1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3/* 4 * BTF-to-C type converter. 5 * 6 * Copyright (c) 2019 Facebook 7 */ 8 9#include <stdbool.h> 10#include <stddef.h> 11#include <stdlib.h> 12#include <string.h> 13#include <errno.h> 14#include <linux/err.h> 15#include <linux/btf.h> 16#include <linux/kernel.h> 17#include "btf.h" 18#include "hashmap.h" 19#include "libbpf.h" 20#include "libbpf_internal.h" 21 22static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t"; 23static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1; 24 25static const char *pfx(int lvl) 26{ 27 return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl]; 28} 29 30enum btf_dump_type_order_state { 31 NOT_ORDERED, 32 ORDERING, 33 ORDERED, 34}; 35 36enum btf_dump_type_emit_state { 37 NOT_EMITTED, 38 EMITTING, 39 EMITTED, 40}; 41 42/* per-type auxiliary state */ 43struct btf_dump_type_aux_state { 44 /* topological sorting state */ 45 enum btf_dump_type_order_state order_state: 2; 46 /* emitting state used to determine the need for forward declaration */ 47 enum btf_dump_type_emit_state emit_state: 2; 48 /* whether forward declaration was already emitted */ 49 __u8 fwd_emitted: 1; 50 /* whether unique non-duplicate name was already assigned */ 51 __u8 name_resolved: 1; 52 /* whether type is referenced from any other type */ 53 __u8 referenced: 1; 54}; 55 56struct btf_dump { 57 const struct btf *btf; 58 const struct btf_ext *btf_ext; 59 btf_dump_printf_fn_t printf_fn; 60 struct btf_dump_opts opts; 61 int ptr_sz; 62 bool strip_mods; 63 int last_id; 64 65 /* per-type auxiliary state */ 66 struct btf_dump_type_aux_state *type_states; 67 size_t type_states_cap; 68 /* per-type optional cached unique name, must be freed, if present */ 69 const char **cached_names; 70 size_t cached_names_cap; 71 72 /* topo-sorted list of dependent type definitions */ 73 __u32 *emit_queue; 74 int emit_queue_cap; 75 int emit_queue_cnt; 76 77 /* 78 * stack of type declarations (e.g., chain of modifiers, arrays, 79 * funcs, etc) 80 */ 81 __u32 *decl_stack; 82 int decl_stack_cap; 83 int decl_stack_cnt; 84 85 /* maps struct/union/enum name to a number of name occurrences */ 86 struct hashmap *type_names; 87 /* 88 * maps typedef identifiers and enum value names to a number of such 89 * name occurrences 90 */ 91 struct hashmap *ident_names; 92}; 93 94static size_t str_hash_fn(const void *key, void *ctx) 95{ 96 return str_hash(key); 97} 98 99static bool str_equal_fn(const void *a, const void *b, void *ctx) 100{ 101 return strcmp(a, b) == 0; 102} 103 104static const char *btf_name_of(const struct btf_dump *d, __u32 name_off) 105{ 106 return btf__name_by_offset(d->btf, name_off); 107} 108 109static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...) 110{ 111 va_list args; 112 113 va_start(args, fmt); 114 d->printf_fn(d->opts.ctx, fmt, args); 115 va_end(args); 116} 117 118static int btf_dump_mark_referenced(struct btf_dump *d); 119static int btf_dump_resize(struct btf_dump *d); 120 121struct btf_dump *btf_dump__new(const struct btf *btf, 122 const struct btf_ext *btf_ext, 123 const struct btf_dump_opts *opts, 124 btf_dump_printf_fn_t printf_fn) 125{ 126 struct btf_dump *d; 127 int err; 128 129 d = calloc(1, sizeof(struct btf_dump)); 130 if (!d) 131 return ERR_PTR(-ENOMEM); 132 133 d->btf = btf; 134 d->btf_ext = btf_ext; 135 d->printf_fn = printf_fn; 136 d->opts.ctx = opts ? opts->ctx : NULL; 137 d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *); 138 139 d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 140 if (IS_ERR(d->type_names)) { 141 err = PTR_ERR(d->type_names); 142 d->type_names = NULL; 143 goto err; 144 } 145 d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 146 if (IS_ERR(d->ident_names)) { 147 err = PTR_ERR(d->ident_names); 148 d->ident_names = NULL; 149 goto err; 150 } 151 152 err = btf_dump_resize(d); 153 if (err) 154 goto err; 155 156 return d; 157err: 158 btf_dump__free(d); 159 return ERR_PTR(err); 160} 161 162static int btf_dump_resize(struct btf_dump *d) 163{ 164 int err, last_id = btf__get_nr_types(d->btf); 165 166 if (last_id <= d->last_id) 167 return 0; 168 169 if (btf_ensure_mem((void **)&d->type_states, &d->type_states_cap, 170 sizeof(*d->type_states), last_id + 1)) 171 return -ENOMEM; 172 if (btf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap, 173 sizeof(*d->cached_names), last_id + 1)) 174 return -ENOMEM; 175 176 if (d->last_id == 0) { 177 /* VOID is special */ 178 d->type_states[0].order_state = ORDERED; 179 d->type_states[0].emit_state = EMITTED; 180 } 181 182 /* eagerly determine referenced types for anon enums */ 183 err = btf_dump_mark_referenced(d); 184 if (err) 185 return err; 186 187 d->last_id = last_id; 188 return 0; 189} 190 191static void btf_dump_free_names(struct hashmap *map) 192{ 193 size_t bkt; 194 struct hashmap_entry *cur; 195 196 hashmap__for_each_entry(map, cur, bkt) 197 free((void *)cur->key); 198 199 hashmap__free(map); 200} 201 202void btf_dump__free(struct btf_dump *d) 203{ 204 int i; 205 206 if (IS_ERR_OR_NULL(d)) 207 return; 208 209 free(d->type_states); 210 if (d->cached_names) { 211 /* any set cached name is owned by us and should be freed */ 212 for (i = 0; i <= d->last_id; i++) { 213 if (d->cached_names[i]) 214 free((void *)d->cached_names[i]); 215 } 216 } 217 free(d->cached_names); 218 free(d->emit_queue); 219 free(d->decl_stack); 220 btf_dump_free_names(d->type_names); 221 btf_dump_free_names(d->ident_names); 222 223 free(d); 224} 225 226static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr); 227static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id); 228 229/* 230 * Dump BTF type in a compilable C syntax, including all the necessary 231 * dependent types, necessary for compilation. If some of the dependent types 232 * were already emitted as part of previous btf_dump__dump_type() invocation 233 * for another type, they won't be emitted again. This API allows callers to 234 * filter out BTF types according to user-defined criterias and emitted only 235 * minimal subset of types, necessary to compile everything. Full struct/union 236 * definitions will still be emitted, even if the only usage is through 237 * pointer and could be satisfied with just a forward declaration. 