1773 * 1774 * TODO: Detect array of map and report error. 1775 */ 1776 nr_syms = symbols->d_size / sizeof(GElf_Sym); 1777 for (i = 0; i < nr_syms; i++) { 1778 GElf_Sym sym; 1779 1780 if (!gelf_getsym(symbols, i, &sym)) 1781 continue; 1782 if (sym.st_shndx != obj->efile.maps_shndx) 1783 continue; 1784 nr_maps++; 1785 } 1786 /* Assume equally sized map definitions */ 1787 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1788 nr_maps, data->d_size, obj->path); 1789 1790 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1791 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1792 obj->path); 1793 return -EINVAL; 1794 } 1795 map_def_sz = data->d_size / nr_maps; 1796 1797 /* Fill obj->maps using data in "maps" section. */ 1798 for (i = 0; i < nr_syms; i++) { 1799 GElf_Sym sym; 1800 const char *map_name; 1801 struct bpf_map_def *def; 1802 struct bpf_map *map; 1803 1804 if (!gelf_getsym(symbols, i, &sym)) 1805 continue; 1806 if (sym.st_shndx != obj->efile.maps_shndx) 1807 continue; 1808 1809 map = bpf_object__add_map(obj); 1810 if (IS_ERR(map)) 1811 return PTR_ERR(map); 1812 1813 map_name = elf_sym_str(obj, sym.st_name); 1814 if (!map_name) { 1815 pr_warn("failed to get map #%d name sym string for obj %s\n", 1816 i, obj->path); 1817 return -LIBBPF_ERRNO__FORMAT; 1818 } 1819 1820 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1821 map->sec_idx = sym.st_shndx; 1822 map->sec_offset = sym.st_value; 1823 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1824 map_name, map->sec_idx, map->sec_offset); 1825 if (sym.st_value + map_def_sz > data->d_size) { 1826 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1827 obj->path, map_name); 1828 return -EINVAL; 1829 } 1830 1831 map->name = strdup(map_name); 1832 if (!map->name) { 1833 pr_warn("failed to alloc map name\n"); 1834 return -ENOMEM; 1835 } 1836 pr_debug("map %d is \"%s\"\n", i, map->name); 1837 def = (struct bpf_map_def *)(data->d_buf + sym.st_value); 1838 /* 1839 * If the definition of the map in the object file fits in 1840 * bpf_map_def, copy it. Any extra fields in our version 1841 * of bpf_map_def will default to zero as a result of the 1842 * calloc above. 1843 */ 1844 if (map_def_sz <= sizeof(struct bpf_map_def)) { 1845 memcpy(&map->def, def, map_def_sz); 1846 } else { 1847 /* 1848 * Here the map structure being read is bigger than what 1849 * we expect, truncate if the excess bits are all zero. 1850 * If they are not zero, reject this map as 1851 * incompatible. 1852 */ 1853 char *b; 1854 1855 for (b = ((char *)def) + sizeof(struct bpf_map_def); 1856 b < ((char *)def) + map_def_sz; b++) { 1857 if (*b != 0) { 1858 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 1859 obj->path, map_name); 1860 if (strict) 1861 return -EINVAL; 1862 } 1863 } 1864 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 1865 } 1866 } 1867 return 0; 1868} 1869 1870static const struct btf_type * 1871skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1872{ 1873 const struct btf_type *t = btf__type_by_id(btf, id); 1874 1875 if (res_id) 1876 *res_id = id; 1877 1878 while (btf_is_mod(t) || btf_is_typedef(t)) { 1879 if (res_id) 1880 *res_id = t->type; 1881 t = btf__type_by_id(btf, t->type); 1882 } 1883 1884 return t; 1885} 1886 1887static const struct btf_type * 1888resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 1889{ 1890 const struct btf_type *t; 1891 1892 t = skip_mods_and_typedefs(btf, id, NULL); 1893 if (!btf_is_ptr(t)) 1894 return NULL; 1895 1896 t = skip_mods_and_typedefs(btf, t->type, res_id); 1897 1898 return btf_is_func_proto(t) ? t : NULL; 1899} 1900 1901static const char *btf_kind_str(const struct btf_type *t) 1902{ 1903 switch (btf_kind(t)) { 1904 case BTF_KIND_UNKN: return "void"; 1905 case BTF_KIND_INT: return "int"; 1906 case BTF_KIND_PTR: return "ptr"; 1907 case BTF_KIND_ARRAY: return "array"; 1908 case BTF_KIND_STRUCT: return "struct"; 1909 case BTF_KIND_UNION: return "union"; 1910 case BTF_KIND_ENUM: return "enum"; 1911 case BTF_KIND_FWD: return "fwd"; 1912 case BTF_KIND_TYPEDEF: return "typedef"; 1913 case BTF_KIND_VOLATILE: return "volatile"; 1914 case BTF_KIND_CONST: return "const"; 1915 case BTF_KIND_RESTRICT: return "restrict"; 1916 case BTF_KIND_FUNC: return "func"; 1917 case BTF_KIND_FUNC_PROTO: return "func_proto"; 1918 case BTF_KIND_VAR: return "var"; 1919 case BTF_KIND_DATASEC: return "datasec"; 1920 default: return "unknown"; 1921 } 1922} 1923 1924/* 1925 * Fetch integer attribute of BTF map definition. Such attributes are 1926 * represented using a pointer to an array, in which dimensionality of array 1927 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 1928 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 1929 * type definition, while using only sizeof(void *) space in ELF data section. 1930 */ 1931static bool get_map_field_int(const char *map_name, const struct btf *btf, 1932 const struct btf_member *m, __u32 *res) 1933{ 1934 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 1935 const char *name = btf__name_by_offset(btf, m->name_off); 1936 const struct btf_array *arr_info; 1937 const struct btf_type *arr_t; 1938 1939 if (!btf_is_ptr(t)) { 1940 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 1941 map_name, name, btf_kind_str(t)); 1942 return false; 1943 } 1944 1945 arr_t = btf__type_by_id(btf, t->type); 1946 if (!arr_t) { 1947 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 1948 map_name, name, t->type); 1949 return false; 1950 } 1951 if (!btf_is_array(arr_t)) { 1952 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 1953 map_name, name, btf_kind_str(arr_t)); 1954 return false; 1955 } 1956 arr_info = btf_array(arr_t); 1957 *res = arr_info->nelems; 1958 return true; 1959} 1960 1961static int build_map_pin_path(struct bpf_map *map, const char *path) 1962{ 1963 char buf[PATH_MAX]; 1964 int len; 1965 1966 if (!path) 1967 path = "/sys/fs/bpf"; 1968 1969 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 1970 if (len < 0) 1971 return -EINVAL; 1972 else if (len >= PATH_MAX) 1973 return -ENAMETOOLONG; 1974 1975 return bpf_map__set_pin_path(map, buf); 1976} 1977 1978 1979static int parse_btf_map_def(struct bpf_object *obj, 1980 struct bpf_map *map, 1981 const struct btf_type *def, 1982 bool strict, bool is_inner, 1983 const char *pin_root_path) 1984{ 1985 const struct btf_type *t; 1986 const struct btf_member *m; 1987 int vlen, i; 1988 1989 vlen = btf_vlen(def); 1990 m = btf_members(def); 1991 for (i = 0; i < vlen; i++, m++) { 1992 const char *name = btf__name_by_offset(obj->btf, m->name_off); 1993 1994 if (!name) { 1995 pr_warn("map '%s': invalid field #%d.\n", map->name, i); 1996 return -EINVAL; 1997 } 1998 if (strcmp(name, "type") == 0) { 1999 if (!get_map_field_int(map->name, obj->btf, m, 2000 &map->def.type)) 2001 return -EINVAL; 2002 pr_debug("map '%s': found type = %u.\n", 2003 map->name, map->def.type); 2004 } else if (strcmp(name, "max_entries") == 0) { 2005 if (!get_map_field_int(map->name, obj->btf, m, 2006 &map->def.max_entries)) 2007 return -EINVAL; 2008 pr_debug("map '%s': found max_entries = %u.\n", 2009 map->name, map->def.max_entries); 2010 } else if (strcmp(name, "map_flags") == 0) { 2011 if (!get_map_field_int(map->name, obj->btf, m, 2012 &map->def.map_flags)) 2013 return -EINVAL; 2014 pr_debug("map '%s': found map_flags = %u.\n", 2015 map->name, map->def.map_flags); 2016 } else if (strcmp(name, "numa_node") == 0) { 2017 if (!get_map_field_int(map->name, obj->btf, m, &map->numa_node)) 2018 return -EINVAL; 2019 pr_debug("map '%s': found numa_node = %u.\n", map->name, map->numa_node); 2020 } else if (strcmp(name, "key_size") == 0) { 2021 __u32 sz; 2022 2023 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 2024 return -EINVAL; 2025 pr_debug("map '%s': found key_size = %u.\n", 2026 map->name, sz); 2027 if (map->def.key_size && map->def.key_size != sz) { 2028 pr_warn("map '%s': conflicting key size %u != %u.\n", 2029 map->name, map->def.key_size, sz); 2030 return -EINVAL; 2031 } 2032 map->def.key_size = sz; 2033 } else if (strcmp(name, "key") == 0) { 2034 __s64 sz; 2035 2036 t = btf__type_by_id(obj->btf, m->type); 2037 if (!t) { 2038 pr_warn("map '%s': key type [%d] not found.\n", 2039 map->name, m->type); 2040 return -EINVAL; 2041 } 2042 if (!btf_is_ptr(t)) { 2043 pr_warn("map '%s': key spec is not PTR: %s.\n", 2044 map->name, btf_kind_str(t)); 2045 return -EINVAL; 2046 } 2047 sz = btf__resolve_size(obj->btf, t->type); 2048 if (sz < 0) { 2049 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2050 map->name, t->type, (ssize_t)sz); 2051 return sz; 2052 } 2053 pr_debug("map '%s': found key [%u], sz = %zd.\n", 2054 map->name, t->type, (ssize_t)sz); 2055 if (map->def.key_size && map->def.key_size != sz) { 2056 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2057 map->name, map->def.key_size, (ssize_t)sz); 2058 return -EINVAL; 2059 } 2060 map->def.key_size = sz; 2061 map->btf_key_type_id = t->type; 2062 } else if (strcmp(name, "value_size") == 0) { 2063 __u32 sz; 2064 2065 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 2066 return -EINVAL; 2067 pr_debug("map '%s': found value_size = %u.\n", 2068 map->name, sz); 2069 if (map->def.value_size && map->def.value_size != sz) { 2070 pr_warn("map '%s': conflicting value size %u != %u.\n", 2071 map->name, map->def.value_size, sz); 2072 return -EINVAL; 2073 } 2074 map->def.value_size = sz; 2075 } else if (strcmp(name, "value") == 0) { 2076 __s64 sz; 2077 2078 t = btf__type_by_id(obj->btf, m->type); 2079 if (!t) { 2080 pr_warn("map '%s': value type [%d] not found.\n", 2081 map->name, m->type); 2082 return -EINVAL; 2083 } 2084 if (!btf_is_ptr(t)) { 2085 pr_warn("map '%s': value spec is not PTR: %s.\n", 2086 map->name, btf_kind_str(t)); 2087 return -EINVAL; 2088 } 2089 sz = btf__resolve_size(obj->btf, t->type); 2090 if (sz < 0) { 2091 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2092 map->name, t->type, (ssize_t)sz); 2093 return sz; 2094 } 2095 pr_debug("map '%s': found value [%u], sz = %zd.\n", 2096 map->name, t->type, (ssize_t)sz); 2097 if (map->def.value_size && map->def.value_size != sz) { 2098 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2099 map->name, map->def.value_size, (ssize_t)sz); 2100 return -EINVAL; 2101 } 2102 map->def.value_size = sz; 2103 map->btf_value_type_id = t->type; 2104 } 2105 else if (strcmp(name, "values") == 0) { 2106 int err; 2107 2108 if (is_inner) { 2109 pr_warn("map '%s': multi-level inner maps not supported.\n", 2110 map->name); 2111 return -ENOTSUP; 2112 } 2113 if (i != vlen - 1) { 2114 pr_warn("map '%s': '%s' member should be last.\n", 2115 map->name, name); 2116 return -EINVAL; 2117 } 2118 if (!bpf_map_type__is_map_in_map(map->def.type)) { 2119 pr_warn("map '%s': should be map-in-map.\n", 2120 map->name); 2121 return -ENOTSUP; 2122 } 2123 if (map->def.value_size && map->def.value_size != 4) { 2124 pr_warn("map '%s': conflicting value size %u != 4.\n", 2125 map->name, map->def.value_size); 2126 return -EINVAL; 2127 } 2128 map->def.value_size = 4; 2129 t = btf__type_by_id(obj->btf, m->type); 2130 if (!t) { 2131 pr_warn("map '%s': map-in-map inner type [%d] not found.\n", 2132 map->name, m->type); 2133 return -EINVAL; 2134 } 2135 if (!btf_is_array(t) || btf_array(t)->nelems) { 2136 pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n", 2137 map->name); 2138 return -EINVAL; 2139 } 2140 t = skip_mods_and_typedefs(obj->btf, btf_array(t)->type, 2141 NULL); 2142 if (!btf_is_ptr(t)) { 2143 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2144 map->name, btf_kind_str(t)); 2145 return -EINVAL; 2146 } 2147 t = skip_mods_and_typedefs(obj->btf, t->type, NULL); 2148 if (!btf_is_struct(t)) { 2149 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2150 map->name, btf_kind_str(t)); 2151 return -EINVAL; 2152 } 2153 2154 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2155 if (!map->inner_map) 2156 return -ENOMEM; 2157 map->inner_map->sec_idx = obj->efile.btf_maps_shndx; 2158 map->inner_map->name = malloc(strlen(map->name) + 2159 sizeof(".inner") + 1); 2160 if (!map->inner_map->name) 2161 return -ENOMEM; 2162 sprintf(map->inner_map->name, "%s.inner", map->name); 2163 2164 err = parse_btf_map_def(obj, map->inner_map, t, strict, 2165 true /* is_inner */, NULL); 2166 if (err) 2167 return err; 2168 } else if (strcmp(name, "pinning") == 0) { 2169 __u32 val; 2170 int err; 2171 2172 if (is_inner) { 2173 pr_debug("map '%s': inner def can't be pinned.\n", 2174 map->name); 2175 return -EINVAL; 2176 } 2177 if (!get_map_field_int(map->name, obj->btf, m, &val)) 2178 return -EINVAL; 2179 pr_debug("map '%s': found pinning = %u.\n", 2180 map->name, val); 2181 2182 if (val != LIBBPF_PIN_NONE && 2183 val != LIBBPF_PIN_BY_NAME) { 2184 pr_warn("map '%s': invalid pinning value %u.\n", 2185 map->name, val); 2186 return -EINVAL; 2187 } 2188 if (val == LIBBPF_PIN_BY_NAME) { 2189 err = build_map_pin_path(map, pin_root_path); 2190 if (err) { 2191 pr_warn("map '%s': couldn't build pin path.\n", 2192 map->name); 2193 return err; 2194 } 2195 } 2196 } else { 2197 if (strict) { 2198 pr_warn("map '%s': unknown field '%s'.\n", 2199 map->name, name); 2200 return -ENOTSUP; 2201 } 2202 pr_debug("map '%s': ignoring unknown field '%s'.\n", 2203 map->name, name); 2204 } 2205 } 2206 2207 if (map->def.type == BPF_MAP_TYPE_UNSPEC) { 2208 pr_warn("map '%s': map type isn't specified.\n", map->name); 2209 return -EINVAL; 2210 } 2211 2212 return 0; 2213} 2214 2215static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2216 const struct btf_type *sec, 2217 int var_idx, int sec_idx, 2218 const Elf_Data *data, bool strict, 2219 const char *pin_root_path) 2220{ 2221 const struct btf_type *var, *def; 2222 const struct btf_var_secinfo *vi; 2223 const struct btf_var *var_extra; 2224 const char *map_name; 2225 struct bpf_map *map; 2226 2227 vi = btf_var_secinfos(sec) + var_idx; 2228 var = btf__type_by_id(obj->btf, vi->type); 2229 var_extra = btf_var(var); 2230 map_name = btf__name_by_offset(obj->btf, var->name_off); 2231 2232 if (map_name == NULL || map_name[0] == '\0') { 2233 pr_warn("map #%d: empty name.\n", var_idx); 2234 return -EINVAL; 2235 } 2236 if ((__u64)vi->offset + vi->size > data->d_size) { 2237 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2238 return -EINVAL; 2239 } 2240 if (!btf_is_var(var)) { 2241 pr_warn("map '%s': unexpected var kind %s.\n", 2242 map_name, btf_kind_str(var)); 2243 return -EINVAL; 2244 } 2245 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED && 2246 var_extra->linkage != BTF_VAR_STATIC) { 2247 pr_warn("map '%s': unsupported var linkage %u.\n", 2248 map_name, var_extra->linkage); 2249 return -EOPNOTSUPP; 2250 } 2251 2252 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2253 if (!btf_is_struct(def)) { 2254 pr_warn("map '%s': unexpected def kind %s.\n", 2255 map_name, btf_kind_str(var)); 2256 return -EINVAL; 2257 } 2258 if (def->size > vi->size) { 2259 pr_warn("map '%s': invalid def size.\n", map_name); 2260 return -EINVAL; 2261 } 2262 2263 map = bpf_object__add_map(obj); 2264 if (IS_ERR(map)) 2265 return PTR_ERR(map); 2266 map->name = strdup(map_name); 2267 if (!map->name) { 2268 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2269 return -ENOMEM; 2270 } 2271 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2272 map->def.type = BPF_MAP_TYPE_UNSPEC; 2273 map->sec_idx = sec_idx; 2274 map->sec_offset = vi->offset; 2275 map->btf_var_idx = var_idx; 2276 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2277 map_name, map->sec_idx, map->sec_offset); 2278 2279 return parse_btf_map_def(obj, map, def, strict, false, pin_root_path); 2280} 2281 2282static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2283 const char *pin_root_path) 2284{ 2285 const struct btf_type *sec = NULL; 2286 int nr_types, i, vlen, err; 2287 const struct btf_type *t; 2288 const char *name; 2289 Elf_Data *data; 2290 Elf_Scn *scn; 2291 2292 if (obj->efile.btf_maps_shndx < 0) 2293 return 0; 2294 2295 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2296 data = elf_sec_data(obj, scn); 2297 if (!scn || !data) { 2298 pr_warn("elf: failed to get %s map definitions for %s\n", 2299 MAPS_ELF_SEC, obj->path); 2300 return -EINVAL; 2301 } 2302 2303 nr_types = btf__get_nr_types(obj->btf); 2304 for (i = 1; i <= nr_types; i++) { 2305 t = btf__type_by_id(obj->btf, i); 2306 if (!btf_is_datasec(t)) 2307 continue; 2308 name = btf__name_by_offset(obj->btf, t->name_off); 2309 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2310 sec = t; 2311 obj->efile.btf_maps_sec_btf_id = i; 2312 break; 2313 } 2314 } 2315 2316 if (!sec) { 2317 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2318 return -ENOENT; 2319 } 2320 2321 vlen = btf_vlen(sec); 2322 for (i = 0; i < vlen; i++) { 2323 err = bpf_object__init_user_btf_map(obj, sec, i, 2324 obj->efile.btf_maps_shndx, 2325 data, strict, 2326 pin_root_path); 2327 if (err) 2328 return err; 2329 } 2330 2331 return 0; 2332} 2333 2334static int bpf_object__init_maps(struct bpf_object *obj, 2335 const struct bpf_object_open_opts *opts) 2336{ 2337 const char *pin_root_path; 2338 bool strict; 2339 int err; 2340 2341 strict = !OPTS_GET(opts, relaxed_maps, false); 2342 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2343 2344 err = bpf_object__init_user_maps(obj, strict); 2345 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2346 err = err ?: bpf_object__init_global_data_maps(obj); 2347 err = err ?: bpf_object__init_kconfig_map(obj); 2348 err = err ?: bpf_object__init_struct_ops_maps(obj); 2349 if (err) 2350 return err; 2351 2352 return 0; 2353} 2354 2355static bool section_have_execinstr(struct bpf_object *obj, int idx) 2356{ 2357 GElf_Shdr sh; 2358 2359 if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh)) 2360 return false; 2361 2362 return sh.sh_flags & SHF_EXECINSTR; 2363} 2364 2365static bool btf_needs_sanitization(struct bpf_object *obj) 2366{ 2367 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2368 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2369 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2370 2371 return !has_func || !has_datasec || !has_func_global; 2372} 2373 2374static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2375{ 2376 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2377 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2378 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2379 struct btf_type *t; 2380 int i, j, vlen; 2381 2382 for (i = 1; i <= btf__get_nr_types(btf); i++) { 2383 t = (struct btf_type *)btf__type_by_id(btf, i); 2384 2385 if (!has_datasec && btf_is_var(t)) { 2386 /* replace VAR with INT */ 2387 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2388 /* 2389 * using size = 1 is the safest choice, 4 will be too 2390 * big and cause kernel BTF validation failure if 2391 * original variable took less than 4 bytes 2392 */ 2393 t->size = 1; 2394 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2395 } else if (!has_datasec && btf_is_datasec(t)) { 2396 /* replace DATASEC with STRUCT */ 2397 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2398 struct btf_member *m = btf_members(t); 2399 struct btf_type *vt; 2400 char *name; 2401 2402 name = (char *)btf__name_by_offset(btf, t->name_off); 2403 while (*name) { 2404 if (*name == '.') 2405 *name = '_'; 2406 name++; 2407 } 2408 2409 vlen = btf_vlen(t); 2410 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2411 for (j = 0; j < vlen; j++, v++, m++) { 2412 /* order of field assignments is important */ 2413 m->offset = v->offset * 8; 2414 m->type = v->type; 2415 /* preserve variable name as member name */ 2416 vt = (void *)btf__type_by_id(btf, v->type); 2417 m->name_off = vt->name_off; 2418 } 2419 } else if (!has_func && btf_is_func_proto(t)) { 2420 /* replace FUNC_PROTO with ENUM */ 2421 vlen = btf_vlen(t); 2422 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2423 t->size = sizeof(__u32); /* kernel enforced */ 2424 } else if (!has_func && btf_is_func(t)) { 2425 /* replace FUNC with TYPEDEF */ 2426 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2427 } else if (!has_func_global && btf_is_func(t)) { 2428 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2429 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2430 } 2431 } 2432} 2433 2434static bool libbpf_needs_btf(const struct bpf_object *obj) 2435{ 2436 return obj->efile.btf_maps_shndx >= 0 || 2437 obj->efile.st_ops_shndx >= 0 || 2438 obj->nr_extern > 0; 2439} 2440 2441static bool kernel_needs_btf(const struct bpf_object *obj) 2442{ 2443 return obj->efile.st_ops_shndx >= 0; 2444} 2445 2446static int bpf_object__init_btf(struct bpf_object *obj, 2447 Elf_Data *btf_data, 2448 Elf_Data *btf_ext_data) 2449{ 2450 int err = -ENOENT; 2451 2452 if (btf_data) { 2453 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2454 if (IS_ERR(obj->btf)) { 2455 err = PTR_ERR(obj->btf); 2456 obj->btf = NULL; 2457 pr_warn("Error loading ELF section %s: %d.\n", 2458 BTF_ELF_SEC, err); 2459 goto out; 2460 } 2461 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2462 btf__set_pointer_size(obj->btf, 8); 2463 err = 0; 2464 } 2465 if (btf_ext_data) { 2466 if (!obj->btf) { 2467 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2468 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2469 goto out; 2470 } 2471 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, 2472 btf_ext_data->d_size); 2473 if (IS_ERR(obj->btf_ext)) { 2474 pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n", 2475 BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext)); 2476 obj->btf_ext = NULL; 2477 goto out; 2478 } 2479 } 2480out: 2481 if (err && libbpf_needs_btf(obj)) { 2482 pr_warn("BTF is required, but is missing or corrupted.\n"); 2483 return err; 2484 } 2485 return 0; 2486} 2487 2488static int bpf_object__finalize_btf(struct bpf_object *obj) 2489{ 2490 int err; 2491 2492 if (!obj->btf) 2493 return 0; 2494 2495 err = btf__finalize_data(obj, obj->btf); 2496 if (err) { 2497 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2498 return err; 2499 } 2500 2501 return 0; 2502} 2503 2504static inline bool libbpf_prog_needs_vmlinux_btf(struct bpf_program *prog) 2505{ 2506 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2507 prog->type == BPF_PROG_TYPE_LSM) 2508 return true; 2509 2510 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2511 * also need vmlinux BTF 2512 */ 2513 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2514 return true; 2515 2516 return false; 2517} 2518 2519static int bpf_object__load_vmlinux_btf(struct bpf_object *obj) 2520{ 2521 bool need_vmlinux_btf = false; 2522 struct bpf_program *prog; 2523 int i, err; 2524 2525 /* CO-RE relocations need kernel BTF */ 2526 if (obj->btf_ext && obj->btf_ext->core_relo_info.len) 2527 need_vmlinux_btf = true; 2528 2529 /* Support for typed ksyms needs kernel BTF */ 2530 for (i = 0; i < obj->nr_extern; i++) { 2531 const struct extern_desc *ext; 2532 2533 ext = &obj->externs[i]; 2534 if (ext->type == EXT_KSYM && ext->ksym.type_id) { 2535 need_vmlinux_btf = true; 2536 break; 2537 } 2538 } 2539 2540 bpf_object__for_each_program(prog, obj) { 2541 if (!prog->load) 2542 continue; 2543 if (libbpf_prog_needs_vmlinux_btf(prog)) { 2544 need_vmlinux_btf = true; 2545 break; 2546 } 2547 } 2548 2549 if (!need_vmlinux_btf) 2550 return 0; 2551 2552 obj->btf_vmlinux = libbpf_find_kernel_btf(); 2553 if (IS_ERR(obj->btf_vmlinux)) { 2554 err = PTR_ERR(obj->btf_vmlinux); 2555 pr_warn("Error loading vmlinux BTF: %d\n", err); 2556 obj->btf_vmlinux = NULL; 2557 return err; 2558 } 2559 return 0; 2560} 2561 2562static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2563{ 2564 struct btf *kern_btf = obj->btf; 2565 bool btf_mandatory, sanitize; 2566 int err = 0; 2567 2568 if (!obj->btf) 2569 return 0; 2570 2571 if (!kernel_supports(FEAT_BTF)) { 2572 if (kernel_needs_btf(obj)) { 2573 err = -EOPNOTSUPP; 2574 goto report; 2575 } 2576 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2577 return 0; 2578 } 2579 2580 sanitize = btf_needs_sanitization(obj); 2581 if (sanitize) { 2582 const void *raw_data; 2583 __u32 sz; 2584 2585 /* clone BTF to sanitize a copy and leave the original intact */ 2586 raw_data = btf__get_raw_data(obj->btf, &sz); 2587 kern_btf = btf__new(raw_data, sz); 2588 if (IS_ERR(kern_btf)) 2589 return PTR_ERR(kern_btf); 2590 2591 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2592 btf__set_pointer_size(obj->btf, 8); 2593 bpf_object__sanitize_btf(obj, kern_btf); 2594 } 2595 2596 err = btf__load(kern_btf); 2597 if (sanitize) { 2598 if (!err) { 2599 /* move fd to libbpf's BTF */ 2600 btf__set_fd(obj->btf, btf__fd(kern_btf)); 2601 btf__set_fd(kern_btf, -1); 2602 } 2603 btf__free(kern_btf); 2604 } 2605report: 2606 if (err) { 2607 btf_mandatory = kernel_needs_btf(obj); 2608 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 2609 btf_mandatory ? "BTF is mandatory, can't proceed." 2610 : "BTF is optional, ignoring."); 2611 if (!btf_mandatory) 2612 err = 0; 2613 } 2614 return err; 2615} 2616 2617static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 2618{ 2619 const char *name; 2620 2621 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 2622 if (!name) { 2623 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2624 off, obj->path, elf_errmsg(-1)); 2625 return NULL; 2626 } 2627 2628 return name; 2629} 2630 2631static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 2632{ 2633 const char *name; 2634 2635 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 2636 if (!name) { 2637 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2638 off, obj->path, elf_errmsg(-1)); 2639 return NULL; 2640 } 2641 2642 return name; 2643} 2644 2645static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 2646{ 2647 Elf_Scn *scn; 2648 2649 scn = elf_getscn(obj->efile.elf, idx); 2650 if (!scn) { 2651 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 2652 idx, obj->path, elf_errmsg(-1)); 2653 return NULL; 2654 } 2655 return scn; 2656} 2657 2658static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 2659{ 2660 Elf_Scn *scn = NULL; 2661 Elf *elf = obj->efile.elf; 2662 const char *sec_name; 2663 2664 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2665 sec_name = elf_sec_name(obj, scn); 2666 if (!sec_name) 2667 return NULL; 2668 2669 if (strcmp(sec_name, name) != 0) 2670 continue; 2671 2672 return scn; 2673 } 2674 return NULL; 2675} 2676 2677static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr) 2678{ 2679 if (!scn) 2680 return -EINVAL; 2681 2682 if (gelf_getshdr(scn, hdr) != hdr) { 2683 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 2684 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2685 return -EINVAL; 2686 } 2687 2688 return 0; 2689} 2690 2691static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 2692{ 2693 const char *name; 2694 GElf_Shdr sh; 2695 2696 if (!scn) 2697 return NULL; 2698 2699 if (elf_sec_hdr(obj, scn, &sh)) 2700 return NULL; 2701 2702 name = elf_sec_str(obj, sh.sh_name); 2703 if (!name) { 2704 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 2705 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2706 return NULL; 2707 } 2708 2709 return name; 2710} 2711 2712static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 2713{ 2714 Elf_Data *data; 2715 2716 if (!scn) 2717 return NULL; 2718 2719 data = elf_getdata(scn, 0); 2720 if (!data) { 2721 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 2722 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 2723 obj->path, elf_errmsg(-1)); 2724 return NULL; 2725 } 2726 2727 return data; 2728} 2729 2730static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx, 2731 size_t off, __u32 sym_type, GElf_Sym *sym) 2732{ 2733 Elf_Data *symbols = obj->efile.symbols; 2734 size_t n = symbols->d_size / sizeof(GElf_Sym); 2735 int i; 2736 2737 for (i = 0; i < n; i++) { 2738 if (!gelf_getsym(symbols, i, sym)) 2739 continue; 2740 if (sym->st_shndx != sec_idx || sym->st_value != off) 2741 continue; 2742 if (GELF_ST_TYPE(sym->st_info) != sym_type) 2743 continue; 2744 return 0; 2745 } 2746 2747 return -ENOENT; 2748} 2749 2750static bool is_sec_name_dwarf(const char *name) 2751{ 2752 /* approximation, but the actual list is too long */ 2753 return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0; 2754} 2755 2756static bool ignore_elf_section(GElf_Shdr *hdr, const char *name) 2757{ 2758 /* no special handling of .strtab */ 2759 if (hdr->sh_type == SHT_STRTAB) 2760 return true; 2761 2762 /* ignore .llvm_addrsig section as well */ 2763 if (hdr->sh_type == 0x6FFF4C03 /* SHT_LLVM_ADDRSIG */) 2764 return true; 2765 2766 /* no subprograms will lead to an empty .text section, ignore it */ 2767 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 2768 strcmp(name, ".text") == 0) 2769 return true; 2770 2771 /* DWARF sections */ 2772 if (is_sec_name_dwarf(name)) 2773 return true; 2774 2775 if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) { 2776 name += sizeof(".rel") - 1; 2777 /* DWARF section relocations */ 2778 if (is_sec_name_dwarf(name)) 2779 return true; 2780 2781 /* .BTF and .BTF.ext don't need relocations */ 2782 if (strcmp(name, BTF_ELF_SEC) == 0 || 2783 strcmp(name, BTF_EXT_ELF_SEC) == 0) 2784 return true; 2785 } 2786 2787 return false; 2788} 2789 2790static int cmp_progs(const void *_a, const void *_b) 2791{ 2792 const struct bpf_program *a = _a; 2793 const struct bpf_program *b = _b; 2794 2795 if (a->sec_idx != b->sec_idx) 2796 return a->sec_idx < b->sec_idx ? -1 : 1; 2797 2798 /* sec_insn_off can't be the same within the section */ 2799 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 2800} 2801 2802static int bpf_object__elf_collect(struct bpf_object *obj) 2803{ 2804 Elf *elf = obj->efile.elf; 2805 Elf_Data *btf_ext_data = NULL; 2806 Elf_Data *btf_data = NULL; 2807 int idx = 0, err = 0; 2808 const char *name; 2809 Elf_Data *data; 2810 Elf_Scn *scn; 2811 GElf_Shdr sh; 2812 2813 /* a bunch of ELF parsing functionality depends on processing symbols, 2814 * so do the first pass and find the symbol table 2815 */ 2816 scn = NULL; 2817 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2818 if (elf_sec_hdr(obj, scn, &sh)) 2819 return -LIBBPF_ERRNO__FORMAT; 2820 2821 if (sh.sh_type == SHT_SYMTAB) { 2822 if (obj->efile.symbols) { 2823 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 2824 return -LIBBPF_ERRNO__FORMAT; 2825 } 2826 2827 data = elf_sec_data(obj, scn); 2828 if (!data) 2829 return -LIBBPF_ERRNO__FORMAT; 2830 2831 obj->efile.symbols = data; 2832 obj->efile.symbols_shndx = elf_ndxscn(scn); 2833 obj->efile.strtabidx = sh.sh_link; 2834 } 2835 } 2836 2837 scn = NULL; 2838 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2839 idx++; 2840 2841 if (elf_sec_hdr(obj, scn, &sh)) 2842 return -LIBBPF_ERRNO__FORMAT; 2843 2844 name = elf_sec_str(obj, sh.sh_name); 2845 if (!name) 2846 return -LIBBPF_ERRNO__FORMAT; 2847 2848 if (ignore_elf_section(&sh, name)) 2849 continue; 2850 2851 data = elf_sec_data(obj, scn); 2852 if (!data) 2853 return -LIBBPF_ERRNO__FORMAT; 2854 2855 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 2856 idx, name, (unsigned long)data->d_size, 2857 (int)sh.sh_link, (unsigned long)sh.sh_flags, 2858 (int)sh.sh_type); 2859 2860 if (strcmp(name, "license") == 0) { 2861 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 2862 if (err) 2863 return err; 2864 } else if (strcmp(name, "version") == 0) { 2865 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 2866 if (err) 2867 return err; 2868 } else if (strcmp(name, "maps") == 0) { 2869 obj->efile.maps_shndx = idx; 2870 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 2871 obj->efile.btf_maps_shndx = idx; 2872 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 2873 btf_data = data; 2874 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 2875 btf_ext_data = data; 2876 } else if (sh.sh_type == SHT_SYMTAB) { 2877 /* already processed during the first pass above */ 2878 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) { 2879 if (sh.sh_flags & SHF_EXECINSTR) { 2880 if (strcmp(name, ".text") == 0) 2881 obj->efile.text_shndx = idx; 2882 err = bpf_object__add_programs(obj, data, name, idx); 2883 if (err) 2884 return err; 2885 } else if (strcmp(name, DATA_SEC) == 0) { 2886 obj->efile.data = data; 2887 obj->efile.data_shndx = idx; 2888 } else if (strcmp(name, RODATA_SEC) == 0) { 2889 obj->efile.rodata = data; 2890 obj->efile.rodata_shndx = idx; 2891 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 2892 obj->efile.st_ops_data = data; 2893 obj->efile.st_ops_shndx = idx; 2894 } else { 2895 pr_info("elf: skipping unrecognized data section(%d) %s\n", 2896 idx, name); 2897 } 2898 } else if (sh.sh_type == SHT_REL) { 2899 int nr_sects = obj->efile.nr_reloc_sects; 2900 void *sects = obj->efile.reloc_sects; 2901 int sec = sh.sh_info; /* points to other section */ 2902 2903 /* Only do relo for section with exec instructions */ 2904 if (!section_have_execinstr(obj, sec) && 2905 strcmp(name, ".rel" STRUCT_OPS_SEC) && 2906 strcmp(name, ".rel" MAPS_ELF_SEC)) { 2907 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 2908 idx, name, sec, 2909 elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>"); 2910 continue; 2911 } 2912 2913 sects = libbpf_reallocarray(sects, nr_sects + 1, 2914 sizeof(*obj->efile.reloc_sects)); 2915 if (!sects) 2916 return -ENOMEM; 2917 2918 obj->efile.reloc_sects = sects; 2919 obj->efile.nr_reloc_sects++; 2920 2921 obj->efile.reloc_sects[nr_sects].shdr = sh; 2922 obj->efile.reloc_sects[nr_sects].data = data; 2923 } else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 2924 obj->efile.bss = data; 2925 obj->efile.bss_shndx = idx; 2926 } else { 2927 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 2928 (size_t)sh.sh_size); 2929 } 2930 } 2931 2932 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 2933 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 2934 return -LIBBPF_ERRNO__FORMAT; 2935 } 2936 2937 /* sort BPF programs by section name and in-section instruction offset 2938 * for faster search */ 2939 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 2940 2941 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 2942} 2943 2944static bool sym_is_extern(const GElf_Sym *sym) 2945{ 2946 int bind = GELF_ST_BIND(sym->st_info); 2947 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 2948 return sym->st_shndx == SHN_UNDEF && 2949 (bind == STB_GLOBAL || bind == STB_WEAK) && 2950 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE; 2951} 2952 2953static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 2954{ 2955 const struct btf_type *t; 2956 const char *var_name; 2957 int i, n; 2958 2959 if (!btf) 2960 return -ESRCH; 2961 2962 n = btf__get_nr_types(btf); 2963 for (i = 1; i <= n; i++) { 2964 t = btf__type_by_id(btf, i); 2965 2966 if (!btf_is_var(t)) 2967 continue; 2968 2969 var_name = btf__name_by_offset(btf, t->name_off); 2970 if (strcmp(var_name, ext_name)) 2971 continue; 2972 2973 if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 2974 return -EINVAL; 2975 2976 return i; 2977 } 2978 2979 return -ENOENT; 2980} 2981 2982static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 2983 const struct btf_var_secinfo *vs; 2984 const struct btf_type *t; 2985 int i, j, n; 2986 2987 if (!btf) 2988 return -ESRCH; 2989 2990 n = btf__get_nr_types(btf); 2991 for (i = 1; i <= n; i++) { 2992 t = btf__type_by_id(btf, i); 2993 2994 if (!btf_is_datasec(t)) 2995 continue; 2996 2997 vs = btf_var_secinfos(t); 2998 for (j = 0; j < btf_vlen(t); j++, vs++) { 2999 if (vs->type == ext_btf_id) 3000 return i; 3001 } 3002 } 3003 3004 return -ENOENT; 3005} 3006 3007static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3008 bool *is_signed) 3009{ 3010 const struct btf_type *t; 3011 const char *name; 3012 3013 t = skip_mods_and_typedefs(btf, id, NULL); 3014 name = btf__name_by_offset(btf, t->name_off); 3015 3016 if (is_signed) 3017 *is_signed = false; 3018 switch (btf_kind(t)) { 3019 case BTF_KIND_INT: { 3020 int enc = btf_int_encoding(t); 3021 3022 if (enc & BTF_INT_BOOL) 3023 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3024 if (is_signed) 3025 *is_signed = enc & BTF_INT_SIGNED; 3026 if (t->size == 1) 3027 return KCFG_CHAR; 3028 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3029 return KCFG_UNKNOWN; 3030 return KCFG_INT; 3031 } 3032 case BTF_KIND_ENUM: 3033 if (t->size != 4) 3034 return KCFG_UNKNOWN; 3035 if (strcmp(name, "libbpf_tristate")) 3036 return KCFG_UNKNOWN; 3037 return KCFG_TRISTATE; 3038 case BTF_KIND_ARRAY: 3039 if (btf_array(t)->nelems == 0) 3040 return KCFG_UNKNOWN; 3041 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3042 return KCFG_UNKNOWN; 3043 return KCFG_CHAR_ARR; 3044 default: 3045 return KCFG_UNKNOWN; 3046 } 3047} 3048 3049static int cmp_externs(const void *_a, const void *_b) 3050{ 3051 const struct extern_desc *a = _a; 3052 const struct extern_desc *b = _b; 3053 3054 if (a->type != b->type) 3055 return a->type < b->type ? -1 : 1; 3056 3057 if (a->type == EXT_KCFG) { 3058 /* descending order by alignment requirements */ 3059 if (a->kcfg.align != b->kcfg.align) 3060 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3061 /* ascending order by size, within same alignment class */ 3062 if (a->kcfg.sz != b->kcfg.sz) 3063 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3064 } 3065 3066 /* resolve ties by name */ 3067 return strcmp(a->name, b->name); 3068} 3069 3070static int find_int_btf_id(const struct btf *btf) 3071{ 3072 const struct btf_type *t; 3073 int i, n; 3074 3075 n = btf__get_nr_types(btf); 3076 for (i = 1; i <= n; i++) { 3077 t = btf__type_by_id(btf, i); 3078 3079 if (btf_is_int(t) && btf_int_bits(t) == 32) 3080 return i; 3081 } 3082 3083 return 0; 3084} 3085 3086static int bpf_object__collect_externs(struct bpf_object *obj) 3087{ 3088 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3089 const struct btf_type *t; 3090 struct extern_desc *ext; 3091 int i, n, off; 3092 const char *ext_name, *sec_name; 3093 Elf_Scn *scn; 3094 GElf_Shdr sh; 3095 3096 if (!obj->efile.symbols) 3097 return 0; 3098 3099 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3100 if (elf_sec_hdr(obj, scn, &sh)) 3101 return -LIBBPF_ERRNO__FORMAT; 3102 3103 n = sh.sh_size / sh.sh_entsize; 3104 pr_debug("looking for externs among %d symbols...