xref: /kernel/linux/linux-5.10/tools/lib/bpf/btf.c (revision 8c2ecf20)
1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2/* Copyright (c) 2018 Facebook */
3
4#include <byteswap.h>
5#include <endian.h>
6#include <stdio.h>
7#include <stdlib.h>
8#include <string.h>
9#include <fcntl.h>
10#include <unistd.h>
11#include <errno.h>
12#include <sys/utsname.h>
13#include <sys/param.h>
14#include <sys/stat.h>
15#include <linux/kernel.h>
16#include <linux/err.h>
17#include <linux/btf.h>
18#include <gelf.h>
19#include "btf.h"
20#include "bpf.h"
21#include "libbpf.h"
22#include "libbpf_internal.h"
23#include "hashmap.h"
24
25#define BTF_MAX_NR_TYPES 0x7fffffffU
26#define BTF_MAX_STR_OFFSET 0x7fffffffU
27
28static struct btf_type btf_void;
29
30struct btf {
31	/* raw BTF data in native endianness */
32	void *raw_data;
33	/* raw BTF data in non-native endianness */
34	void *raw_data_swapped;
35	__u32 raw_size;
36	/* whether target endianness differs from the native one */
37	bool swapped_endian;
38
39	/*
40	 * When BTF is loaded from an ELF or raw memory it is stored
41	 * in a contiguous memory block. The hdr, type_data, and, strs_data
42	 * point inside that memory region to their respective parts of BTF
43	 * representation:
44	 *
45	 * +--------------------------------+
46	 * |  Header  |  Types  |  Strings  |
47	 * +--------------------------------+
48	 * ^          ^         ^
49	 * |          |         |
50	 * hdr        |         |
51	 * types_data-+         |
52	 * strs_data------------+
53	 *
54	 * If BTF data is later modified, e.g., due to types added or
55	 * removed, BTF deduplication performed, etc, this contiguous
56	 * representation is broken up into three independently allocated
57	 * memory regions to be able to modify them independently.
58	 * raw_data is nulled out at that point, but can be later allocated
59	 * and cached again if user calls btf__get_raw_data(), at which point
60	 * raw_data will contain a contiguous copy of header, types, and
61	 * strings:
62	 *
63	 * +----------+  +---------+  +-----------+
64	 * |  Header  |  |  Types  |  |  Strings  |
65	 * +----------+  +---------+  +-----------+
66	 * ^             ^            ^
67	 * |             |            |
68	 * hdr           |            |
69	 * types_data----+            |
70	 * strs_data------------------+
71	 *
72	 *               +----------+---------+-----------+
73	 *               |  Header  |  Types  |  Strings  |
74	 * raw_data----->+----------+---------+-----------+
75	 */
76	struct btf_header *hdr;
77
78	void *types_data;
79	size_t types_data_cap; /* used size stored in hdr->type_len */
80
81	/* type ID to `struct btf_type *` lookup index */
82	__u32 *type_offs;
83	size_t type_offs_cap;
84	__u32 nr_types;
85
86	void *strs_data;
87	size_t strs_data_cap; /* used size stored in hdr->str_len */
88
89	/* lookup index for each unique string in strings section */
90	struct hashmap *strs_hash;
91	/* whether strings are already deduplicated */
92	bool strs_deduped;
93	/* BTF object FD, if loaded into kernel */
94	int fd;
95
96	/* Pointer size (in bytes) for a target architecture of this BTF */
97	int ptr_sz;
98};
99
100static inline __u64 ptr_to_u64(const void *ptr)
101{
102	return (__u64) (unsigned long) ptr;
103}
104
105/* Ensure given dynamically allocated memory region pointed to by *data* with
106 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
107 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
108 * are already used. At most *max_cnt* elements can be ever allocated.
109 * If necessary, memory is reallocated and all existing data is copied over,
110 * new pointer to the memory region is stored at *data, new memory region
111 * capacity (in number of elements) is stored in *cap.
112 * On success, memory pointer to the beginning of unused memory is returned.
113 * On error, NULL is returned.