238 * 239 * Dumping is done in two high-level passes: 240 * 1. Topologically sort type definitions to satisfy C rules of compilation. 241 * 2. Emit type definitions in C syntax. 242 * 243 * Returns 0 on success; <0, otherwise. 244 */ 245int btf_dump__dump_type(struct btf_dump *d, __u32 id) 246{ 247 int err, i; 248 249 if (id > btf__get_nr_types(d->btf)) 250 return -EINVAL; 251 252 err = btf_dump_resize(d); 253 if (err) 254 return err; 255 256 d->emit_queue_cnt = 0; 257 err = btf_dump_order_type(d, id, false); 258 if (err < 0) 259 return err; 260 261 for (i = 0; i < d->emit_queue_cnt; i++) 262 btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/); 263 264 return 0; 265} 266 267/* 268 * Mark all types that are referenced from any other type. This is used to 269 * determine top-level anonymous enums that need to be emitted as an 270 * independent type declarations. 271 * Anonymous enums come in two flavors: either embedded in a struct's field 272 * definition, in which case they have to be declared inline as part of field 273 * type declaration; or as a top-level anonymous enum, typically used for 274 * declaring global constants. It's impossible to distinguish between two 275 * without knowning whether given enum type was referenced from other type: 276 * top-level anonymous enum won't be referenced by anything, while embedded 277 * one will. 278 */ 279static int btf_dump_mark_referenced(struct btf_dump *d) 280{ 281 int i, j, n = btf__get_nr_types(d->btf); 282 const struct btf_type *t; 283 __u16 vlen; 284 285 for (i = d->last_id + 1; i <= n; i++) { 286 t = btf__type_by_id(d->btf, i); 287 vlen = btf_vlen(t); 288 289 switch (btf_kind(t)) { 290 case BTF_KIND_INT: 291 case BTF_KIND_ENUM: 292 case BTF_KIND_FWD: 293 break; 294 295 case BTF_KIND_VOLATILE: 296 case BTF_KIND_CONST: 297 case BTF_KIND_RESTRICT: 298 case BTF_KIND_PTR: 299 case BTF_KIND_TYPEDEF: 300 case BTF_KIND_FUNC: 301 case BTF_KIND_VAR: 302 d->type_states[t->type].referenced = 1; 303 break; 304 305 case BTF_KIND_ARRAY: { 306 const struct btf_array *a = btf_array(t); 307 308 d->type_states[a->index_type].referenced = 1; 309 d->type_states[a->type].referenced = 1; 310 break; 311 } 312 case BTF_KIND_STRUCT: 313 case BTF_KIND_UNION: { 314 const struct btf_member *m = btf_members(t); 315 316 for (j = 0; j < vlen; j++, m++) 317 d->type_states[m->type].referenced = 1; 318 break; 319 } 320 case BTF_KIND_FUNC_PROTO: { 321 const struct btf_param *p = btf_params(t); 322 323 for (j = 0; j < vlen; j++, p++) 324 d->type_states[p->type].referenced = 1; 325 break; 326 } 327 case BTF_KIND_DATASEC: { 328 const struct btf_var_secinfo *v = btf_var_secinfos(t); 329 330 for (j = 0; j < vlen; j++, v++) 331 d->type_states[v->type].referenced = 1; 332 break; 333 } 334 default: 335 return -EINVAL; 336 } 337 } 338 return 0; 339} 340 341static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id) 342{ 343 __u32 *new_queue; 344 size_t new_cap; 345 346 if (d->emit_queue_cnt >= d->emit_queue_cap) { 347 new_cap = max(16, d->emit_queue_cap * 3 / 2); 348 new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0])); 349 if (!new_queue) 350 return -ENOMEM; 351 d->emit_queue = new_queue; 352 d->emit_queue_cap = new_cap; 353 } 354 355 d->emit_queue[d->emit_queue_cnt++] = id; 356 return 0; 357} 358 359/* 360 * Determine order of emitting dependent types and specified type to satisfy 361 * C compilation rules. This is done through topological sorting with an 362 * additional complication which comes from C rules. The main idea for C is 363 * that if some type is "embedded" into a struct/union, it's size needs to be 364 * known at the time of definition of containing type. E.g., for: 365 * 366 * struct A {}; 367 * struct B { struct A x; } 368 * 369 * struct A *HAS* to be defined before struct B, because it's "embedded", 370 * i.e., it is part of struct B layout. But in the following case: 371 * 372 * struct A; 373 * struct B { struct A *x; } 374 * struct A {}; 375 * 376 * it's enough to just have a forward declaration of struct A at the time of 377 * struct B definition, as struct B has a pointer to struct A, so the size of 378 * field x is known without knowing struct A size: it's sizeof(void *). 379 * 380 * Unfortunately, there are some trickier cases we need to handle, e.g.: 381 * 382 * struct A {}; // if this was forward-declaration: compilation error 383 * struct B { 384 * struct { // anonymous struct 385 * struct A y; 386 * } *x; 387 * }; 388 * 389 * In this case, struct B's field x is a pointer, so it's size is known 390 * regardless of the size of (anonymous) struct it points to. But because this 391 * struct is anonymous and thus defined inline inside struct B, *and* it 392 * embeds struct A, compiler requires full definition of struct A to be known 393 * before struct B can be defined. This creates a transitive dependency 394 * between struct A and struct B. If struct A was forward-declared before 395 * struct B definition and fully defined after struct B definition, that would 396 * trigger compilation error. 397 * 398 * All this means that while we are doing topological sorting on BTF type 399 * graph, we need to determine relationships between different types (graph 400 * nodes): 401 * - weak link (relationship) between X and Y, if Y *CAN* be 402 * forward-declared at the point of X definition; 403 * - strong link, if Y *HAS* to be fully-defined before X can be defined. 