\n", n); 3105 3106 for (i = 0; i < n; i++) { 3107 GElf_Sym sym; 3108 3109 if (!gelf_getsym(obj->efile.symbols, i, &sym)) 3110 return -LIBBPF_ERRNO__FORMAT; 3111 if (!sym_is_extern(&sym)) 3112 continue; 3113 ext_name = elf_sym_str(obj, sym.st_name); 3114 if (!ext_name || !ext_name[0]) 3115 continue; 3116 3117 ext = obj->externs; 3118 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3119 if (!ext) 3120 return -ENOMEM; 3121 obj->externs = ext; 3122 ext = &ext[obj->nr_extern]; 3123 memset(ext, 0, sizeof(*ext)); 3124 obj->nr_extern++; 3125 3126 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3127 if (ext->btf_id <= 0) { 3128 pr_warn("failed to find BTF for extern '%s': %d\n", 3129 ext_name, ext->btf_id); 3130 return ext->btf_id; 3131 } 3132 t = btf__type_by_id(obj->btf, ext->btf_id); 3133 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3134 ext->sym_idx = i; 3135 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK; 3136 3137 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3138 if (ext->sec_btf_id <= 0) { 3139 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3140 ext_name, ext->btf_id, ext->sec_btf_id); 3141 return ext->sec_btf_id; 3142 } 3143 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3144 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3145 3146 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3147 kcfg_sec = sec; 3148 ext->type = EXT_KCFG; 3149 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3150 if (ext->kcfg.sz <= 0) { 3151 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3152 ext_name, ext->kcfg.sz); 3153 return ext->kcfg.sz; 3154 } 3155 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3156 if (ext->kcfg.align <= 0) { 3157 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3158 ext_name, ext->kcfg.align); 3159 return -EINVAL; 3160 } 3161 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3162 &ext->kcfg.is_signed); 3163 if (ext->kcfg.type == KCFG_UNKNOWN) { 3164 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3165 return -ENOTSUP; 3166 } 3167 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3168 ksym_sec = sec; 3169 ext->type = EXT_KSYM; 3170 skip_mods_and_typedefs(obj->btf, t->type, 3171 &ext->ksym.type_id); 3172 } else { 3173 pr_warn("unrecognized extern section '%s'\n", sec_name); 3174 return -ENOTSUP; 3175 } 3176 } 3177 pr_debug("collected %d externs total\n", obj->nr_extern); 3178 3179 if (!obj->nr_extern) 3180 return 0; 3181 3182 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3183 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3184 3185 /* for .ksyms section, we need to turn all externs into allocated 3186 * variables in BTF to pass kernel verification; we do this by 3187 * pretending that each extern is a 8-byte variable 3188 */ 3189 if (ksym_sec) { 3190 /* find existing 4-byte integer type in BTF to use for fake 3191 * extern variables in DATASEC 3192 */ 3193 int int_btf_id = find_int_btf_id(obj->btf); 3194 3195 for (i = 0; i < obj->nr_extern; i++) { 3196 ext = &obj->externs[i]; 3197 if (ext->type != EXT_KSYM) 3198 continue; 3199 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3200 i, ext->sym_idx, ext->name); 3201 } 3202 3203 sec = ksym_sec; 3204 n = btf_vlen(sec); 3205 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3206 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3207 struct btf_type *vt; 3208 3209 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3210 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3211 ext = find_extern_by_name(obj, ext_name); 3212 if (!ext) { 3213 pr_warn("failed to find extern definition for BTF var '%s'\n", 3214 ext_name); 3215 return -ESRCH; 3216 } 3217 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3218 vt->type = int_btf_id; 3219 vs->offset = off; 3220 vs->size = sizeof(int); 3221 } 3222 sec->size = off; 3223 } 3224 3225 if (kcfg_sec) { 3226 sec = kcfg_sec; 3227 /* for kcfg externs calculate their offsets within a .kconfig map */ 3228 off = 0; 3229 for (i = 0; i < obj->nr_extern; i++) { 3230 ext = &obj->externs[i]; 3231 if (ext->type != EXT_KCFG) 3232 continue; 3233 3234 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3235 off = ext->kcfg.data_off + ext->kcfg.sz; 3236 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3237 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3238 } 3239 sec->size = off; 3240 n = btf_vlen(sec); 3241 for (i = 0; i < n; i++) { 3242 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3243 3244 t = btf__type_by_id(obj->btf, vs->type); 3245 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3246 ext = find_extern_by_name(obj, ext_name); 3247 if (!ext) { 3248 pr_warn("failed to find extern definition for BTF var '%s'\n", 3249 ext_name); 3250 return -ESRCH; 3251 } 3252 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3253 vs->offset = ext->kcfg.data_off; 3254 } 3255 } 3256 return 0; 3257} 3258 3259struct bpf_program * 3260bpf_object__find_program_by_title(const struct bpf_object *obj, 3261 const char *title) 3262{ 3263 struct bpf_program *pos; 3264 3265 bpf_object__for_each_program(pos, obj) { 3266 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3267 return pos; 3268 } 3269 return NULL; 3270} 3271 3272static bool prog_is_subprog(const struct bpf_object *obj, 3273 const struct bpf_program *prog) 3274{ 3275 /* For legacy reasons, libbpf supports an entry-point BPF programs 3276 * without SEC() attribute, i.e., those in the .text section. But if 3277 * there are 2 or more such programs in the .text section, they all 3278 * must be subprograms called from entry-point BPF programs in 3279 * designated SEC()'tions, otherwise there is no way to distinguish 3280 * which of those programs should be loaded vs which are a subprogram. 3281 * Similarly, if there is a function/program in .text and at least one 3282 * other BPF program with custom SEC() attribute, then we just assume 3283 * .text programs are subprograms (even if they are not called from 3284 * other programs), because libbpf never explicitly supported mixing 3285 * SEC()-designated BPF programs and .text entry-point BPF programs. 3286 */ 3287 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3288} 3289 3290struct bpf_program * 3291bpf_object__find_program_by_name(const struct bpf_object *obj, 3292 const char *name) 3293{ 3294 struct bpf_program *prog; 3295 3296 bpf_object__for_each_program(prog, obj) { 3297 if (prog_is_subprog(obj, prog)) 3298 continue; 3299 if (!strcmp(prog->name, name)) 3300 return prog; 3301 } 3302 return NULL; 3303} 3304 3305static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3306 int shndx) 3307{ 3308 return shndx == obj->efile.data_shndx || 3309 shndx == obj->efile.bss_shndx || 3310 shndx == obj->efile.rodata_shndx; 3311} 3312 3313static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3314 int shndx) 3315{ 3316 return shndx == obj->efile.maps_shndx || 3317 shndx == obj->efile.btf_maps_shndx; 3318} 3319 3320static enum libbpf_map_type 3321bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3322{ 3323 if (shndx == obj->efile.data_shndx) 3324 return LIBBPF_MAP_DATA; 3325 else if (shndx == obj->efile.bss_shndx) 3326 return LIBBPF_MAP_BSS; 3327 else if (shndx == obj->efile.rodata_shndx) 3328 return LIBBPF_MAP_RODATA; 3329 else if (shndx == obj->efile.symbols_shndx) 3330 return LIBBPF_MAP_KCONFIG; 3331 else 3332 return LIBBPF_MAP_UNSPEC; 3333} 3334 3335static int bpf_program__record_reloc(struct bpf_program *prog, 3336 struct reloc_desc *reloc_desc, 3337 __u32 insn_idx, const char *sym_name, 3338 const GElf_Sym *sym, const GElf_Rel *rel) 3339{ 3340 struct bpf_insn *insn = &prog->insns[insn_idx]; 3341 size_t map_idx, nr_maps = prog->obj->nr_maps; 3342 struct bpf_object *obj = prog->obj; 3343 __u32 shdr_idx = sym->st_shndx; 3344 enum libbpf_map_type type; 3345 const char *sym_sec_name; 3346 struct bpf_map *map; 3347 3348 reloc_desc->processed = false; 3349 3350 /* sub-program call relocation */ 3351 if (insn->code == (BPF_JMP | BPF_CALL)) { 3352 if (insn->src_reg != BPF_PSEUDO_CALL) { 3353 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3354 return -LIBBPF_ERRNO__RELOC; 3355 } 3356 /* text_shndx can be 0, if no default "main" program exists */ 3357 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3358 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3359 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3360 prog->name, sym_name, sym_sec_name); 3361 return -LIBBPF_ERRNO__RELOC; 3362 } 3363 if (sym->st_value % BPF_INSN_SZ) { 3364 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3365 prog->name, sym_name, (size_t)sym->st_value); 3366 return -LIBBPF_ERRNO__RELOC; 3367 } 3368 reloc_desc->type = RELO_CALL; 3369 reloc_desc->insn_idx = insn_idx; 3370 reloc_desc->sym_off = sym->st_value; 3371 return 0; 3372 } 3373 3374 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) { 3375 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3376 prog->name, sym_name, insn_idx, insn->code); 3377 return -LIBBPF_ERRNO__RELOC; 3378 } 3379 3380 if (sym_is_extern(sym)) { 3381 int sym_idx = GELF_R_SYM(rel->r_info); 3382 int i, n = obj->nr_extern; 3383 struct extern_desc *ext; 3384 3385 for (i = 0; i < n; i++) { 3386 ext = &obj->externs[i]; 3387 if (ext->sym_idx == sym_idx) 3388 break; 3389 } 3390 if (i >= n) { 3391 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3392 prog->name, sym_name, sym_idx); 3393 return -LIBBPF_ERRNO__RELOC; 3394 } 3395 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3396 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3397 reloc_desc->type = RELO_EXTERN; 3398 reloc_desc->insn_idx = insn_idx; 3399 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3400 return 0; 3401 } 3402 3403 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3404 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3405 prog->name, sym_name, shdr_idx); 3406 return -LIBBPF_ERRNO__RELOC; 3407 } 3408 3409 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3410 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3411 3412 /* generic map reference relocation */ 3413 if (type == LIBBPF_MAP_UNSPEC) { 3414 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3415 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3416 prog->name, sym_name, sym_sec_name); 3417 return -LIBBPF_ERRNO__RELOC; 3418 } 3419 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3420 map = &obj->maps[map_idx]; 3421 if (map->libbpf_type != type || 3422 map->sec_idx != sym->st_shndx || 3423 map->sec_offset != sym->st_value) 3424 continue; 3425 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 3426 prog->name, map_idx, map->name, map->sec_idx, 3427 map->sec_offset, insn_idx); 3428 break; 3429 } 3430 if (map_idx >= nr_maps) { 3431 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 3432 prog->name, sym_sec_name, (size_t)sym->st_value); 3433 return -LIBBPF_ERRNO__RELOC; 3434 } 3435 reloc_desc->type = RELO_LD64; 3436 reloc_desc->insn_idx = insn_idx; 3437 reloc_desc->map_idx = map_idx; 3438 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 3439 return 0; 3440 } 3441 3442 /* global data map relocation */ 3443 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 3444 pr_warn("prog '%s': bad data relo against section '%s'\n", 3445 prog->name, sym_sec_name); 3446 return -LIBBPF_ERRNO__RELOC; 3447 } 3448 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3449 map = &obj->maps[map_idx]; 3450 if (map->libbpf_type != type) 3451 continue; 3452 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 3453 prog->name, map_idx, map->name, map->sec_idx, 3454 map->sec_offset, insn_idx); 3455 break; 3456 } 3457 if (map_idx >= nr_maps) { 3458 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 3459 prog->name, sym_sec_name); 3460 return -LIBBPF_ERRNO__RELOC; 3461 } 3462 3463 reloc_desc->type = RELO_DATA; 3464 reloc_desc->insn_idx = insn_idx; 3465 reloc_desc->map_idx = map_idx; 3466 reloc_desc->sym_off = sym->st_value; 3467 return 0; 3468} 3469 3470static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 3471{ 3472 return insn_idx >= prog->sec_insn_off && 3473 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 3474} 3475 3476static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 3477 size_t sec_idx, size_t insn_idx) 3478{ 3479 int l = 0, r = obj->nr_programs - 1, m; 3480 struct bpf_program *prog; 3481 3482 if (!obj->nr_programs) 3483 return NULL; 3484 3485 while (l < r) { 3486 m = l + (r - l + 1) / 2; 3487 prog = &obj->programs[m]; 3488 3489 if (prog->sec_idx < sec_idx || 3490 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 3491 l = m; 3492 else 3493 r = m - 1; 3494 } 3495 /* matching program could be at index l, but it still might be the 3496 * wrong one, so we need to double check conditions for the last time 3497 */ 3498 prog = &obj->programs[l]; 3499 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 3500 return prog; 3501 return NULL; 3502} 3503 3504static int 3505bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data) 3506{ 3507 Elf_Data *symbols = obj->efile.symbols; 3508 const char *relo_sec_name, *sec_name; 3509 size_t sec_idx = shdr->sh_info; 3510 struct bpf_program *prog; 3511 struct reloc_desc *relos; 3512 int err, i, nrels; 3513 const char *sym_name; 3514 __u32 insn_idx; 3515 GElf_Sym sym; 3516 GElf_Rel rel; 3517 3518 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 3519 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 3520 if (!relo_sec_name || !sec_name) 3521 return -EINVAL; 3522 3523 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 3524 relo_sec_name, sec_idx, sec_name); 3525 nrels = shdr->sh_size / shdr->sh_entsize; 3526 3527 for (i = 0; i < nrels; i++) { 3528 if (!gelf_getrel(data, i, &rel)) { 3529 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 3530 return -LIBBPF_ERRNO__FORMAT; 3531 } 3532 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 3533 pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n", 3534 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3535 return -LIBBPF_ERRNO__FORMAT; 3536 } 3537 if (rel.r_offset % BPF_INSN_SZ) { 3538 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 3539 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3540 return -LIBBPF_ERRNO__FORMAT; 3541 } 3542 3543 insn_idx = rel.r_offset / BPF_INSN_SZ; 3544 /* relocations against static functions are recorded as 3545 * relocations against the section that contains a function; 3546 * in such case, symbol will be STT_SECTION and sym.st_name 3547 * will point to empty string (0), so fetch section name 3548 * instead 3549 */ 3550 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0) 3551 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx)); 3552 else 3553 sym_name = elf_sym_str(obj, sym.st_name); 3554 sym_name = sym_name ?: "<?"; 3555 3556 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 3557 relo_sec_name, i, insn_idx, sym_name); 3558 3559 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 3560 if (!prog) { 3561 pr_warn("sec '%s': relo #%d: program not found in section '%s' for insn #%u\n", 3562 relo_sec_name, i, sec_name, insn_idx); 3563 return -LIBBPF_ERRNO__RELOC; 3564 } 3565 3566 relos = libbpf_reallocarray(prog->reloc_desc, 3567 prog->nr_reloc + 1, sizeof(*relos)); 3568 if (!relos) 3569 return -ENOMEM; 3570 prog->reloc_desc = relos; 3571 3572 /* adjust insn_idx to local BPF program frame of reference */ 3573 insn_idx -= prog->sec_insn_off; 3574 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 3575 insn_idx, sym_name, &sym, &rel); 3576 if (err) 3577 return err; 3578 3579 prog->nr_reloc++; 3580 } 3581 return 0; 3582} 3583 3584static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 3585{ 3586 struct bpf_map_def *def = &map->def; 3587 __u32 key_type_id = 0, value_type_id = 0; 3588 int ret; 3589 3590 /* if it's BTF-defined map, we don't need to search for type IDs. 3591 * For struct_ops map, it does not need btf_key_type_id and 3592 * btf_value_type_id. 3593 */ 3594 if (map->sec_idx == obj->efile.btf_maps_shndx || 3595 bpf_map__is_struct_ops(map)) 3596 return 0; 3597 3598 if (!bpf_map__is_internal(map)) { 3599 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 3600 def->value_size, &key_type_id, 3601 &value_type_id); 3602 } else { 3603 /* 3604 * LLVM annotates global data differently in BTF, that is, 3605 * only as '.data', '.bss' or '.rodata'. 3606 */ 3607 ret = btf__find_by_name(obj->btf, 3608 libbpf_type_to_btf_name[map->libbpf_type]); 3609 } 3610 if (ret < 0) 3611 return ret; 3612 3613 map->btf_key_type_id = key_type_id; 3614 map->btf_value_type_id = bpf_map__is_internal(map) ? 3615 ret : value_type_id; 3616 return 0; 3617} 3618 3619static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 3620{ 3621 char file[PATH_MAX], buff[4096]; 3622 FILE *fp; 3623 __u32 val; 3624 int err; 3625 3626 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 3627 memset(info, 0, sizeof(*info)); 3628 3629 fp = fopen(file, "r"); 3630 if (!fp) { 3631 err = -errno; 3632 pr_warn("failed to open %s: %d. No procfs support?\n", file, 3633 err); 3634 return err; 3635 } 3636 3637 while (fgets(buff, sizeof(buff), fp)) { 3638 if (sscanf(buff, "map_type:\t%u", &val) == 1) 3639 info->type = val; 3640 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 3641 info->key_size = val; 3642 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 3643 info->value_size = val; 3644 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 3645 info->max_entries = val; 3646 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 3647 info->map_flags = val; 3648 } 3649 3650 fclose(fp); 3651 3652 return 0; 3653} 3654 3655int bpf_map__reuse_fd(struct bpf_map *map, int fd) 3656{ 3657 struct bpf_map_info info = {}; 3658 __u32 len = sizeof(info), name_len; 3659 int new_fd, err; 3660 char *new_name; 3661 3662 err = bpf_obj_get_info_by_fd(fd, &info, &len); 3663 if (err && errno == EINVAL) 3664 err = bpf_get_map_info_from_fdinfo(fd, &info); 3665 if (err) 3666 return err; 3667 3668 name_len = strlen(info.name); 3669 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 3670 new_name = strdup(map->name); 3671 else 3672 new_name = strdup(info.name); 3673 3674 if (!new_name) 3675 return -errno; 3676 3677 new_fd = open("/", O_RDONLY | O_CLOEXEC); 3678 if (new_fd < 0) { 3679 err = -errno; 3680 goto err_free_new_name; 3681 } 3682 3683 new_fd = dup3(fd, new_fd, O_CLOEXEC); 3684 if (new_fd < 0) { 3685 err = -errno; 3686 goto err_close_new_fd; 3687 } 3688 3689 err = zclose(map->fd); 3690 if (err) { 3691 err = -errno; 3692 goto err_close_new_fd; 3693 } 3694 free(map->name); 3695 3696 map->fd = new_fd; 3697 map->name = new_name; 3698 map->def.type = info.type; 3699 map->def.key_size = info.key_size; 3700 map->def.value_size = info.value_size; 3701 map->def.max_entries = info.max_entries; 3702 map->def.map_flags = info.map_flags; 3703 map->btf_key_type_id = info.btf_key_type_id; 3704 map->btf_value_type_id = info.btf_value_type_id; 3705 map->reused = true; 3706 3707 return 0; 3708 3709err_close_new_fd: 3710 close(new_fd); 3711err_free_new_name: 3712 free(new_name); 3713 return err; 3714} 3715 3716__u32 bpf_map__max_entries(const struct bpf_map *map) 3717{ 3718 return map->def.max_entries; 3719} 3720 3721int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 3722{ 3723 if (map->fd >= 0) 3724 return -EBUSY; 3725 map->def.max_entries = max_entries; 3726 return 0; 3727} 3728 3729int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 3730{ 3731 if (!map || !max_entries) 3732 return -EINVAL; 3733 3734 return bpf_map__set_max_entries(map, max_entries); 3735} 3736 3737static int 3738bpf_object__probe_loading(struct bpf_object *obj) 3739{ 3740 struct bpf_load_program_attr attr; 3741 char *cp, errmsg[STRERR_BUFSIZE]; 3742 struct bpf_insn insns[] = { 3743 BPF_MOV64_IMM(BPF_REG_0, 0), 3744 BPF_EXIT_INSN(), 3745 }; 3746 int ret; 3747 3748 /* make sure basic loading works */ 3749 3750 memset(&attr, 0, sizeof(attr)); 3751 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3752 attr.insns = insns; 3753 attr.insns_cnt = ARRAY_SIZE(insns); 3754 attr.license = "GPL"; 3755 3756 ret = bpf_load_program_xattr(&attr, NULL, 0); 3757 if (ret < 0) { 3758 ret = errno; 3759 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3760 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 3761 "program. Make sure your kernel supports BPF " 3762 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 3763 "set to big enough value.\n", __func__, cp, ret); 3764 return -ret; 3765 } 3766 close(ret); 3767 3768 return 0; 3769} 3770 3771static int probe_fd(int fd) 3772{ 3773 if (fd >= 0) 3774 close(fd); 3775 return fd >= 0; 3776} 3777 3778static int probe_kern_prog_name(void) 3779{ 3780 struct bpf_load_program_attr attr; 3781 struct bpf_insn insns[] = { 3782 BPF_MOV64_IMM(BPF_REG_0, 0), 3783 BPF_EXIT_INSN(), 3784 }; 3785 int ret; 3786 3787 /* make sure loading with name works */ 3788 3789 memset(&attr, 0, sizeof(attr)); 3790 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3791 attr.insns = insns; 3792 attr.insns_cnt = ARRAY_SIZE(insns); 3793 attr.license = "GPL"; 3794 attr.name = "test"; 3795 ret = bpf_load_program_xattr(&attr, NULL, 0); 3796 return probe_fd(ret); 3797} 3798 3799static int probe_kern_global_data(void) 3800{ 3801 struct bpf_load_program_attr prg_attr; 3802 struct bpf_create_map_attr map_attr; 3803 char *cp, errmsg[STRERR_BUFSIZE]; 3804 struct bpf_insn insns[] = { 3805 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 3806 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 3807 BPF_MOV64_IMM(BPF_REG_0, 0), 3808 BPF_EXIT_INSN(), 3809 }; 3810 int ret, map; 3811 3812 memset(&map_attr, 0, sizeof(map_attr)); 3813 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 3814 map_attr.key_size = sizeof(int); 3815 map_attr.value_size = 32; 3816 map_attr.max_entries = 1; 3817 3818 map = bpf_create_map_xattr(&map_attr); 3819 if (map < 0) { 3820 ret = -errno; 3821 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3822 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 3823 __func__, cp, -ret); 3824 return ret; 3825 } 3826 3827 insns[0].imm = map; 3828 3829 memset(&prg_attr, 0, sizeof(prg_attr)); 3830 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3831 prg_attr.insns = insns; 3832 prg_attr.insns_cnt = ARRAY_SIZE(insns); 3833 prg_attr.license = "GPL"; 3834 3835 ret = bpf_load_program_xattr(&prg_attr, NULL, 0); 3836 close(map); 3837 return probe_fd(ret); 3838} 3839 3840static int probe_kern_btf(void) 3841{ 3842 static const char strs[] = "\0int"; 3843 __u32 types[] = { 3844 /* int */ 3845 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 3846 }; 3847 3848 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3849 strs, sizeof(strs))); 3850} 3851 3852static int probe_kern_btf_func(void) 3853{ 3854 static const char strs[] = "\0int\0x\0a"; 3855 /* void x(int a) {} */ 3856 __u32 types[] = { 3857 /* int */ 3858 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3859 /* FUNC_PROTO */ /* [2] */ 3860 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3861 BTF_PARAM_ENC(7, 1), 3862 /* FUNC x */ /* [3] */ 3863 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 3864 }; 3865 3866 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3867 strs, sizeof(strs))); 3868} 3869 3870static int probe_kern_btf_func_global(void) 3871{ 3872 static const char strs[] = "\0int\0x\0a"; 3873 /* static void x(int a) {} */ 3874 __u32 types[] = { 3875 /* int */ 3876 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3877 /* FUNC_PROTO */ /* [2] */ 3878 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3879 BTF_PARAM_ENC(7, 1), 3880 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 3881 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 3882 }; 3883 3884 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3885 strs, sizeof(strs))); 3886} 3887 3888static int probe_kern_btf_datasec(void) 3889{ 3890 static const char strs[] = "\0x\0.data"; 3891 /* static int a; */ 3892 __u32 types[] = { 3893 /* int */ 3894 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3895 /* VAR x */ /* [2] */ 3896 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 3897 BTF_VAR_STATIC, 3898 /* DATASEC val */ /* [3] */ 3899 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 3900 BTF_VAR_SECINFO_ENC(2, 0, 4), 3901 }; 3902 3903 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3904 strs, sizeof(strs))); 3905} 3906 3907static int probe_kern_array_mmap(void) 3908{ 3909 struct bpf_create_map_attr attr = { 3910 .map_type = BPF_MAP_TYPE_ARRAY, 3911 .map_flags = BPF_F_MMAPABLE, 3912 .key_size = sizeof(int), 3913 .value_size = sizeof(int), 3914 .max_entries = 1, 3915 }; 3916 3917 return probe_fd(bpf_create_map_xattr(&attr)); 3918} 3919 3920static int probe_kern_exp_attach_type(void) 3921{ 3922 struct bpf_load_program_attr attr; 3923 struct bpf_insn insns[] = { 3924 BPF_MOV64_IMM(BPF_REG_0, 0), 3925 BPF_EXIT_INSN(), 3926 }; 3927 3928 memset(&attr, 0, sizeof(attr)); 3929 /* use any valid combination of program type and (optional) 3930 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 3931 * to see if kernel supports expected_attach_type field for 3932 * BPF_PROG_LOAD command 3933 */ 3934 attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK; 3935 attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE; 3936 attr.insns = insns; 3937 attr.insns_cnt = ARRAY_SIZE(insns); 3938 attr.license = "GPL"; 3939 3940 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 3941} 3942 3943static int probe_kern_probe_read_kernel(void) 3944{ 3945 struct bpf_load_program_attr attr; 3946 struct bpf_insn insns[] = { 3947 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 3948 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 3949 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 3950 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 3951 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 3952 BPF_EXIT_INSN(), 3953 }; 3954 3955 memset(&attr, 0, sizeof(attr)); 3956 attr.prog_type = BPF_PROG_TYPE_KPROBE; 3957 attr.insns = insns; 3958 attr.insns_cnt = ARRAY_SIZE(insns); 3959 attr.license = "GPL"; 3960 3961 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 3962} 3963 3964static int probe_prog_bind_map(void) 3965{ 3966 struct bpf_load_program_attr prg_attr; 3967 struct bpf_create_map_attr map_attr; 3968 char *cp, errmsg[STRERR_BUFSIZE]; 3969 struct bpf_insn insns[] = { 3970 BPF_MOV64_IMM(BPF_REG_0, 0), 3971 BPF_EXIT_INSN(), 3972 }; 3973 int ret, map, prog; 3974 3975 memset(&map_attr, 0, sizeof(map_attr)); 3976 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 3977 map_attr.key_size = sizeof(int); 3978 map_attr.value_size = 32; 3979 map_attr.max_entries = 1; 3980 3981 map = bpf_create_map_xattr(&map_attr); 3982 if (map < 0) { 3983 ret = -errno; 3984 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3985 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 3986 __func__, cp, -ret); 3987 return ret; 3988 } 3989 3990 memset(&prg_attr, 0, sizeof(prg_attr)); 3991 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3992 prg_attr.insns = insns; 3993 prg_attr.insns_cnt = ARRAY_SIZE(insns); 3994 prg_attr.license = "GPL"; 3995 3996 prog = bpf_load_program_xattr(&prg_attr, NULL, 0); 3997 if (prog < 0) { 3998 close(map); 3999 return 0; 4000 } 4001 4002 ret = bpf_prog_bind_map(prog, map, NULL); 4003 4004 close(map); 4005 close(prog); 4006 4007 return ret >= 0; 4008} 4009 4010enum kern_feature_result { 4011 FEAT_UNKNOWN = 0, 4012 FEAT_SUPPORTED = 1, 4013 FEAT_MISSING = 2, 4014}; 4015 4016typedef int (*feature_probe_fn)(void); 4017 4018static struct kern_feature_desc { 4019 const char *desc; 4020 feature_probe_fn probe; 4021 enum kern_feature_result res; 4022} feature_probes[__FEAT_CNT] = { 4023 [FEAT_PROG_NAME] = { 4024 "BPF program name", probe_kern_prog_name, 4025 }, 4026 [FEAT_GLOBAL_DATA] = { 4027 "global variables", probe_kern_global_data, 4028 }, 4029 [FEAT_BTF] = { 4030 "minimal BTF", probe_kern_btf, 4031 }, 4032 [FEAT_BTF_FUNC] = { 4033 "BTF functions", probe_kern_btf_func, 4034 }, 4035 [FEAT_BTF_GLOBAL_FUNC] = { 4036 "BTF global function", probe_kern_btf_func_global, 4037 }, 4038 [FEAT_BTF_DATASEC] = { 4039 "BTF data section and variable", probe_kern_btf_datasec, 4040 }, 4041 [FEAT_ARRAY_MMAP] = { 4042 "ARRAY map mmap()", probe_kern_array_mmap, 4043 }, 4044 [FEAT_EXP_ATTACH_TYPE] = { 4045 "BPF_PROG_LOAD expected_attach_type attribute", 4046 probe_kern_exp_attach_type, 4047 }, 4048 [FEAT_PROBE_READ_KERN] = { 4049 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4050 }, 4051 [FEAT_PROG_BIND_MAP] = { 4052 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4053 } 4054}; 4055 4056static bool kernel_supports(enum kern_feature_id feat_id) 4057{ 4058 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4059 int ret; 4060 4061 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4062 ret = feat->probe(); 4063 if (ret > 0) { 4064 