114 */
115void *btf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
116		  size_t cur_cnt, size_t max_cnt, size_t add_cnt)
117{
118	size_t new_cnt;
119	void *new_data;
120
121	if (cur_cnt + add_cnt <= *cap_cnt)
122		return *data + cur_cnt * elem_sz;
123
124	/* requested more than the set limit */
125	if (cur_cnt + add_cnt > max_cnt)
126		return NULL;
127
128	new_cnt = *cap_cnt;
129	new_cnt += new_cnt / 4;		  /* expand by 25% */
130	if (new_cnt < 16)		  /* but at least 16 elements */
131		new_cnt = 16;
132	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
133		new_cnt = max_cnt;
134	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
135		new_cnt = cur_cnt + add_cnt;
136
137	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
138	if (!new_data)
139		return NULL;
140
141	/* zero out newly allocated portion of memory */
142	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
143
144	*data = new_data;
145	*cap_cnt = new_cnt;
146	return new_data + cur_cnt * elem_sz;
147}
148
149/* Ensure given dynamically allocated memory region has enough allocated space
150 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
151 */
152int btf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
153{
154	void *p;
155
156	if (need_cnt <= *cap_cnt)
157		return 0;
158
159	p = btf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
160	if (!p)
161		return -ENOMEM;
162
163	return 0;
164}
165
166static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
167{
168	__u32 *p;
169
170	p = btf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
171			btf->nr_types + 1, BTF_MAX_NR_TYPES, 1);
172	if (!p)
173		return -ENOMEM;
174
175	*p = type_off;
176	return 0;
177}
178
179static void btf_bswap_hdr(struct btf_header *h)
180{
181	h->magic = bswap_16(h->magic);
182	h->hdr_len = bswap_32(h->hdr_len);
183	h->type_off = bswap_32(h->type_off);
184	h->type_len = bswap_32(h->type_len);
185	h->str_off = bswap_32(h->str_off);
186	h->str_len = bswap_32(h->str_len);
187}
188
189static int btf_parse_hdr(struct btf *btf)
190{
191	struct btf_header *hdr = btf->hdr;
192	__u32 meta_left;
193
194	if (btf->raw_size < sizeof(struct btf_header)) {
195		pr_debug("BTF header not found\n");
196		return -EINVAL;
197	}
198
199	if (hdr->magic == bswap_16(BTF_MAGIC)) {
200		btf->swapped_endian = true;
201		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
202			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
203				bswap_32(hdr->hdr_len));
204			return -ENOTSUP;
205		}
206		btf_bswap_hdr(hdr);
207	} else if (hdr->magic != BTF_MAGIC) {
208		pr_debug("Invalid BTF magic: %x\n", hdr->magic);
209		return -EINVAL;
210	}
211
212	if (btf->raw_size < hdr->hdr_len) {
213		pr_debug("BTF header len %u larger than data size %u\n",
214			 hdr->hdr_len, btf->raw_size);
215		return -EINVAL;
216	}
217
218	meta_left = btf->raw_size - hdr->hdr_len;
219	if (meta_left < (long long)hdr->str_off + hdr->str_len) {
220		pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
221		return -EINVAL;
222	}
223
224	if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
225		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
226			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
227		return -EINVAL;
228	}
229
230	if (hdr->type_off % 4) {
231		pr_debug("BTF type section is not aligned to 4 bytes\n");
232		return -EINVAL;
233	}
234
235	return 0;
236}
237
238static int btf_parse_str_sec(struct btf *btf)
239{
240	const struct btf_header *hdr = btf->hdr;
241	const char *start = btf->strs_data;
242	const char *end = start + btf->hdr->str_len;
243
244	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET ||
245	    start[0] || end[-1]) {
246		pr_debug("Invalid BTF string section\n");
247		return -EINVAL;
248	}
249
250	return 0;
251}
252
253static int btf_type_size(const struct btf_type *t)
254{
255	const int base_size = sizeof(struct btf_type);
256	__u16 vlen = btf_vlen(t);
257
258	switch (btf_kind(t)) {
259	case BTF_KIND_FWD:
260	case BTF_KIND_CONST:
261	case BTF_KIND_VOLATILE:
262	case BTF_KIND_RESTRICT:
263	case BTF_KIND_PTR:
264	case BTF_KIND_TYPEDEF:
265	case BTF_KIND_FUNC:
266		return base_size;
267	case BTF_KIND_INT:
268		return base_size + sizeof(__u32);
269	case BTF_KIND_ENUM:
270		return base_size + vlen * sizeof(struct btf_enum);
271	case BTF_KIND_ARRAY:
272		return base_size + sizeof(struct btf_array);
273	case BTF_KIND_STRUCT:
274	case BTF_KIND_UNION:
275		return base_size + vlen * sizeof(struct btf_member);
276	case BTF_KIND_FUNC_PROTO:
277		return base_size + vlen * sizeof(struct btf_param);
278	case BTF_KIND_VAR:
279		return base_size + sizeof(struct btf_var);
280	case BTF_KIND_DATASEC:
281		return base_size + vlen * sizeof(struct btf_var_secinfo);
282	default:
283		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
284		return -EINVAL;
285	}
286}
287
288static void btf_bswap_type_base(struct btf_type *t)
289{
290	t->name_off = bswap_32(t->name_off);