404 * 405 * The rule is as follows. Given a chain of BTF types from X to Y, if there is 406 * BTF_KIND_PTR type in the chain and at least one non-anonymous type 407 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong. 408 * Weak/strong relationship is determined recursively during DFS traversal and 409 * is returned as a result from btf_dump_order_type(). 410 * 411 * btf_dump_order_type() is trying to avoid unnecessary forward declarations, 412 * but it is not guaranteeing that no extraneous forward declarations will be 413 * emitted. 414 * 415 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when 416 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT, 417 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the 418 * entire graph path, so depending where from one came to that BTF type, it 419 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM, 420 * once they are processed, there is no need to do it again, so they are 421 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces 422 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But 423 * in any case, once those are processed, no need to do it again, as the 424 * result won't change. 425 * 426 * Returns: 427 * - 1, if type is part of strong link (so there is strong topological 428 * ordering requirements); 429 * - 0, if type is part of weak link (so can be satisfied through forward 430 * declaration); 431 * - <0, on error (e.g., unsatisfiable type loop detected). 432 */ 433static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr) 434{ 435 /* 436 * Order state is used to detect strong link cycles, but only for BTF 437 * kinds that are or could be an independent definition (i.e., 438 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays, 439 * func_protos, modifiers are just means to get to these definitions. 440 * Int/void don't need definitions, they are assumed to be always 441 * properly defined. We also ignore datasec, var, and funcs for now. 442 * So for all non-defining kinds, we never even set ordering state, 443 * for defining kinds we set ORDERING and subsequently ORDERED if it 444 * forms a strong link. 445 */ 446 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 447 const struct btf_type *t; 448 __u16 vlen; 449 int err, i; 450 451 /* return true, letting typedefs know that it's ok to be emitted */ 452 if (tstate->order_state == ORDERED) 453 return 1; 454 455 t = btf__type_by_id(d->btf, id); 456 457 if (tstate->order_state == ORDERING) { 458 /* type loop, but resolvable through fwd declaration */ 459 if (btf_is_composite(t) && through_ptr && t->name_off != 0) 460 return 0; 461 pr_warn("unsatisfiable type cycle, id:[%u]\n", id); 462 return -ELOOP; 463 } 464 465 switch (btf_kind(t)) { 466 case BTF_KIND_INT: 467 tstate->order_state = ORDERED; 468 return 0; 469 470 case BTF_KIND_PTR: 471 err = btf_dump_order_type(d, t->type, true); 472 tstate->order_state = ORDERED; 473 return err; 474 475 case BTF_KIND_ARRAY: 476 return btf_dump_order_type(d, btf_array(t)->type, false); 477 478 case BTF_KIND_STRUCT: 479 case BTF_KIND_UNION: { 480 const struct btf_member *m = btf_members(t); 481 /* 482 * struct/union is part of strong link, only if it's embedded 483 * (so no ptr in a path) or it's anonymous (so has to be 484 * defined inline, even if declared through ptr) 485 */ 486 if (through_ptr && t->name_off != 0) 487 return 0; 488 489 tstate->order_state = ORDERING; 490 491 vlen = btf_vlen(t); 492 for (i = 0; i < vlen; i++, m++) { 493 err = btf_dump_order_type(d, m->type, false); 494 if (err < 0) 495 return err; 496 } 497 498 if (t->name_off != 0) { 499 err = btf_dump_add_emit_queue_id(d, id); 500 if (err < 0) 501 return err; 502 } 503 504 tstate->order_state = ORDERED; 505 return 1; 506 } 507 case BTF_KIND_ENUM: 508 case BTF_KIND_FWD: 509 /* 510 * non-anonymous or non-referenced enums are top-level 511 * declarations and should be emitted. Same logic can be 512 * applied to FWDs, it won't hurt anyways. 513 */ 514 if (t->name_off != 0 || !tstate->referenced) { 515 err = btf_dump_add_emit_queue_id(d, id); 516 if (err) 517 return err; 518 } 519 tstate->order_state = ORDERED; 520 return 1; 521 522 case BTF_KIND_TYPEDEF: { 523 int is_strong; 524 525 is_strong = btf_dump_order_type(d, t->type, through_ptr); 526 if (is_strong < 0) 527 return is_strong; 528 529 /* typedef is similar to struct/union w.r.t. fwd-decls */ 530 if (through_ptr && !is_strong) 531 return 0; 532 533 /* typedef is always a named definition */ 534 err = btf_dump_add_emit_queue_id(d, id); 535 if (err) 536 return err; 537 538 d->type_states[id].order_state = ORDERED; 539 return 1; 540 } 541 case BTF_KIND_VOLATILE: 542 case BTF_KIND_CONST: 543 case BTF_KIND_RESTRICT: 544 return btf_dump_order_type(d, t->type, through_ptr); 545 546 case BTF_KIND_FUNC_PROTO: { 547 const struct btf_param *p = btf_params(t); 548 bool is_strong; 549 550 err = btf_dump_order_type(d, t->type, through_ptr); 551 if (err < 0) 552 return err; 553 is_strong = err > 0; 554 555 vlen = btf_vlen(t); 556 for (i = 0; i < vlen; i++, p++) { 557 err = btf_dump_order_type(d, p->type, through_ptr); 558 if (err < 0) 559 return err; 560 if (err > 0) 561 is_strong = true; 562 } 563 return is_strong; 564 } 565 case BTF_KIND_FUNC: 566 case BTF_KIND_VAR: 567 case BTF_KIND_DATASEC: 568 d->type_states[id].order_state = ORDERED; 569 return 0; 570 571 default: 572 return -EINVAL; 573 } 574} 575 576static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 577 const struct btf_type *t); 578 579static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 580 const struct btf_type *t); 581static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id, 582 const struct btf_type *t, int lvl); 583 584static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 585 const struct btf_type *t); 586static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 587 const struct btf_type *t, int lvl); 588 589static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 590 const struct btf_type *t); 591 592static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 593 