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4065 } else if (ret == 0) { 4066 WRITE_ONCE(feat->res, FEAT_MISSING); 4067 } else { 4068 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4069 WRITE_ONCE(feat->res, FEAT_MISSING); 4070 } 4071 } 4072 4073 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4074} 4075 4076static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4077{ 4078 struct bpf_map_info map_info = {}; 4079 char msg[STRERR_BUFSIZE]; 4080 __u32 map_info_len; 4081 int err; 4082 4083 map_info_len = sizeof(map_info); 4084 4085 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4086 if (err && errno == EINVAL) 4087 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4088 if (err) { 4089 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4090 libbpf_strerror_r(errno, msg, sizeof(msg))); 4091 return false; 4092 } 4093 4094 return (map_info.type == map->def.type && 4095 map_info.key_size == map->def.key_size && 4096 map_info.value_size == map->def.value_size && 4097 map_info.max_entries == map->def.max_entries && 4098 map_info.map_flags == map->def.map_flags); 4099} 4100 4101static int 4102bpf_object__reuse_map(struct bpf_map *map) 4103{ 4104 char *cp, errmsg[STRERR_BUFSIZE]; 4105 int err, pin_fd; 4106 4107 pin_fd = bpf_obj_get(map->pin_path); 4108 if (pin_fd < 0) { 4109 err = -errno; 4110 if (err == -ENOENT) { 4111 pr_debug("found no pinned map to reuse at '%s'\n", 4112 map->pin_path); 4113 return 0; 4114 } 4115 4116 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4117 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4118 map->pin_path, cp); 4119 return err; 4120 } 4121 4122 if (!map_is_reuse_compat(map, pin_fd)) { 4123 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4124 map->pin_path); 4125 close(pin_fd); 4126 return -EINVAL; 4127 } 4128 4129 err = bpf_map__reuse_fd(map, pin_fd); 4130 if (err) { 4131 close(pin_fd); 4132 return err; 4133 } 4134 map->pinned = true; 4135 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4136 4137 return 0; 4138} 4139 4140static int 4141bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4142{ 4143 enum libbpf_map_type map_type = map->libbpf_type; 4144 char *cp, errmsg[STRERR_BUFSIZE]; 4145 int err, zero = 0; 4146 4147 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4148 if (err) { 4149 err = -errno; 4150 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4151 pr_warn("Error setting initial map(%s) contents: %s\n", 4152 map->name, cp); 4153 return err; 4154 } 4155 4156 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4157 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4158 err = bpf_map_freeze(map->fd); 4159 if (err) { 4160 err = -errno; 4161 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4162 pr_warn("Error freezing map(%s) as read-only: %s\n", 4163 map->name, cp); 4164 return err; 4165 } 4166 } 4167 return 0; 4168} 4169 4170static void bpf_map__destroy(struct bpf_map *map); 4171 4172static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map) 4173{ 4174 struct bpf_create_map_attr create_attr; 4175 struct bpf_map_def *def = &map->def; 4176 int err = 0; 4177 4178 memset(&create_attr, 0, sizeof(create_attr)); 4179 4180 if (kernel_supports(FEAT_PROG_NAME)) 4181 create_attr.name = map->name; 4182 create_attr.map_ifindex = map->map_ifindex; 4183 create_attr.map_type = def->type; 4184 create_attr.map_flags = def->map_flags; 4185 create_attr.key_size = def->key_size; 4186 create_attr.value_size = def->value_size; 4187 create_attr.numa_node = map->numa_node; 4188 4189 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { 4190 int nr_cpus; 4191 4192 nr_cpus = libbpf_num_possible_cpus(); 4193 if (nr_cpus < 0) { 4194 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 4195 map->name, nr_cpus); 4196 return nr_cpus; 4197 } 4198 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 4199 create_attr.max_entries = nr_cpus; 4200 } else { 4201 create_attr.max_entries = def->max_entries; 4202 } 4203 4204 if (bpf_map__is_struct_ops(map)) 4205 create_attr.btf_vmlinux_value_type_id = 4206 map->btf_vmlinux_value_type_id; 4207 4208 create_attr.btf_fd = 0; 4209 create_attr.btf_key_type_id = 0; 4210 create_attr.btf_value_type_id = 0; 4211 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4212 create_attr.btf_fd = btf__fd(obj->btf); 4213 create_attr.btf_key_type_id = map->btf_key_type_id; 4214 create_attr.btf_value_type_id = map->btf_value_type_id; 4215 } 4216 4217 if (bpf_map_type__is_map_in_map(def->type)) { 4218 if (map->inner_map) { 4219 err = bpf_object__create_map(obj, map->inner_map); 4220 if (err) { 4221 pr_warn("map '%s': failed to create inner map: %d\n", 4222 map->name, err); 4223 return err; 4224 } 4225 map->inner_map_fd = bpf_map__fd(map->inner_map); 4226 } 4227 if (map->inner_map_fd >= 0) 4228 create_attr.inner_map_fd = map->inner_map_fd; 4229 } 4230 4231 map->fd = bpf_create_map_xattr(&create_attr); 4232 if (map->fd < 0 && (create_attr.btf_key_type_id || 4233 create_attr.btf_value_type_id)) { 4234 char *cp, errmsg[STRERR_BUFSIZE]; 4235 4236 err = -errno; 4237 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4238 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4239 map->name, cp, err); 4240 create_attr.btf_fd = 0; 4241 create_attr.btf_key_type_id = 0; 4242 create_attr.btf_value_type_id = 0; 4243 map->btf_key_type_id = 0; 4244 map->btf_value_type_id = 0; 4245 map->fd = bpf_create_map_xattr(&create_attr); 4246 } 4247 4248 err = map->fd < 0 ? -errno : 0; 4249 4250 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4251 bpf_map__destroy(map->inner_map); 4252 zfree(&map->inner_map); 4253 } 4254 4255 return err; 4256} 4257 4258static int init_map_slots(struct bpf_map *map) 4259{ 4260 const struct bpf_map *targ_map; 4261 unsigned int i; 4262 int fd, err; 4263 4264 for (i = 0; i < map->init_slots_sz; i++) { 4265 if (!map->init_slots[i]) 4266 continue; 4267 4268 targ_map = map->init_slots[i]; 4269 fd = bpf_map__fd(targ_map); 4270 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 4271 if (err) { 4272 err = -errno; 4273 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 4274 map->name, i, targ_map->name, 4275 fd, err); 4276 return err; 4277 } 4278 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 4279 map->name, i, targ_map->name, fd); 4280 } 4281 4282 zfree(&map->init_slots); 4283 map->init_slots_sz = 0; 4284 4285 return 0; 4286} 4287 4288static int 4289bpf_object__create_maps(struct bpf_object *obj) 4290{ 4291 struct bpf_map *map; 4292 char *cp, errmsg[STRERR_BUFSIZE]; 4293 unsigned int i, j; 4294 int err; 4295 bool retried; 4296 4297 for (i = 0; i < obj->nr_maps; i++) { 4298 map = &obj->maps[i]; 4299 4300 retried = false; 4301retry: 4302 if (map->pin_path) { 4303 err = bpf_object__reuse_map(map); 4304 if (err) { 4305 pr_warn("map '%s': error reusing pinned map\n", 4306 map->name); 4307 goto err_out; 4308 } 4309 if (retried && map->fd < 0) { 4310 pr_warn("map '%s': cannot find pinned map\n", 4311 map->name); 4312 err = -ENOENT; 4313 goto err_out; 4314 } 4315 } 4316 4317 if (map->fd >= 0) { 4318 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 4319 map->name, map->fd); 4320 } else { 4321 err = bpf_object__create_map(obj, map); 4322 if (err) 4323 goto err_out; 4324 4325 pr_debug("map '%s': created successfully, fd=%d\n", 4326 map->name, map->fd); 4327 4328 if (bpf_map__is_internal(map)) { 4329 err = bpf_object__populate_internal_map(obj, map); 4330 if (err < 0) { 4331 zclose(map->fd); 4332 goto err_out; 4333 } 4334 } 4335 4336 if (map->init_slots_sz) { 4337 err = init_map_slots(map); 4338 if (err < 0) { 4339 zclose(map->fd); 4340 goto err_out; 4341 } 4342 } 4343 } 4344 4345 if (map->pin_path && !map->pinned) { 4346 err = bpf_map__pin(map, NULL); 4347 if (err) { 4348 zclose(map->fd); 4349 if (!retried && err == -EEXIST) { 4350 retried = true; 4351 goto retry; 4352 } 4353 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 4354 map->name, map->pin_path, err); 4355 goto err_out; 4356 } 4357 } 4358 } 4359 4360 return 0; 4361 4362err_out: 4363 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4364 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 4365 pr_perm_msg(err); 4366 for (j = 0; j < i; j++) 4367 zclose(obj->maps[j].fd); 4368 return err; 4369} 4370 4371#define BPF_CORE_SPEC_MAX_LEN 64 4372 4373/* represents BPF CO-RE field or array element accessor */ 4374struct bpf_core_accessor { 4375 __u32 type_id; /* struct/union type or array element type */ 4376 __u32 idx; /* field index or array index */ 4377 const char *name; /* field name or NULL for array accessor */ 4378}; 4379 4380struct bpf_core_spec { 4381 const struct btf *btf; 4382 /* high-level spec: named fields and array indices only */ 4383 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; 4384 /* original unresolved (no skip_mods_or_typedefs) root type ID */ 4385 __u32 root_type_id; 4386 /* CO-RE relocation kind */ 4387 enum bpf_core_relo_kind relo_kind; 4388 /* high-level spec length */ 4389 int len; 4390 /* raw, low-level spec: 1-to-1 with accessor spec string */ 4391 int raw_spec[BPF_CORE_SPEC_MAX_LEN]; 4392 /* raw spec length */ 4393 int raw_len; 4394 /* field bit offset represented by spec */ 4395 __u32 bit_offset; 4396}; 4397 4398static bool str_is_empty(const char *s) 4399{ 4400 return !s || !s[0]; 4401} 4402 4403static bool is_flex_arr(const struct btf *btf, 4404 const struct bpf_core_accessor *acc, 4405 const struct btf_array *arr) 4406{ 4407 const struct btf_type *t; 4408 4409 /* not a flexible array, if not inside a struct or has non-zero size */ 4410 if (!acc->name || arr->nelems > 0) 4411 return false; 4412 4413 /* has to be the last member of enclosing struct */ 4414 t = btf__type_by_id(btf, acc->type_id); 4415 return acc->idx == btf_vlen(t) - 1; 4416} 4417 4418static const char *core_relo_kind_str(enum bpf_core_relo_kind kind) 4419{ 4420 switch (kind) { 4421 case BPF_FIELD_BYTE_OFFSET: return "byte_off"; 4422 case BPF_FIELD_BYTE_SIZE: return "byte_sz"; 4423 case BPF_FIELD_EXISTS: return "field_exists"; 4424 case BPF_FIELD_SIGNED: return "signed"; 4425 case BPF_FIELD_LSHIFT_U64: return "lshift_u64"; 4426 case BPF_FIELD_RSHIFT_U64: return "rshift_u64"; 4427 case BPF_TYPE_ID_LOCAL: return "local_type_id"; 4428 case BPF_TYPE_ID_TARGET: return "target_type_id"; 4429 case BPF_TYPE_EXISTS: return "type_exists"; 4430 case BPF_TYPE_SIZE: return "type_size"; 4431 case BPF_ENUMVAL_EXISTS: return "enumval_exists"; 4432 case BPF_ENUMVAL_VALUE: return "enumval_value"; 4433 default: return "unknown"; 4434 } 4435} 4436 4437static bool core_relo_is_field_based(enum bpf_core_relo_kind kind) 4438{ 4439 switch (kind) { 4440 case BPF_FIELD_BYTE_OFFSET: 4441 case BPF_FIELD_BYTE_SIZE: 4442 case BPF_FIELD_EXISTS: 4443 case BPF_FIELD_SIGNED: 4444 case BPF_FIELD_LSHIFT_U64: 4445 case BPF_FIELD_RSHIFT_U64: 4446 return true; 4447 default: 4448 return false; 4449 } 4450} 4451 4452static bool core_relo_is_type_based(enum bpf_core_relo_kind kind) 4453{ 4454 switch (kind) { 4455 case BPF_TYPE_ID_LOCAL: 4456 case BPF_TYPE_ID_TARGET: 4457 case BPF_TYPE_EXISTS: 4458 case BPF_TYPE_SIZE: 4459 return true; 4460 default: 4461 return false; 4462 } 4463} 4464 4465static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind) 4466{ 4467 switch (kind) { 4468 case BPF_ENUMVAL_EXISTS: 4469 case BPF_ENUMVAL_VALUE: 4470 return true; 4471 default: 4472 return false; 4473 } 4474} 4475 4476/* 4477 * Turn bpf_core_relo into a low- and high-level spec representation, 4478 * validating correctness along the way, as well as calculating resulting 4479 * field bit offset, specified by accessor string. Low-level spec captures 4480 * every single level of nestedness, including traversing anonymous 4481 * struct/union members. High-level one only captures semantically meaningful 4482 * "turning points": named fields and array indicies. 4483 * E.g., for this case: 4484 * 4485 * struct sample { 4486 * int __unimportant; 4487 * struct { 4488 * int __1; 4489 * int __2; 4490 * int a[7]; 4491 * }; 4492 * }; 4493 * 4494 * struct sample *s = ...; 4495 * 4496 * int x = &s->a[3]; // access string = '0:1:2:3' 4497 * 4498 * Low-level spec has 1:1 mapping with each element of access string (it's 4499 * just a parsed access string representation): [0, 1, 2, 3]. 4500 * 4501 * High-level spec will capture only 3 points: 4502 * - intial zero-index access by pointer (&s->... is the same as &s[0]...); 4503 * - field 'a' access (corresponds to '2' in low-level spec); 4504 * - array element #3 access (corresponds to '3' in low-level spec). 4505 * 4506 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE, 4507 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their 4508 * spec and raw_spec are kept empty. 4509 * 4510 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access 4511 * string to specify enumerator's value index that need to be relocated. 4512 */ 4513static int bpf_core_parse_spec(const struct btf *btf, 4514 __u32 type_id, 4515 const char *spec_str, 4516 enum bpf_core_relo_kind relo_kind, 4517 struct bpf_core_spec *spec) 4518{ 4519 int access_idx, parsed_len, i; 4520 struct bpf_core_accessor *acc; 4521 const struct btf_type *t; 4522 const char *name; 4523 __u32 id; 4524 __s64 sz; 4525 4526 if (str_is_empty(spec_str) || *spec_str == ':') 4527 return -EINVAL; 4528 4529 memset(spec, 0, sizeof(*spec)); 4530 spec->btf = btf; 4531 spec->root_type_id = type_id; 4532 spec->relo_kind = relo_kind; 4533 4534 /* type-based relocations don't have a field access string */ 4535 if (core_relo_is_type_based(relo_kind)) { 4536 if (strcmp(spec_str, "0")) 4537 return -EINVAL; 4538 return 0; 4539 } 4540 4541 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 4542 while (*spec_str) { 4543 if (*spec_str == ':') 4544 ++spec_str; 4545 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 4546 return -EINVAL; 4547 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4548 return -E2BIG; 4549 spec_str += parsed_len; 4550 spec->raw_spec[spec->raw_len++] = access_idx; 4551 } 4552 4553 if (spec->raw_len == 0) 4554 return -EINVAL; 4555 4556 t = skip_mods_and_typedefs(btf, type_id, &id); 4557 if (!t) 4558 return -EINVAL; 4559 4560 access_idx = spec->raw_spec[0]; 4561 acc = &spec->spec[0]; 4562 acc->type_id = id; 4563 acc->idx = access_idx; 4564 spec->len++; 4565 4566 if (core_relo_is_enumval_based(relo_kind)) { 4567 if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t)) 4568 return -EINVAL; 4569 4570 /* record enumerator name in a first accessor */ 4571 acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off); 4572 return 0; 4573 } 4574 4575 if (!core_relo_is_field_based(relo_kind)) 4576 return -EINVAL; 4577 4578 sz = btf__resolve_size(btf, id); 4579 if (sz < 0) 4580 return sz; 4581 spec->bit_offset = access_idx * sz * 8; 4582 4583 for (i = 1; i < spec->raw_len; i++) { 4584 t = skip_mods_and_typedefs(btf, id, &id); 4585 if (!t) 4586 return -EINVAL; 4587 4588 access_idx = spec->raw_spec[i]; 4589 acc = &spec->spec[spec->len]; 4590 4591 if (btf_is_composite(t)) { 4592 const struct btf_member *m; 4593 __u32 bit_offset; 4594 4595 if (access_idx >= btf_vlen(t)) 4596 return -EINVAL; 4597 4598 bit_offset = btf_member_bit_offset(t, access_idx); 4599 spec->bit_offset += bit_offset; 4600 4601 m = btf_members(t) + access_idx; 4602 if (m->name_off) { 4603 name = btf__name_by_offset(btf, m->name_off); 4604 if (str_is_empty(name)) 4605 return -EINVAL; 4606 4607 acc->type_id = id; 4608 acc->idx = access_idx; 4609 acc->name = name; 4610 spec->len++; 4611 } 4612 4613 id = m->type; 4614 } else if (btf_is_array(t)) { 4615 const struct btf_array *a = btf_array(t); 4616 bool flex; 4617 4618 t = skip_mods_and_typedefs(btf, a->type, &id); 4619 if (!t) 4620 return -EINVAL; 4621 4622 flex = is_flex_arr(btf, acc - 1, a); 4623 if (!flex && access_idx >= a->nelems) 4624 return -EINVAL; 4625 4626 spec->spec[spec->len].type_id = id; 4627 spec->spec[spec->len].idx = access_idx; 4628 spec->len++; 4629 4630 sz = btf__resolve_size(btf, id); 4631 if (sz < 0) 4632 return sz; 4633 spec->bit_offset += access_idx * sz * 8; 4634 } else { 4635 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n", 4636 type_id, spec_str, i, id, btf_kind_str(t)); 4637 return -EINVAL; 4638 } 4639 } 4640 4641 return 0; 4642} 4643 4644static bool bpf_core_is_flavor_sep(const char *s) 4645{ 4646 /* check X___Y name pattern, where X and Y are not underscores */ 4647 return s[0] != '_' && /* X */ 4648 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 4649 s[4] != '_'; /* Y */ 4650} 4651 4652/* Given 'some_struct_name___with_flavor' return the length of a name prefix 4653 * before last triple underscore. Struct name part after last triple 4654 * underscore is ignored by BPF CO-RE relocation during relocation matching. 4655 */ 4656static size_t bpf_core_essential_name_len(const char *name) 4657{ 4658 size_t n = strlen(name); 4659 int i; 4660 4661 for (i = n - 5; i >= 0; i--) { 4662 if (bpf_core_is_flavor_sep(name + i)) 4663 return i + 1; 4664 } 4665 return n; 4666} 4667 4668/* dynamically sized list of type IDs */ 4669struct ids_vec { 4670 __u32 *data; 4671 int len; 4672}; 4673 4674static void bpf_core_free_cands(struct ids_vec *cand_ids) 4675{ 4676 free(cand_ids->data); 4677 free(cand_ids); 4678} 4679 4680static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf, 4681 __u32 local_type_id, 4682 const struct btf *targ_btf) 4683{ 4684 size_t local_essent_len, targ_essent_len; 4685 const char *local_name, *targ_name; 4686 const struct btf_type *t, *local_t; 4687 struct ids_vec *cand_ids; 4688 __u32 *new_ids; 4689 int i, err, n; 4690 4691 local_t = btf__type_by_id(local_btf, local_type_id); 4692 if (!local_t) 4693 return ERR_PTR(-EINVAL); 4694 4695 local_name = btf__name_by_offset(local_btf, local_t->name_off); 4696 if (str_is_empty(local_name)) 4697 return ERR_PTR(-EINVAL); 4698 local_essent_len = bpf_core_essential_name_len(local_name); 4699 4700 cand_ids = calloc(1, sizeof(*cand_ids)); 4701 if (!cand_ids) 4702 return ERR_PTR(-ENOMEM); 4703 4704 n = btf__get_nr_types(targ_btf); 4705 for (i = 1; i <= n; i++) { 4706 t = btf__type_by_id(targ_btf, i); 4707 if (btf_kind(t) != btf_kind(local_t)) 4708 continue; 4709 4710 targ_name = btf__name_by_offset(targ_btf, t->name_off); 4711 if (str_is_empty(targ_name)) 4712 continue; 4713 4714 targ_essent_len = bpf_core_essential_name_len(targ_name); 4715 if (targ_essent_len != local_essent_len) 4716 continue; 4717 4718 if (strncmp(local_name, targ_name, local_essent_len) == 0) { 4719 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s\n", 4720 local_type_id, btf_kind_str(local_t), 4721 local_name, i, btf_kind_str(t), targ_name); 4722 new_ids = libbpf_reallocarray(cand_ids->data, 4723 cand_ids->len + 1, 4724 sizeof(*cand_ids->data)); 4725 if (!new_ids) { 4726 err = -ENOMEM; 4727 goto err_out; 4728 } 4729 cand_ids->data = new_ids; 4730 cand_ids->data[cand_ids->len++] = i; 4731 } 4732 } 4733 return cand_ids; 4734err_out: 4735 bpf_core_free_cands(cand_ids); 4736 return ERR_PTR(err); 4737} 4738 4739/* Check two types for compatibility for the purpose of field access 4740 * relocation. const/volatile/restrict and typedefs are skipped to ensure we 4741 * are relocating semantically compatible entities: 4742 * - any two STRUCTs/UNIONs are compatible and can be mixed; 4743 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 4744 * - any two PTRs are always compatible; 4745 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 4746 * least one of enums should be anonymous; 4747 * - for ENUMs, check sizes, names are ignored; 4748 * - for INT, size and signedness are ignored; 4749 * - for ARRAY, dimensionality is ignored, element types are checked for 4750 * compatibility recursively; 4751 * - everything else shouldn't be ever a target of relocation. 4752 * These rules are not set in stone and probably will be adjusted as we get 4753 * more experience with using BPF CO-RE relocations. 4754 */ 4755static int bpf_core_fields_are_compat(const struct btf *local_btf, 4756 __u32 local_id, 4757 const struct btf *targ_btf, 4758 __u32 targ_id) 4759{ 4760 const struct btf_type *local_type, *targ_type; 4761 4762recur: 4763 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 4764 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4765 if (!local_type || !targ_type) 4766 return -EINVAL; 4767 4768 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 4769 return 1; 4770 if (btf_kind(local_type) != btf_kind(targ_type)) 4771 return 0; 4772 4773 switch (btf_kind(local_type)) { 4774 case BTF_KIND_PTR: 4775 return 1; 4776 case BTF_KIND_FWD: 4777 case BTF_KIND_ENUM: { 4778 const char *local_name, *targ_name; 4779 size_t local_len, targ_len; 4780 4781 local_name = btf__name_by_offset(local_btf, 4782 local_type->name_off); 4783 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 4784 local_len = bpf_core_essential_name_len(local_name); 4785 targ_len = bpf_core_essential_name_len(targ_name); 4786 /* one of them is anonymous or both w/ same flavor-less names */ 4787 return local_len == 0 || targ_len == 0 || 4788 (local_len == targ_len && 4789 strncmp(local_name, targ_name, local_len) == 0); 4790 } 4791 case BTF_KIND_INT: 4792 /* just reject deprecated bitfield-like integers; all other 4793 * integers are by default compatible between each other 4794 */ 4795 return btf_int_offset(local_type) == 0 && 4796 btf_int_offset(targ_type) == 0; 4797 case BTF_KIND_ARRAY: 4798 local_id = btf_array(local_type)->type; 4799 targ_id = btf_array(targ_type)->type; 4800 goto recur; 4801 default: 4802 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", 4803 btf_kind(local_type), local_id, targ_id); 4804 return 0; 4805 } 4806} 4807 4808/* 4809 * Given single high-level named field accessor in local type, find 4810 * corresponding high-level accessor for a target type. Along the way, 4811 * maintain low-level spec for target as well. Also keep updating target 4812 * bit offset. 4813 * 4814 * Searching is performed through recursive exhaustive enumeration of all 4815 * fields of a struct/union. If there are any anonymous (embedded) 4816 * structs/unions, they are recursively searched as well. If field with 4817 * desired name is found, check compatibility between local and target types, 4818 * before returning result. 4819 * 4820 * 1 is returned, if field is found. 4821 * 0 is returned if no compatible field is found. 4822 * <0 is returned on error. 4823 */ 4824static int bpf_core_match_member(const struct btf *local_btf, 4825 const struct bpf_core_accessor *local_acc, 4826 const struct btf *targ_btf, 4827 __u32 targ_id, 4828 struct bpf_core_spec *spec, 4829 __u32 *next_targ_id) 4830{ 4831 const struct btf_type *local_type, *targ_type; 4832 const struct btf_member *local_member, *m; 4833 const char *local_name, *targ_name; 4834 __u32 local_id; 4835 int i, n, found; 4836 4837 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4838 if (!targ_type) 4839 return -EINVAL; 4840 if (!btf_is_composite(targ_type)) 4841 return 0; 4842 4843 local_id = local_acc->type_id; 4844 local_type = btf__type_by_id(local_btf, local_id); 4845 local_member = btf_members(local_type) + local_acc->idx; 4846 local_name = btf__name_by_offset(local_btf, local_member->name_off); 4847 4848 n = btf_vlen(targ_type); 4849 m = btf_members(targ_type); 4850 for (i = 0; i < n; i++, m++) { 4851 __u32 bit_offset; 4852 4853 bit_offset = btf_member_bit_offset(targ_type, i); 4854 4855 /* too deep struct/union/array nesting */ 4856 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4857 return -E2BIG; 4858 4859 /* speculate this member will be the good one */ 4860 spec->bit_offset += bit_offset; 4861 spec->raw_spec[spec->raw_len++] = i; 4862 4863 targ_name = btf__name_by_offset(targ_btf, m->name_off); 4864 if (str_is_empty(targ_name)) { 4865 /* embedded struct/union, we need to go deeper */ 4866 found = bpf_core_match_member(local_btf, local_acc, 4867 targ_btf, m->type, 4868 spec, next_targ_id); 4869 if (found) /* either found or error */ 4870 return found; 4871 } else if (strcmp(local_name, targ_name) == 0) { 4872 /* matching named field */ 4873 struct bpf_core_accessor *targ_acc; 4874 4875 targ_acc = &spec->spec[spec->len++]; 4876 targ_acc->type_id = targ_id; 4877 targ_acc->idx = i; 4878 targ_acc->name = targ_name; 4879 4880 *next_targ_id = m->type; 4881 found = bpf_core_fields_are_compat(local_btf, 4882 local_member->type, 4883 targ_btf, m->type); 4884 if (!found) 4885 spec->len--; /* pop accessor */ 4886 return found; 4887 } 4888 /* member turned out not to be what we looked for */ 4889 spec->bit_offset -= bit_offset; 4890 spec->raw_len--; 4891 } 4892 4893 return 0; 4894} 4895 4896/* Check local and target types for compatibility. This check is used for 4897 * type-based CO-RE relocations and follow slightly different rules than 4898 * field-based relocations. This function assumes that root types were already 4899 * checked for name match. Beyond that initial root-level name check, names 4900 * are completely ignored. Compatibility rules are as follows: 4901 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 4902 * kind should match for local and target types (i.e., STRUCT is not 4903 * compatible with UNION); 4904 * - for ENUMs, the size is ignored; 4905 * - for INT, size and signedness are ignored; 4906 * - for ARRAY, dimensionality is ignored, element types are checked for 4907 * compatibility recursively; 4908 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 4909 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 4910 * - FUNC_PROTOs are compatible if they have compatible signature: same 4911 * number of input args and compatible return and argument types. 4912 * These rules are not set in stone and probably will be adjusted as we get 4913 * more experience with using BPF CO-RE relocations. 4914 */ 4915static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 4916 const struct btf *targ_btf, __u32 targ_id) 4917{ 4918 const struct btf_type *local_type, *targ_type; 4919 int depth = 32; /* max recursion depth */ 4920 4921 /* caller made sure that names match (ignoring flavor suffix) */ 4922 local_type = btf__type_by_id(local_btf, local_id); 4923 targ_type = btf__type_by_id(targ_btf, targ_id); 4924 if (btf_kind(local_type) != btf_kind(targ_type)) 4925 return 0; 4926 4927recur: 4928 depth--; 4929 if (depth < 0) 4930 return -EINVAL; 4931 4932 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 4933 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4934 if (!local_type || !targ_type) 4935 return -EINVAL; 4936 4937 if (btf_kind(local_type) != btf_kind(targ_type)) 4938 return 0; 4939 4940 switch (btf_kind(local_type)) { 4941 case BTF_KIND_UNKN: 4942 case BTF_KIND_STRUCT: 4943 case BTF_KIND_UNION: 4944 case BTF_KIND_ENUM: 4945 case BTF_KIND_FWD: 4946 return 1; 4947 case BTF_KIND_INT: 4948 /* just reject deprecated bitfield-like integers; all other 4949 * integers are by default compatible between each other 4950 */ 4951 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 4952 case BTF_KIND_PTR: 4953 local_id = local_type->type; 4954 targ_id = targ_type->type; 4955 goto recur; 4956 case BTF_KIND_ARRAY: 4957 local_id = btf_array(local_type)->type; 4958 targ_id = btf_array(targ_type)->type; 4959 goto recur; 4960 case BTF_KIND_FUNC_PROTO: { 4961 struct btf_param *local_p = btf_params(local_type); 4962 struct btf_param *targ_p = btf_params(targ_type); 4963 __u16 local_vlen = btf_vlen(local_type); 4964 __u16 targ_vlen = btf_vlen(targ_type); 4965 int i, err; 4966 4967 if (local_vlen != targ_vlen) 4968 return 0; 4969 4970 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 4971 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 4972 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 4973 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 4974 if (err <= 0) 4975 return err; 4976 } 4977 4978 /* tail recurse for return type check */ 4979 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 4980 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 4981 goto recur; 4982 } 4983 default: 4984 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 4985 btf_kind_str(local_type), local_id, targ_id); 4986 return 0; 4987 } 4988} 4989 4990/* 4991 * Try to match local spec to a target type and, if successful, produce full 4992 * target spec (high-level, low-level + bit offset). 4993 */ 4994static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 4995 const struct btf *targ_btf, __u32 targ_id, 4996 struct bpf_core_spec *targ_spec) 4997{ 4998 const struct btf_type *targ_type; 4999 const struct bpf_core_accessor *local_acc; 5000 struct bpf_core_accessor *targ_acc; 5001 int i, sz, matched; 5002 5003 memset(targ_spec, 0, sizeof(*targ_spec)); 5004 targ_spec->btf = targ_btf; 5005 targ_spec->root_type_id = targ_id; 5006 targ_spec->relo_kind = local_spec->relo_kind; 5007 5008 if (core_relo_is_type_based(local_spec->relo_kind)) { 5009 return bpf_core_types_are_compat(local_spec->btf, 5010 local_spec->root_type_id, 5011 targ_btf, targ_id); 5012 } 5013 5014 local_acc = &local_spec->spec[0]; 5015 targ_acc = &targ_spec->spec[0]; 5016 5017 if (core_relo_is_enumval_based(local_spec->relo_kind)) { 5018 size_t local_essent_len, targ_essent_len; 5019 const struct btf_enum *e; 5020 const char *targ_name; 5021 5022 /* has to resolve to an enum */ 5023 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id); 5024 if (!btf_is_enum(targ_type)) 5025 return 0; 5026 5027 local_essent_len = bpf_core_essential_name_len(local_acc->name); 5028 5029 for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) { 5030 targ_name = btf__name_by_offset(targ_spec->btf, e->name_off); 5031 targ_essent_len = bpf_core_essential_name_len(targ_name); 5032 if (targ_essent_len != local_essent_len) 5033 continue; 5034 if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) { 5035 targ_acc->type_id = targ_id; 5036 targ_acc->idx = i; 5037 targ_acc->name = targ_name; 5038 targ_spec->len++; 5039 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5040 targ_spec->raw_len++; 5041 return 1; 5042 } 5043 } 5044 return 0; 5045 } 5046 5047 if (!core_relo_is_field_based(local_spec->relo_kind)) 5048 return -EINVAL; 5049 5050 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 5051 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 5052 &targ_id); 5053 if (!targ_type) 5054 return -EINVAL; 5055 5056 if (local_acc->name) { 5057 matched = bpf_core_match_member(local_spec->btf, 5058 local_acc, 5059 targ_btf, targ_id, 5060 targ_spec, &targ_id); 5061 if (matched <= 0) 5062 return matched; 5063 } else { 5064 /* for i=0, targ_id is already treated as array element 5065 * type (because it's the original struct), for others 5066 * we should find array element type first 5067 */ 5068 if (i > 0) { 5069 const struct btf_array *a; 5070 bool flex; 5071 5072 if (!btf_is_array(targ_type)) 5073 return 0; 5074 5075 a = btf_array(targ_type); 5076 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 5077 if (!flex && local_acc->idx >= a->nelems) 5078 return 0; 5079 if (!skip_mods_and_typedefs(targ_btf, a->type, 5080 &targ_id)) 5081 return -EINVAL; 5082 } 5083 5084 /* too deep struct/union/array nesting */ 5085 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 5086 return -E2BIG; 5087 5088 targ_acc->type_id = targ_id; 5089 targ_acc->idx = local_acc->idx; 5090 targ_acc->name = NULL; 5091 targ_spec->len++; 5092 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5093 targ_spec->raw_len++; 5094 5095 sz = btf__resolve_size(targ_btf, targ_id); 5096 if (sz < 0) 5097 return sz; 5098 targ_spec->bit_offset += local_acc->idx * sz * 8; 5099 } 5100 } 5101 5102 return 1; 5103} 5104 5105static int bpf_core_calc_field_relo(const struct bpf_program *prog, 5106 const struct bpf_core_relo *relo, 5107 const struct bpf_core_spec *spec, 5108 __u32 *val, __u32 *field_sz, __u32 *type_id, 5109 bool *validate) 5110{ 5111 const struct bpf_core_accessor *acc; 5112 const struct btf_type *t; 5113 __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id; 5114 const struct btf_member *m; 5115 const struct btf_type *mt; 5116 bool bitfield; 5117 __s64 sz; 5118 5119 *field_sz = 0; 5120 5121 if (relo->kind == BPF_FIELD_EXISTS) { 5122 *val = spec ? 