291	t->info = bswap_32(t->info);
292	t->type = bswap_32(t->type);
293}
294
295static int btf_bswap_type_rest(struct btf_type *t)
296{
297	struct btf_var_secinfo *v;
298	struct btf_member *m;
299	struct btf_array *a;
300	struct btf_param *p;
301	struct btf_enum *e;
302	__u16 vlen = btf_vlen(t);
303	int i;
304
305	switch (btf_kind(t)) {
306	case BTF_KIND_FWD:
307	case BTF_KIND_CONST:
308	case BTF_KIND_VOLATILE:
309	case BTF_KIND_RESTRICT:
310	case BTF_KIND_PTR:
311	case BTF_KIND_TYPEDEF:
312	case BTF_KIND_FUNC:
313		return 0;
314	case BTF_KIND_INT:
315		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
316		return 0;
317	case BTF_KIND_ENUM:
318		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
319			e->name_off = bswap_32(e->name_off);
320			e->val = bswap_32(e->val);
321		}
322		return 0;
323	case BTF_KIND_ARRAY:
324		a = btf_array(t);
325		a->type = bswap_32(a->type);
326		a->index_type = bswap_32(a->index_type);
327		a->nelems = bswap_32(a->nelems);
328		return 0;
329	case BTF_KIND_STRUCT:
330	case BTF_KIND_UNION:
331		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
332			m->name_off = bswap_32(m->name_off);
333			m->type = bswap_32(m->type);
334			m->offset = bswap_32(m->offset);
335		}
336		return 0;
337	case BTF_KIND_FUNC_PROTO:
338		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
339			p->name_off = bswap_32(p->name_off);
340			p->type = bswap_32(p->type);
341		}
342		return 0;
343	case BTF_KIND_VAR:
344		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
345		return 0;
346	case BTF_KIND_DATASEC:
347		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
348			v->type = bswap_32(v->type);
349			v->offset = bswap_32(v->offset);
350			v->size = bswap_32(v->size);
351		}
352		return 0;
353	default:
354		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
355		return -EINVAL;
356	}
357}
358
359static int btf_parse_type_sec(struct btf *btf)
360{
361	struct btf_header *hdr = btf->hdr;
362	void *next_type = btf->types_data;
363	void *end_type = next_type + hdr->type_len;
364	int err, i = 0, type_size;
365
366	/* VOID (type_id == 0) is specially handled by btf__get_type_by_id(),
367	 * so ensure we can never properly use its offset from index by
368	 * setting it to a large value
369	 */
370	err = btf_add_type_idx_entry(btf, UINT_MAX);
371	if (err)
372		return err;
373
374	while (next_type + sizeof(struct btf_type) <= end_type) {
375		i++;
376
377		if (btf->swapped_endian)
378			btf_bswap_type_base(next_type);
379
380		type_size = btf_type_size(next_type);
381		if (type_size < 0)
382			return type_size;
383		if (next_type + type_size > end_type) {
384			pr_warn("BTF type [%d] is malformed\n", i);
385			return -EINVAL;
386		}
387
388		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
389			return -EINVAL;
390
391		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
392		if (err)
393			return err;
394
395		next_type += type_size;
396		btf->nr_types++;
397	}
398
399	if (next_type != end_type) {
400		pr_warn("BTF types data is malformed\n");
401		return -EINVAL;
402	}
403
404	return 0;
405}
406
407__u32 btf__get_nr_types(const struct btf *btf)
408{
409	return btf->nr_types;
410}
411
412/* internal helper returning non-const pointer to a type */
413static struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
414{
415	if (type_id == 0)
416		return &btf_void;
417
418	return btf->types_data + btf->type_offs[type_id];
419}
420
421const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
422{
423	if (type_id > btf->nr_types)
424		return NULL;
425	return btf_type_by_id((struct btf *)btf, type_id);
426}
427
428static int determine_ptr_size(const struct btf *btf)
429{
430	const struct btf_type *t;
431	const char *name;
432	int i;
433
434	for (i = 1; i <= btf->nr_types; i++) {
435		t = btf__type_by_id(btf, i);
436		if (!btf_is_int(t))
437			continue;
438
439		name = btf__name_by_offset(btf, t->name_off);
440		if (!name)
441			continue;
442
443		if (strcmp(name, "long int") == 0 ||
444		    strcmp(name, "long unsigned int") == 0) {
445			if (t->size != 4 && t->size != 8)
446				continue;
447			return t->size;
448		}
449	}
450
451	return -1;
452}
453
454static size_t btf_ptr_sz(const struct btf *btf)
455{
456	if (!btf->ptr_sz)
457		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
458	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
459}
460
461/* Return pointer size this BTF instance assumes. The size is heuristically
462 * determined by looking for 'long' or 'unsigned long' integer type and
463 * recording its size in bytes. If BTF type information doesn't have any such
464 * type, this function returns 0. In the latter case, native architecture's
465 * pointer size is assumed, so will be either 4 or 8, depending on
466 * architecture that libbpf was compiled for. It's possible to override
467 * guessed value by using btf__set_pointer_size() API.