const struct btf_type *t, int lvl); 594 595/* a local view into a shared stack */ 596struct id_stack { 597 const __u32 *ids; 598 int cnt; 599}; 600 601static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 602 const char *fname, int lvl); 603static void btf_dump_emit_type_chain(struct btf_dump *d, 604 struct id_stack *decl_stack, 605 const char *fname, int lvl); 606 607static const char *btf_dump_type_name(struct btf_dump *d, __u32 id); 608static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id); 609static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 610 const char *orig_name); 611 612static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id) 613{ 614 const struct btf_type *t = btf__type_by_id(d->btf, id); 615 616 /* __builtin_va_list is a compiler built-in, which causes compilation 617 * errors, when compiling w/ different compiler, then used to compile 618 * original code (e.g., GCC to compile kernel, Clang to use generated 619 * C header from BTF). As it is built-in, it should be already defined 620 * properly internally in compiler. 621 */ 622 if (t->name_off == 0) 623 return false; 624 return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0; 625} 626 627/* 628 * Emit C-syntax definitions of types from chains of BTF types. 629 * 630 * High-level handling of determining necessary forward declarations are handled 631 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type 632 * declarations/definitions in C syntax are handled by a combo of 633 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to 634 * corresponding btf_dump_emit_*_{def,fwd}() functions. 635 * 636 * We also keep track of "containing struct/union type ID" to determine when 637 * we reference it from inside and thus can avoid emitting unnecessary forward 638 * declaration. 639 * 640 * This algorithm is designed in such a way, that even if some error occurs 641 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF 642 * that doesn't comply to C rules completely), algorithm will try to proceed 643 * and produce as much meaningful output as possible. 644 */ 645static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id) 646{ 647 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 648 bool top_level_def = cont_id == 0; 649 const struct btf_type *t; 650 __u16 kind; 651 652 if (tstate->emit_state == EMITTED) 653 return; 654 655 t = btf__type_by_id(d->btf, id); 656 kind = btf_kind(t); 657 658 if (tstate->emit_state == EMITTING) { 659 if (tstate->fwd_emitted) 660 return; 661 662 switch (kind) { 663 case BTF_KIND_STRUCT: 664 case BTF_KIND_UNION: 665 /* 666 * if we are referencing a struct/union that we are 667 * part of - then no need for fwd declaration 668 */ 669 if (id == cont_id) 670 return; 671 if (t->name_off == 0) { 672 pr_warn("anonymous struct/union loop, id:[%u]\n", 673 id); 674 return; 675 } 676 btf_dump_emit_struct_fwd(d, id, t); 677 btf_dump_printf(d, ";\n\n"); 678 tstate->fwd_emitted = 1; 679 break; 680 case BTF_KIND_TYPEDEF: 681 /* 682 * for typedef fwd_emitted means typedef definition 683 * was emitted, but it can be used only for "weak" 684 * references through pointer only, not for embedding 685 */ 686 if (!btf_dump_is_blacklisted(d, id)) { 687 btf_dump_emit_typedef_def(d, id, t, 0); 688 btf_dump_printf(d, ";\n\n"); 689 } 690 tstate->fwd_emitted = 1; 691 break; 692 default: 693 break; 694 } 695 696 return; 697 } 698 699 switch (kind) { 700 case BTF_KIND_INT: 701 /* Emit type alias definitions if necessary */ 702 btf_dump_emit_missing_aliases(d, id, t); 703 704 tstate->emit_state = EMITTED; 705 break; 706 case BTF_KIND_ENUM: 707 if (top_level_def) { 708 btf_dump_emit_enum_def(d, id, t, 0); 709 btf_dump_printf(d, ";\n\n"); 710 } 711 tstate->emit_state = EMITTED; 712 break; 713 case BTF_KIND_PTR: 714 case BTF_KIND_VOLATILE: 715 case BTF_KIND_CONST: 716 case BTF_KIND_RESTRICT: 717 btf_dump_emit_type(d, t->type, cont_id); 718 break; 719 case BTF_KIND_ARRAY: 720 btf_dump_emit_type(d, btf_array(t)->type, cont_id); 721 break; 722 case BTF_KIND_FWD: 723 btf_dump_emit_fwd_def(d, id, t); 724 btf_dump_printf(d, ";\n\n"); 725 tstate->emit_state = EMITTED; 726 break; 727 case BTF_KIND_TYPEDEF: 728 tstate->emit_state = EMITTING; 729 btf_dump_emit_type(d, t->type, id); 730 /* 731 * typedef can server as both definition and forward 732 * declaration; at this stage someone depends on 733 * typedef as a forward declaration (refers to it 734 * through pointer), so unless we already did it, 735 * emit typedef as a forward declaration 736 */ 737 if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) { 738 btf_dump_emit_typedef_def(d, id, t, 0); 739 btf_dump_printf(d, ";\n\n"); 740 } 741 tstate->emit_state = EMITTED; 742 break; 743 case BTF_KIND_STRUCT: 744 case BTF_KIND_UNION: 745 tstate->emit_state = EMITTING; 746 /* if it's a top-level struct/union definition or struct/union 747 * is anonymous, then in C we'll be emitting all fields and 748 * their types (as opposed to just `struct X`), so we need to 749 * make sure that all types, referenced from struct/union 750 * members have necessary forward-declarations, where 751 * applicable 752 */ 753 if (top_level_def || t->name_off == 0) { 754 const struct btf_member *m = btf_members(t); 755 __u16 vlen = btf_vlen(t); 756 int i, new_cont_id; 757 758 new_cont_id = t->name_off == 0 ? cont_id : id; 759 for (i = 0; i < vlen; i++, m++) 760 btf_dump_emit_type(d, m->type, new_cont_id); 761 } else if (!tstate->fwd_emitted && id != cont_id) { 762 btf_dump_emit_struct_fwd(d, id, t); 763 btf_dump_printf(d, ";\n\n"); 764 tstate->fwd_emitted = 1; 765 } 766 767 if (top_level_def) { 768 btf_dump_emit_struct_def(d, id, t, 0); 769 btf_dump_printf(d, ";\n\n"); 770 tstate->emit_state = EMITTED; 771 } else { 772 tstate->emit_state = NOT_EMITTED; 773 } 774 break; 775 case BTF_KIND_FUNC_PROTO: { 776 const struct btf_param *p = btf_params(t); 777 __u16 vlen = btf_vlen(t); 778 