1 : 0; 5123 return 0; 5124 } 5125 5126 if (!spec) 5127 return -EUCLEAN; /* request instruction poisoning */ 5128 5129 acc = &spec->spec[spec->len - 1]; 5130 t = btf__type_by_id(spec->btf, acc->type_id); 5131 5132 /* a[n] accessor needs special handling */ 5133 if (!acc->name) { 5134 if (relo->kind == BPF_FIELD_BYTE_OFFSET) { 5135 *val = spec->bit_offset / 8; 5136 /* remember field size for load/store mem size */ 5137 sz = btf__resolve_size(spec->btf, acc->type_id); 5138 if (sz < 0) 5139 return -EINVAL; 5140 *field_sz = sz; 5141 *type_id = acc->type_id; 5142 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { 5143 sz = btf__resolve_size(spec->btf, acc->type_id); 5144 if (sz < 0) 5145 return -EINVAL; 5146 *val = sz; 5147 } else { 5148 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 5149 prog->name, relo->kind, relo->insn_off / 8); 5150 return -EINVAL; 5151 } 5152 if (validate) 5153 *validate = true; 5154 return 0; 5155 } 5156 5157 m = btf_members(t) + acc->idx; 5158 mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id); 5159 bit_off = spec->bit_offset; 5160 bit_sz = btf_member_bitfield_size(t, acc->idx); 5161 5162 bitfield = bit_sz > 0; 5163 if (bitfield) { 5164 byte_sz = mt->size; 5165 byte_off = bit_off / 8 / byte_sz * byte_sz; 5166 /* figure out smallest int size necessary for bitfield load */ 5167 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 5168 if (byte_sz >= 8) { 5169 /* bitfield can't be read with 64-bit read */ 5170 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 5171 prog->name, relo->kind, relo->insn_off / 8); 5172 return -E2BIG; 5173 } 5174 byte_sz *= 2; 5175 byte_off = bit_off / 8 / byte_sz * byte_sz; 5176 } 5177 } else { 5178 sz = btf__resolve_size(spec->btf, field_type_id); 5179 if (sz < 0) 5180 return -EINVAL; 5181 byte_sz = sz; 5182 byte_off = spec->bit_offset / 8; 5183 bit_sz = byte_sz * 8; 5184 } 5185 5186 /* for bitfields, all the relocatable aspects are ambiguous and we 5187 * might disagree with compiler, so turn off validation of expected 5188 * value, except for signedness 5189 */ 5190 if (validate) 5191 *validate = !bitfield; 5192 5193 switch (relo->kind) { 5194 case BPF_FIELD_BYTE_OFFSET: 5195 *val = byte_off; 5196 if (!bitfield) { 5197 *field_sz = byte_sz; 5198 *type_id = field_type_id; 5199 } 5200 break; 5201 case BPF_FIELD_BYTE_SIZE: 5202 *val = byte_sz; 5203 break; 5204 case BPF_FIELD_SIGNED: 5205 /* enums will be assumed unsigned */ 5206 *val = btf_is_enum(mt) || 5207 (btf_int_encoding(mt) & BTF_INT_SIGNED); 5208 if (validate) 5209 *validate = true; /* signedness is never ambiguous */ 5210 break; 5211 case BPF_FIELD_LSHIFT_U64: 5212#if __BYTE_ORDER == __LITTLE_ENDIAN 5213 *val = 64 - (bit_off + bit_sz - byte_off * 8); 5214#else 5215 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 5216#endif 5217 break; 5218 case BPF_FIELD_RSHIFT_U64: 5219 *val = 64 - bit_sz; 5220 if (validate) 5221 *validate = true; /* right shift is never ambiguous */ 5222 break; 5223 case BPF_FIELD_EXISTS: 5224 default: 5225 return -EOPNOTSUPP; 5226 } 5227 5228 return 0; 5229} 5230 5231static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo, 5232 const struct bpf_core_spec *spec, 5233 __u32 *val) 5234{ 5235 __s64 sz; 5236 5237 /* type-based relos return zero when target type is not found */ 5238 if (!spec) { 5239 *val = 0; 5240 return 0; 5241 } 5242 5243 switch (relo->kind) { 5244 case BPF_TYPE_ID_TARGET: 5245 *val = spec->root_type_id; 5246 break; 5247 case BPF_TYPE_EXISTS: 5248 *val = 1; 5249 break; 5250 case BPF_TYPE_SIZE: 5251 sz = btf__resolve_size(spec->btf, spec->root_type_id); 5252 if (sz < 0) 5253 return -EINVAL; 5254 *val = sz; 5255 break; 5256 case BPF_TYPE_ID_LOCAL: 5257 /* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */ 5258 default: 5259 return -EOPNOTSUPP; 5260 } 5261 5262 return 0; 5263} 5264 5265static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo, 5266 const struct bpf_core_spec *spec, 5267 __u32 *val) 5268{ 5269 const struct btf_type *t; 5270 const struct btf_enum *e; 5271 5272 switch (relo->kind) { 5273 case BPF_ENUMVAL_EXISTS: 5274 *val = spec ? 1 : 0; 5275 break; 5276 case BPF_ENUMVAL_VALUE: 5277 if (!spec) 5278 return -EUCLEAN; /* request instruction poisoning */ 5279 t = btf__type_by_id(spec->btf, spec->spec[0].type_id); 5280 e = btf_enum(t) + spec->spec[0].idx; 5281 *val = e->val; 5282 break; 5283 default: 5284 return -EOPNOTSUPP; 5285 } 5286 5287 return 0; 5288} 5289 5290struct bpf_core_relo_res 5291{ 5292 /* expected value in the instruction, unless validate == false */ 5293 __u32 orig_val; 5294 /* new value that needs to be patched up to */ 5295 __u32 new_val; 5296 /* relocation unsuccessful, poison instruction, but don't fail load */ 5297 bool poison; 5298 /* some relocations can't be validated against orig_val */ 5299 bool validate; 5300 /* for field byte offset relocations or the forms: 5301 * *(T *)(rX + <off>) = rY 5302 * rX = *(T *)(rY + <off>), 5303 * we remember original and resolved field size to adjust direct 5304 * memory loads of pointers and integers; this is necessary for 32-bit 5305 * host kernel architectures, but also allows to automatically 5306 * relocate fields that were resized from, e.g., u32 to u64, etc. 5307 */ 5308 bool fail_memsz_adjust; 5309 __u32 orig_sz; 5310 __u32 orig_type_id; 5311 __u32 new_sz; 5312 __u32 new_type_id; 5313}; 5314 5315/* Calculate original and target relocation values, given local and target 5316 * specs and relocation kind. These values are calculated for each candidate. 5317 * If there are multiple candidates, resulting values should all be consistent 5318 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity. 5319 * If instruction has to be poisoned, *poison will be set to true. 5320 */ 5321static int bpf_core_calc_relo(const struct bpf_program *prog, 5322 const struct bpf_core_relo *relo, 5323 int relo_idx, 5324 const struct bpf_core_spec *local_spec, 5325 const struct bpf_core_spec *targ_spec, 5326 struct bpf_core_relo_res *res) 5327{ 5328 int err = -EOPNOTSUPP; 5329 5330 res->orig_val = 0; 5331 res->new_val = 0; 5332 res->poison = false; 5333 res->validate = true; 5334 res->fail_memsz_adjust = false; 5335 res->orig_sz = res->new_sz = 0; 5336 res->orig_type_id = res->new_type_id = 0; 5337 5338 if (core_relo_is_field_based(relo->kind)) { 5339 err = bpf_core_calc_field_relo(prog, relo, local_spec, 5340 &res->orig_val, &res->orig_sz, 5341 &res->orig_type_id, &res->validate); 5342 err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec, 5343 &res->new_val, &res->new_sz, 5344 &res->new_type_id, NULL); 5345 if (err) 5346 goto done; 5347 /* Validate if it's safe to adjust load/store memory size. 5348 * Adjustments are performed only if original and new memory 5349 * sizes differ. 5350 */ 5351 res->fail_memsz_adjust = false; 5352 if (res->orig_sz != res->new_sz) { 5353 const struct btf_type *orig_t, *new_t; 5354 5355 orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id); 5356 new_t = btf__type_by_id(targ_spec->btf, res->new_type_id); 5357 5358 /* There are two use cases in which it's safe to 5359 * adjust load/store's mem size: 5360 * - reading a 32-bit kernel pointer, while on BPF 5361 * size pointers are always 64-bit; in this case 5362 * it's safe to "downsize" instruction size due to 5363 * pointer being treated as unsigned integer with 5364 * zero-extended upper 32-bits; 5365 * - reading unsigned integers, again due to 5366 * zero-extension is preserving the value correctly. 5367 * 5368 * In all other cases it's incorrect to attempt to 5369 * load/store field because read value will be 5370 * incorrect, so we poison relocated instruction. 5371 */ 5372 if (btf_is_ptr(orig_t) && btf_is_ptr(new_t)) 5373 goto done; 5374 if (btf_is_int(orig_t) && btf_is_int(new_t) && 5375 btf_int_encoding(orig_t) != BTF_INT_SIGNED && 5376 btf_int_encoding(new_t) != BTF_INT_SIGNED) 5377 goto done; 5378 5379 /* mark as invalid mem size adjustment, but this will 5380 * only be checked for LDX/STX/ST insns 5381 */ 5382 res->fail_memsz_adjust = true; 5383 } 5384 } else if (core_relo_is_type_based(relo->kind)) { 5385 err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val); 5386 err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val); 5387 } else if (core_relo_is_enumval_based(relo->kind)) { 5388 err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val); 5389 err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val); 5390 } 5391 5392done: 5393 if (err == -EUCLEAN) { 5394 /* EUCLEAN is used to signal instruction poisoning request */ 5395 res->poison = true; 5396 err = 0; 5397 } else if (err == -EOPNOTSUPP) { 5398 /* EOPNOTSUPP means unknown/unsupported relocation */ 5399 pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n", 5400 prog->name, relo_idx, core_relo_kind_str(relo->kind), 5401 relo->kind, relo->insn_off / 8); 5402 } 5403 5404 return err; 5405} 5406 5407/* 5408 * Turn instruction for which CO_RE relocation failed into invalid one with 5409 * distinct signature. 5410 */ 5411static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx, 5412 int insn_idx, struct bpf_insn *insn) 5413{ 5414 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 5415 prog->name, relo_idx, insn_idx); 5416 insn->code = BPF_JMP | BPF_CALL; 5417 insn->dst_reg = 0; 5418 insn->src_reg = 0; 5419 insn->off = 0; 5420 /* if this instruction is reachable (not a dead code), 5421 * verifier will complain with the following message: 5422 * invalid func unknown#195896080 5423 */ 5424 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 5425} 5426 5427static bool is_ldimm64(struct bpf_insn *insn) 5428{ 5429 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 5430} 5431 5432static int insn_bpf_size_to_bytes(struct bpf_insn *insn) 5433{ 5434 switch (BPF_SIZE(insn->code)) { 5435 case BPF_DW: return 8; 5436 case BPF_W: return 4; 5437 case BPF_H: return 2; 5438 case BPF_B: return 1; 5439 default: return -1; 5440 } 5441} 5442 5443static int insn_bytes_to_bpf_size(__u32 sz) 5444{ 5445 switch (sz) { 5446 case 8: return BPF_DW; 5447 case 4: return BPF_W; 5448 case 2: return BPF_H; 5449 case 1: return BPF_B; 5450 default: return -1; 5451 } 5452} 5453 5454/* 5455 * Patch relocatable BPF instruction. 5456 * 5457 * Patched value is determined by relocation kind and target specification. 5458 * For existence relocations target spec will be NULL if field/type is not found. 5459 * Expected insn->imm value is determined using relocation kind and local 5460 * spec, and is checked before patching instruction. If actual insn->imm value 5461 * is wrong, bail out with error. 5462 * 5463 * Currently supported classes of BPF instruction are: 5464 * 1. rX = <imm> (assignment with immediate operand); 5465 * 2. rX += <imm> (arithmetic operations with immediate operand); 5466 * 3. rX = <imm64> (load with 64-bit immediate value); 5467 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64}; 5468 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64}; 5469 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}. 5470 */ 5471static int bpf_core_patch_insn(struct bpf_program *prog, 5472 const struct bpf_core_relo *relo, 5473 int relo_idx, 5474 const struct bpf_core_relo_res *res) 5475{ 5476 __u32 orig_val, new_val; 5477 struct bpf_insn *insn; 5478 int insn_idx; 5479 __u8 class; 5480 5481 if (relo->insn_off % BPF_INSN_SZ) 5482 return -EINVAL; 5483 insn_idx = relo->insn_off / BPF_INSN_SZ; 5484 /* adjust insn_idx from section frame of reference to the local 5485 * program's frame of reference; (sub-)program code is not yet 5486 * relocated, so it's enough to just subtract in-section offset 5487 */ 5488 insn_idx = insn_idx - prog->sec_insn_off; 5489 insn = &prog->insns[insn_idx]; 5490 class = BPF_CLASS(insn->code); 5491 5492 if (res->poison) { 5493poison: 5494 /* poison second part of ldimm64 to avoid confusing error from 5495 * verifier about "unknown opcode 00" 5496 */ 5497 if (is_ldimm64(insn)) 5498 bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1); 5499 bpf_core_poison_insn(prog, relo_idx, insn_idx, insn); 5500 return 0; 5501 } 5502 5503 orig_val = res->orig_val; 5504 new_val = res->new_val; 5505 5506 switch (class) { 5507 case BPF_ALU: 5508 case BPF_ALU64: 5509 if (BPF_SRC(insn->code) != BPF_K) 5510 return -EINVAL; 5511 if (res->validate && insn->imm != orig_val) { 5512 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n", 5513 prog->name, relo_idx, 5514 insn_idx, insn->imm, orig_val, new_val); 5515 return -EINVAL; 5516 } 5517 orig_val = insn->imm; 5518 insn->imm = new_val; 5519 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n", 5520 prog->name, relo_idx, insn_idx, 5521 orig_val, new_val); 5522 break; 5523 case BPF_LDX: 5524 case BPF_ST: 5525 case BPF_STX: 5526 if (res->validate && insn->off != orig_val) { 5527 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n", 5528 prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val); 5529 return -EINVAL; 5530 } 5531 if (new_val > SHRT_MAX) { 5532 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n", 5533 prog->name, relo_idx, insn_idx, new_val); 5534 return -ERANGE; 5535 } 5536 if (res->fail_memsz_adjust) { 5537 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. " 5538 "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n", 5539 prog->name, relo_idx, insn_idx); 5540 goto poison; 5541 } 5542 5543 orig_val = insn->off; 5544 insn->off = new_val; 5545 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n", 5546 prog->name, relo_idx, insn_idx, orig_val, new_val); 5547 5548 if (res->new_sz != res->orig_sz) { 5549 int insn_bytes_sz, insn_bpf_sz; 5550 5551 insn_bytes_sz = insn_bpf_size_to_bytes(insn); 5552 if (insn_bytes_sz != res->orig_sz) { 5553 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n", 5554 prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz); 5555 return -EINVAL; 5556 } 5557 5558 insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz); 5559 if (insn_bpf_sz < 0) { 5560 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n", 5561 prog->name, relo_idx, insn_idx, res->new_sz); 5562 return -EINVAL; 5563 } 5564 5565 insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code); 5566 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n", 5567 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz); 5568 } 5569 break; 5570 case BPF_LD: { 5571 __u64 imm; 5572 5573 if (!is_ldimm64(insn) || 5574 insn[0].src_reg != 0 || insn[0].off != 0 || 5575 insn_idx + 1 >= prog->insns_cnt || 5576 insn[1].code != 0 || insn[1].dst_reg != 0 || 5577 insn[1].src_reg != 0 || insn[1].off != 0) { 5578 pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n", 5579 prog->name, relo_idx, insn_idx); 5580 return -EINVAL; 5581 } 5582 5583 imm = insn[0].imm + ((__u64)insn[1].imm << 32); 5584 if (res->validate && imm != orig_val) { 5585 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n", 5586 prog->name, relo_idx, 5587 insn_idx, (unsigned long long)imm, 5588 orig_val, new_val); 5589 return -EINVAL; 5590 } 5591 5592 insn[0].imm = new_val; 5593 insn[1].imm = 0; /* currently only 32-bit values are supported */ 5594 pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n", 5595 prog->name, relo_idx, insn_idx, 5596 (unsigned long long)imm, new_val); 5597 break; 5598 } 5599 default: 5600 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n", 5601 prog->name, relo_idx, insn_idx, insn->code, 5602 insn->src_reg, insn->dst_reg, insn->off, insn->imm); 5603 return -EINVAL; 5604 } 5605 5606 return 0; 5607} 5608 5609/* Output spec definition in the format: 5610 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 5611 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 5612 */ 5613static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) 5614{ 5615 const struct btf_type *t; 5616 const struct btf_enum *e; 5617 const char *s; 5618 __u32 type_id; 5619 int i; 5620 5621 type_id = spec->root_type_id; 5622 t = btf__type_by_id(spec->btf, type_id); 5623 s = btf__name_by_offset(spec->btf, t->name_off); 5624 5625 libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s); 5626 5627 if (core_relo_is_type_based(spec->relo_kind)) 5628 return; 5629 5630 if (core_relo_is_enumval_based(spec->relo_kind)) { 5631 t = skip_mods_and_typedefs(spec->btf, type_id, NULL); 5632 e = btf_enum(t) + spec->raw_spec[0]; 5633 s = btf__name_by_offset(spec->btf, e->name_off); 5634 5635 libbpf_print(level, "::%s = %u", s, e->val); 5636 return; 5637 } 5638 5639 if (core_relo_is_field_based(spec->relo_kind)) { 5640 for (i = 0; i < spec->len; i++) { 5641 if (spec->spec[i].name) 5642 libbpf_print(level, ".%s", spec->spec[i].name); 5643 else if (i > 0 || spec->spec[i].idx > 0) 5644 libbpf_print(level, "[%u]", spec->spec[i].idx); 5645 } 5646 5647 libbpf_print(level, " ("); 5648 for (i = 0; i < spec->raw_len; i++) 5649 libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]); 5650 5651 if (spec->bit_offset % 8) 5652 libbpf_print(level, " @ offset %u.%u)", 5653 spec->bit_offset / 8, spec->bit_offset % 8); 5654 else 5655 libbpf_print(level, " @ offset %u)", spec->bit_offset / 8); 5656 return; 5657 } 5658} 5659 5660static size_t bpf_core_hash_fn(const void *key, void *ctx) 5661{ 5662 return (size_t)key; 5663} 5664 5665static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5666{ 5667 return k1 == k2; 5668} 5669 5670static void *u32_as_hash_key(__u32 x) 5671{ 5672 return (void *)(uintptr_t)x; 5673} 5674 5675/* 5676 * CO-RE relocate single instruction. 5677 * 5678 * The outline and important points of the algorithm: 5679 * 1. For given local type, find corresponding candidate target types. 5680 * Candidate type is a type with the same "essential" name, ignoring 5681 * everything after last triple underscore (___). E.g., `sample`, 5682 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 5683 * for each other. Names with triple underscore are referred to as 5684 * "flavors" and are useful, among other things, to allow to 5685 * specify/support incompatible variations of the same kernel struct, which 5686 * might differ between different kernel versions and/or build 5687 * configurations. 5688 * 5689 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 5690 * converter, when deduplicated BTF of a kernel still contains more than 5691 * one different types with the same name. In that case, ___2, ___3, etc 5692 * are appended starting from second name conflict. But start flavors are 5693 * also useful to be defined "locally", in BPF program, to extract same 5694 * data from incompatible changes between different kernel 5695 * versions/configurations. For instance, to handle field renames between 5696 * kernel versions, one can use two flavors of the struct name with the 5697 * same common name and use conditional relocations to extract that field, 5698 * depending on target kernel version. 5699 * 2. For each candidate type, try to match local specification to this 5700 * candidate target type. Matching involves finding corresponding 5701 * high-level spec accessors, meaning that all named fields should match, 5702 * as well as all array accesses should be within the actual bounds. Also, 5703 * types should be compatible (see bpf_core_fields_are_compat for details). 5704 * 3. It is supported and expected that there might be multiple flavors 5705 * matching the spec. As long as all the specs resolve to the same set of 5706 * offsets across all candidates, there is no error. If there is any 5707 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate 5708 * imprefection of BTF deduplication, which can cause slight duplication of 5709 * the same BTF type, if some directly or indirectly referenced (by 5710 * pointer) type gets resolved to different actual types in different 5711 * object files. If such situation occurs, deduplicated BTF will end up 5712 * with two (or more) structurally identical types, which differ only in 5713 * types they refer to through pointer. This should be OK in most cases and 5714 * is not an error. 5715 * 4. Candidate types search is performed by linearly scanning through all 5716 * types in target BTF. It is anticipated that this is overall more 5717 * efficient memory-wise and not significantly worse (if not better) 5718 * CPU-wise compared to prebuilding a map from all local type names to 5719 * a list of candidate type names. It's also sped up by caching resolved 5720 * list of matching candidates per each local "root" type ID, that has at 5721 * least one bpf_core_relo associated with it. This list is shared 5722 * between multiple relocations for the same type ID and is updated as some 5723 * of the candidates are pruned due to structural incompatibility. 5724 */ 5725static int bpf_core_apply_relo(struct bpf_program *prog, 5726 const struct bpf_core_relo *relo, 5727 int relo_idx, 5728 const struct btf *local_btf, 5729 const struct btf *targ_btf, 5730 struct hashmap *cand_cache) 5731{ 5732 struct bpf_core_spec local_spec, cand_spec, targ_spec = {}; 5733 const void *type_key = u32_as_hash_key(relo->type_id); 5734 struct bpf_core_relo_res cand_res, targ_res; 5735 const struct btf_type *local_type; 5736 const char *local_name; 5737 struct ids_vec *cand_ids; 5738 __u32 local_id, cand_id; 5739 const char *spec_str; 5740 int i, j, err; 5741 5742 local_id = relo->type_id; 5743 local_type = btf__type_by_id(local_btf, local_id); 5744 if (!local_type) 5745 return -EINVAL; 5746 5747 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5748 if (!local_name) 5749 return -EINVAL; 5750 5751 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 5752 if (str_is_empty(spec_str)) 5753 return -EINVAL; 5754 5755 err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec); 5756 if (err) { 5757 pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n", 5758 prog->name, relo_idx, local_id, btf_kind_str(local_type), 5759 str_is_empty(local_name) ? "<anon>" : local_name, 5760 spec_str, err); 5761 return -EINVAL; 5762 } 5763 5764 pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name, 5765 relo_idx, core_relo_kind_str(relo->kind), relo->kind); 5766 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); 5767 libbpf_print(LIBBPF_DEBUG, "\n"); 5768 5769 /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */ 5770 if (relo->kind == BPF_TYPE_ID_LOCAL) { 5771 targ_res.validate = true; 5772 targ_res.poison = false; 5773 targ_res.orig_val = local_spec.root_type_id; 5774 targ_res.new_val = local_spec.root_type_id; 5775 goto patch_insn; 5776 } 5777 5778 /* libbpf doesn't support candidate search for anonymous types */ 5779 if (str_is_empty(spec_str)) { 5780 pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n", 5781 prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind); 5782 return -EOPNOTSUPP; 5783 } 5784 5785 if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) { 5786 cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf); 5787 if (IS_ERR(cand_ids)) { 5788 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld", 5789 prog->name, relo_idx, local_id, btf_kind_str(local_type), 5790 local_name, PTR_ERR(cand_ids)); 5791 return PTR_ERR(cand_ids); 5792 } 5793 err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL); 5794 if (err) { 5795 bpf_core_free_cands(cand_ids); 5796 return err; 5797 } 5798 } 5799 5800 for (i = 0, j = 0; i < cand_ids->len; i++) { 5801 cand_id = cand_ids->data[i]; 5802 err = bpf_core_spec_match(&local_spec, targ_btf, cand_id, &cand_spec); 5803 if (err < 0) { 5804 pr_warn("prog '%s': relo #%d: error matching candidate #%d ", 5805 prog->name, relo_idx, i); 5806 bpf_core_dump_spec(LIBBPF_WARN, &cand_spec); 5807 libbpf_print(LIBBPF_WARN, ": %d\n", err); 5808 return err; 5809 } 5810 5811 pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name, 5812 relo_idx, err == 0 ? "non-matching" : "matching", i); 5813 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); 5814 libbpf_print(LIBBPF_DEBUG, "\n"); 5815 5816 if (err == 0) 5817 continue; 5818 5819 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res); 5820 if (err) 5821 return err; 5822 5823 if (j == 0) { 5824 targ_res = cand_res; 5825 targ_spec = cand_spec; 5826 } else if (cand_spec.bit_offset != targ_spec.bit_offset) { 5827 /* if there are many field relo candidates, they 5828 * should all resolve to the same bit offset 5829 */ 5830 pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n", 5831 prog->name, relo_idx, cand_spec.bit_offset, 5832 targ_spec.bit_offset); 5833 return -EINVAL; 5834 } else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) { 5835 /* all candidates should result in the same relocation 5836 * decision and value, otherwise it's dangerous to 5837 * proceed due to ambiguity 5838 */ 5839 pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n", 5840 prog->name, relo_idx, 5841 cand_res.poison ? "failure" : "success", cand_res.new_val, 5842 targ_res.poison ? "failure" : "success", targ_res.new_val); 5843 return -EINVAL; 5844 } 5845 5846 cand_ids->data[j++] = cand_spec.root_type_id; 5847 } 5848 5849 /* 5850 * For BPF_FIELD_EXISTS relo or when used BPF program has field 5851 * existence checks or kernel version/config checks, it's expected 5852 * that we might not find any candidates. In this case, if field 5853 * wasn't found in any candidate, the list of candidates shouldn't 5854 * change at all, we'll just handle relocating appropriately, 5855 * depending on relo's kind. 5856 */ 5857 if (j > 0) 5858 cand_ids->len = j; 5859 5860 /* 5861 * If no candidates were found, it might be both a programmer error, 5862 * as well as expected case, depending whether instruction w/ 5863 * relocation is guarded in some way that makes it unreachable (dead 5864 * code) if relocation can't be resolved. This is handled in 5865 * bpf_core_patch_insn() uniformly by replacing that instruction with 5866 * BPF helper call insn (using invalid helper ID). If that instruction 5867 * is indeed unreachable, then it will be ignored and eliminated by 5868 * verifier. If it was an error, then verifier will complain and point 5869 * to a specific instruction number in its log. 5870 */ 5871 if (j == 0) { 5872 pr_debug("prog '%s': relo #%d: no matching targets found\n", 5873 prog->name, relo_idx); 5874 5875 /* calculate single target relo result explicitly */ 5876 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res); 5877 if (err) 5878 return err; 5879 } 5880 5881patch_insn: 5882 /* bpf_core_patch_insn() should know how to handle missing targ_spec */ 5883 err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res); 5884 if (err) { 5885 pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n", 5886 prog->name, relo_idx, relo->insn_off, err); 5887 return -EINVAL; 5888 } 5889 5890 return 0; 5891} 5892 5893static int 5894bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5895{ 5896 const struct btf_ext_info_sec *sec; 5897 const struct bpf_core_relo *rec; 5898 const struct btf_ext_info *seg; 5899 struct hashmap_entry *entry; 5900 struct hashmap *cand_cache = NULL; 5901 struct bpf_program *prog; 5902 struct btf *targ_btf; 5903 const char *sec_name; 5904 int i, err = 0, insn_idx, sec_idx; 5905 5906 if (obj->btf_ext->core_relo_info.len == 0) 5907 return 0; 5908 5909 if (targ_btf_path) 5910 targ_btf = btf__parse(targ_btf_path, NULL); 5911 else 5912 targ_btf = obj->btf_vmlinux; 5913 if (IS_ERR_OR_NULL(targ_btf)) { 5914 pr_warn("failed to get target BTF: %ld\n", PTR_ERR(targ_btf)); 5915 return PTR_ERR(targ_btf); 5916 } 5917 5918 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5919 if (IS_ERR(cand_cache)) { 5920 err = PTR_ERR(cand_cache); 5921 goto out; 5922 } 5923 5924 seg = &obj->btf_ext->core_relo_info; 5925 for_each_btf_ext_sec(seg, sec) { 5926 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5927 if (str_is_empty(sec_name)) { 5928 err = -EINVAL; 5929 goto out; 5930 } 5931 /* bpf_object's ELF is gone by now so it's not easy to find 5932 * section index by section name, but we can find *any* 5933 * bpf_program within desired section name and use it's 5934 * prog->sec_idx to do a proper search by section index and 5935 * instruction offset 5936 */ 5937 prog = NULL; 5938 for (i = 0; i < obj->nr_programs; i++) { 5939 if (strcmp(obj->programs[i].sec_name, sec_name) == 0) { 5940 prog = &obj->programs[i]; 5941 break; 5942 } 5943 } 5944 if (!prog) { 5945 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 5946 return -ENOENT; 5947 } 5948 sec_idx = prog->sec_idx; 5949 5950 pr_debug("sec '%s': found %d CO-RE relocations\n", 5951 sec_name, sec->num_info); 5952 5953 for_each_btf_ext_rec(seg, sec, i, rec) { 5954 insn_idx = rec->insn_off / BPF_INSN_SZ; 5955 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5956 if (!prog) { 5957 /* When __weak subprog is "overridden" by another instance 5958 * of the subprog from a different object file, linker still 5959 * appends all the .BTF.ext info that used to belong to that 5960 * eliminated subprogram. 5961 * This is similar to what x86-64 linker does for relocations. 5962 * So just ignore such relocations just like we ignore 5963 * subprog instructions when discovering subprograms. 5964 */ 5965 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5966 sec_name, i, insn_idx); 5967 continue; 5968 } 5969 /* no need to apply CO-RE relocation if the program is 5970 * not going to be loaded 5971 */ 5972 if (!prog->load) 5973 continue; 5974 5975 err = bpf_core_apply_relo(prog, rec, i, obj->btf, 5976 targ_btf, cand_cache); 5977 if (err) { 5978 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5979 prog->name, i, err); 5980 goto out; 5981 } 5982 } 5983 } 5984 5985out: 5986 /* obj->btf_vmlinux is freed at the end of object load phase */ 5987 if (targ_btf != obj->btf_vmlinux) 5988 btf__free(targ_btf); 5989 if (!IS_ERR_OR_NULL(cand_cache)) { 5990 hashmap__for_each_entry(cand_cache, entry, i) { 5991 bpf_core_free_cands(entry->value); 5992 } 5993 hashmap__free(cand_cache); 5994 } 5995 return err; 5996} 5997 5998/* Relocate data references within program code: 5999 * - map references; 6000 * - global variable references; 6001 * - extern references. 6002 */ 6003static int 6004bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6005{ 6006 int i; 6007 6008 for (i = 0; i < prog->nr_reloc; i++) { 6009 struct reloc_desc *relo = &prog->reloc_desc[i]; 6010 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6011 struct extern_desc *ext; 6012 6013 switch (relo->type) { 6014 case RELO_LD64: 6015 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6016 insn[0].imm = obj->maps[relo->map_idx].fd; 6017 relo->processed = true; 6018 break; 6019 case RELO_DATA: 6020 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6021 insn[1].imm = insn[0].imm + relo->sym_off; 6022 insn[0].imm = obj->maps[relo->map_idx].fd; 6023 relo->processed = true; 6024 break; 6025 case RELO_EXTERN: 6026 ext = &obj->externs[relo->sym_off]; 6027 if (ext->type == EXT_KCFG) { 6028 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6029 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6030 insn[1].imm = ext->kcfg.data_off; 6031 } else /* EXT_KSYM */ { 6032 if (ext->ksym.type_id) { /* typed ksyms */ 6033 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6034 insn[0].imm = ext->ksym.vmlinux_btf_id; 6035 } else { /* typeless ksyms */ 6036 insn[0].imm = (__u32)ext->ksym.addr; 6037 insn[1].imm = ext->ksym.addr >> 32; 6038 } 6039 } 6040 relo->processed = true; 6041 break; 6042 case RELO_CALL: 6043 /* will be handled as a follow up pass */ 6044 break; 6045 default: 6046 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6047 prog->name, i, relo->type); 6048 return -EINVAL; 6049 } 6050 } 6051 6052 return 0; 6053} 6054 6055static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6056 const struct bpf_program *prog, 6057 const struct btf_ext_info *ext_info, 6058 void **prog_info, __u32 *prog_rec_cnt, 6059 __u32 *prog_rec_sz) 6060{ 6061 void *copy_start = NULL, *copy_end = NULL; 6062 void *rec, *rec_end, *new_prog_info; 6063 const struct btf_ext_info_sec *sec; 6064 size_t old_sz, new_sz; 6065 const char *sec_name; 6066 int i, off_adj; 6067 6068 for_each_btf_ext_sec(ext_info, sec) { 6069 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6070 if (!sec_name) 6071 return -EINVAL; 6072 if (strcmp(sec_name, prog->sec_name) != 0) 6073 continue; 6074 6075 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6076 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6077 6078 if (insn_off < prog->sec_insn_off) 6079 continue; 6080 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6081 break; 6082 6083 if (!copy_start) 6084 copy_start = rec; 6085 copy_end = rec + ext_info->rec_size; 6086 } 6087 6088 if (!copy_start) 6089 return -ENOENT; 6090 6091 /* append func/line info of a given (sub-)program to the main 6092 * program func/line info 6093 */ 6094 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6095 new_sz = old_sz + (copy_end - copy_start); 6096 new_prog_info = realloc(*prog_info, new_sz); 6097 if (!new_prog_info) 6098 return -ENOMEM; 6099 *prog_info = new_prog_info; 6100 *prog_rec_cnt = new_sz / ext_info->rec_size; 6101 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6102 6103 /* Kernel instruction offsets are in units of 8-byte 6104 * instructions, while .BTF.ext instruction offsets generated 6105 * by Clang are in units of bytes. So convert Clang offsets 6106 * into kernel offsets and adjust offset according to program 6107 * relocated position. 6108 */ 6109 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6110 rec = new_prog_info + old_sz; 6111 rec_end = new_prog_info + new_sz; 6112 for (; rec < rec_end; rec += ext_info->rec_size) { 6113 __u32 *insn_off = rec; 6114 6115 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6116 } 6117 *prog_rec_sz = ext_info->rec_size; 6118 return 0; 6119 } 6120 6121 return -ENOENT; 6122} 6123 6124static int 6125reloc_prog_func_and_line_info(const struct bpf_object *obj, 6126 struct bpf_program *main_prog, 6127 const struct bpf_program *prog) 6128{ 6129 int err; 6130 6131 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6132 * supprot func/line info 6133 */ 6134 if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC)) 6135 return 0; 6136 6137 /* only attempt func info relocation if main program's func_info 6138 * relocation was successful 6139 */ 6140 if (main_prog != prog && !main_prog->func_info) 6141 goto line_info; 6142 6143 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6144 &main_prog->func_info, 6145 &main_prog->func_info_cnt, 6146 &main_prog->func_info_rec_size); 6147 if (err) { 6148 if (err != -ENOENT) { 6149 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6150 prog->name, err); 6151 return err; 6152 } 6153 if (main_prog->func_info) { 6154 /* 6155 * Some info has already been found but has problem 6156 * in the last btf_ext reloc. Must have to error out. 6157 */ 6158 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6159 return err; 6160 } 6161 /* Have problem loading the very first info. Ignore the rest. */ 6162 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6163 prog->name); 6164 } 6165 6166line_info: 6167 /* don't relocate line info if main program's relocation failed */ 6168 if (main_prog != prog && !main_prog->line_info) 6169 return 0; 6170 6171 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6172 &main_prog->line_info, 6173 &main_prog->line_info_cnt, 6174 &main_prog->line_info_rec_size); 6175 if (err) { 6176 if (err != -ENOENT) { 6177 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6178 prog->name, err); 6179 return err; 6180 } 6181 if (main_prog->line_info) { 6182 /* 6183 * Some info has already been found but has problem 6184 * in the last btf_ext reloc. Must have to error out. 6185 */ 6186 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6187 return err; 6188 } 6189 /* Have problem loading the very first info. Ignore the rest. */ 6190 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6191 prog->name); 6192 } 6193 return 0; 6194} 6195 6196static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6197{ 6198 size_t insn_idx = *(const size_t *)key; 6199 const struct reloc_desc *relo = elem; 6200 6201 if (insn_idx == relo->insn_idx) 6202 return 0; 6203 return insn_idx < relo->insn_idx ? -1 : 1; 6204} 6205 6206static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6207{ 6208 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6209 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6210} 6211 6212static int 6213bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6214 struct bpf_program *prog) 6215{ 6216 size_t sub_insn_idx, insn_idx, new_cnt; 6217 struct bpf_program *subprog; 6218 struct bpf_insn *insns, *insn; 6219 struct reloc_desc *relo; 6220 int err; 6221 6222 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6223 if (err) 6224 return err; 6225 6226 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6227 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6228 if (!insn_is_subprog_call(insn)) 6229 continue; 6230 6231 relo = find_prog_insn_relo(prog, insn_idx); 6232 if (relo && relo->type != RELO_CALL) { 6233 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6234 prog->name, insn_idx, relo->type); 6235 return -LIBBPF_ERRNO__RELOC; 6236 } 6237 if (relo) { 6238 /* sub-program instruction index is a combination of 6239 * an offset of a symbol pointed to by relocation and 6240 * call instruction's imm field; for global functions, 6241 * call always has imm = -1, but for static functions 6242 * relocation is against STT_SECTION and insn->imm 6243 * points to a start of a static function 6244 */ 6245 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6246 } else { 6247 /* if subprogram call is to a static function within 6248 * the same ELF section, there won't be any relocation 6249 * emitted, but it also means there is no additional 6250 * offset necessary, insns->imm is relative to 6251 * instruction's original position within the section 6252 */ 6253 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6254 } 6255 6256 /* we enforce that sub-programs should be in .text section */ 6257 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6258 if (!subprog) { 6259 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6260 prog->name); 6261 return -LIBBPF_ERRNO__RELOC; 6262 } 6263 6264 /* if it's the first call instruction calling into this 6265 * subprogram (meaning this subprog hasn't been processed 6266 * yet) within the context of current main program: 6267 * - append it at the end of main program's instructions blog; 6268 * - process is recursively, while current program is put on hold; 6269 * - if that subprogram calls some other not yet processes 6270 * subprogram, same thing will happen recursively until 6271 * there are no more unprocesses subprograms left to append 6272 * and relocate. 6273 */ 6274 if (subprog->sub_insn_off == 0) { 6275 subprog->sub_insn_off = main_prog->insns_cnt; 6276 6277 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6278 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6279 if (!insns) { 6280 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6281 return -ENOMEM; 6282 } 6283 main_prog->insns = insns; 6284 main_prog->insns_cnt = new_cnt; 6285 6286 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6287 subprog->insns_cnt * sizeof(*insns)); 6288 6289 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6290 main_prog->name, subprog->insns_cnt, subprog->name); 6291 6292 err = bpf_object__reloc_code(obj, main_prog, subprog); 6293 if (err) 6294 return err; 6295 } 6296 6297 /* main_prog->insns memory could have been re-allocated, so 6298 * calculate pointer again 6299 */ 6300 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6301 /* calculate correct instruction position within current main 6302 * prog; each main prog can have a different set of 6303 * subprograms appended (potentially in different order as 6304 * well), so position of any subprog can be different for 6305 * different main programs */ 6306 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6307 6308 if (relo) 6309 relo->processed = true; 6310 6311 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6312 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6313 } 6314 6315 return 0; 6316} 6317 6318/* 6319 * Relocate sub-program calls. 6320 * 6321 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6322 * main prog) is processed separately. For each subprog (non-entry functions, 6323 * that can be called from either entry progs or other subprogs) gets their 6324 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6325 * hasn't been yet appended and relocated within current main prog. Once its 6326 * relocated, sub_insn_off will point at the position within current main prog 6327 * where given subprog was appended. This will further be used to relocate all 6328 * the call instructions jumping into this subprog. 6329 * 6330 * We start with main program and process all call instructions. If the call 6331 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6332 * is zero), subprog instructions are appended at the end of main program's 6333 * instruction array. Then main program is "put on hold" while we recursively 6334 * process newly appended subprogram. If that subprogram calls into another 6335 * subprogram that hasn't been appended, new subprogram is appended again to 6336 * the *main* prog's instructions (subprog's instructions are always left 6337 * untouched, as they need to be in unmodified state for subsequent main progs 6338 * and subprog instructions are always sent only as part of a main prog) and 6339 * the process continues recursively. Once all the subprogs called from a main 6340 * prog or any of its subprogs are appended (and relocated), all their 6341 * positions within finalized instructions array are known, so it's easy to 6342 * rewrite call instructions with correct relative offsets, corresponding to 6343 * desired target subprog. 6344 * 6345 * Its important to realize that some subprogs might not be called from some 6346 * main prog and any of its called/used subprogs. Those will keep their 6347 * subprog->sub_insn_off as zero at all times and won't be appended to current 6348 * main prog and won't be relocated within the context of current main prog. 6349 * They might still be used from other main progs later. 6350 * 6351 * Visually this process can be shown as below. Suppose we have two main 6352 * programs mainA and mainB and BPF object contains three subprogs: subA, 6353 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6354 * subC both call subB: 6355 * 6356 * +--------+ +-------+ 6357 * | v v | 6358 * +--+---+ +--+-+-+ +---+--+ 6359 * | subA | | subB | | subC | 6360 * +--+---+ +------+ +---+--+ 6361 * ^ ^ 6362 * | | 6363 * +---+-------+ +------+----+ 6364 * | mainA | | mainB | 6365 * +-----------+ +-----------+ 6366 * 6367 * We'll start relocating mainA, will find subA, append it and start 6368 * processing sub A recursively: 6369 * 6370 * +-----------+------+ 6371 * | mainA | subA | 6372 * +-----------+------+ 6373 * 6374 * At this point we notice that subB is used from subA, so we append it and 6375 * relocate (there are no further subcalls from subB): 6376 * 6377 * +-----------+------+------+ 6378 * | mainA | subA | subB | 6379 * +-----------+------+------+ 6380 * 6381 * At this point, we relocate subA calls, then go one level up and finish with 6382 * relocatin mainA calls. mainA is done. 6383 * 6384 * For mainB process is similar but results in different order. We start with 6385 * mainB and skip subA and subB, as mainB never calls them (at least 6386 * directly), but we see subC is needed, so we append and start processing it: 6387 * 6388 * +-----------+------+ 6389 * | mainB | subC | 6390 * +-----------+------+ 6391 * Now we see subC needs subB, so we go back to it, append and relocate it: 6392 * 6393 * +-----------+------+------+ 6394 * | mainB | subC | subB | 6395 * +-----------+------+------+ 6396 * 6397 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6398 */ 6399static int 6400bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6401{ 6402 struct bpf_program *subprog; 6403 int i, j, err; 6404 6405 /* mark all subprogs as not relocated (yet) within the context of 6406 * current main program 6407 */ 6408 for (i = 0; i < obj->nr_programs; i++) { 6409 subprog = &obj->programs[i]; 6410 if (!prog_is_subprog(obj, subprog)) 6411 continue; 6412 6413 subprog->sub_insn_off = 0; 6414 for (j = 0; j < subprog->nr_reloc; j++) 6415 if (subprog->reloc_desc[j].type == RELO_CALL) 6416 subprog->reloc_desc[j].processed = false; 6417 } 6418 6419 err = bpf_object__reloc_code(obj, prog, prog); 6420 if (err) 6421 return err; 6422 6423 6424 return 0; 6425} 6426 6427static int 6428bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6429{ 6430 struct bpf_program *prog; 6431 size_t i; 6432 int err; 6433 6434 if (obj->btf_ext) { 6435 err = bpf_object__relocate_core(obj, targ_btf_path); 6436 if (err) { 6437 pr_warn("failed to perform CO-RE relocations: %d\n", 6438 err); 6439 return err; 6440 } 6441 } 6442 /* relocate data references first for all programs and sub-programs, 6443 * as they don't change relative to code locations, so subsequent 6444 * subprogram processing won't need to re-calculate any of them 6445 */ 6446 for (i = 0; i < obj->nr_programs; i++) { 6447 prog = &obj->programs[i]; 6448 err = bpf_object__relocate_data(obj, prog); 6449 if (err) { 6450 pr_warn("prog '%s': failed to relocate data references: %d\n", 6451 prog->name, err); 6452 return err; 6453 } 6454 } 6455 /* now relocate subprogram calls and append used subprograms to main 6456 * programs; each copy of subprogram code needs to be relocated 6457 * differently for each main program, because its code location might 6458 * have changed 6459 */ 6460 for (i = 0; i < obj->nr_programs; i++) { 6461 prog = &obj->programs[i]; 6462 /* sub-program's sub-calls are relocated within the context of 6463 * its main program only 6464 */ 6465 if (prog_is_subprog(obj, prog)) 6466 continue; 6467 6468 err = bpf_object__relocate_calls(obj, prog); 6469 if (err) { 6470 pr_warn("prog '%s': failed to relocate calls: %d\n", 6471 prog->name, err); 6472 return err; 6473 } 6474 } 6475 /* free up relocation descriptors */ 6476 for (i = 0; i < obj->nr_programs; i++) { 6477 prog = &obj->programs[i]; 6478 zfree(&prog->reloc_desc); 6479 prog->nr_reloc = 0; 6480 } 6481 return 0; 6482} 6483 6484static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6485 GElf_Shdr *shdr, Elf_Data *data); 6486 6487static int bpf_object__collect_map_relos(struct bpf_object *obj, 6488 GElf_Shdr *shdr, Elf_Data *data) 6489{ 6490 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6491 int i, j, nrels, new_sz; 6492 const struct btf_var_secinfo *vi = NULL; 6493 const struct btf_type *sec, *var, *def; 6494 struct bpf_map *map = NULL, *targ_map; 6495 const struct btf_member *member; 6496 const char *name, *mname; 6497 Elf_Data *symbols; 6498 unsigned int moff; 6499 GElf_Sym sym; 6500 GElf_Rel rel; 6501 void *tmp; 6502 6503 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6504 return -EINVAL; 6505 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6506 if (!sec) 6507 return -EINVAL; 6508 6509 symbols = obj->efile.symbols; 6510 nrels = shdr->sh_size / shdr->sh_entsize; 6511 for (i = 0; i < nrels; i++) { 6512 if (!gelf_getrel(data, i, &rel)) { 6513 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6514 return -LIBBPF_ERRNO__FORMAT; 6515 } 6516 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 6517 pr_warn(".maps relo #%d: symbol %zx not found\n", 6518 i, (size_t)GELF_R_SYM(rel.r_info)); 6519 return -LIBBPF_ERRNO__FORMAT; 6520 } 6521 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 6522 if (sym.st_shndx != obj->efile.btf_maps_shndx) { 6523 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6524 i, name); 6525 return -LIBBPF_ERRNO__RELOC; 6526 } 6527 6528 pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n", 6529 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value, 6530 (size_t)rel.r_offset, sym.st_name, name); 6531 6532 for (j = 0; j < obj->nr_maps; j++) { 6533 map = &obj->maps[j]; 6534 if (map->sec_idx != obj->efile.btf_maps_shndx) 6535 continue; 6536 6537 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6538 if (vi->offset <= rel.r_offset && 6539 rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6540 break; 6541 } 6542 if (j == obj->nr_maps) { 6543 pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n", 6544 i, name, (size_t)rel.r_offset); 6545 return -EINVAL; 6546 } 6547 6548 if (!bpf_map_type__is_map_in_map(map->def.type)) 6549 return -EINVAL; 6550 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6551 map->def.key_size != sizeof(int)) { 6552 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6553 i, map->name, sizeof(int)); 6554 return -EINVAL; 6555 } 6556 6557 targ_map = bpf_object__find_map_by_name(obj, name); 6558 if (!targ_map) 6559 return -ESRCH; 6560 6561 var = btf__type_by_id(obj->btf, vi->type); 6562 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6563 if (btf_vlen(def) == 0) 6564 return -EINVAL; 6565 member = btf_members(def) + btf_vlen(def) - 1; 6566 mname = btf__name_by_offset(obj->btf, member->name_off); 6567 if (strcmp(mname, "values")) 6568 return -EINVAL; 6569 6570 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6571 if (rel.r_offset - vi->offset < moff) 6572 return -EINVAL; 6573 6574 moff = rel.r_offset - vi->offset - moff; 6575 /* here we use BPF pointer size, which is always 64 bit, as we 6576 * are parsing ELF that was built for BPF target 6577 */ 6578 if (moff % bpf_ptr_sz) 6579 return -EINVAL; 6580 moff /= bpf_ptr_sz; 6581 if (moff >= map->init_slots_sz) { 6582 new_sz = moff + 1; 6583 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6584 if (!tmp) 6585 return -ENOMEM; 6586 map->init_slots = tmp; 6587 memset(map->init_slots + map->init_slots_sz, 0, 6588 (new_sz - map->init_slots_sz) * host_ptr_sz); 6589 map->init_slots_sz = new_sz; 6590 } 6591 map->init_slots[moff] = targ_map; 6592 6593 pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n", 6594 i, map->name, moff, name); 6595 } 6596 6597 return 0; 6598} 6599 6600static int cmp_relocs(const void *_a, const void *_b) 6601{ 6602 const struct reloc_desc *a = _a; 6603 const struct reloc_desc *b = _b; 6604 6605 if (a->insn_idx != b->insn_idx) 6606 return a->insn_idx < b->insn_idx ? -1 : 1; 6607 6608 /* no two relocations should have the same insn_idx, but ... */ 6609 if (a->type != b->type) 6610 return a->type < b->type ? -1 : 1; 6611 6612 return 0; 6613} 6614 6615static int bpf_object__collect_relos(struct bpf_object *obj) 6616{ 6617 int i, err; 6618 6619 for (i = 0; i < obj->efile.nr_reloc_sects; i++) { 6620 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr; 6621 Elf_Data *data = obj->efile.reloc_sects[i].data; 6622 int idx = shdr->sh_info; 6623 6624 if (shdr->sh_type != SHT_REL) { 6625 pr_warn("internal error at %d\n", __LINE__); 6626 return -LIBBPF_ERRNO__INTERNAL; 6627 } 6628 6629 if (idx == obj->efile.st_ops_shndx) 6630 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6631 else if (idx == obj->efile.btf_maps_shndx) 6632 err = bpf_object__collect_map_relos(obj, shdr, data); 6633 else 6634 err = bpf_object__collect_prog_relos(obj, shdr, data); 6635 if (err) 6636 return err; 6637 } 6638 6639 for (i = 0; i < obj->nr_programs; i++) { 6640 struct bpf_program *p = &obj->programs[i]; 6641 6642 if (!p->nr_reloc) 6643 continue; 6644 6645 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6646 } 6647 return 0; 6648} 6649 6650static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6651{ 6652 if (BPF_CLASS(insn->code) == BPF_JMP && 6653 BPF_OP(insn->code) == BPF_CALL && 6654 BPF_SRC(insn->code) == BPF_K && 6655 insn->src_reg == 0 && 6656 insn->dst_reg == 0) { 6657 *func_id = insn->imm; 6658 return true; 6659 } 6660 return false; 6661} 6662 6663static int bpf_object__sanitize_prog(struct bpf_object* obj, struct bpf_program *prog) 6664{ 6665 struct bpf_insn *insn = prog->insns; 6666 enum bpf_func_id func_id; 6667 int i; 6668 6669 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6670 if (!insn_is_helper_call(insn, &func_id)) 6671 continue; 6672 6673 /* on kernels that don't yet support 6674 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6675 * to bpf_probe_read() which works well for old kernels 6676 */ 6677 switch (func_id) { 6678 case BPF_FUNC_probe_read_kernel: 6679 case BPF_FUNC_probe_read_user: 6680 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 6681 insn->imm = BPF_FUNC_probe_read; 6682 break; 6683 case BPF_FUNC_probe_read_kernel_str: 6684 case BPF_FUNC_probe_read_user_str: 6685 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 6686 insn->imm = BPF_FUNC_probe_read_str; 6687 break; 6688 default: 6689 break; 6690 } 6691 } 6692 return 0; 6693} 6694 6695static int 6696load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, 6697 char *license, __u32 kern_version, int *pfd) 6698{ 6699 struct bpf_load_program_attr load_attr; 6700 char *cp, errmsg[STRERR_BUFSIZE]; 6701 size_t log_buf_size = 0; 6702 char *log_buf = NULL; 6703 int btf_fd, ret; 6704 6705 if (!insns || !insns_cnt) 6706 return -EINVAL; 6707 6708 memset(&load_attr, 0, sizeof(struct bpf_load_program_attr)); 6709 load_attr.prog_type = prog->type; 6710 /* old kernels might not support specifying expected_attach_type */ 6711 if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def && 6712 prog->sec_def->is_exp_attach_type_optional) 6713 load_attr.expected_attach_type = 0; 6714 else 6715 load_attr.expected_attach_type = prog->expected_attach_type; 6716 if (kernel_supports(FEAT_PROG_NAME)) 6717 load_attr.name = prog->name; 6718 load_attr.insns = insns; 6719 load_attr.insns_cnt = insns_cnt; 6720 load_attr.license = license; 6721 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 6722 prog->type == BPF_PROG_TYPE_LSM) { 6723 load_attr.attach_btf_id = prog->attach_btf_id; 6724 } else if (prog->type == BPF_PROG_TYPE_TRACING || 6725 prog->type == BPF_PROG_TYPE_EXT) { 6726 load_attr.attach_prog_fd = prog->attach_prog_fd; 6727 load_attr.attach_btf_id = prog->attach_btf_id; 6728 } else { 6729 load_attr.kern_version = kern_version; 6730 load_attr.prog_ifindex = prog->prog_ifindex; 6731 } 6732 /* specify func_info/line_info only if kernel supports them */ 6733 btf_fd = bpf_object__btf_fd(prog->obj); 6734 if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) { 6735 load_attr.prog_btf_fd = btf_fd; 6736 load_attr.func_info = prog->func_info; 6737 load_attr.func_info_rec_size = prog->func_info_rec_size; 6738 load_attr.func_info_cnt = prog->func_info_cnt; 6739 load_attr.line_info = prog->line_info; 6740 load_attr.line_info_rec_size = prog->line_info_rec_size; 6741 load_attr.line_info_cnt = prog->line_info_cnt; 6742 } 6743 load_attr.log_level = prog->log_level; 6744 load_attr.prog_flags = prog->prog_flags; 6745 6746retry_load: 6747 if (log_buf_size) { 6748 log_buf = malloc(log_buf_size); 6749 if (!log_buf) 6750 return -ENOMEM; 6751 6752 *log_buf = 0; 6753 } 6754 6755 ret = bpf_load_program_xattr(&load_attr, log_buf, log_buf_size); 6756 6757 if (ret >= 0) { 6758 if (log_buf && load_attr.log_level) 6759 pr_debug("verifier log:\n%s", log_buf); 6760 6761 if (prog->obj->rodata_map_idx >= 0 && 6762 kernel_supports(FEAT_PROG_BIND_MAP)) { 6763 struct bpf_map *rodata_map = 6764 &prog->obj->maps[prog->obj->rodata_map_idx]; 6765 6766 if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) { 6767 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6768 pr_warn("prog '%s': failed to bind .rodata map: %s\n", 6769 prog->name, cp); 6770 /* Don't fail hard if can't bind rodata. */ 6771 } 6772 } 6773 6774 *pfd = ret; 6775 ret = 0; 6776 goto out; 6777 } 6778 6779 if (!log_buf || errno == ENOSPC) { 6780 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, 6781 log_buf_size << 1); 6782 6783 free(log_buf); 6784 goto retry_load; 6785 } 6786 ret = errno ? -errno : -LIBBPF_ERRNO__LOAD; 6787 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6788 pr_warn("load bpf program failed: %s\n", cp); 6789 pr_perm_msg(ret); 6790 6791 if (log_buf && log_buf[0] != '\0') { 6792 ret = -LIBBPF_ERRNO__VERIFY; 6793 pr_warn("-- BEGIN DUMP LOG ---\n"); 6794 pr_warn("\n%s\n", log_buf); 6795 pr_warn("-- END LOG --\n"); 6796 } else if (load_attr.insns_cnt >= BPF_MAXINSNS) { 6797 pr_warn("Program too large (%zu insns), at most %d insns\n", 6798 load_attr.insns_cnt, BPF_MAXINSNS); 6799 ret = -LIBBPF_ERRNO__PROG2BIG; 6800 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { 6801 /* Wrong program type? */ 6802 int fd; 6803 6804 load_attr.prog_type = BPF_PROG_TYPE_KPROBE; 6805 load_attr.expected_attach_type = 0; 6806 fd = bpf_load_program_xattr(&load_attr, NULL, 0); 6807 if (fd >= 0) { 6808 close(fd); 6809 ret = -LIBBPF_ERRNO__PROGTYPE; 6810 goto out; 6811 } 6812 } 6813 6814out: 6815 free(log_buf); 6816 return ret; 6817} 6818 6819static int libbpf_find_attach_btf_id(struct bpf_program *prog); 6820 6821int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver) 6822{ 6823 int err = 0, fd, i, btf_id; 6824 6825 if (prog->obj->loaded) { 6826 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 6827 return -EINVAL; 6828 } 6829 6830 if ((prog->type == BPF_PROG_TYPE_TRACING || 6831 prog->type == BPF_PROG_TYPE_LSM || 6832 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 6833 btf_id = libbpf_find_attach_btf_id(prog); 6834 if (btf_id <= 0) 6835 return btf_id; 6836 prog->attach_btf_id = btf_id; 6837 } 6838 6839 if (prog->instances.nr < 0 || !prog->instances.fds) { 6840 if (prog->preprocessor) { 6841 pr_warn("Internal error: can't load program '%s'\n", 6842 prog->name); 6843 return -LIBBPF_ERRNO__INTERNAL; 6844 } 6845 6846 prog->instances.fds = malloc(sizeof(int)); 6847 if (!prog->instances.fds) { 6848 pr_warn("Not enough memory for BPF fds\n"); 6849 return -ENOMEM; 6850 } 6851 prog->instances.nr = 1; 6852 prog->instances.fds[0] = -1; 6853 } 6854 6855 if (!prog->preprocessor) { 6856 if (prog->instances.nr != 1) { 6857 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 6858 prog->name, prog->instances.nr); 6859 } 6860 err = load_program(prog, prog->insns, prog->insns_cnt, 6861 license, kern_ver, &fd); 6862 if (!err) 6863 prog->instances.fds[0] = fd; 6864 goto out; 6865 } 6866 6867 for (i = 0; i < prog->instances.nr; i++) { 6868 struct bpf_prog_prep_result result; 6869 bpf_program_prep_t preprocessor = prog->preprocessor; 6870 6871 memset(&result, 0, sizeof(result)); 6872 err = preprocessor(prog, i, prog->insns, 6873 prog->insns_cnt, &result); 6874 if (err) { 6875 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 6876 i, prog->name); 6877 goto out; 6878 } 6879 6880 if (!result.new_insn_ptr || !result.new_insn_cnt) { 6881 pr_debug("Skip loading the %dth instance of program '%s'\n", 6882 i, prog->name); 6883 prog->instances.fds[i] = -1; 6884 if (result.pfd) 6885 *result.pfd = -1; 6886 continue; 6887 } 6888 6889 err = load_program(prog, result.new_insn_ptr, 6890 result.new_insn_cnt, license, kern_ver, &fd); 6891 if (err) { 6892 pr_warn("Loading the %dth instance of program '%s' failed\n", 6893 i, prog->name); 6894 goto out; 6895 } 6896 6897 if (result.pfd) 6898 *result.pfd = fd; 6899 prog->instances.fds[i] = fd; 6900 } 6901out: 6902 if (err) 6903 pr_warn("failed to load program '%s'\n", prog->name); 6904 zfree(&prog->insns); 6905 prog->insns_cnt = 0; 6906 return err; 6907} 6908 6909static int 6910bpf_object__load_progs(struct bpf_object *obj, int log_level) 6911{ 6912 struct bpf_program *prog; 6913 size_t i; 6914 int err; 6915 6916 for (i = 0; i < obj->nr_programs; i++) { 6917 prog = &obj->programs[i]; 6918 err = bpf_object__sanitize_prog(obj, prog); 6919 if (err) 6920 return err; 6921 } 6922 6923 for (i = 0; i < obj->nr_programs; i++) { 6924 prog = &obj->programs[i]; 6925 if (prog_is_subprog(obj, prog)) 6926 continue; 6927 if (!prog->load) { 6928 pr_debug("prog '%s': skipped loading\n", prog->name); 6929 continue; 6930 } 6931 prog->log_level |= log_level; 6932 err = bpf_program__load(prog, obj->license, obj->kern_version); 6933 if (err) 6934 return err; 6935 } 6936 return 0; 6937} 6938 6939static const struct bpf_sec_def *find_sec_def(const char *sec_name); 6940 6941static struct bpf_object * 6942__bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 6943 const struct bpf_object_open_opts *opts) 6944{ 6945 const char *obj_name, *kconfig; 6946 struct bpf_program *prog; 6947 struct bpf_object *obj; 6948 char tmp_name[64]; 6949 int err; 6950 6951 if (elf_version(EV_CURRENT) == EV_NONE) { 6952 pr_warn("failed to init libelf for %s\n", 6953 path ? : "(mem buf)"); 6954 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 6955 } 6956 6957 if (!OPTS_VALID(opts, bpf_object_open_opts)) 6958 return ERR_PTR(-EINVAL); 6959 6960 obj_name = OPTS_GET(opts, object_name, NULL); 6961 if (obj_buf) { 6962 if (!obj_name) { 6963 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 6964 (unsigned long)obj_buf, 6965 (unsigned long)obj_buf_sz); 6966 obj_name = tmp_name; 6967 } 6968 path = obj_name; 6969 pr_debug("loading object '%s' from buffer\n", obj_name); 6970 } 6971 6972 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 6973 if (IS_ERR(obj)) 6974 return obj; 6975 6976 kconfig = OPTS_GET(opts, kconfig, NULL); 6977 if (kconfig) { 6978 obj->kconfig = strdup(kconfig); 6979 if (!obj->kconfig) { 6980 err = -ENOMEM; 6981 goto out; 6982 } 6983 } 6984 6985 err = bpf_object__elf_init(obj); 6986 err = err ? : bpf_object__check_endianness(obj); 6987 err = err ? : bpf_object__elf_collect(obj); 6988 err = err ? : bpf_object__collect_externs(obj); 6989 err = err ? : bpf_object__finalize_btf(obj); 6990 err = err ? : bpf_object__init_maps(obj, opts); 6991 err = err ? : bpf_object__collect_relos(obj); 6992 if (err) 6993 goto out; 6994 bpf_object__elf_finish(obj); 6995 6996 bpf_object__for_each_program(prog, obj) { 6997 prog->sec_def = find_sec_def(prog->sec_name); 6998 if (!prog->sec_def) 6999 /* couldn't guess, but user might manually specify */ 7000 continue; 7001 7002 if (prog->sec_def->is_sleepable) 7003 prog->prog_flags |= BPF_F_SLEEPABLE; 7004 bpf_program__set_type(prog, prog->sec_def->prog_type); 7005 bpf_program__set_expected_attach_type(prog, 7006 prog->sec_def->expected_attach_type); 7007 7008 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 7009 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 7010 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 7011 } 7012 7013 return obj; 7014out: 7015 bpf_object__close(obj); 7016 return ERR_PTR(err); 7017} 7018 7019static struct bpf_object * 7020__bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7021{ 7022 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7023 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7024 ); 7025 7026 /* param validation */ 7027 if (!attr->file) 7028 return NULL; 7029 7030 pr_debug("loading %s\n", attr->file); 7031 return __bpf_object__open(attr->file, NULL, 0, &opts); 7032} 7033 7034struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7035{ 7036 return __bpf_object__open_xattr(attr, 0); 7037} 7038 7039struct bpf_object *bpf_object__open(const char *path) 7040{ 7041 struct bpf_object_open_attr attr = { 7042 .file = path, 7043 .prog_type = BPF_PROG_TYPE_UNSPEC, 7044 }; 7045 7046 return bpf_object__open_xattr(&attr); 7047} 7048 7049struct bpf_object * 7050bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7051{ 7052 if (!path) 7053 return ERR_PTR(-EINVAL); 7054 7055 pr_debug("loading %s\n", path); 7056 7057 return __bpf_object__open(path, NULL, 0, opts); 7058} 7059 7060struct bpf_object * 7061bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7062 const struct bpf_object_open_opts *opts) 7063{ 7064 if (!obj_buf || obj_buf_sz == 0) 7065 return ERR_PTR(-EINVAL); 7066 7067 return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts); 7068} 7069 7070struct bpf_object * 7071bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7072 const char *name) 7073{ 7074 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7075 .object_name = name, 7076 /* wrong default, but backwards-compatible */ 7077 .relaxed_maps = true, 7078 ); 7079 7080 /* returning NULL is wrong, but backwards-compatible */ 7081 if (!obj_buf || obj_buf_sz == 0) 7082 return NULL; 7083 7084 return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts); 7085} 7086 7087int bpf_object__unload(struct bpf_object *obj) 7088{ 7089 size_t i; 7090 7091 if (!obj) 7092 return -EINVAL; 7093 7094 for (i = 0; i < obj->nr_maps; i++) { 7095 zclose(obj->maps[i].fd); 7096 if (obj->maps[i].st_ops) 7097 zfree(&obj->maps[i].st_ops->kern_vdata); 7098 } 7099 7100 for (i = 0; i < obj->nr_programs; i++) 7101 bpf_program__unload(&obj->programs[i]); 7102 7103 return 0; 7104} 7105 7106static int bpf_object__sanitize_maps(struct bpf_object *obj) 7107{ 7108 struct bpf_map *m; 7109 7110 bpf_object__for_each_map(m, obj) { 7111 if (!bpf_map__is_internal(m)) 7112 continue; 7113 if (!kernel_supports(FEAT_GLOBAL_DATA)) { 7114 pr_warn("kernel doesn't support global data\n"); 7115 return -ENOTSUP; 7116 } 7117 if (!kernel_supports(FEAT_ARRAY_MMAP)) 7118 m->def.map_flags ^= BPF_F_MMAPABLE; 7119 } 7120 7121 return 0; 7122} 7123 7124static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7125{ 7126 char sym_type, sym_name[500]; 7127 unsigned long long sym_addr; 7128 struct extern_desc *ext; 7129 int ret, err = 0; 7130 FILE *f; 7131 7132 f = fopen("/proc/kallsyms", "r"); 7133 if (!f) { 7134 err = -errno; 7135 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7136 return err; 7137 } 7138 7139 while (true) { 7140 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7141 &sym_addr, &sym_type, sym_name); 7142 if (ret == EOF && feof(f)) 7143 break; 7144 if (ret != 3) { 7145 pr_warn("failed to read kallsyms entry: %d\n", ret); 7146 err = -EINVAL; 7147 goto out; 7148 } 7149 7150 ext = find_extern_by_name(obj, sym_name); 7151 if (!ext || ext->type != EXT_KSYM) 7152 continue; 7153 7154 if (ext->is_set && ext->ksym.addr != sym_addr) { 7155 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7156 sym_name, ext->ksym.addr, sym_addr); 7157 err = -EINVAL; 7158 goto out; 7159 } 7160 if (!ext->is_set) { 7161 ext->is_set = true; 7162 ext->ksym.addr = sym_addr; 7163 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7164 } 7165 } 7166 7167out: 7168 fclose(f); 7169 return err; 7170} 7171 7172static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7173{ 7174 struct extern_desc *ext; 7175 int i, id; 7176 7177 for (i = 0; i < obj->nr_extern; i++) { 7178 const struct btf_type *targ_var, *targ_type; 7179 __u32 targ_type_id, local_type_id; 7180 const char *targ_var_name; 7181 int ret; 7182 7183 ext = &obj->externs[i]; 7184 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7185 continue; 7186 7187 id = btf__find_by_name_kind(obj->btf_vmlinux, ext->name, 7188 BTF_KIND_VAR); 7189 if (id <= 0) { 7190 pr_warn("extern (ksym) '%s': failed to find BTF ID in vmlinux BTF.