int i; 779 780 btf_dump_emit_type(d, t->type, cont_id); 781 for (i = 0; i < vlen; i++, p++) 782 btf_dump_emit_type(d, p->type, cont_id); 783 784 break; 785 } 786 default: 787 break; 788 } 789} 790 791static bool btf_is_struct_packed(const struct btf *btf, __u32 id, 792 const struct btf_type *t) 793{ 794 const struct btf_member *m; 795 int max_align = 1, align, i, bit_sz; 796 __u16 vlen; 797 798 m = btf_members(t); 799 vlen = btf_vlen(t); 800 /* all non-bitfield fields have to be naturally aligned */ 801 for (i = 0; i < vlen; i++, m++) { 802 align = btf__align_of(btf, m->type); 803 bit_sz = btf_member_bitfield_size(t, i); 804 if (align && bit_sz == 0 && m->offset % (8 * align) != 0) 805 return true; 806 max_align = max(align, max_align); 807 } 808 /* size of a non-packed struct has to be a multiple of its alignment */ 809 if (t->size % max_align != 0) 810 return true; 811 /* 812 * if original struct was marked as packed, but its layout is 813 * naturally aligned, we'll detect that it's not packed 814 */ 815 return false; 816} 817 818static void btf_dump_emit_bit_padding(const struct btf_dump *d, 819 int cur_off, int next_off, int next_align, 820 bool in_bitfield, int lvl) 821{ 822 const struct { 823 const char *name; 824 int bits; 825 } pads[] = { 826 {"long", d->ptr_sz * 8}, {"int", 32}, {"short", 16}, {"char", 8} 827 }; 828 int new_off, pad_bits, bits, i; 829 const char *pad_type; 830 831 if (cur_off >= next_off) 832 return; /* no gap */ 833 834 /* For filling out padding we want to take advantage of 835 * natural alignment rules to minimize unnecessary explicit 836 * padding. First, we find the largest type (among long, int, 837 * short, or char) that can be used to force naturally aligned 838 * boundary. Once determined, we'll use such type to fill in 839 * the remaining padding gap. In some cases we can rely on 840 * compiler filling some gaps, but sometimes we need to force 841 * alignment to close natural alignment with markers like 842 * `long: 0` (this is always the case for bitfields). Note 843 * that even if struct itself has, let's say 4-byte alignment 844 * (i.e., it only uses up to int-aligned types), using `long: 845 * X;` explicit padding doesn't actually change struct's 846 * overall alignment requirements, but compiler does take into 847 * account that type's (long, in this example) natural 848 * alignment requirements when adding implicit padding. We use 849 * this fact heavily and don't worry about ruining correct 850 * struct alignment requirement. 851 */ 852 for (i = 0; i < ARRAY_SIZE(pads); i++) { 853 pad_bits = pads[i].bits; 854 pad_type = pads[i].name; 855 856 new_off = roundup(cur_off, pad_bits); 857 if (new_off <= next_off) 858 break; 859 } 860 861 if (new_off > cur_off && new_off <= next_off) { 862 /* We need explicit `<type>: 0` aligning mark if next 863 * field is right on alignment offset and its 864 * alignment requirement is less strict than <type>'s 865 * alignment (so compiler won't naturally align to the 866 * offset we expect), or if subsequent `<type>: X`, 867 * will actually completely fit in the remaining hole, 868 * making compiler basically ignore `<type>: X` 869 * completely. 870 */ 871 if (in_bitfield || 872 (new_off == next_off && roundup(cur_off, next_align * 8) != new_off) || 873 (new_off != next_off && next_off - new_off <= new_off - cur_off)) 874 /* but for bitfields we'll emit explicit bit count */ 875 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, 876 in_bitfield ? new_off - cur_off : 0); 877 cur_off = new_off; 878 } 879 880 /* Now we know we start at naturally aligned offset for a chosen 881 * padding type (long, int, short, or char), and so the rest is just 882 * a straightforward filling of remaining padding gap with full 883 * `<type>: sizeof(<type>);` markers, except for the last one, which 884 * might need smaller than sizeof(<type>) padding. 885 */ 886 while (cur_off != next_off) { 887 bits = min(next_off - cur_off, pad_bits); 888 if (bits == pad_bits) { 889 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits); 890 cur_off += bits; 891 continue; 892 } 893 /* For the remainder padding that doesn't cover entire 894 * pad_type bit length, we pick the smallest necessary type. 895 * This is pure aesthetics, we could have just used `long`, 896 * but having smallest necessary one communicates better the 897 * scale of the padding gap. 898 */ 899 for (i = ARRAY_SIZE(pads) - 1; i >= 0; i--) { 900 pad_type = pads[i].name; 901 pad_bits = pads[i].bits; 902 if (pad_bits < bits) 903 continue; 904 905 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, bits); 906 cur_off += bits; 907 break; 908 } 909 } 910} 911 912static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 913 const struct btf_type *t) 914{ 915 btf_dump_printf(d, "%s %s", 916 btf_is_struct(t) ? "struct" : "union", 917 btf_dump_type_name(d, id)); 918} 919 920static void btf_dump_emit_struct_def(struct btf_dump *d, 921 __u32 id, 922 const struct btf_type *t, 923 int lvl) 924{ 925 const struct btf_member *m = btf_members(t); 926 bool is_struct = btf_is_struct(t); 927 bool packed, prev_bitfield = false; 928 int align, i, off = 0; 929 __u16 vlen = btf_vlen(t); 930 931 align = btf__align_of(d->btf, id); 932 packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0; 933 934 btf_dump_printf(d, "%s%s%s {", 935 is_struct ? "struct" : "union", 936 t->name_off ? " " : "", 937 btf_dump_type_name(d, id)); 938 939 for (i = 0; i < vlen; i++, m++) { 940 const char *fname; 941 int m_off, m_sz, m_align; 942 bool in_bitfield; 943 944 fname = btf_name_of(d, m->name_off); 945 m_sz = btf_member_bitfield_size(t, i); 946 m_off = btf_member_bit_offset(t, i); 947 m_align = packed ? 