\n", 7191 ext->name); 7192 return -ESRCH; 7193 } 7194 7195 /* find local type_id */ 7196 local_type_id = ext->ksym.type_id; 7197 7198 /* find target type_id */ 7199 targ_var = btf__type_by_id(obj->btf_vmlinux, id); 7200 targ_var_name = btf__name_by_offset(obj->btf_vmlinux, 7201 targ_var->name_off); 7202 targ_type = skip_mods_and_typedefs(obj->btf_vmlinux, 7203 targ_var->type, 7204 &targ_type_id); 7205 7206 ret = bpf_core_types_are_compat(obj->btf, local_type_id, 7207 obj->btf_vmlinux, targ_type_id); 7208 if (ret <= 0) { 7209 const struct btf_type *local_type; 7210 const char *targ_name, *local_name; 7211 7212 local_type = btf__type_by_id(obj->btf, local_type_id); 7213 local_name = btf__name_by_offset(obj->btf, 7214 local_type->name_off); 7215 targ_name = btf__name_by_offset(obj->btf_vmlinux, 7216 targ_type->name_off); 7217 7218 pr_warn("extern (ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7219 ext->name, local_type_id, 7220 btf_kind_str(local_type), local_name, targ_type_id, 7221 btf_kind_str(targ_type), targ_name); 7222 return -EINVAL; 7223 } 7224 7225 ext->is_set = true; 7226 ext->ksym.vmlinux_btf_id = id; 7227 pr_debug("extern (ksym) '%s': resolved to [%d] %s %s\n", 7228 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7229 } 7230 return 0; 7231} 7232 7233static int bpf_object__resolve_externs(struct bpf_object *obj, 7234 const char *extra_kconfig) 7235{ 7236 bool need_config = false, need_kallsyms = false; 7237 bool need_vmlinux_btf = false; 7238 struct extern_desc *ext; 7239 void *kcfg_data = NULL; 7240 int err, i; 7241 7242 if (obj->nr_extern == 0) 7243 return 0; 7244 7245 if (obj->kconfig_map_idx >= 0) 7246 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7247 7248 for (i = 0; i < obj->nr_extern; i++) { 7249 ext = &obj->externs[i]; 7250 7251 if (ext->type == EXT_KCFG && 7252 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7253 void *ext_val = kcfg_data + ext->kcfg.data_off; 7254 __u32 kver = get_kernel_version(); 7255 7256 if (!kver) { 7257 pr_warn("failed to get kernel version\n"); 7258 return -EINVAL; 7259 } 7260 err = set_kcfg_value_num(ext, ext_val, kver); 7261 if (err) 7262 return err; 7263 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7264 } else if (ext->type == EXT_KCFG && 7265 strncmp(ext->name, "CONFIG_", 7) == 0) { 7266 need_config = true; 7267 } else if (ext->type == EXT_KSYM) { 7268 if (ext->ksym.type_id) 7269 need_vmlinux_btf = true; 7270 else 7271 need_kallsyms = true; 7272 } else { 7273 pr_warn("unrecognized extern '%s'\n", ext->name); 7274 return -EINVAL; 7275 } 7276 } 7277 if (need_config && extra_kconfig) { 7278 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7279 if (err) 7280 return -EINVAL; 7281 need_config = false; 7282 for (i = 0; i < obj->nr_extern; i++) { 7283 ext = &obj->externs[i]; 7284 if (ext->type == EXT_KCFG && !ext->is_set) { 7285 need_config = true; 7286 break; 7287 } 7288 } 7289 } 7290 if (need_config) { 7291 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7292 if (err) 7293 return -EINVAL; 7294 } 7295 if (need_kallsyms) { 7296 err = bpf_object__read_kallsyms_file(obj); 7297 if (err) 7298 return -EINVAL; 7299 } 7300 if (need_vmlinux_btf) { 7301 err = bpf_object__resolve_ksyms_btf_id(obj); 7302 if (err) 7303 return -EINVAL; 7304 } 7305 for (i = 0; i < obj->nr_extern; i++) { 7306 ext = &obj->externs[i]; 7307 7308 if (!ext->is_set && !ext->is_weak) { 7309 pr_warn("extern %s (strong) not resolved\n", ext->name); 7310 return -ESRCH; 7311 } else if (!ext->is_set) { 7312 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7313 ext->name); 7314 } 7315 } 7316 7317 return 0; 7318} 7319 7320int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7321{ 7322 struct bpf_object *obj; 7323 int err, i; 7324 7325 if (!attr) 7326 return -EINVAL; 7327 obj = attr->obj; 7328 if (!obj) 7329 return -EINVAL; 7330 7331 if (obj->loaded) { 7332 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7333 return -EINVAL; 7334 } 7335 7336 err = bpf_object__probe_loading(obj); 7337 err = err ? : bpf_object__load_vmlinux_btf(obj); 7338 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7339 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7340 err = err ? : bpf_object__sanitize_maps(obj); 7341 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7342 err = err ? : bpf_object__create_maps(obj); 7343 err = err ? : bpf_object__relocate(obj, attr->target_btf_path); 7344 err = err ? : bpf_object__load_progs(obj, attr->log_level); 7345 7346 btf__free(obj->btf_vmlinux); 7347 obj->btf_vmlinux = NULL; 7348 7349 obj->loaded = true; /* doesn't matter if successfully or not */ 7350 7351 if (err) 7352 goto out; 7353 7354 return 0; 7355out: 7356 /* unpin any maps that were auto-pinned during load */ 7357 for (i = 0; i < obj->nr_maps; i++) 7358 if (obj->maps[i].pinned && !obj->maps[i].reused) 7359 bpf_map__unpin(&obj->maps[i], NULL); 7360 7361 bpf_object__unload(obj); 7362 pr_warn("failed to load object '%s'\n", obj->path); 7363 return err; 7364} 7365 7366int bpf_object__load(struct bpf_object *obj) 7367{ 7368 struct bpf_object_load_attr attr = { 7369 .obj = obj, 7370 }; 7371 7372 return bpf_object__load_xattr(&attr); 7373} 7374 7375static int make_parent_dir(const char *path) 7376{ 7377 char *cp, errmsg[STRERR_BUFSIZE]; 7378 char *dname, *dir; 7379 int err = 0; 7380 7381 dname = strdup(path); 7382 if (dname == NULL) 7383 return -ENOMEM; 7384 7385 dir = dirname(dname); 7386 if (mkdir(dir, 0700) && errno != EEXIST) 7387 err = -errno; 7388 7389 free(dname); 7390 if (err) { 7391 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7392 pr_warn("failed to mkdir %s: %s\n", path, cp); 7393 } 7394 return err; 7395} 7396 7397static int check_path(const char *path) 7398{ 7399 char *cp, errmsg[STRERR_BUFSIZE]; 7400 struct statfs st_fs; 7401 char *dname, *dir; 7402 int err = 0; 7403 7404 if (path == NULL) 7405 return -EINVAL; 7406 7407 dname = strdup(path); 7408 if (dname == NULL) 7409 return -ENOMEM; 7410 7411 dir = dirname(dname); 7412 if (statfs(dir, &st_fs)) { 7413 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7414 pr_warn("failed to statfs %s: %s\n", dir, cp); 7415 err = -errno; 7416 } 7417 free(dname); 7418 7419 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7420 pr_warn("specified path %s is not on BPF FS\n", path); 7421 err = -EINVAL; 7422 } 7423 7424 return err; 7425} 7426 7427int bpf_program__pin_instance(struct bpf_program *prog, const char *path, 7428 int instance) 7429{ 7430 char *cp, errmsg[STRERR_BUFSIZE]; 7431 int err; 7432 7433 err = make_parent_dir(path); 7434 if (err) 7435 return err; 7436 7437 err = check_path(path); 7438 if (err) 7439 return err; 7440 7441 if (prog == NULL) { 7442 pr_warn("invalid program pointer\n"); 7443 return -EINVAL; 7444 } 7445 7446 if (instance < 0 || instance >= prog->instances.nr) { 7447 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7448 instance, prog->name, prog->instances.nr); 7449 return -EINVAL; 7450 } 7451 7452 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7453 err = -errno; 7454 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7455 pr_warn("failed to pin program: %s\n", cp); 7456 return err; 7457 } 7458 pr_debug("pinned program '%s'\n", path); 7459 7460 return 0; 7461} 7462 7463int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, 7464 int instance) 7465{ 7466 int err; 7467 7468 err = check_path(path); 7469 if (err) 7470 return err; 7471 7472 if (prog == NULL) { 7473 pr_warn("invalid program pointer\n"); 7474 return -EINVAL; 7475 } 7476 7477 if (instance < 0 || instance >= prog->instances.nr) { 7478 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7479 instance, prog->name, prog->instances.nr); 7480 return -EINVAL; 7481 } 7482 7483 err = unlink(path); 7484 if (err != 0) 7485 return -errno; 7486 pr_debug("unpinned program '%s'\n", path); 7487 7488 return 0; 7489} 7490 7491int bpf_program__pin(struct bpf_program *prog, const char *path) 7492{ 7493 int i, err; 7494 7495 err = make_parent_dir(path); 7496 if (err) 7497 return err; 7498 7499 err = check_path(path); 7500 if (err) 7501 return err; 7502 7503 if (prog == NULL) { 7504 pr_warn("invalid program pointer\n"); 7505 return -EINVAL; 7506 } 7507 7508 if (prog->instances.nr <= 0) { 7509 pr_warn("no instances of prog %s to pin\n", prog->name); 7510 return -EINVAL; 7511 } 7512 7513 if (prog->instances.nr == 1) { 7514 /* don't create subdirs when pinning single instance */ 7515 return bpf_program__pin_instance(prog, path, 0); 7516 } 7517 7518 for (i = 0; i < prog->instances.nr; i++) { 7519 char buf[PATH_MAX]; 7520 int len; 7521 7522 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7523 if (len < 0) { 7524 err = -EINVAL; 7525 goto err_unpin; 7526 } else if (len >= PATH_MAX) { 7527 err = -ENAMETOOLONG; 7528 goto err_unpin; 7529 } 7530 7531 err = bpf_program__pin_instance(prog, buf, i); 7532 if (err) 7533 goto err_unpin; 7534 } 7535 7536 return 0; 7537 7538err_unpin: 7539 for (i = i - 1; i >= 0; i--) { 7540 char buf[PATH_MAX]; 7541 int len; 7542 7543 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7544 if (len < 0) 7545 continue; 7546 else if (len >= PATH_MAX) 7547 continue; 7548 7549 bpf_program__unpin_instance(prog, buf, i); 7550 } 7551 7552 rmdir(path); 7553 7554 return err; 7555} 7556 7557int bpf_program__unpin(struct bpf_program *prog, const char *path) 7558{ 7559 int i, err; 7560 7561 err = check_path(path); 7562 if (err) 7563 return err; 7564 7565 if (prog == NULL) { 7566 pr_warn("invalid program pointer\n"); 7567 return -EINVAL; 7568 } 7569 7570 if (prog->instances.nr <= 0) { 7571 pr_warn("no instances of prog %s to pin\n", prog->name); 7572 return -EINVAL; 7573 } 7574 7575 if (prog->instances.nr == 1) { 7576 /* don't create subdirs when pinning single instance */ 7577 return bpf_program__unpin_instance(prog, path, 0); 7578 } 7579 7580 for (i = 0; i < prog->instances.nr; i++) { 7581 char buf[PATH_MAX]; 7582 int len; 7583 7584 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7585 if (len < 0) 7586 return -EINVAL; 7587 else if (len >= PATH_MAX) 7588 return -ENAMETOOLONG; 7589 7590 err = bpf_program__unpin_instance(prog, buf, i); 7591 if (err) 7592 return err; 7593 } 7594 7595 err = rmdir(path); 7596 if (err) 7597 return -errno; 7598 7599 return 0; 7600} 7601 7602int bpf_map__pin(struct bpf_map *map, const char *path) 7603{ 7604 char *cp, errmsg[STRERR_BUFSIZE]; 7605 int err; 7606 7607 if (map == NULL) { 7608 pr_warn("invalid map pointer\n"); 7609 return -EINVAL; 7610 } 7611 7612 if (map->pin_path) { 7613 if (path && strcmp(path, map->pin_path)) { 7614 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7615 bpf_map__name(map), map->pin_path, path); 7616 return -EINVAL; 7617 } else if (map->pinned) { 7618 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7619 bpf_map__name(map), map->pin_path); 7620 return 0; 7621 } 7622 } else { 7623 if (!path) { 7624 pr_warn("missing a path to pin map '%s' at\n", 7625 bpf_map__name(map)); 7626 return -EINVAL; 7627 } else if (map->pinned) { 7628 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7629 return -EEXIST; 7630 } 7631 7632 map->pin_path = strdup(path); 7633 if (!map->pin_path) { 7634 err = -errno; 7635 goto out_err; 7636 } 7637 } 7638 7639 err = make_parent_dir(map->pin_path); 7640 if (err) 7641 return err; 7642 7643 err = check_path(map->pin_path); 7644 if (err) 7645 return err; 7646 7647 if (bpf_obj_pin(map->fd, map->pin_path)) { 7648 err = -errno; 7649 goto out_err; 7650 } 7651 7652 map->pinned = true; 7653 pr_debug("pinned map '%s'\n", map->pin_path); 7654 7655 return 0; 7656 7657out_err: 7658 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7659 pr_warn("failed to pin map: %s\n", cp); 7660 return err; 7661} 7662 7663int bpf_map__unpin(struct bpf_map *map, const char *path) 7664{ 7665 int err; 7666 7667 if (map == NULL) { 7668 pr_warn("invalid map pointer\n"); 7669 return -EINVAL; 7670 } 7671 7672 if (map->pin_path) { 7673 if (path && strcmp(path, map->pin_path)) { 7674 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7675 bpf_map__name(map), map->pin_path, path); 7676 return -EINVAL; 7677 } 7678 path = map->pin_path; 7679 } else if (!path) { 7680 pr_warn("no path to unpin map '%s' from\n", 7681 bpf_map__name(map)); 7682 return -EINVAL; 7683 } 7684 7685 err = check_path(path); 7686 if (err) 7687 return err; 7688 7689 err = unlink(path); 7690 if (err != 0) 7691 return -errno; 7692 7693 map->pinned = false; 7694 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7695 7696 return 0; 7697} 7698 7699int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7700{ 7701 char *new = NULL; 7702 7703 if (path) { 7704 new = strdup(path); 7705 if (!new) 7706 return -errno; 7707 } 7708 7709 free(map->pin_path); 7710 map->pin_path = new; 7711 return 0; 7712} 7713 7714const char *bpf_map__get_pin_path(const struct bpf_map *map) 7715{ 7716 return map->pin_path; 7717} 7718 7719bool bpf_map__is_pinned(const struct bpf_map *map) 7720{ 7721 return map->pinned; 7722} 7723 7724static void sanitize_pin_path(char *s) 7725{ 7726 /* bpffs disallows periods in path names */ 7727 while (*s) { 7728 if (*s == '.') 7729 *s = '_'; 7730 s++; 7731 } 7732} 7733 7734int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7735{ 7736 struct bpf_map *map; 7737 int err; 7738 7739 if (!obj) 7740 return -ENOENT; 7741 7742 if (!obj->loaded) { 7743 pr_warn("object not yet loaded; load it first\n"); 7744 return -ENOENT; 7745 } 7746 7747 bpf_object__for_each_map(map, obj) { 7748 char *pin_path = NULL; 7749 char buf[PATH_MAX]; 7750 7751 if (path) { 7752 int len; 7753 7754 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7755 bpf_map__name(map)); 7756 if (len < 0) { 7757 err = -EINVAL; 7758 goto err_unpin_maps; 7759 } else if (len >= PATH_MAX) { 7760 err = -ENAMETOOLONG; 7761 goto err_unpin_maps; 7762 } 7763 sanitize_pin_path(buf); 7764 pin_path = buf; 7765 } else if (!map->pin_path) { 7766 continue; 7767 } 7768 7769 err = bpf_map__pin(map, pin_path); 7770 if (err) 7771 goto err_unpin_maps; 7772 } 7773 7774 return 0; 7775 7776err_unpin_maps: 7777 while ((map = bpf_map__prev(map, obj))) { 7778 if (!map->pin_path) 7779 continue; 7780 7781 bpf_map__unpin(map, NULL); 7782 } 7783 7784 return err; 7785} 7786 7787int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 7788{ 7789 struct bpf_map *map; 7790 int err; 7791 7792 if (!obj) 7793 return -ENOENT; 7794 7795 bpf_object__for_each_map(map, obj) { 7796 char *pin_path = NULL; 7797 char buf[PATH_MAX]; 7798 7799 if (path) { 7800 int len; 7801 7802 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7803 bpf_map__name(map)); 7804 if (len < 0) 7805 return -EINVAL; 7806 else if (len >= PATH_MAX) 7807 return -ENAMETOOLONG; 7808 sanitize_pin_path(buf); 7809 pin_path = buf; 7810 } else if (!map->pin_path) { 7811 continue; 7812 } 7813 7814 err = bpf_map__unpin(map, pin_path); 7815 if (err) 7816 return err; 7817 } 7818 7819 return 0; 7820} 7821 7822int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 7823{ 7824 struct bpf_program *prog; 7825 int err; 7826 7827 if (!obj) 7828 return -ENOENT; 7829 7830 if (!obj->loaded) { 7831 pr_warn("object not yet loaded; load it first\n"); 7832 return -ENOENT; 7833 } 7834 7835 bpf_object__for_each_program(prog, obj) { 7836 char buf[PATH_MAX]; 7837 int len; 7838 7839 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7840 prog->pin_name); 7841 if (len < 0) { 7842 err = -EINVAL; 7843 goto err_unpin_programs; 7844 } else if (len >= PATH_MAX) { 7845 err = -ENAMETOOLONG; 7846 goto err_unpin_programs; 7847 } 7848 7849 err = bpf_program__pin(prog, buf); 7850 if (err) 7851 goto err_unpin_programs; 7852 } 7853 7854 return 0; 7855 7856err_unpin_programs: 7857 while ((prog = bpf_program__prev(prog, obj))) { 7858 char buf[PATH_MAX]; 7859 int len; 7860 7861 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7862 prog->pin_name); 7863 if (len < 0) 7864 continue; 7865 else if (len >= PATH_MAX) 7866 continue; 7867 7868 bpf_program__unpin(prog, buf); 7869 } 7870 7871 return err; 7872} 7873 7874int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 7875{ 7876 struct bpf_program *prog; 7877 int err; 7878 7879 if (!obj) 7880 return -ENOENT; 7881 7882 bpf_object__for_each_program(prog, obj) { 7883 char buf[PATH_MAX]; 7884 int len; 7885 7886 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7887 prog->pin_name); 7888 if (len < 0) 7889 return -EINVAL; 7890 else if (len >= PATH_MAX) 7891 return -ENAMETOOLONG; 7892 7893 err = bpf_program__unpin(prog, buf); 7894 if (err) 7895 return err; 7896 } 7897 7898 return 0; 7899} 7900 7901int bpf_object__pin(struct bpf_object *obj, const char *path) 7902{ 7903 int err; 7904 7905 err = bpf_object__pin_maps(obj, path); 7906 if (err) 7907 return err; 7908 7909 err = bpf_object__pin_programs(obj, path); 7910 if (err) { 7911 bpf_object__unpin_maps(obj, path); 7912 return err; 7913 } 7914 7915 return 0; 7916} 7917 7918static void bpf_map__destroy(struct bpf_map *map) 7919{ 7920 if (map->clear_priv) 7921 map->clear_priv(map, map->priv); 7922 map->priv = NULL; 7923 map->clear_priv = NULL; 7924 7925 if (map->inner_map) { 7926 bpf_map__destroy(map->inner_map); 7927 zfree(&map->inner_map); 7928 } 7929 7930 zfree(&map->init_slots); 7931 map->init_slots_sz = 0; 7932 7933 if (map->mmaped) { 7934 munmap(map->mmaped, bpf_map_mmap_sz(map)); 7935 map->mmaped = NULL; 7936 } 7937 7938 if (map->st_ops) { 7939 zfree(&map->st_ops->data); 7940 zfree(&map->st_ops->progs); 7941 zfree(&map->st_ops->kern_func_off); 7942 zfree(&map->st_ops); 7943 } 7944 7945 zfree(&map->name); 7946 zfree(&map->pin_path); 7947 7948 if (map->fd >= 0) 7949 zclose(map->fd); 7950} 7951 7952void bpf_object__close(struct bpf_object *obj) 7953{ 7954 size_t i; 7955 7956 if (IS_ERR_OR_NULL(obj)) 7957 return; 7958 7959 if (obj->clear_priv) 7960 obj->clear_priv(obj, obj->priv); 7961 7962 bpf_object__elf_finish(obj); 7963 bpf_object__unload(obj); 7964 btf__free(obj->btf); 7965 btf_ext__free(obj->btf_ext); 7966 7967 for (i = 0; i < obj->nr_maps; i++) 7968 bpf_map__destroy(&obj->maps[i]); 7969 7970 zfree(&obj->kconfig); 7971 zfree(&obj->externs); 7972 obj->nr_extern = 0; 7973 7974 zfree(&obj->maps); 7975 obj->nr_maps = 0; 7976 7977 if (obj->programs && obj->nr_programs) { 7978 for (i = 0; i < obj->nr_programs; i++) 7979 bpf_program__exit(&obj->programs[i]); 7980 } 7981 zfree(&obj->programs); 7982 7983 list_del(&obj->list); 7984 free(obj); 7985} 7986 7987struct bpf_object * 7988bpf_object__next(struct bpf_object *prev) 7989{ 7990 struct bpf_object *next; 7991 7992 if (!prev) 7993 next = list_first_entry(&bpf_objects_list, 7994 struct bpf_object, 7995 list); 7996 else 7997 next = list_next_entry(prev, list); 7998 7999 /* Empty list is noticed here so don't need checking on entry. */ 8000 if (&next->list == &bpf_objects_list) 8001 return NULL; 8002 8003 return next; 8004} 8005 8006const char *bpf_object__name(const struct bpf_object *obj) 8007{ 8008 return obj ? obj->name : ERR_PTR(-EINVAL); 8009} 8010 8011unsigned int bpf_object__kversion(const struct bpf_object *obj) 8012{ 8013 return obj ? obj->kern_version : 0; 8014} 8015 8016struct btf *bpf_object__btf(const struct bpf_object *obj) 8017{ 8018 return obj ? obj->btf : NULL; 8019} 8020 8021int bpf_object__btf_fd(const struct bpf_object *obj) 8022{ 8023 return obj->btf ? btf__fd(obj->btf) : -1; 8024} 8025 8026int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8027 bpf_object_clear_priv_t clear_priv) 8028{ 8029 if (obj->priv && obj->clear_priv) 8030 obj->clear_priv(obj, obj->priv); 8031 8032 obj->priv = priv; 8033 obj->clear_priv = clear_priv; 8034 return 0; 8035} 8036 8037void *bpf_object__priv(const struct bpf_object *obj) 8038{ 8039 return obj ? obj->priv : ERR_PTR(-EINVAL); 8040} 8041 8042static struct bpf_program * 8043__bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8044 bool forward) 8045{ 8046 size_t nr_programs = obj->nr_programs; 8047 ssize_t idx; 8048 8049 if (!nr_programs) 8050 return NULL; 8051 8052 if (!p) 8053 /* Iter from the beginning */ 8054 return forward ? &obj->programs[0] : 8055 &obj->programs[nr_programs - 1]; 8056 8057 if (p->obj != obj) { 8058 pr_warn("error: program handler doesn't match object\n"); 8059 return NULL; 8060 } 8061 8062 idx = (p - obj->programs) + (forward ? 1 : -1); 8063 if (idx >= obj->nr_programs || idx < 0) 8064 return NULL; 8065 return &obj->programs[idx]; 8066} 8067 8068struct bpf_program * 8069bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8070{ 8071 struct bpf_program *prog = prev; 8072 8073 do { 8074 prog = __bpf_program__iter(prog, obj, true); 8075 } while (prog && prog_is_subprog(obj, prog)); 8076 8077 return prog; 8078} 8079 8080struct bpf_program * 8081bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8082{ 8083 struct bpf_program *prog = next; 8084 8085 do { 8086 prog = __bpf_program__iter(prog, obj, false); 8087 } while (prog && prog_is_subprog(obj, prog)); 8088 8089 return prog; 8090} 8091 8092int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8093 bpf_program_clear_priv_t clear_priv) 8094{ 8095 if (prog->priv && prog->clear_priv) 8096 prog->clear_priv(prog, prog->priv); 8097 8098 prog->priv = priv; 8099 prog->clear_priv = clear_priv; 8100 return 0; 8101} 8102 8103void *bpf_program__priv(const struct bpf_program *prog) 8104{ 8105 return prog ? prog->priv : ERR_PTR(-EINVAL); 8106} 8107 8108void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8109{ 8110 prog->prog_ifindex = ifindex; 8111} 8112 8113const char *bpf_program__name(const struct bpf_program *prog) 8114{ 8115 return prog->name; 8116} 8117 8118const char *bpf_program__section_name(const struct bpf_program *prog) 8119{ 8120 return prog->sec_name; 8121} 8122 8123const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8124{ 8125 const char *title; 8126 8127 title = prog->sec_name; 8128 if (needs_copy) { 8129 title = strdup(title); 8130 if (!title) { 8131 pr_warn("failed to strdup program title\n"); 8132 return ERR_PTR(-ENOMEM); 8133 } 8134 } 8135 8136 return title; 8137} 8138 8139bool bpf_program__autoload(const struct bpf_program *prog) 8140{ 8141 return prog->load; 8142} 8143 8144int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8145{ 8146 if (prog->obj->loaded) 8147 return -EINVAL; 8148 8149 prog->load = autoload; 8150 return 0; 8151} 8152 8153int bpf_program__fd(const struct bpf_program *prog) 8154{ 8155 return bpf_program__nth_fd(prog, 0); 8156} 8157 8158size_t bpf_program__size(const struct bpf_program *prog) 8159{ 8160 return prog->insns_cnt * BPF_INSN_SZ; 8161} 8162 8163int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8164 bpf_program_prep_t prep) 8165{ 8166 int *instances_fds; 8167 8168 if (nr_instances <= 0 || !prep) 8169 return -EINVAL; 8170 8171 if (prog->instances.nr > 0 || prog->instances.fds) { 8172 pr_warn("Can't set pre-processor after loading\n"); 8173 return -EINVAL; 8174 } 8175 8176 instances_fds = malloc(sizeof(int) * nr_instances); 8177 if (!instances_fds) { 8178 pr_warn("alloc memory failed for fds\n"); 8179 return -ENOMEM; 8180 } 8181 8182 /* fill all fd with -1 */ 8183 memset(instances_fds, -1, sizeof(int) * nr_instances); 8184 8185 prog->instances.nr = nr_instances; 8186 prog->instances.fds = instances_fds; 8187 prog->preprocessor = prep; 8188 return 0; 8189} 8190 8191int bpf_program__nth_fd(const struct bpf_program *prog, int n) 8192{ 8193 int fd; 8194 8195 if (!prog) 8196 return -EINVAL; 8197 8198 if (n >= prog->instances.nr || n < 0) { 8199 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8200 n, prog->name, prog->instances.nr); 8201 return -EINVAL; 8202 } 8203 8204 fd = prog->instances.fds[n]; 8205 if (fd < 0) { 8206 pr_warn("%dth instance of program '%s' is invalid\n", 8207 n, prog->name); 8208 return -ENOENT; 8209 } 8210 8211 return fd; 8212} 8213 8214enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog) 8215{ 8216 return prog->type; 8217} 8218 8219void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8220{ 8221 prog->type = type; 8222} 8223 8224static bool bpf_program__is_type(const struct bpf_program *prog, 8225 enum bpf_prog_type type) 8226{ 8227 return prog ? (prog->type == type) : false; 8228} 8229 8230#define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8231int bpf_program__set_##NAME(struct bpf_program *prog) \ 8232{ \ 8233 if (!prog) \ 8234 return -EINVAL; \ 8235 bpf_program__set_type(prog, TYPE); \ 8236 return 0; \ 8237} \ 8238 \ 8239bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8240{ \ 8241 return bpf_program__is_type(prog, TYPE); \ 8242} \ 8243 8244BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8245BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8246BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8247BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8248BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8249BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8250BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8251BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8252BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8253BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8254BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8255BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8256BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8257 8258enum bpf_attach_type 8259bpf_program__get_expected_attach_type(struct bpf_program *prog) 8260{ 8261 return prog->expected_attach_type; 8262} 8263 8264void bpf_program__set_expected_attach_type(struct bpf_program *prog, 8265 enum bpf_attach_type type) 8266{ 8267 prog->expected_attach_type = type; 8268} 8269 8270#define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional, \ 8271 attachable, attach_btf) \ 8272 { \ 8273 .sec = string, \ 8274 .len = sizeof(string) - 1, \ 8275 .prog_type = ptype, \ 8276 .expected_attach_type = eatype, \ 8277 .is_exp_attach_type_optional = eatype_optional, \ 8278 .is_attachable = attachable, \ 8279 .is_attach_btf = attach_btf, \ 8280 } 8281 8282/* Programs that can NOT be attached. */ 8283#define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0) 8284 8285/* Programs that can be attached. */ 8286#define BPF_APROG_SEC(string, ptype, atype) \ 8287 BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0) 8288 8289/* Programs that must specify expected attach type at load time. */ 8290#define BPF_EAPROG_SEC(string, ptype, eatype) \ 8291 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0) 8292 8293/* Programs that use BTF to identify attach point */ 8294#define BPF_PROG_BTF(string, ptype, eatype) \ 8295 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1) 8296 8297/* Programs that can be attached but attach type can't be identified by section 8298 * name. Kept for backward compatibility. 8299 */ 8300#define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype) 8301 8302#define SEC_DEF(sec_pfx, ptype, ...) { \ 8303 .sec = sec_pfx, \ 8304 .len = sizeof(sec_pfx) - 1, \ 8305 .prog_type = BPF_PROG_TYPE_##ptype, \ 8306 __VA_ARGS__ \ 8307} 8308 8309static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 8310 struct bpf_program *prog); 8311static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 8312 struct bpf_program *prog); 8313static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 8314 struct bpf_program *prog); 8315static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 8316 struct bpf_program *prog); 8317static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 8318 struct bpf_program *prog); 8319static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 8320 struct bpf_program *prog); 8321 8322static const struct bpf_sec_def section_defs[] = { 8323 BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER), 8324 BPF_PROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT), 8325 SEC_DEF("kprobe/", KPROBE, 8326 .attach_fn = attach_kprobe), 8327 BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE), 8328 SEC_DEF("kretprobe/", KPROBE, 8329 .attach_fn = attach_kprobe), 8330 BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE), 8331 BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS), 8332 BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT), 8333 SEC_DEF("tracepoint/", TRACEPOINT, 8334 .attach_fn = attach_tp), 8335 SEC_DEF("tp/", TRACEPOINT, 8336 .attach_fn = attach_tp), 8337 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 8338 .attach_fn = attach_raw_tp), 8339 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 8340 .attach_fn = attach_raw_tp), 8341 SEC_DEF("tp_btf/", TRACING, 8342 .expected_attach_type = BPF_TRACE_RAW_TP, 8343 .is_attach_btf = true, 8344 .attach_fn = attach_trace), 8345 SEC_DEF("fentry/", TRACING, 8346 .expected_attach_type = BPF_TRACE_FENTRY, 8347 .is_attach_btf = true, 8348 .attach_fn = attach_trace), 8349 SEC_DEF("fmod_ret/", TRACING, 8350 .expected_attach_type = BPF_MODIFY_RETURN, 8351 .is_attach_btf = true, 8352 .attach_fn = attach_trace), 8353 SEC_DEF("fexit/", TRACING, 8354 .expected_attach_type = BPF_TRACE_FEXIT, 8355 .is_attach_btf = true, 8356 .attach_fn = attach_trace), 8357 SEC_DEF("fentry.s/", TRACING, 8358 .expected_attach_type = BPF_TRACE_FENTRY, 8359 .is_attach_btf = true, 8360 .is_sleepable = true, 8361 .attach_fn = attach_trace), 8362 SEC_DEF("fmod_ret.s/", TRACING, 8363 .expected_attach_type = BPF_MODIFY_RETURN, 8364 .is_attach_btf = true, 8365 .is_sleepable = true, 8366 .attach_fn = attach_trace), 8367 SEC_DEF("fexit.s/", TRACING, 8368 .expected_attach_type = BPF_TRACE_FEXIT, 8369 .is_attach_btf = true, 8370 .is_sleepable = true, 8371 .attach_fn = attach_trace), 8372 SEC_DEF("freplace/", EXT, 8373 .is_attach_btf = true, 8374 .attach_fn = attach_trace), 8375 SEC_DEF("lsm/", LSM, 8376 .is_attach_btf = true, 8377 .expected_attach_type = BPF_LSM_MAC, 8378 .attach_fn = attach_lsm), 8379 SEC_DEF("lsm.s/", LSM, 8380 .is_attach_btf = true, 8381 .is_sleepable = true, 8382 .expected_attach_type = BPF_LSM_MAC, 8383 .attach_fn = attach_lsm), 8384 SEC_DEF("iter/", TRACING, 8385 .expected_attach_type = BPF_TRACE_ITER, 8386 .is_attach_btf = true, 8387 .attach_fn = attach_iter), 8388 BPF_EAPROG_SEC("xdp_devmap/", BPF_PROG_TYPE_XDP, 8389 BPF_XDP_DEVMAP), 8390 BPF_EAPROG_SEC("xdp_cpumap/", BPF_PROG_TYPE_XDP, 8391 BPF_XDP_CPUMAP), 8392 BPF_APROG_SEC("xdp", BPF_PROG_TYPE_XDP, 8393 BPF_XDP), 8394 BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT), 8395 BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN), 8396 BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT), 8397 BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT), 8398 BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL), 8399 BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB, 8400 BPF_CGROUP_INET_INGRESS), 8401 BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB, 8402 BPF_CGROUP_INET_EGRESS), 8403 BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB), 8404 BPF_EAPROG_SEC("cgroup/sock_create", BPF_PROG_TYPE_CGROUP_SOCK, 8405 BPF_CGROUP_INET_SOCK_CREATE), 8406 BPF_EAPROG_SEC("cgroup/sock_release", BPF_PROG_TYPE_CGROUP_SOCK, 8407 BPF_CGROUP_INET_SOCK_RELEASE), 8408 BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK, 8409 BPF_CGROUP_INET_SOCK_CREATE), 8410 BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK, 8411 BPF_CGROUP_INET4_POST_BIND), 8412 BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK, 8413 BPF_CGROUP_INET6_POST_BIND), 8414 BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE, 8415 BPF_CGROUP_DEVICE), 8416 BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS, 8417 BPF_CGROUP_SOCK_OPS), 8418 BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB, 8419 BPF_SK_SKB_STREAM_PARSER), 8420 BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB, 8421 BPF_SK_SKB_STREAM_VERDICT), 8422 BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB), 8423 BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG, 8424 BPF_SK_MSG_VERDICT), 8425 BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2, 8426 BPF_LIRC_MODE2), 8427 BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR, 8428 BPF_FLOW_DISSECTOR), 8429 BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8430 BPF_CGROUP_INET4_BIND), 8431 BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8432 BPF_CGROUP_INET6_BIND), 8433 BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8434 BPF_CGROUP_INET4_CONNECT), 8435 BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8436 BPF_CGROUP_INET6_CONNECT), 8437 BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8438 BPF_CGROUP_UDP4_SENDMSG), 8439 BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8440 BPF_CGROUP_UDP6_SENDMSG), 8441 BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8442 BPF_CGROUP_UDP4_RECVMSG), 8443 BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8444 BPF_CGROUP_UDP6_RECVMSG), 8445 BPF_EAPROG_SEC("cgroup/getpeername4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8446 BPF_CGROUP_INET4_GETPEERNAME), 8447 BPF_EAPROG_SEC("cgroup/getpeername6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8448 BPF_CGROUP_INET6_GETPEERNAME), 8449 BPF_EAPROG_SEC("cgroup/getsockname4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8450 BPF_CGROUP_INET4_GETSOCKNAME), 8451 BPF_EAPROG_SEC("cgroup/getsockname6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8452 BPF_CGROUP_INET6_GETSOCKNAME), 8453 BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL, 8454 BPF_CGROUP_SYSCTL), 8455 BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8456 BPF_CGROUP_GETSOCKOPT), 8457 BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8458 BPF_CGROUP_SETSOCKOPT), 8459 BPF_PROG_SEC("struct_ops", BPF_PROG_TYPE_STRUCT_OPS), 8460 BPF_EAPROG_SEC("sk_lookup/", BPF_PROG_TYPE_SK_LOOKUP, 8461 BPF_SK_LOOKUP), 8462}; 8463 8464#undef BPF_PROG_SEC_IMPL 8465#undef BPF_PROG_SEC 8466#undef BPF_APROG_SEC 8467#undef BPF_EAPROG_SEC 8468#undef BPF_APROG_COMPAT 8469#undef SEC_DEF 8470 8471#define MAX_TYPE_NAME_SIZE 32 8472 8473static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8474{ 8475 int i, n = ARRAY_SIZE(section_defs); 8476 8477 for (i = 0; i < n; i++) { 8478 if (strncmp(sec_name, 8479 section_defs[i].sec, section_defs[i].len)) 8480 continue; 8481 return §ion_defs[i]; 8482 } 8483 return NULL; 8484} 8485 8486static char *libbpf_get_type_names(bool attach_type) 8487{ 8488 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8489 char *buf; 8490 8491 buf = malloc(len); 8492 if (!buf) 8493 return NULL; 8494 8495 buf[0] = '\0'; 8496 /* Forge string buf with all available names */ 8497 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8498 if (attach_type && !section_defs[i].is_attachable) 8499 continue; 8500 8501 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8502 free(buf); 8503 return NULL; 8504 } 8505 strcat(buf, " "); 8506 strcat(buf, section_defs[i].sec); 8507 } 8508 8509 return buf; 8510} 8511 8512int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8513 enum bpf_attach_type *expected_attach_type) 8514{ 8515 const struct bpf_sec_def *sec_def; 8516 char *type_names; 8517 8518 if (!name) 8519 return -EINVAL; 8520 8521 sec_def = find_sec_def(name); 8522 if (sec_def) { 8523 *prog_type = sec_def->prog_type; 8524 *expected_attach_type = sec_def->expected_attach_type; 8525 return 0; 8526 } 8527 8528 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8529 type_names = libbpf_get_type_names(false); 8530 if (type_names != NULL) { 8531 pr_debug("supported section(type) names are:%s\n", type_names); 8532 free(type_names); 8533 } 8534 8535 return -ESRCH; 8536} 8537 8538static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8539 size_t offset) 8540{ 8541 struct bpf_map *map; 8542 size_t i; 8543 8544 for (i = 0; i < obj->nr_maps; i++) { 8545 map = &obj->maps[i]; 8546 if (!bpf_map__is_struct_ops(map)) 8547 continue; 8548 if (map->sec_offset <= offset && 8549 offset - map->sec_offset < map->def.value_size) 8550 return map; 8551 } 8552 8553 return NULL; 8554} 8555 8556/* Collect the reloc from ELF and populate the st_ops->progs[] */ 8557static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8558 GElf_Shdr *shdr, Elf_Data *data) 8559{ 8560 const struct btf_member *member; 8561 struct bpf_struct_ops *st_ops; 8562 struct bpf_program *prog; 8563 unsigned int shdr_idx; 8564 const struct btf *btf; 8565 struct bpf_map *map; 8566 Elf_Data *symbols; 8567 unsigned int moff, insn_idx; 8568 const char *name; 8569 __u32 member_idx; 8570 GElf_Sym sym; 8571 GElf_Rel rel; 8572 int i, nrels; 8573 8574 symbols = obj->efile.symbols; 8575 btf = obj->btf; 8576 nrels = shdr->sh_size / shdr->sh_entsize; 8577 for (i = 0; i < nrels; i++) { 8578 if (!gelf_getrel(data, i, &rel)) { 8579 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8580 return -LIBBPF_ERRNO__FORMAT; 8581 } 8582 8583 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 8584 pr_warn("struct_ops reloc: symbol %zx not found\n", 8585 (size_t)GELF_R_SYM(rel.r_info)); 8586 return -LIBBPF_ERRNO__FORMAT; 8587 } 8588 8589 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 8590 map = find_struct_ops_map_by_offset(obj, rel.r_offset); 8591 if (!map) { 8592 pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n", 8593 (size_t)rel.r_offset); 8594 return -EINVAL; 8595 } 8596 8597 moff = rel.r_offset - map->sec_offset; 8598 shdr_idx = sym.st_shndx; 8599 st_ops = map->st_ops; 8600 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8601 map->name, 8602 (long long)(rel.r_info >> 32), 8603 (long long)sym.st_value, 8604 shdr_idx, (size_t)rel.r_offset, 8605 map->sec_offset, sym.st_name, name); 8606 8607 if (shdr_idx >= SHN_LORESERVE) { 8608 pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n", 8609 map->name, (size_t)rel.r_offset, shdr_idx); 8610 return -LIBBPF_ERRNO__RELOC; 8611 } 8612 if (sym.st_value % BPF_INSN_SZ) { 8613 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8614 map->name, (unsigned long long)sym.st_value); 8615 return -LIBBPF_ERRNO__FORMAT; 8616 } 8617 insn_idx = sym.st_value / BPF_INSN_SZ; 8618 8619 member = find_member_by_offset(st_ops->type, moff * 8); 8620 if (!member) { 8621 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8622 map->name, moff); 8623 return -EINVAL; 8624 } 8625 member_idx = member - btf_members(st_ops->type); 8626 name = btf__name_by_offset(btf, member->name_off); 8627 8628 if (!resolve_func_ptr(btf, member->type, NULL)) { 8629 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8630 map->name, name); 8631 return -EINVAL; 8632 } 8633 8634 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8635 if (!prog) { 8636 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8637 map->name, shdr_idx, name); 8638 return -EINVAL; 8639 } 8640 8641 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 8642 const struct bpf_sec_def *sec_def; 8643 8644 sec_def = find_sec_def(prog->sec_name); 8645 if (sec_def && 8646 sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) { 8647 /* for pr_warn */ 8648 prog->type = sec_def->prog_type; 8649 goto invalid_prog; 8650 } 8651 8652 prog->type = BPF_PROG_TYPE_STRUCT_OPS; 8653 prog->attach_btf_id = st_ops->type_id; 8654 prog->expected_attach_type = member_idx; 8655 } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS || 8656 prog->attach_btf_id != st_ops->type_id || 8657 prog->expected_attach_type != member_idx) { 8658 goto invalid_prog; 8659 } 8660 st_ops->progs[member_idx] = prog; 8661 } 8662 8663 return 0; 8664 8665invalid_prog: 8666 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8667 map->name, prog->name, prog->sec_name, prog->type, 8668 prog->attach_btf_id, prog->expected_attach_type, name); 8669 return -EINVAL; 8670} 8671 8672#define BTF_TRACE_PREFIX "btf_trace_" 8673#define BTF_LSM_PREFIX "bpf_lsm_" 8674#define BTF_ITER_PREFIX "bpf_iter_" 8675#define BTF_MAX_NAME_SIZE 128 8676 8677static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8678 const char *name, __u32 kind) 8679{ 8680 char btf_type_name[BTF_MAX_NAME_SIZE]; 8681 int ret; 8682 8683 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8684 "%s%s", prefix, name); 8685 /* snprintf returns the number of characters written excluding the 8686 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8687 * indicates truncation. 8688 */ 8689 if (ret < 0 || ret >= sizeof(btf_type_name)) 8690 return -ENAMETOOLONG; 8691 return btf__find_by_name_kind(btf, btf_type_name, kind); 8692} 8693 8694static inline int __find_vmlinux_btf_id(struct btf *btf, const char *name, 8695 enum bpf_attach_type attach_type) 8696{ 8697 int err; 8698 8699 if (attach_type == BPF_TRACE_RAW_TP) 8700 err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name, 8701 BTF_KIND_TYPEDEF); 8702 else if (attach_type == BPF_LSM_MAC) 8703 err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name, 8704 BTF_KIND_FUNC); 8705 else if (attach_type == BPF_TRACE_ITER) 8706 err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name, 8707 BTF_KIND_FUNC); 8708 else 8709 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8710 8711 if (err <= 0) 8712 pr_warn("%s is not found in vmlinux BTF\n", name); 8713 8714 return err; 8715} 8716 8717int libbpf_find_vmlinux_btf_id(const char *name, 8718 enum bpf_attach_type attach_type) 8719{ 8720 struct btf *btf; 8721 int err; 8722 8723 btf = libbpf_find_kernel_btf(); 8724 if (IS_ERR(btf)) { 8725 pr_warn("vmlinux BTF is not found\n"); 8726 return -EINVAL; 8727 } 8728 8729 err = __find_vmlinux_btf_id(btf, name, attach_type); 8730 btf__free(btf); 8731 return err; 8732} 8733 8734static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 8735{ 8736 struct bpf_prog_info_linear *info_linear; 8737 struct bpf_prog_info *info; 8738 struct btf *btf = NULL; 8739 int err = -EINVAL; 8740 8741 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0); 8742 if (IS_ERR_OR_NULL(info_linear)) { 8743 pr_warn("failed get_prog_info_linear for FD %d\n", 8744 attach_prog_fd); 8745 return -EINVAL; 8746 } 8747 info = &info_linear->info; 8748 if (!info->btf_id) { 8749 pr_warn("The target program doesn't have BTF\n"); 8750 goto out; 8751 } 8752 if (btf__get_from_id(info->btf_id, &btf)) { 8753 pr_warn("Failed to get BTF of the program\n"); 8754 goto out; 8755 } 8756 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8757 btf__free(btf); 8758 if (err <= 0) { 8759 pr_warn("%s is not found in prog's BTF\n", name); 8760 goto out; 8761 } 8762out: 8763 free(info_linear); 8764 return err; 8765} 8766 8767static int libbpf_find_attach_btf_id(struct bpf_program *prog) 8768{ 8769 enum bpf_attach_type attach_type = prog->expected_attach_type; 8770 __u32 attach_prog_fd = prog->attach_prog_fd; 8771 const char *name = prog->sec_name; 8772 int i, err; 8773 8774 if (!name) 8775 return -EINVAL; 8776 8777 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8778 if (!section_defs[i].is_attach_btf) 8779 continue; 8780 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 8781 continue; 8782 if (attach_prog_fd) 8783 err = libbpf_find_prog_btf_id(name + section_defs[i].len, 8784 attach_prog_fd); 8785 else 8786 err = __find_vmlinux_btf_id(prog->obj->btf_vmlinux, 8787 name + section_defs[i].len, 8788 attach_type); 8789 return err; 8790 } 8791 pr_warn("failed to identify btf_id based on ELF section name '%s'\n", name); 8792 return -ESRCH; 8793} 8794 8795int libbpf_attach_type_by_name(const char *name, 8796 enum bpf_attach_type *attach_type) 8797{ 8798 char *type_names; 8799 int i; 8800 8801 if (!name) 8802 return -EINVAL; 8803 8804 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8805 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 8806 continue; 8807 if (!section_defs[i].is_attachable) 8808 return -EINVAL; 8809 *attach_type = section_defs[i].expected_attach_type; 8810 return 0; 8811 } 8812 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 8813 type_names = libbpf_get_type_names(true); 8814 if (type_names != NULL) { 8815 pr_debug("attachable section(type) names are:%s\n", type_names); 8816 free(type_names); 8817 } 8818 8819 return -EINVAL; 8820} 8821 8822int bpf_map__fd(const struct bpf_map *map) 8823{ 8824 return map ? map->fd : -EINVAL; 8825} 8826 8827const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 8828{ 8829 return map ? &map->def : ERR_PTR(-EINVAL); 8830} 8831 8832const char *bpf_map__name(const struct bpf_map *map) 8833{ 8834 return map ? map->name : NULL; 8835} 8836 8837enum bpf_map_type bpf_map__type(const struct bpf_map *map) 8838{ 8839 return map->def.type; 8840} 8841 8842int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 8843{ 8844 if (map->fd >= 0) 8845 return -EBUSY; 8846 map->def.type = type; 8847 return 0; 8848} 8849 8850__u32 bpf_map__map_flags(const struct bpf_map *map) 8851{ 8852 return map->def.map_flags; 8853} 8854 8855int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 8856{ 8857 if (map->fd >= 0) 8858 return -EBUSY; 8859 map->def.map_flags = flags; 8860 return 0; 8861} 8862 8863__u32 bpf_map__numa_node(const struct bpf_map *map) 8864{ 8865 return map->numa_node; 8866} 8867 8868int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 8869{ 8870 if (map->fd >= 0) 8871 return -EBUSY; 8872 map->numa_node = numa_node; 8873 return 0; 8874} 8875 8876__u32 bpf_map__key_size(const struct bpf_map *map) 8877{ 8878 return map->def.key_size; 8879} 8880 8881int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 8882{ 8883 if (map->fd >= 0) 8884 return -EBUSY; 8885 map->def.key_size = size; 8886 return 0; 8887} 8888 8889__u32 bpf_map__value_size(const struct bpf_map *map) 8890{ 8891 return map->def.value_size; 8892} 8893 8894int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 8895{ 8896 if (map->fd >= 0) 8897 return -EBUSY; 8898 map->def.value_size = size; 8899 return 0; 8900} 8901 8902__u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 8903{ 8904 return map ? map->btf_key_type_id : 0; 8905} 8906 8907__u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 8908{ 8909 return map ? map->btf_value_type_id : 0; 8910} 8911 8912int bpf_map__set_priv(struct bpf_map *map, void *priv, 8913 bpf_map_clear_priv_t clear_priv) 8914{ 8915 if (!map) 8916 return -EINVAL; 8917 8918 if (map->priv) { 8919 if (map->clear_priv) 8920 map->clear_priv(map, map->priv); 8921 } 8922 8923 map->priv = priv; 8924 map->clear_priv = clear_priv; 8925 return 0; 8926} 8927 8928void *bpf_map__priv(const struct bpf_map *map) 8929{ 8930 return map ? map->priv : ERR_PTR(-EINVAL); 8931} 8932 8933int bpf_map__set_initial_value(struct bpf_map *map, 8934 const void *data, size_t size) 8935{ 8936 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 8937 size != map->def.value_size || map->fd >= 0) 8938 return -EINVAL; 8939 8940 memcpy(map->mmaped, data, size); 8941 return 0; 8942} 8943 8944bool bpf_map__is_offload_neutral(const struct bpf_map *map) 8945{ 8946 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 8947} 8948 8949bool bpf_map__is_internal(const struct bpf_map *map) 8950{ 8951 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 8952} 8953 8954__u32 bpf_map__ifindex(const struct bpf_map *map) 8955{ 8956 return map->map_ifindex; 8957} 8958 8959int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 8960{ 8961 if (map->fd >= 0) 8962 return -EBUSY; 8963 map->map_ifindex = ifindex; 8964 return 0; 8965} 8966 8967int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 8968{ 8969 if (!bpf_map_type__is_map_in_map(map->def.type)) { 8970 pr_warn("error: unsupported map type\n"); 8971 return -EINVAL; 8972 } 8973 if (map->inner_map_fd != -1) { 8974 pr_warn("error: inner_map_fd already specified\n"); 8975 return -EINVAL; 8976 } 8977 map->inner_map_fd = fd; 8978 return 0; 8979} 8980 8981static struct bpf_map * 8982__bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 8983{ 8984 ssize_t idx; 8985 struct bpf_map *s, *e; 8986 8987 if (!obj || !obj->maps) 8988 return NULL; 8989 8990 s = obj->maps; 8991 e = obj->maps + obj->nr_maps; 8992 8993 if ((m < s) || (m >= e)) { 8994 pr_warn("error in %s: map handler doesn't belong to object\n", 8995 __func__); 8996 return NULL; 8997 } 8998 8999 idx = (m - obj->maps) + i; 9000 if (idx >= obj->nr_maps || idx < 0) 9001 return NULL; 9002 return &obj->maps[idx]; 9003} 9004 9005struct bpf_map * 9006bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9007{ 9008 if (prev == NULL) 9009 return obj->maps; 9010 9011 return __bpf_map__iter(prev, obj, 1); 9012} 9013 9014struct bpf_map * 9015bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9016{ 9017 if (next == NULL) { 9018 if (!obj->nr_maps) 9019 return NULL; 9020 return obj->maps + obj->nr_maps - 1; 9021 } 9022 9023 return __bpf_map__iter(next, obj, -1); 9024} 9025 9026struct bpf_map * 9027bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9028{ 9029 struct bpf_map *pos; 9030 9031 bpf_object__for_each_map(pos, obj) { 9032 if (pos->name && !strcmp(pos->name, name)) 9033 return pos; 9034 } 9035 return NULL; 9036} 9037 9038int 9039bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9040{ 9041 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9042} 9043 9044struct bpf_map * 9045bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9046{ 9047 return ERR_PTR(-ENOTSUP); 9048} 9049 9050long libbpf_get_error(const void *ptr) 9051{ 9052 return PTR_ERR_OR_ZERO(ptr); 9053} 9054 9055int bpf_prog_load(const char *file, enum bpf_prog_type type, 9056 struct bpf_object **pobj, int *prog_fd) 9057{ 9058 struct bpf_prog_load_attr attr; 9059 9060 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 9061 attr.file = file; 9062 attr.prog_type = type; 9063 attr.expected_attach_type = 0; 9064 9065 return bpf_prog_load_xattr(&attr, pobj, prog_fd); 9066} 9067 9068int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 9069 struct bpf_object **pobj, int *prog_fd) 9070{ 9071 struct bpf_object_open_attr open_attr = {}; 9072 struct bpf_program *prog, *first_prog = NULL; 9073 struct bpf_object *obj; 9074 struct bpf_map *map; 9075 int err; 9076 9077 if (!attr) 9078 return -EINVAL; 9079 if (!attr->file) 9080 return -EINVAL; 9081 9082 open_attr.file = attr->file; 9083 open_attr.prog_type = attr->prog_type; 9084 9085 obj = bpf_object__open_xattr(&open_attr); 9086 if (IS_ERR_OR_NULL(obj)) 9087 return -ENOENT; 9088 9089 bpf_object__for_each_program(prog, obj) { 9090 enum bpf_attach_type attach_type = attr->expected_attach_type; 9091 /* 9092 * to preserve backwards compatibility, bpf_prog_load treats 9093 * attr->prog_type, if specified, as an override to whatever 9094 * bpf_object__open guessed 9095 */ 9096 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9097 bpf_program__set_type(prog, attr->prog_type); 9098 bpf_program__set_expected_attach_type(prog, 9099 attach_type); 9100 } 9101 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 9102 /* 9103 * we haven't guessed from section name and user 9104 * didn't provide a fallback type, too bad... 9105 */ 9106 bpf_object__close(obj); 9107 return -EINVAL; 9108 } 9109 9110 prog->prog_ifindex = attr->ifindex; 9111 prog->log_level = attr->log_level; 9112 prog->prog_flags |= attr->prog_flags; 9113 if (!first_prog) 9114 first_prog = prog; 9115 } 9116 9117 bpf_object__for_each_map(map, obj) { 9118 if (!bpf_map__is_offload_neutral(map)) 9119 map->map_ifindex = attr->ifindex; 9120 } 9121 9122 if (!first_prog) { 9123 pr_warn("object file doesn't contain bpf program\n"); 9124 bpf_object__close(obj); 9125 return -ENOENT; 9126 } 9127 9128 err = bpf_object__load(obj); 9129 if (err) { 9130 bpf_object__close(obj); 9131 return err; 9132 } 9133 9134 *pobj = obj; 9135 *prog_fd = bpf_program__fd(first_prog); 9136 return 0; 9137} 9138 9139struct bpf_link { 9140 int (*detach)(struct bpf_link *link); 9141 int (*destroy)(struct bpf_link *link); 9142 char *pin_path; /* NULL, if not pinned */ 9143 int fd; /* hook FD, -1 if not applicable */ 9144 bool disconnected; 9145}; 9146 9147/* Replace link's underlying BPF program with the new one */ 9148int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9149{ 9150 return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9151} 9152 9153/* Release "ownership" of underlying BPF resource (typically, BPF program 9154 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9155 * link, when destructed through bpf_link__destroy() call won't attempt to 9156 * detach/unregisted that BPF resource. This is useful in situations where, 9157 * say, attached BPF program has to outlive userspace program that attached it 9158 * in the system. Depending on type of BPF program, though, there might be 9159 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9160 * exit of userspace program doesn't trigger automatic detachment and clean up 9161 * inside the kernel. 9162 */ 9163void bpf_link__disconnect(struct bpf_link *link) 9164{ 9165 link->disconnected = true; 9166} 9167 9168int bpf_link__destroy(struct bpf_link *link) 9169{ 9170 int err = 0; 9171 9172 if (IS_ERR_OR_NULL(link)) 9173 return 0; 9174 9175 if (!link->disconnected && link->detach) 9176 err = link->detach(link); 9177 if (link->destroy) 9178 link->destroy(link); 9179 if (link->pin_path) 9180 free(link->pin_path); 9181 free(link); 9182 9183 return err; 9184} 9185 9186int bpf_link__fd(const struct bpf_link *link) 9187{ 9188 return link->fd; 9189} 9190 9191const char *bpf_link__pin_path(const struct bpf_link *link) 9192{ 9193 return link->pin_path; 9194} 9195 9196static int bpf_link__detach_fd(struct bpf_link *link) 9197{ 9198 return close(link->fd); 9199} 9200 9201struct bpf_link *bpf_link__open(const char *path) 9202{ 9203 struct bpf_link *link; 9204 int fd; 9205 9206 fd = bpf_obj_get(path); 9207 if (fd < 0) { 9208 fd = -errno; 9209 pr_warn("failed to open link at %s: %d\n", path, fd); 9210 return ERR_PTR(fd); 9211 } 9212 9213 link = calloc(1, sizeof(*link)); 9214 if (!link) { 9215 close(fd); 9216 return ERR_PTR(-ENOMEM); 9217 } 9218 link->detach = &bpf_link__detach_fd; 9219 link->fd = fd; 9220 9221 link->pin_path = strdup(path); 9222 if (!link->pin_path) { 9223 bpf_link__destroy(link); 9224 return ERR_PTR(-ENOMEM); 9225 } 9226 9227 return link; 9228} 9229 9230int bpf_link__detach(struct bpf_link *link) 9231{ 9232 return bpf_link_detach(link->fd) ? -errno : 0; 9233} 9234 9235int bpf_link__pin(struct bpf_link *link, const char *path) 9236{ 9237 int err; 9238 9239 if (link->pin_path) 9240 return -EBUSY; 9241 err = make_parent_dir(path); 9242 if (err) 9243 return err; 9244 err = check_path(path); 9245 if (err) 9246 return err; 9247 9248 link->pin_path = strdup(path); 9249 if (!link->pin_path) 9250 return -ENOMEM; 9251 9252 if (bpf_obj_pin(link->fd, link->pin_path)) { 9253 err = -errno; 9254 zfree(&link->pin_path); 9255 return err; 9256 } 9257 9258 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9259 return 0; 9260} 9261 9262int bpf_link__unpin(struct bpf_link *link) 9263{ 9264 int err; 9265 9266 if (!link->pin_path) 9267 return -EINVAL; 9268 9269 err = unlink(link->pin_path); 9270 if (err != 0) 9271 return -errno; 9272 9273 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9274 zfree(&link->pin_path); 9275 return 0; 9276} 9277 9278static int bpf_link__detach_perf_event(struct bpf_link *link) 9279{ 9280 int err; 9281 9282 err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0); 9283 if (err) 9284 err = -errno; 9285 9286 close(link->fd); 9287 return err; 9288} 9289 9290struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, 9291 int pfd) 9292{ 9293 char errmsg[STRERR_BUFSIZE]; 9294 struct bpf_link *link; 9295 int prog_fd, err; 9296 9297 if (pfd < 0) { 9298 pr_warn("prog '%s': invalid perf event FD %d\n", 9299 prog->name, pfd); 9300 return ERR_PTR(-EINVAL); 9301 } 9302 prog_fd = bpf_program__fd(prog); 9303 if (prog_fd < 0) { 9304 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9305 prog->name); 9306 return ERR_PTR(-EINVAL); 9307 } 9308 9309 link = calloc(1, sizeof(*link)); 9310 if (!link) 9311 return ERR_PTR(-ENOMEM); 9312 link->detach = &bpf_link__detach_perf_event; 9313 link->fd = pfd; 9314 9315 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9316 err = -errno; 9317 free(link); 9318 pr_warn("prog '%s': failed to attach to pfd %d: %s\n", 9319 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9320 if (err == -EPROTO) 9321 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9322 prog->name, pfd); 9323 return ERR_PTR(err); 9324 } 9325 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9326 err = -errno; 9327 free(link); 9328 pr_warn("prog '%s': failed to enable pfd %d: %s\n", 9329 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9330 return ERR_PTR(err); 9331 } 9332 return link; 9333} 9334 9335/* 9336 * this function is expected to parse integer in the range of [0, 2^31-1] from 9337 * given file using scanf format string fmt. If actual parsed value is 9338 * negative, the result might be indistinguishable from error 9339 */ 9340static int parse_uint_from_file(const char *file, const char *fmt) 9341{ 9342 char buf[STRERR_BUFSIZE]; 9343 int err, ret; 9344 FILE *f; 9345 9346 f = fopen(file, "r"); 9347 if (!f) { 9348 err = -errno; 9349 pr_debug("failed to open '%s': %s\n", file, 9350 libbpf_strerror_r(err, buf, sizeof(buf))); 9351 return err; 9352 } 9353 err = fscanf(f, fmt, &ret); 9354 if (err != 1) { 9355 err = err == EOF ? -EIO : -errno; 9356 pr_debug("failed to parse '%s': %s\n", file, 9357 libbpf_strerror_r(err, buf, sizeof(buf))); 9358 fclose(f); 9359 return err; 9360 } 9361 fclose(f); 9362 return ret; 9363} 9364 9365static int determine_kprobe_perf_type(void) 9366{ 9367 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9368 9369 return parse_uint_from_file(file, "%d\n"); 9370} 9371 9372static int determine_uprobe_perf_type(void) 9373{ 9374 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9375 9376 return parse_uint_from_file(file, "%d\n"); 9377} 9378 9379static int determine_kprobe_retprobe_bit(void) 9380{ 9381 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9382 9383 return parse_uint_from_file(file, "config:%d\n"); 9384} 9385 9386static int determine_uprobe_retprobe_bit(void) 9387{ 9388 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9389 9390 return parse_uint_from_file(file, "config:%d\n"); 9391} 9392 9393static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9394 uint64_t offset, int pid) 9395{ 9396 struct perf_event_attr attr = {}; 9397 char errmsg[STRERR_BUFSIZE]; 9398 int type, pfd, err; 9399 9400 type = uprobe ? determine_uprobe_perf_type() 9401 : determine_kprobe_perf_type(); 9402 if (type < 0) { 9403 pr_warn("failed to determine %s perf type: %s\n", 9404 uprobe ? "uprobe" : "kprobe", 9405 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9406 return type; 9407 } 9408 if (retprobe) { 9409 int bit = uprobe ? determine_uprobe_retprobe_bit() 9410 : determine_kprobe_retprobe_bit(); 9411 9412 if (bit < 0) { 9413 pr_warn("failed to determine %s retprobe bit: %s\n", 9414 uprobe ? "uprobe" : "kprobe", 9415 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9416 return bit; 9417 } 9418 attr.config |= 1 << bit; 9419 } 9420 attr.size = sizeof(attr); 9421 attr.type = type; 9422 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9423 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9424 9425 /* pid filter is meaningful only for uprobes */ 9426 pfd = syscall(__NR_perf_event_open, &attr, 9427 pid < 0 ? -1 : pid /* pid */, 9428 pid == -1 ? 0 : -1 /* cpu */, 9429 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9430 if (pfd < 0) { 9431 err = -errno; 9432 pr_warn("%s perf_event_open() failed: %s\n", 9433 uprobe ? "uprobe" : "kprobe", 9434 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9435 return err; 9436 } 9437 return pfd; 9438} 9439 9440struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog, 9441 bool retprobe, 9442 const char *func_name) 9443{ 9444 char errmsg[STRERR_BUFSIZE]; 9445 struct bpf_link *link; 9446 int pfd, err; 9447 9448 pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name, 9449 0 /* offset */, -1 /* pid */); 9450 if (pfd < 0) { 9451 pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n", 9452 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 9453 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9454 return ERR_PTR(pfd); 9455 } 9456 link = bpf_program__attach_perf_event(prog, pfd); 9457 if (IS_ERR(link)) { 9458 close(pfd); 9459 err = PTR_ERR(link); 9460 pr_warn("prog '%s': failed to attach to %s '%s': %s\n", 9461 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 9462 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9463 return link; 9464 } 9465 return link; 9466} 9467 9468static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 9469 struct bpf_program *prog) 9470{ 9471 const char *func_name; 9472 bool retprobe; 9473 9474 func_name = prog->sec_name + sec->len; 9475 retprobe = strcmp(sec->sec, "kretprobe/") == 0; 9476 9477 return bpf_program__attach_kprobe(prog, retprobe, func_name); 9478} 9479 9480struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog, 9481 bool retprobe, pid_t pid, 9482 const char *binary_path, 9483 size_t func_offset) 9484{ 9485 char errmsg[STRERR_BUFSIZE]; 9486 struct bpf_link *link; 9487 int pfd, err; 9488 9489 pfd = perf_event_open_probe(true /* uprobe */, retprobe, 9490 binary_path, func_offset, pid); 9491 if (pfd < 0) { 9492 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 9493 prog->name, retprobe ? "uretprobe" : "uprobe", 9494 binary_path, func_offset, 9495 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9496 return ERR_PTR(pfd); 9497 } 9498 link = bpf_program__attach_perf_event(prog, pfd); 9499 if (IS_ERR(link)) { 9500 close(pfd); 9501 err = PTR_ERR(link); 9502 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 9503 prog->name, retprobe ? "uretprobe" : "uprobe", 9504 binary_path, func_offset, 9505 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9506 return link; 9507 } 9508 return link; 9509} 9510 9511static int determine_tracepoint_id(const char *tp_category, 9512 const char *tp_name) 9513{ 9514 char file[PATH_MAX]; 9515 int ret; 9516 9517 ret = snprintf(file, sizeof(file), 9518 "/sys/kernel/debug/tracing/events/%s/%s/id", 9519 tp_category, tp_name); 9520 if (ret < 0) 9521 return -errno; 9522 if (ret >= sizeof(file)) { 9523 pr_debug("tracepoint %s/%s path is too long\n", 9524 tp_category, tp_name); 9525 return -E2BIG; 9526 } 9527 return parse_uint_from_file(file, "%d\n"); 9528} 9529 9530static int perf_event_open_tracepoint(const char *tp_category, 9531 const char *tp_name) 9532{ 9533 struct perf_event_attr attr = {}; 9534 char errmsg[STRERR_BUFSIZE]; 9535 int tp_id, pfd, err; 9536 9537 tp_id = determine_tracepoint_id(tp_category, tp_name); 9538 if (tp_id < 0) { 9539 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 9540 tp_category, tp_name, 9541 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 9542 return tp_id; 9543 } 9544 9545 attr.type = PERF_TYPE_TRACEPOINT; 9546 attr.size = sizeof(attr); 9547 attr.config = tp_id; 9548 9549 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 9550 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9551 if (pfd < 0) { 9552 err = -errno; 9553 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 9554 tp_category, tp_name, 9555 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9556 return err; 9557 } 9558 return pfd; 9559} 9560 9561struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog, 9562 const char *tp_category, 9563 const char *tp_name) 9564{ 9565 char errmsg[STRERR_BUFSIZE]; 9566 struct bpf_link *link; 9567 int pfd, err; 9568 9569 pfd = perf_event_open_tracepoint(tp_category, tp_name); 9570 if (pfd < 0) { 9571 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 9572 prog->name, tp_category, tp_name, 9573 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9574 return ERR_PTR(pfd); 9575 } 9576 link = bpf_program__attach_perf_event(prog, pfd); 9577 if (IS_ERR(link)) { 9578 close(pfd); 9579 err = PTR_ERR(link); 9580 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 9581 prog->name, tp_category, tp_name, 9582 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9583 return link; 9584 } 9585 return link; 9586} 9587 9588static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 9589 struct bpf_program *prog) 9590{ 9591 char *sec_name, *tp_cat, *tp_name; 9592 struct bpf_link *link; 9593 9594 sec_name = strdup(prog->sec_name); 9595 if (!sec_name) 9596 return ERR_PTR(-ENOMEM); 9597 9598 /* extract "tp/<category>/<name>" */ 9599 tp_cat = sec_name + sec->len; 9600 tp_name = strchr(tp_cat, '/'); 9601 if (!tp_name) { 9602 link = ERR_PTR(-EINVAL); 9603 goto out; 9604 } 9605 *tp_name = '\0'; 9606 tp_name++; 9607 9608 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 9609out: 9610 free(sec_name); 9611 return link; 9612} 9613 9614struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog, 9615 const char *tp_name) 9616{ 9617 char errmsg[STRERR_BUFSIZE]; 9618 struct bpf_link *link; 9619 int prog_fd, pfd; 9620 9621 prog_fd = bpf_program__fd(prog); 9622 if (prog_fd < 0) { 9623 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9624 return ERR_PTR(-EINVAL); 9625 } 9626 9627 link = calloc(1, sizeof(*link)); 9628 if (!link) 9629 return ERR_PTR(-ENOMEM); 9630 link->detach = &bpf_link__detach_fd; 9631 9632 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 9633 if (pfd < 0) { 9634 pfd = -errno; 9635 free(link); 9636 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 9637 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9638 return ERR_PTR(pfd); 9639 } 9640 link->fd = pfd; 9641 return link; 9642} 9643 9644static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 9645 struct bpf_program *prog) 9646{ 9647 const char *tp_name = prog->sec_name + sec->len; 9648 9649 return bpf_program__attach_raw_tracepoint(prog, tp_name); 9650} 9651 9652/* Common logic for all BPF program types that attach to a btf_id */ 9653static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog) 9654{ 9655 char errmsg[STRERR_BUFSIZE]; 9656 struct bpf_link *link; 9657 int prog_fd, pfd; 9658 9659 prog_fd = bpf_program__fd(prog); 9660 if (prog_fd < 0) { 9661 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9662 return ERR_PTR(-EINVAL); 9663 } 9664 9665 link = calloc(1, sizeof(*link)); 9666 if (!link) 9667 return ERR_PTR(-ENOMEM); 9668 link->detach = &bpf_link__detach_fd; 9669 9670 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 9671 if (pfd < 0) { 9672 pfd = -errno; 9673 free(link); 9674 pr_warn("prog '%s': failed to attach: %s\n", 9675 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9676 return ERR_PTR(pfd); 9677 } 9678 link->fd = pfd; 9679 return (struct bpf_link *)link; 9680} 9681 9682struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog) 9683{ 9684 return bpf_program__attach_btf_id(prog); 9685} 9686 9687struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog) 9688{ 9689 return bpf_program__attach_btf_id(prog); 9690} 9691 9692static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 9693 struct bpf_program *prog) 9694{ 9695 return bpf_program__attach_trace(prog); 9696} 9697 9698static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 9699 struct bpf_program *prog) 9700{ 9701 return bpf_program__attach_lsm(prog); 9702} 9703 9704static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 9705 struct bpf_program *prog) 9706{ 9707 return bpf_program__attach_iter(prog, NULL); 9708} 9709 9710static struct bpf_link * 9711bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id, 9712 const char *target_name) 9713{ 9714 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 9715 .target_btf_id = btf_id); 9716 enum bpf_attach_type attach_type; 9717 char errmsg[STRERR_BUFSIZE]; 9718 struct bpf_link *link; 9719 int prog_fd, link_fd; 9720 9721 prog_fd = bpf_program__fd(prog); 9722 if (prog_fd < 0) { 9723 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9724 return ERR_PTR(-EINVAL); 9725 } 9726 9727 link = calloc(1, sizeof(*link)); 9728 if (!link) 9729 return ERR_PTR(-ENOMEM); 9730 link->detach = &bpf_link__detach_fd; 9731 9732 attach_type = bpf_program__get_expected_attach_type(prog); 9733 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 9734 if (link_fd < 0) { 9735 link_fd = -errno; 9736 free(link); 9737 pr_warn("prog '%s': failed to attach to %s: %s\n", 9738 prog->name, target_name, 9739 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 9740 return ERR_PTR(link_fd); 9741 } 9742 link->fd = link_fd; 9743 return link; 9744} 9745 9746struct bpf_link * 9747bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd) 9748{ 9749 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 9750} 9751 9752struct bpf_link * 9753bpf_program__attach_netns(struct bpf_program *prog, int netns_fd) 9754{ 9755 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 9756} 9757 9758struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex) 9759{ 9760 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 9761 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 9762} 9763 9764struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog, 9765 int target_fd, 9766 const char *attach_func_name) 9767{ 9768 int btf_id; 9769 9770 if (!!target_fd != !!attach_func_name) { 9771 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 9772 prog->name); 9773 return ERR_PTR(-EINVAL); 9774 } 9775 9776 if (prog->type != BPF_PROG_TYPE_EXT) { 9777 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 9778 prog->name); 9779 return ERR_PTR(-EINVAL); 9780 } 9781 9782 if (target_fd) { 9783 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 9784 if (btf_id < 0) 9785 return ERR_PTR(btf_id); 9786 9787 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 9788 } else { 9789 /* no target, so use raw_tracepoint_open for compatibility 9790 * with old kernels 9791 */ 9792 return bpf_program__attach_trace(prog); 9793 } 9794} 9795 9796struct bpf_link * 9797bpf_program__attach_iter(struct bpf_program *prog, 9798 const struct bpf_iter_attach_opts *opts) 9799{ 9800 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 9801 char errmsg[STRERR_BUFSIZE]; 9802 struct bpf_link *link; 9803 int prog_fd, link_fd; 9804 __u32 target_fd = 0; 9805 9806 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 9807 return ERR_PTR(-EINVAL); 9808 9809 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 9810 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 9811 9812 prog_fd = bpf_program__fd(prog); 9813 if (prog_fd < 0) { 9814 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9815 return ERR_PTR(-EINVAL); 9816 } 9817 9818 link = calloc(1, sizeof(*link)); 9819 if (!link) 9820 return ERR_PTR(-ENOMEM); 9821 link->detach = &bpf_link__detach_fd; 9822 9823 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 9824 &link_create_opts); 9825 if (link_fd < 0) { 9826 link_fd = -errno; 9827 free(link); 9828 pr_warn("prog '%s': failed to attach to iterator: %s\n", 9829 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 9830 return ERR_PTR(link_fd); 9831 } 9832 link->fd = link_fd; 9833 return link; 9834} 9835 9836struct bpf_link *bpf_program__attach(struct bpf_program *prog) 9837{ 9838 const struct bpf_sec_def *sec_def; 9839 9840 sec_def = find_sec_def(prog->sec_name); 9841 if (!sec_def || !sec_def->attach_fn) 9842 return ERR_PTR(-ESRCH); 9843 9844 return sec_def->attach_fn(sec_def, prog); 9845} 9846 9847static int bpf_link__detach_struct_ops(struct bpf_link *link) 9848{ 9849 __u32 zero = 0; 9850 9851 if (bpf_map_delete_elem(link->fd, &zero)) 9852 return -errno; 9853 9854 return 0; 9855} 9856 9857struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map) 9858{ 9859 struct bpf_struct_ops *st_ops; 9860 struct bpf_link *link; 9861 __u32 i, zero = 0; 9862 int err; 9863 9864 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 9865 return ERR_PTR(-EINVAL); 9866 9867 link = calloc(1, sizeof(*link)); 9868 if (!link) 9869 return ERR_PTR(-EINVAL); 9870 9871 st_ops = map->st_ops; 9872 for (i = 0; i < btf_vlen(st_ops->type); i++) { 9873 struct bpf_program *prog = st_ops->progs[i]; 9874 void *kern_data; 9875 int prog_fd; 9876 9877 if (!prog) 9878 continue; 9879 9880 prog_fd = bpf_program__fd(prog); 9881 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 9882 *(unsigned long *)kern_data = prog_fd; 9883 } 9884 9885 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 9886 if (err) { 9887 err = -errno; 9888 free(link); 9889 return ERR_PTR(err); 9890 } 9891 9892 link->detach = bpf_link__detach_struct_ops; 9893 link->fd = map->fd; 9894 9895 return link; 9896} 9897 9898enum bpf_perf_event_ret 9899bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 9900 void **copy_mem, size_t *copy_size, 9901 bpf_perf_event_print_t fn, void *private_data) 9902{ 9903 struct perf_event_mmap_page *header = mmap_mem; 9904 __u64 data_head = ring_buffer_read_head(header); 9905 __u64 data_tail = header->data_tail; 9906 void *base = ((__u8 *)header) + page_size; 9907 int ret = LIBBPF_PERF_EVENT_CONT; 9908 struct perf_event_header *ehdr; 9909 size_t ehdr_size; 9910 9911 while (data_head != data_tail) { 9912 ehdr = base + (data_tail & (mmap_size - 1)); 9913 ehdr_size = ehdr->size; 9914 9915 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 9916 void *copy_start = ehdr; 9917 size_t len_first = base + mmap_size - copy_start; 9918 size_t len_secnd = ehdr_size - len_first; 9919 9920 if (*copy_size < ehdr_size) { 9921 free(*copy_mem); 9922 *copy_mem = malloc(ehdr_size); 9923 if (!