1 : btf__align_of(d->btf, m->type); 948 949 in_bitfield = prev_bitfield && m_sz != 0; 950 951 btf_dump_emit_bit_padding(d, off, m_off, m_align, in_bitfield, lvl + 1); 952 btf_dump_printf(d, "\n%s", pfx(lvl + 1)); 953 btf_dump_emit_type_decl(d, m->type, fname, lvl + 1); 954 955 if (m_sz) { 956 btf_dump_printf(d, ": %d", m_sz); 957 off = m_off + m_sz; 958 prev_bitfield = true; 959 } else { 960 m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type)); 961 off = m_off + m_sz * 8; 962 prev_bitfield = false; 963 } 964 965 btf_dump_printf(d, ";"); 966 } 967 968 /* pad at the end, if necessary */ 969 if (is_struct) 970 btf_dump_emit_bit_padding(d, off, t->size * 8, align, false, lvl + 1); 971 972 /* 973 * Keep `struct empty {}` on a single line, 974 * only print newline when there are regular or padding fields. 975 */ 976 if (vlen || t->size) { 977 btf_dump_printf(d, "\n"); 978 btf_dump_printf(d, "%s}", pfx(lvl)); 979 } else { 980 btf_dump_printf(d, "}"); 981 } 982 if (packed) 983 btf_dump_printf(d, " __attribute__((packed))"); 984} 985 986static const char *missing_base_types[][2] = { 987 /* 988 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm 989 * SIMD intrinsics. Alias them to standard base types. 990 */ 991 { "__Poly8_t", "unsigned char" }, 992 { "__Poly16_t", "unsigned short" }, 993 { "__Poly64_t", "unsigned long long" }, 994 { "__Poly128_t", "unsigned __int128" }, 995}; 996 997static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 998 const struct btf_type *t) 999{ 1000 const char *name = btf_dump_type_name(d, id); 1001 int i; 1002 1003 for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) { 1004 if (strcmp(name, missing_base_types[i][0]) == 0) { 1005 btf_dump_printf(d, "typedef %s %s;\n\n", 1006 missing_base_types[i][1], name); 1007 break; 1008 } 1009 } 1010} 1011 1012static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 1013 const struct btf_type *t) 1014{ 1015 btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id)); 1016} 1017 1018static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 1019 const struct btf_type *t, 1020 int lvl) 1021{ 1022 const struct btf_enum *v = btf_enum(t); 1023 __u16 vlen = btf_vlen(t); 1024 const char *name; 1025 size_t dup_cnt; 1026 int i; 1027 1028 btf_dump_printf(d, "enum%s%s", 1029 t->name_off ? " " : "", 1030 btf_dump_type_name(d, id)); 1031 1032 if (vlen) { 1033 btf_dump_printf(d, " {"); 1034 for (i = 0; i < vlen; i++, v++) { 1035 name = btf_name_of(d, v->name_off); 1036 /* enumerators share namespace with typedef idents */ 1037 dup_cnt = btf_dump_name_dups(d, d->ident_names, name); 1038 if (dup_cnt > 1) { 1039 btf_dump_printf(d, "\n%s%s___%zu = %u,", 1040 pfx(lvl + 1), name, dup_cnt, 1041 (__u32)v->val); 1042 } else { 1043 btf_dump_printf(d, "\n%s%s = %u,", 1044 pfx(lvl + 1), name, 1045 (__u32)v->val); 1046 } 1047 } 1048 btf_dump_printf(d, "\n%s}", pfx(lvl)); 1049 } 1050} 1051 1052static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 1053 const struct btf_type *t) 1054{ 1055 const char *name = btf_dump_type_name(d, id); 1056 1057 if (btf_kflag(t)) 1058 btf_dump_printf(d, "union %s", name); 1059 else 1060 btf_dump_printf(d, "struct %s", name); 1061} 1062 1063static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 1064 const struct btf_type *t, int lvl) 1065{ 1066 const char *name = btf_dump_ident_name(d, id); 1067 1068 /* 1069 * Old GCC versions are emitting invalid typedef for __gnuc_va_list 1070 * pointing to VOID. This generates warnings from btf_dump() and 1071 * results in uncompilable header file, so we are fixing it up here 1072 * with valid typedef into __builtin_va_list. 1073 */ 1074 if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) { 1075 btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list"); 1076 return; 1077 } 1078 1079 btf_dump_printf(d, "typedef "); 1080 btf_dump_emit_type_decl(d, t->type, name, lvl); 1081} 1082 1083static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id) 1084{ 1085 __u32 *new_stack; 1086 size_t new_cap; 1087 1088 if (d->decl_stack_cnt >= d->decl_stack_cap) { 1089 new_cap = max(16, d->decl_stack_cap * 3 / 2); 1090 new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0])); 1091 if (!new_stack) 1092 return -ENOMEM; 1093 d->decl_stack = new_stack; 1094 d->decl_stack_cap = new_cap; 1095 } 1096 1097 d->decl_stack[d->decl_stack_cnt++] = id; 1098 1099 return 0; 1100} 1101 1102/* 1103 * Emit type declaration (e.g., field type declaration in a struct or argument 1104 * declaration in function prototype) in correct C syntax. 1105 * 1106 * For most types it's trivial, but there are few quirky type declaration 1107 * cases worth mentioning: 1108 * - function prototypes (especially nesting of function prototypes); 1109 * - arrays; 1110 * - const/volatile/restrict for pointers vs other types. 1111 * 1112 * For a good discussion of *PARSING* C syntax (as a human), see 1113 * Peter van der Linden's "Expert C Programming: Deep C Secrets", 1114 * Ch.3 "Unscrambling Declarations in C". 1115 * 1116 * It won't help with BTF to C conversion much, though, as it's an opposite 1117 * problem. So we came up with this algorithm in reverse to van der Linden's 1118 * parsing algorithm. It goes from structured BTF representation of type 1119 * declaration to a valid compilable C syntax. 1120 * 1121 * For instance, consider this C typedef: 1122 * typedef const int * const * arr[10] arr_t; 1123 * It will be represented in BTF with this chain of BTF types: 1124 * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int] 1125 * 1126 * Notice how [const] modifier always goes before type it modifies in BTF type 1127 * graph, but in C syntax, const/volatile/restrict modifiers are written to 1128 * the right of pointers, but to the left of other types. There are also other 1129 * quirks, like function pointers, arrays of them, functions returning other 1130 * functions, etc. 1131 * 1132 * We handle that by pushing all the types to a stack, until we hit "terminal" 1133 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on 1134 * top of a stack, modifiers are handled differently. Array/function pointers 1135 * have also wildly different syntax and how nesting of them are done. See 1136 * code for authoritative definition. 