*copy_mem) { 9924 *copy_size = 0; 9925 ret = LIBBPF_PERF_EVENT_ERROR; 9926 break; 9927 } 9928 *copy_size = ehdr_size; 9929 } 9930 9931 memcpy(*copy_mem, copy_start, len_first); 9932 memcpy(*copy_mem + len_first, base, len_secnd); 9933 ehdr = *copy_mem; 9934 } 9935 9936 ret = fn(ehdr, private_data); 9937 data_tail += ehdr_size; 9938 if (ret != LIBBPF_PERF_EVENT_CONT) 9939 break; 9940 } 9941 9942 ring_buffer_write_tail(header, data_tail); 9943 return ret; 9944} 9945 9946struct perf_buffer; 9947 9948struct perf_buffer_params { 9949 struct perf_event_attr *attr; 9950 /* if event_cb is specified, it takes precendence */ 9951 perf_buffer_event_fn event_cb; 9952 /* sample_cb and lost_cb are higher-level common-case callbacks */ 9953 perf_buffer_sample_fn sample_cb; 9954 perf_buffer_lost_fn lost_cb; 9955 void *ctx; 9956 int cpu_cnt; 9957 int *cpus; 9958 int *map_keys; 9959}; 9960 9961struct perf_cpu_buf { 9962 struct perf_buffer *pb; 9963 void *base; /* mmap()'ed memory */ 9964 void *buf; /* for reconstructing segmented data */ 9965 size_t buf_size; 9966 int fd; 9967 int cpu; 9968 int map_key; 9969}; 9970 9971struct perf_buffer { 9972 perf_buffer_event_fn event_cb; 9973 perf_buffer_sample_fn sample_cb; 9974 perf_buffer_lost_fn lost_cb; 9975 void *ctx; /* passed into callbacks */ 9976 9977 size_t page_size; 9978 size_t mmap_size; 9979 struct perf_cpu_buf **cpu_bufs; 9980 struct epoll_event *events; 9981 int cpu_cnt; /* number of allocated CPU buffers */ 9982 int epoll_fd; /* perf event FD */ 9983 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 9984}; 9985 9986static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 9987 struct perf_cpu_buf *cpu_buf) 9988{ 9989 if (!cpu_buf) 9990 return; 9991 if (cpu_buf->base && 9992 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 9993 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 9994 if (cpu_buf->fd >= 0) { 9995 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 9996 close(cpu_buf->fd); 9997 } 9998 free(cpu_buf->buf); 9999 free(cpu_buf); 10000} 10001 10002void perf_buffer__free(struct perf_buffer *pb) 10003{ 10004 int i; 10005 10006 if (IS_ERR_OR_NULL(pb)) 10007 return; 10008 if (pb->cpu_bufs) { 10009 for (i = 0; i < pb->cpu_cnt; i++) { 10010 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10011 10012 if (!cpu_buf) 10013 continue; 10014 10015 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 10016 perf_buffer__free_cpu_buf(pb, cpu_buf); 10017 } 10018 free(pb->cpu_bufs); 10019 } 10020 if (pb->epoll_fd >= 0) 10021 close(pb->epoll_fd); 10022 free(pb->events); 10023 free(pb); 10024} 10025 10026static struct perf_cpu_buf * 10027perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 10028 int cpu, int map_key) 10029{ 10030 struct perf_cpu_buf *cpu_buf; 10031 char msg[STRERR_BUFSIZE]; 10032 int err; 10033 10034 cpu_buf = calloc(1, sizeof(*cpu_buf)); 10035 if (!cpu_buf) 10036 return ERR_PTR(-ENOMEM); 10037 10038 cpu_buf->pb = pb; 10039 cpu_buf->cpu = cpu; 10040 cpu_buf->map_key = map_key; 10041 10042 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 10043 -1, PERF_FLAG_FD_CLOEXEC); 10044 if (cpu_buf->fd < 0) { 10045 err = -errno; 10046 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 10047 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10048 goto error; 10049 } 10050 10051 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 10052 PROT_READ | PROT_WRITE, MAP_SHARED, 10053 cpu_buf->fd, 0); 10054 if (cpu_buf->base == MAP_FAILED) { 10055 cpu_buf->base = NULL; 10056 err = -errno; 10057 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 10058 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10059 goto error; 10060 } 10061 10062 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10063 err = -errno; 10064 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 10065 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10066 goto error; 10067 } 10068 10069 return cpu_buf; 10070 10071error: 10072 perf_buffer__free_cpu_buf(pb, cpu_buf); 10073 return (struct perf_cpu_buf *)ERR_PTR(err); 10074} 10075 10076static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10077 struct perf_buffer_params *p); 10078 10079struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 10080 const struct perf_buffer_opts *opts) 10081{ 10082 struct perf_buffer_params p = {}; 10083 struct perf_event_attr attr = { 0, }; 10084 10085 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 10086 attr.type = PERF_TYPE_SOFTWARE; 10087 attr.sample_type = PERF_SAMPLE_RAW; 10088 attr.sample_period = 1; 10089 attr.wakeup_events = 1; 10090 10091 p.attr = &attr; 10092 p.sample_cb = opts ? opts->sample_cb : NULL; 10093 p.lost_cb = opts ? opts->lost_cb : NULL; 10094 p.ctx = opts ? opts->ctx : NULL; 10095 10096 return __perf_buffer__new(map_fd, page_cnt, &p); 10097} 10098 10099struct perf_buffer * 10100perf_buffer__new_raw(int map_fd, size_t page_cnt, 10101 const struct perf_buffer_raw_opts *opts) 10102{ 10103 struct perf_buffer_params p = {}; 10104 10105 p.attr = opts->attr; 10106 p.event_cb = opts->event_cb; 10107 p.ctx = opts->ctx; 10108 p.cpu_cnt = opts->cpu_cnt; 10109 p.cpus = opts->cpus; 10110 p.map_keys = opts->map_keys; 10111 10112 return __perf_buffer__new(map_fd, page_cnt, &p); 10113} 10114 10115static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10116 struct perf_buffer_params *p) 10117{ 10118 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 10119 struct bpf_map_info map; 10120 char msg[STRERR_BUFSIZE]; 10121 struct perf_buffer *pb; 10122 bool *online = NULL; 10123 __u32 map_info_len; 10124 int err, i, j, n; 10125 10126 if (page_cnt & (page_cnt - 1)) { 10127 pr_warn("page count should be power of two, but is %zu\n", 10128 page_cnt); 10129 return ERR_PTR(-EINVAL); 10130 } 10131 10132 /* best-effort sanity checks */ 10133 memset(&map, 0, sizeof(map)); 10134 map_info_len = sizeof(map); 10135 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 10136 if (err) { 10137 err = -errno; 10138 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 10139 * -EBADFD, -EFAULT, or -E2BIG on real error 10140 */ 10141 if (err != -EINVAL) { 10142 pr_warn("failed to get map info for map FD %d: %s\n", 10143 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 10144 return ERR_PTR(err); 10145 } 10146 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 10147 map_fd); 10148 } else { 10149 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 10150 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 10151 map.name); 10152 return ERR_PTR(-EINVAL); 10153 } 10154 } 10155 10156 pb = calloc(1, sizeof(*pb)); 10157 if (!pb) 10158 return ERR_PTR(-ENOMEM); 10159 10160 pb->event_cb = p->event_cb; 10161 pb->sample_cb = p->sample_cb; 10162 pb->lost_cb = p->lost_cb; 10163 pb->ctx = p->ctx; 10164 10165 pb->page_size = getpagesize(); 10166 pb->mmap_size = pb->page_size * page_cnt; 10167 pb->map_fd = map_fd; 10168 10169 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 10170 if (pb->epoll_fd < 0) { 10171 err = -errno; 10172 pr_warn("failed to create epoll instance: %s\n", 10173 libbpf_strerror_r(err, msg, sizeof(msg))); 10174 goto error; 10175 } 10176 10177 if (p->cpu_cnt > 0) { 10178 pb->cpu_cnt = p->cpu_cnt; 10179 } else { 10180 pb->cpu_cnt = libbpf_num_possible_cpus(); 10181 if (pb->cpu_cnt < 0) { 10182 err = pb->cpu_cnt; 10183 goto error; 10184 } 10185 if (map.max_entries && map.max_entries < pb->cpu_cnt) 10186 pb->cpu_cnt = map.max_entries; 10187 } 10188 10189 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 10190 if (!pb->events) { 10191 err = -ENOMEM; 10192 pr_warn("failed to allocate events: out of memory\n"); 10193 goto error; 10194 } 10195 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 10196 if (!pb->cpu_bufs) { 10197 err = -ENOMEM; 10198 pr_warn("failed to allocate buffers: out of memory\n"); 10199 goto error; 10200 } 10201 10202 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 10203 if (err) { 10204 pr_warn("failed to get online CPU mask: %d\n", err); 10205 goto error; 10206 } 10207 10208 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 10209 struct perf_cpu_buf *cpu_buf; 10210 int cpu, map_key; 10211 10212 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 10213 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 10214 10215 /* in case user didn't explicitly requested particular CPUs to 10216 * be attached to, skip offline/not present CPUs 10217 */ 10218 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 10219 continue; 10220 10221 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 10222 if (IS_ERR(cpu_buf)) { 10223 err = PTR_ERR(cpu_buf); 10224 goto error; 10225 } 10226 10227 pb->cpu_bufs[j] = cpu_buf; 10228 10229 err = bpf_map_update_elem(pb->map_fd, &map_key, 10230 &cpu_buf->fd, 0); 10231 if (err) { 10232 err = -errno; 10233 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 10234 cpu, map_key, cpu_buf->fd, 10235 libbpf_strerror_r(err, msg, sizeof(msg))); 10236 goto error; 10237 } 10238 10239 pb->events[j].events = EPOLLIN; 10240 pb->events[j].data.ptr = cpu_buf; 10241 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 10242 &pb->events[j]) < 0) { 10243 err = -errno; 10244 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 10245 cpu, cpu_buf->fd, 10246 libbpf_strerror_r(err, msg, sizeof(msg))); 10247 goto error; 10248 } 10249 j++; 10250 } 10251 pb->cpu_cnt = j; 10252 free(online); 10253 10254 return pb; 10255 10256error: 10257 free(online); 10258 if (pb) 10259 perf_buffer__free(pb); 10260 return ERR_PTR(err); 10261} 10262 10263struct perf_sample_raw { 10264 struct perf_event_header header; 10265 uint32_t size; 10266 char data[]; 10267}; 10268 10269struct perf_sample_lost { 10270 struct perf_event_header header; 10271 uint64_t id; 10272 uint64_t lost; 10273 uint64_t sample_id; 10274}; 10275 10276static enum bpf_perf_event_ret 10277perf_buffer__process_record(struct perf_event_header *e, void *ctx) 10278{ 10279 struct perf_cpu_buf *cpu_buf = ctx; 10280 struct perf_buffer *pb = cpu_buf->pb; 10281 void *data = e; 10282 10283 /* user wants full control over parsing perf event */ 10284 if (pb->event_cb) 10285 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 10286 10287 switch (e->type) { 10288 case PERF_RECORD_SAMPLE: { 10289 struct perf_sample_raw *s = data; 10290 10291 if (pb->sample_cb) 10292 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 10293 break; 10294 } 10295 case PERF_RECORD_LOST: { 10296 struct perf_sample_lost *s = data; 10297 10298 if (pb->lost_cb) 10299 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 10300 break; 10301 } 10302 default: 10303 pr_warn("unknown perf sample type %d\n", e->type); 10304 return LIBBPF_PERF_EVENT_ERROR; 10305 } 10306 return LIBBPF_PERF_EVENT_CONT; 10307} 10308 10309static int perf_buffer__process_records(struct perf_buffer *pb, 10310 struct perf_cpu_buf *cpu_buf) 10311{ 10312 enum bpf_perf_event_ret ret; 10313 10314 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 10315 pb->page_size, &cpu_buf->buf, 10316 &cpu_buf->buf_size, 10317 perf_buffer__process_record, cpu_buf); 10318 if (ret != LIBBPF_PERF_EVENT_CONT) 10319 return ret; 10320 return 0; 10321} 10322 10323int perf_buffer__epoll_fd(const struct perf_buffer *pb) 10324{ 10325 return pb->epoll_fd; 10326} 10327 10328int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 10329{ 10330 int i, cnt, err; 10331 10332 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 10333 for (i = 0; i < cnt; i++) { 10334 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 10335 10336 err = perf_buffer__process_records(pb, cpu_buf); 10337 if (err) { 10338 pr_warn("error while processing records: %d\n", err); 10339 return err; 10340 } 10341 } 10342 return cnt < 0 ? -errno : cnt; 10343} 10344 10345/* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 10346 * manager. 10347 */ 10348size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 10349{ 10350 return pb->cpu_cnt; 10351} 10352 10353/* 10354 * Return perf_event FD of a ring buffer in *buf_idx* slot of 10355 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 10356 * select()/poll()/epoll() Linux syscalls. 10357 */ 10358int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 10359{ 10360 struct perf_cpu_buf *cpu_buf; 10361 10362 if (buf_idx >= pb->cpu_cnt) 10363 return -EINVAL; 10364 10365 cpu_buf = pb->cpu_bufs[buf_idx]; 10366 if (!cpu_buf) 10367 return -ENOENT; 10368 10369 return cpu_buf->fd; 10370} 10371 10372/* 10373 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 10374 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 10375 * consume, do nothing and return success. 10376 * Returns: 10377 * - 0 on success; 10378 * - <0 on failure. 10379 */ 10380int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 10381{ 10382 struct perf_cpu_buf *cpu_buf; 10383 10384 if (buf_idx >= pb->cpu_cnt) 10385 return -EINVAL; 10386 10387 cpu_buf = pb->cpu_bufs[buf_idx]; 10388 if (!cpu_buf) 10389 return -ENOENT; 10390 10391 return perf_buffer__process_records(pb, cpu_buf); 10392} 10393 10394int perf_buffer__consume(struct perf_buffer *pb) 10395{ 10396 int i, err; 10397 10398 for (i = 0; i < pb->cpu_cnt; i++) { 10399 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10400 10401 if (!cpu_buf) 10402 continue; 10403 10404 err = perf_buffer__process_records(pb, cpu_buf); 10405 if (err) { 10406 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 10407 return err; 10408 } 10409 } 10410 return 0; 10411} 10412 10413struct bpf_prog_info_array_desc { 10414 int array_offset; /* e.g. offset of jited_prog_insns */ 10415 int count_offset; /* e.g. offset of jited_prog_len */ 10416 int size_offset; /* > 0: offset of rec size, 10417 * < 0: fix size of -size_offset 10418 */ 10419}; 10420 10421static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 10422 [BPF_PROG_INFO_JITED_INSNS] = { 10423 offsetof(struct bpf_prog_info, jited_prog_insns), 10424 offsetof(struct bpf_prog_info, jited_prog_len), 10425 -1, 10426 }, 10427 [BPF_PROG_INFO_XLATED_INSNS] = { 10428 offsetof(struct bpf_prog_info, xlated_prog_insns), 10429 offsetof(struct bpf_prog_info, xlated_prog_len), 10430 -1, 10431 }, 10432 [BPF_PROG_INFO_MAP_IDS] = { 10433 offsetof(struct bpf_prog_info, map_ids), 10434 offsetof(struct bpf_prog_info, nr_map_ids), 10435 -(int)sizeof(__u32), 10436 }, 10437 [BPF_PROG_INFO_JITED_KSYMS] = { 10438 offsetof(struct bpf_prog_info, jited_ksyms), 10439 offsetof(struct bpf_prog_info, nr_jited_ksyms), 10440 -(int)sizeof(__u64), 10441 }, 10442 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 10443 offsetof(struct bpf_prog_info, jited_func_lens), 10444 offsetof(struct bpf_prog_info, nr_jited_func_lens), 10445 -(int)sizeof(__u32), 10446 }, 10447 [BPF_PROG_INFO_FUNC_INFO] = { 10448 offsetof(struct bpf_prog_info, func_info), 10449 offsetof(struct bpf_prog_info, nr_func_info), 10450 offsetof(struct bpf_prog_info, func_info_rec_size), 10451 }, 10452 [BPF_PROG_INFO_LINE_INFO] = { 10453 offsetof(struct bpf_prog_info, line_info), 10454 offsetof(struct bpf_prog_info, nr_line_info), 10455 offsetof(struct bpf_prog_info, line_info_rec_size), 10456 }, 10457 [BPF_PROG_INFO_JITED_LINE_INFO] = { 10458 offsetof(struct bpf_prog_info, jited_line_info), 10459 offsetof(struct bpf_prog_info, nr_jited_line_info), 10460 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 10461 }, 10462 [BPF_PROG_INFO_PROG_TAGS] = { 10463 offsetof(struct bpf_prog_info, prog_tags), 10464 offsetof(struct bpf_prog_info, nr_prog_tags), 10465 -(int)sizeof(__u8) * BPF_TAG_SIZE, 10466 }, 10467 10468}; 10469 10470static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 10471 int offset) 10472{ 10473 __u32 *array = (__u32 *)info; 10474 10475 if (offset >= 0) 10476 return array[offset / sizeof(__u32)]; 10477 return -(int)offset; 10478} 10479 10480static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 10481 int offset) 10482{ 10483 __u64 *array = (__u64 *)info; 10484 10485 if (offset >= 0) 10486 return array[offset / sizeof(__u64)]; 10487 return -(int)offset; 10488} 10489 10490static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 10491 __u32 val) 10492{ 10493 __u32 *array = (__u32 *)info; 10494 10495 if (offset >= 0) 10496 array[offset / sizeof(__u32)] = val; 10497} 10498 10499static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 10500 __u64 val) 10501{ 10502 __u64 *array = (__u64 *)info; 10503 10504 if (offset >= 0) 10505 array[offset / sizeof(__u64)] = val; 10506} 10507 10508struct bpf_prog_info_linear * 10509bpf_program__get_prog_info_linear(int fd, __u64 arrays) 10510{ 10511 struct bpf_prog_info_linear *info_linear; 10512 struct bpf_prog_info info = {}; 10513 __u32 info_len = sizeof(info); 10514 __u32 data_len = 0; 10515 int i, err; 10516 void *ptr; 10517 10518 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 10519 return ERR_PTR(-EINVAL); 10520 10521 /* step 1: get array dimensions */ 10522 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 10523 if (err) { 10524 pr_debug("can't get prog info: %s", strerror(errno)); 10525 return ERR_PTR(-EFAULT); 10526 } 10527 10528 /* step 2: calculate total size of all arrays */ 10529 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10530 bool include_array = (arrays & (1UL << i)) > 0; 10531 struct bpf_prog_info_array_desc *desc; 10532 __u32 count, size; 10533 10534 desc = bpf_prog_info_array_desc + i; 10535 10536 /* kernel is too old to support this field */ 10537 if (info_len < desc->array_offset + sizeof(__u32) || 10538 info_len < desc->count_offset + sizeof(__u32) || 10539 (desc->size_offset > 0 && info_len < desc->size_offset)) 10540 include_array = false; 10541 10542 if (!include_array) { 10543 arrays &= ~(1UL << i); /* clear the bit */ 10544 continue; 10545 } 10546 10547 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10548 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10549 10550 data_len += count * size; 10551 } 10552 10553 /* step 3: allocate continuous memory */ 10554 data_len = roundup(data_len, sizeof(__u64)); 10555 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 10556 if (!info_linear) 10557 return ERR_PTR(-ENOMEM); 10558 10559 /* step 4: fill data to info_linear->info */ 10560 info_linear->arrays = arrays; 10561 memset(&info_linear->info, 0, sizeof(info)); 10562 ptr = info_linear->data; 10563 10564 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10565 struct bpf_prog_info_array_desc *desc; 10566 __u32 count, size; 10567 10568 if ((arrays & (1UL << i)) == 0) 10569 continue; 10570 10571 desc = bpf_prog_info_array_desc + i; 10572 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10573 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10574 bpf_prog_info_set_offset_u32(&info_linear->info, 10575 desc->count_offset, count); 10576 bpf_prog_info_set_offset_u32(&info_linear->info, 10577 desc->size_offset, size); 10578 bpf_prog_info_set_offset_u64(&info_linear->info, 10579 desc->array_offset, 10580 ptr_to_u64(ptr)); 10581 ptr += count * size; 10582 } 10583 10584 /* step 5: call syscall again to get required arrays */ 10585 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 10586 if (err) { 10587 pr_debug("can't get prog info: %s", strerror(errno)); 10588 free(info_linear); 10589 return ERR_PTR(-EFAULT); 10590 } 10591 10592 /* step 6: verify the data */ 10593 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10594 struct bpf_prog_info_array_desc *desc; 10595 __u32 v1, v2; 10596 10597 if ((arrays & (1UL << i)) == 0) 10598 continue; 10599 10600 desc = bpf_prog_info_array_desc + i; 10601 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10602 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 10603 desc->count_offset); 10604 if (v1 != v2) 10605 pr_warn("%s: mismatch in element count\n", __func__); 10606 10607 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10608 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 10609 desc->size_offset); 10610 if (v1 != v2) 10611 pr_warn("%s: mismatch in rec size\n", __func__); 10612 } 10613 10614 /* step 7: update info_len and data_len */ 10615 info_linear->info_len = sizeof(struct bpf_prog_info); 10616 info_linear->data_len = data_len; 10617 10618 return info_linear; 10619} 10620 10621void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 10622{ 10623 int i; 10624 10625 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10626 struct bpf_prog_info_array_desc *desc; 10627 __u64 addr, offs; 10628 10629 if ((info_linear->arrays & (1UL << i)) == 0) 10630 continue; 10631 10632 desc = bpf_prog_info_array_desc + i; 10633 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 10634 desc->array_offset); 10635 offs = addr - ptr_to_u64(info_linear->data); 10636 bpf_prog_info_set_offset_u64(&info_linear->info, 10637 desc->array_offset, offs); 10638 } 10639} 10640 10641void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 10642{ 10643 int i; 10644 10645 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10646 struct bpf_prog_info_array_desc *desc; 10647 __u64 addr, offs; 10648 10649 if ((info_linear->arrays & (1UL << i)) == 0) 10650 continue; 10651 10652 desc = bpf_prog_info_array_desc + i; 10653 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 10654 desc->array_offset); 10655 addr = offs + ptr_to_u64(info_linear->data); 10656 bpf_prog_info_set_offset_u64(&info_linear->info, 10657 desc->array_offset, addr); 10658 } 10659} 10660 10661int bpf_program__set_attach_target(struct bpf_program *prog, 10662 int attach_prog_fd, 10663 const char *attach_func_name) 10664{ 10665 int btf_id; 10666 10667 if (!prog || attach_prog_fd < 0 || !attach_func_name) 10668 return -EINVAL; 10669 10670 if (attach_prog_fd) 10671 btf_id = libbpf_find_prog_btf_id(attach_func_name, 10672 attach_prog_fd); 10673 else 10674 btf_id = libbpf_find_vmlinux_btf_id(attach_func_name, 10675 prog->expected_attach_type); 10676 10677 if (btf_id < 0) 10678 return btf_id; 10679 10680 prog->attach_btf_id = btf_id; 10681 prog->attach_prog_fd = attach_prog_fd; 10682 return 0; 10683} 10684 10685int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 10686{ 10687 int err = 0, n, len, start, end = -1; 10688 bool *tmp; 10689 10690 *mask = NULL; 10691 *mask_sz = 0; 10692 10693 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 10694 while (*s) { 10695 if (*s == ',' || *s == '\n') { 10696 s++; 10697 continue; 10698 } 10699 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 10700 if (n <= 0 || n > 2) { 10701 pr_warn("Failed to get CPU range %s: %d\n", s, n); 10702 err = -EINVAL; 10703 goto cleanup; 10704 } else if (n == 1) { 10705 end = start; 10706 } 10707 if (start < 0 || start > end) { 10708 pr_warn("Invalid CPU range [%d,%d] in %s\n", 10709 start, end, s); 10710 err = -EINVAL; 10711 goto cleanup; 10712 } 10713 tmp = realloc(*mask, end + 1); 10714 if (!tmp) { 10715 err = -ENOMEM; 10716 goto cleanup; 10717 } 10718 *mask = tmp; 10719 memset(tmp + *mask_sz, 0, start - *mask_sz); 10720 memset(tmp + start, 1, end - start + 1); 10721 *mask_sz = end + 1; 10722 s += len; 10723 } 10724 if (!*mask_sz) { 10725 pr_warn("Empty CPU range\n"); 10726 return -EINVAL; 10727 } 10728 return 0; 10729cleanup: 10730 free(*mask); 10731 *mask = NULL; 10732 return err; 10733} 10734 10735int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 10736{ 10737 int fd, err = 0, len; 10738 char buf[128]; 10739 10740 fd = open(fcpu, O_RDONLY); 10741 if (fd < 0) { 10742 err = -errno; 10743 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 10744 return err; 10745 } 10746 len = read(fd, buf, sizeof(buf)); 10747 close(fd); 10748 if (len <= 0) { 10749 err = len ? -errno : -EINVAL; 10750 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 10751 return err; 10752 } 10753 if (len >= sizeof(buf)) { 10754 pr_warn("CPU mask is too big in file %s\n", fcpu); 10755 return -E2BIG; 10756 } 10757 buf[len] = '\0'; 10758 10759 return parse_cpu_mask_str(buf, mask, mask_sz); 10760} 10761 10762int libbpf_num_possible_cpus(void) 10763{ 10764 static const char *fcpu = "/sys/devices/system/cpu/possible"; 10765 static int cpus; 10766 int err, n, i, tmp_cpus; 10767 bool *mask; 10768 10769 tmp_cpus = READ_ONCE(cpus); 10770 if (tmp_cpus > 0) 10771 return tmp_cpus; 10772 10773 err = parse_cpu_mask_file(fcpu, &mask, &n); 10774 if (err) 10775 return err; 10776 10777 tmp_cpus = 0; 10778 for (i = 0; i < n; i++) { 10779 if (mask[i]) 10780 tmp_cpus++; 10781 } 10782 free(mask); 10783 10784 WRITE_ONCE(cpus, tmp_cpus); 10785 return tmp_cpus; 10786} 10787 10788int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 10789 const struct bpf_object_open_opts *opts) 10790{ 10791 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 10792 .object_name = s->name, 10793 ); 10794 struct bpf_object *obj; 10795 int i; 10796 10797 /* Attempt to preserve opts->object_name, unless overriden by user 10798 * explicitly. Overwriting object name for skeletons is discouraged, 10799 * as it breaks global data maps, because they contain object name 10800 * prefix as their own map name prefix. When skeleton is generated, 10801 * bpftool is making an assumption that this name will stay the same. 10802 */ 10803 if (opts) { 10804 memcpy(&skel_opts, opts, sizeof(*opts)); 10805 if (!opts->object_name) 10806 skel_opts.object_name = s->name; 10807 } 10808 10809 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 10810 if (IS_ERR(obj)) { 10811 pr_warn("failed to initialize skeleton BPF object '%s': %ld\n", 10812 s->name, PTR_ERR(obj)); 10813 return PTR_ERR(obj); 10814 } 10815 10816 *s->obj = obj; 10817 10818 for (i = 0; i < s->map_cnt; i++) { 10819 struct bpf_map **map = s->maps[i].map; 10820 const char *name = s->maps[i].name; 10821 void **mmaped = s->maps[i].mmaped; 10822 10823 *map = bpf_object__find_map_by_name(obj, name); 10824 if (!*map) { 10825 pr_warn("failed to find skeleton map '%s'\n", name); 10826 return -ESRCH; 10827 } 10828 10829 /* externs shouldn't be pre-setup from user code */ 10830 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 10831 *mmaped = (*map)->mmaped; 10832 } 10833 10834 for (i = 0; i < s->prog_cnt; i++) { 10835 struct bpf_program **prog = s->progs[i].prog; 10836 const char *name = s->progs[i].name; 10837 10838 *prog = bpf_object__find_program_by_name(obj, name); 10839 if (!*prog) { 10840 pr_warn("failed to find skeleton program '%s'\n", name); 10841 return -ESRCH; 10842 } 10843 } 10844 10845 return 0; 10846} 10847 10848int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 10849{ 10850 int i, err; 10851 10852 err = bpf_object__load(*s->obj); 10853 if (err) { 10854 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 10855 return err; 10856 } 10857 10858 for (i = 0; i < s->map_cnt; i++) { 10859 struct bpf_map *map = *s->maps[i].map; 10860 size_t mmap_sz = bpf_map_mmap_sz(map); 10861 int prot, map_fd = bpf_map__fd(map); 10862 void **mmaped = s->maps[i].mmaped; 10863 10864 if (!mmaped) 10865 continue; 10866 10867 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 10868 *mmaped = NULL; 10869 continue; 10870 } 10871 10872 if (map->def.map_flags & BPF_F_RDONLY_PROG) 10873 prot = PROT_READ; 10874 else 10875 prot = PROT_READ | PROT_WRITE; 10876 10877 /* Remap anonymous mmap()-ed "map initialization image" as 10878 * a BPF map-backed mmap()-ed memory, but preserving the same 10879 * memory address. This will cause kernel to change process' 10880 * page table to point to a different piece of kernel memory, 10881 * but from userspace point of view memory address (and its 10882 * contents, being identical at this point) will stay the 10883 * same. This mapping will be released by bpf_object__close() 10884 * as per normal clean up procedure, so we don't need to worry 10885 * about it from skeleton's clean up perspective. 10886 */ 10887 *mmaped = mmap(map->mmaped, mmap_sz, prot, 10888 MAP_SHARED | MAP_FIXED, map_fd, 0); 10889 if (*mmaped == MAP_FAILED) { 10890 err = -errno; 10891 *mmaped = NULL; 10892 pr_warn("failed to re-mmap() map '%s': %d\n", 10893 bpf_map__name(map), err); 10894 return err; 10895 } 10896 } 10897 10898 return 0; 10899} 10900 10901int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 10902{ 10903 int i; 10904 10905 for (i = 0; i < s->prog_cnt; i++) { 10906 struct bpf_program *prog = *s->progs[i].prog; 10907 struct bpf_link **link = s->progs[i].link; 10908 const struct bpf_sec_def *sec_def; 10909 10910 if (!prog->load) 10911 continue; 10912 10913 sec_def = find_sec_def(prog->sec_name); 10914 if (!sec_def || !sec_def->attach_fn) 10915 continue; 10916 10917 *link = sec_def->attach_fn(sec_def, prog); 10918 if (IS_ERR(*link)) { 10919 pr_warn("failed to auto-attach program '%s': %ld\n", 10920 bpf_program__name(prog), PTR_ERR(*link)); 10921 return PTR_ERR(*link); 10922 } 10923 } 10924 10925 return 0; 10926} 10927 10928void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 10929{ 10930 int i; 10931 10932 for (i = 0; i < s->prog_cnt; i++) { 10933 struct bpf_link **link = s->progs[i].link; 10934 10935 bpf_link__destroy(*link); 10936 *link = NULL; 10937 } 10938} 10939 10940void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 10941{ 10942 if (!s) 10943 return; 10944 10945 if (s->progs) 10946 bpf_object__detach_skeleton(s); 10947 if (s->obj) 10948 bpf_object__close(*s->obj); 10949 free(s->maps); 10950 free(s->progs); 10951 free(s); 10952} 10953