1137 * 1138 * To avoid allocating new stack for each independent chain of BTF types, we 1139 * share one bigger stack, with each chain working only on its own local view 1140 * of a stack frame. Some care is required to "pop" stack frames after 1141 * processing type declaration chain. 1142 */ 1143int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id, 1144 const struct btf_dump_emit_type_decl_opts *opts) 1145{ 1146 const char *fname; 1147 int lvl, err; 1148 1149 if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts)) 1150 return -EINVAL; 1151 1152 err = btf_dump_resize(d); 1153 if (err) 1154 return -EINVAL; 1155 1156 fname = OPTS_GET(opts, field_name, ""); 1157 lvl = OPTS_GET(opts, indent_level, 0); 1158 d->strip_mods = OPTS_GET(opts, strip_mods, false); 1159 btf_dump_emit_type_decl(d, id, fname, lvl); 1160 d->strip_mods = false; 1161 return 0; 1162} 1163 1164static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 1165 const char *fname, int lvl) 1166{ 1167 struct id_stack decl_stack; 1168 const struct btf_type *t; 1169 int err, stack_start; 1170 1171 stack_start = d->decl_stack_cnt; 1172 for (;;) { 1173 t = btf__type_by_id(d->btf, id); 1174 if (d->strip_mods && btf_is_mod(t)) 1175 goto skip_mod; 1176 1177 err = btf_dump_push_decl_stack_id(d, id); 1178 if (err < 0) { 1179 /* 1180 * if we don't have enough memory for entire type decl 1181 * chain, restore stack, emit warning, and try to 1182 * proceed nevertheless 1183 */ 1184 pr_warn("not enough memory for decl stack:%d", err); 1185 d->decl_stack_cnt = stack_start; 1186 return; 1187 } 1188skip_mod: 1189 /* VOID */ 1190 if (id == 0) 1191 break; 1192 1193 switch (btf_kind(t)) { 1194 case BTF_KIND_PTR: 1195 case BTF_KIND_VOLATILE: 1196 case BTF_KIND_CONST: 1197 case BTF_KIND_RESTRICT: 1198 case BTF_KIND_FUNC_PROTO: 1199 id = t->type; 1200 break; 1201 case BTF_KIND_ARRAY: 1202 id = btf_array(t)->type; 1203 break; 1204 case BTF_KIND_INT: 1205 case BTF_KIND_ENUM: 1206 case BTF_KIND_FWD: 1207 case BTF_KIND_STRUCT: 1208 case BTF_KIND_UNION: 1209 case BTF_KIND_TYPEDEF: 1210 goto done; 1211 default: 1212 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1213 btf_kind(t), id); 1214 goto done; 1215 } 1216 } 1217done: 1218 /* 1219 * We might be inside a chain of declarations (e.g., array of function 1220 * pointers returning anonymous (so inlined) structs, having another 1221 * array field). Each of those needs its own "stack frame" to handle 1222 * emitting of declarations. Those stack frames are non-overlapping 1223 * portions of shared btf_dump->decl_stack. To make it a bit nicer to 1224 * handle this set of nested stacks, we create a view corresponding to 1225 * our own "stack frame" and work with it as an independent stack. 1226 * We'll need to clean up after emit_type_chain() returns, though. 1227 */ 1228 decl_stack.ids = d->decl_stack + stack_start; 1229 decl_stack.cnt = d->decl_stack_cnt - stack_start; 1230 btf_dump_emit_type_chain(d, &decl_stack, fname, lvl); 1231 /* 1232 * emit_type_chain() guarantees that it will pop its entire decl_stack 1233 * frame before returning. But it works with a read-only view into 1234 * decl_stack, so it doesn't actually pop anything from the 1235 * perspective of shared btf_dump->decl_stack, per se. We need to 1236 * reset decl_stack state to how it was before us to avoid it growing 1237 * all the time. 1238 */ 1239 d->decl_stack_cnt = stack_start; 1240} 1241 1242static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack) 1243{ 1244 const struct btf_type *t; 1245 __u32 id; 1246 1247 while (decl_stack->cnt) { 1248 id = decl_stack->ids[decl_stack->cnt - 1]; 1249 t = btf__type_by_id(d->btf, id); 1250 1251 switch (btf_kind(t)) { 1252 case BTF_KIND_VOLATILE: 1253 btf_dump_printf(d, "volatile "); 1254 break; 1255 case BTF_KIND_CONST: 1256 btf_dump_printf(d, "const "); 1257 break; 1258 case BTF_KIND_RESTRICT: 1259 btf_dump_printf(d, "restrict "); 1260 break; 1261 default: 1262 return; 1263 } 1264 decl_stack->cnt--; 1265 } 1266} 1267 1268static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack) 1269{ 1270 const struct btf_type *t; 1271 __u32 id; 1272 1273 while (decl_stack->cnt) { 1274 id = decl_stack->ids[decl_stack->cnt - 1]; 1275 t = btf__type_by_id(d->btf, id); 1276 if (!btf_is_mod(t)) 1277 return; 1278 decl_stack->cnt--; 1279 } 1280} 1281 1282static void btf_dump_emit_name(const struct btf_dump *d, 1283 const char *name, bool last_was_ptr) 1284{ 1285 bool separate = name[0] && !last_was_ptr; 1286 1287 btf_dump_printf(d, "%s%s", separate ? " " : "", name); 1288} 1289 1290static void btf_dump_emit_type_chain(struct btf_dump *d, 1291 struct id_stack *decls, 1292 const char *fname, int lvl) 1293{ 1294 /* 1295 * last_was_ptr is used to determine if we need to separate pointer 1296 * asterisk (*) from previous part of type signature with space, so 1297 * that we get `int ***`, instead of `int * * *`. We default to true 1298 * for cases where we have single pointer in a chain. E.g., in ptr -> 1299 * func_proto case. func_proto will start a new emit_type_chain call 1300 * with just ptr, which should be emitted as (*) or (*<fname>), so we 1301 * don't want to prepend space for that last pointer. 1302 */ 1303 bool last_was_ptr = true; 1304 const struct btf_type *t; 1305 const char *name; 1306 __u16 kind; 1307 __u32 id; 1308 1309 while (decls->cnt) { 1310 id = decls->ids[--decls->cnt]; 1311 if (id == 0) { 1312 /* VOID is a special snowflake */ 1313 btf_dump_emit_mods(d, decls); 1314 btf_dump_printf(d, "void"); 1315 last_was_ptr = false; 1316 continue; 1317 } 1318 1319 t = btf__type_by_id(d->btf, id); 1320 kind = btf_kind(t); 1321 1322 switch (kind) { 1323 case BTF_KIND_INT: 1324 btf_dump_emit_mods(d, decls); 1325 name = btf_name_of(d, t->name_off); 1326 btf_dump_printf(d, "%s", name); 1327 break; 1328 case BTF_KIND_STRUCT: 1329 case BTF_KIND_UNION: 1330 btf_dump_emit_mods(d, decls); 1331 /* inline anonymous struct/union */ 1332 if (t->name_off == 0) 1333 btf_dump_emit_struct_def(d, id, t, lvl); 1334 else 1335 btf_dump_emit_struct_fwd(d, id, t); 1336 break; 1337 case BTF_KIND_ENUM: 1338 btf_dump_emit_mods(d, decls); 1339 /* inline anonymous enum */ 1340 if (t->name_off == 0) 1341 btf_dump_emit_enum_def(d, id, t, lvl); 1342 else 1343 btf_dump_emit_enum_fwd(d, id, t); 1344 break; 1345 case BTF_KIND_FWD: 1346 btf_dump_emit_mods(d, decls); 1347 btf_dump_emit_fwd_def(d, id, t); 1348 break; 1349 case BTF_KIND_TYPEDEF: 1350 btf_dump_emit_mods(d, decls); 1351 btf_dump_printf(d, "%s", btf_dump_ident_name(d, id)); 1352 break; 1353 case BTF_KIND_PTR: 1354 btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *"); 1355 break; 1356 case BTF_KIND_VOLATILE: 1357 btf_dump_printf(d, " volatile"); 1358 break; 1359 case BTF_KIND_CONST: 1360 btf_dump_printf(d, " const"); 1361 break; 1362 case BTF_KIND_RESTRICT: 1363 btf_dump_printf(d, " restrict"); 1364 break; 1365 case BTF_KIND_ARRAY: { 1366 const struct btf_array *a = btf_array(t); 1367 const struct btf_type *next_t; 1368 __u32 next_id; 1369 bool multidim; 1370 /* 1371 * GCC has a bug 1372 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354) 1373 * which causes it to emit extra const/volatile 1374 * modifiers for an array, if array's element type has 1375 * const/volatile modifiers. Clang doesn't do that. 1376 * In general, it doesn't seem very meaningful to have 1377 * a const/volatile modifier for array, so we are 1378 * going to silently skip them here. 1379 */ 1380 btf_dump_drop_mods(d, decls); 1381 1382 if (decls->cnt == 0) { 1383 btf_dump_emit_name(d, fname, last_was_ptr); 1384 btf_dump_printf(d, "[%u]", a->nelems); 1385 return; 1386 } 1387 1388 next_id = decls->ids[decls->cnt - 1]; 1389 next_t = btf__type_by_id(d->btf, next_id); 1390 multidim = btf_is_array(next_t); 1391 /* we need space if we have named non-pointer */ 1392 if (fname[0] && !last_was_ptr) 1393 btf_dump_printf(d, " "); 1394 /* no parentheses for multi-dimensional array */ 1395 if (!multidim) 1396 btf_dump_printf(d, "("); 1397 btf_dump_emit_type_chain(d, decls, fname, lvl); 1398 if (!multidim) 1399 btf_dump_printf(d, ")"); 1400 btf_dump_printf(d, "[%u]", a->nelems); 1401 return; 1402 } 1403 case BTF_KIND_FUNC_PROTO: { 1404 const struct btf_param *p = btf_params(t); 1405 __u16 vlen = btf_vlen(t); 1406 int i; 1407 1408 /* 1409 * GCC emits extra volatile qualifier for 1410 * __attribute__((noreturn)) function pointers. Clang 1411 * doesn't do it. It's a GCC quirk for backwards 1412 * compatibility with code written for GCC <2.5. So, 1413 * similarly to extra qualifiers for array, just drop 1414 * them, instead of handling them. 1415 */ 1416 btf_dump_drop_mods(d, decls); 1417 if (decls->cnt) { 1418 btf_dump_printf(d, " ("); 1419 btf_dump_emit_type_chain(d, decls, fname, lvl); 1420 btf_dump_printf(d, ")"); 1421 } else { 1422 btf_dump_emit_name(d, fname, last_was_ptr); 1423 } 1424 btf_dump_printf(d, "("); 1425 /* 1426 * Clang for BPF target generates func_proto with no 1427 * args as a func_proto with a single void arg (e.g., 1428 * `int (*f)(void)` vs just `int (*f)()`). We are 1429 * going to pretend there are no args for such case. 1430 */ 1431 if (vlen == 1 && p->type == 0) { 1432 btf_dump_printf(d, ")"); 1433 return; 1434 } 1435 1436 for (i = 0; i < vlen; i++, p++) { 1437 if (i > 0) 1438 btf_dump_printf(d, ", "); 1439 1440 /* last arg of type void is vararg */ 1441 if (i == vlen - 1 && p->type == 0) { 1442 btf_dump_printf(d, "..."); 1443 break; 1444 } 1445 1446 name = btf_name_of(d, p->name_off); 1447 btf_dump_emit_type_decl(d, p->type, name, lvl); 1448 } 1449 1450 btf_dump_printf(d, ")"); 1451 return; 1452 } 1453 default: 1454 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1455 kind, id); 1456 return; 1457 } 1458 1459 last_was_ptr = kind == BTF_KIND_PTR; 1460 } 1461 1462 btf_dump_emit_name(d, fname, last_was_ptr); 1463} 1464 1465/* return number of duplicates (occurrences) of a given name */ 1466static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 1467 const char *orig_name) 1468{ 1469 char *old_name, *new_name; 1470 size_t dup_cnt = 0; 1471 int err; 1472 1473 new_name = strdup(orig_name); 1474 if (!new_name) 1475 return 1; 1476 1477 hashmap__find(name_map, orig_name, (void **)&dup_cnt); 1478 dup_cnt++; 1479 1480 err = hashmap__set(name_map, new_name, (void *)dup_cnt, 1481 (const void **)&old_name, NULL); 1482 if (err) 1483 free(new_name); 1484 1485 free(old_name); 1486 1487 return dup_cnt; 1488} 1489 1490static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id, 1491 struct hashmap *name_map) 1492{ 1493 struct btf_dump_type_aux_state *s = &d->type_states[id]; 1494 const struct btf_type *t = btf__type_by_id(d->btf, id); 1495 const char *orig_name = btf_name_of(d, t->name_off); 1496 const char **cached_name = &d->cached_names[id]; 1497 size_t dup_cnt; 1498 1499 if (t->name_off == 0) 1500 return ""; 1501 1502 if (s->name_resolved) 1503 return *cached_name ? *cached_name : orig_name; 1504 1505 if (btf_is_fwd(t) || (btf_is_enum(t) && btf_vlen(t) == 0)) { 1506 s->name_resolved = 1; 1507 return orig_name; 1508 } 1509 1510 dup_cnt = btf_dump_name_dups(d, name_map, orig_name); 1511 if (dup_cnt > 1) { 1512 const size_t max_len = 256; 1513 char new_name[max_len]; 1514 1515 snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt); 1516 *cached_name = strdup(new_name); 1517 } 1518 1519 s->name_resolved = 1; 1520 return *cached_name ? *cached_name : orig_name; 1521} 1522 1523static const char *btf_dump_type_name(struct btf_dump *d, __u32 id) 1524{ 1525 return btf_dump_resolve_name(d, id, d->type_names); 1526} 1527 1528static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id) 1529{ 1530 return btf_dump_resolve_name(d, id, d->ident_names); 1531} 1532