468 */
469size_t btf__pointer_size(const struct btf *btf)
470{
471	if (!btf->ptr_sz)
472		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
473
474	if (btf->ptr_sz < 0)
475		/* not enough BTF type info to guess */
476		return 0;
477
478	return btf->ptr_sz;
479}
480
481/* Override or set pointer size in bytes. Only values of 4 and 8 are
482 * supported.
483 */
484int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
485{
486	if (ptr_sz != 4 && ptr_sz != 8)
487		return -EINVAL;
488	btf->ptr_sz = ptr_sz;
489	return 0;
490}
491
492static bool is_host_big_endian(void)
493{
494#if __BYTE_ORDER == __LITTLE_ENDIAN
495	return false;
496#elif __BYTE_ORDER == __BIG_ENDIAN
497	return true;
498#else
499# error "Unrecognized __BYTE_ORDER__"
500#endif
501}
502
503enum btf_endianness btf__endianness(const struct btf *btf)
504{
505	if (is_host_big_endian())
506		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
507	else
508		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
509}
510
511int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
512{
513	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
514		return -EINVAL;
515
516	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
517	if (!btf->swapped_endian) {
518		free(btf->raw_data_swapped);
519		btf->raw_data_swapped = NULL;
520	}
521	return 0;
522}
523
524static bool btf_type_is_void(const struct btf_type *t)
525{
526	return t == &btf_void || btf_is_fwd(t);
527}
528
529static bool btf_type_is_void_or_null(const struct btf_type *t)
530{
531	return !t || btf_type_is_void(t);
532}
533
534#define MAX_RESOLVE_DEPTH 32
535
536__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
537{
538	const struct btf_array *array;
539	const struct btf_type *t;
540	__u32 nelems = 1;
541	__s64 size = -1;
542	int i;
543
544	t = btf__type_by_id(btf, type_id);
545	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
546	     i++) {
547		switch (btf_kind(t)) {
548		case BTF_KIND_INT:
549		case BTF_KIND_STRUCT:
550		case BTF_KIND_UNION:
551		case BTF_KIND_ENUM:
552		case BTF_KIND_DATASEC:
553			size = t->size;
554			goto done;
555		case BTF_KIND_PTR:
556			size = btf_ptr_sz(btf);
557			goto done;
558		case BTF_KIND_TYPEDEF:
559		case BTF_KIND_VOLATILE:
560		case BTF_KIND_CONST:
561		case BTF_KIND_RESTRICT:
562		case BTF_KIND_VAR:
563			type_id = t->type;
564			break;
565		case BTF_KIND_ARRAY:
566			array = btf_array(t);
567			if (nelems && array->nelems > UINT32_MAX / nelems)
568				return -E2BIG;
569			nelems *= array->nelems;
570			type_id = array->type;
571			break;
572		default:
573			return -EINVAL;
574		}
575
576		t = btf__type_by_id(btf, type_id);
577	}
578
579done:
580	if (size < 0)
581		return -EINVAL;
582	if (nelems && size > UINT32_MAX / nelems)
583		return -E2BIG;
584
585	return nelems * size;
586}
587
588int btf__align_of(const struct btf *btf, __u32 id)
589{
590	const struct btf_type *t = btf__type_by_id(btf, id);
591	__u16 kind = btf_kind(t);
592
593	switch (kind) {
594	case BTF_KIND_INT:
595	case BTF_KIND_ENUM:
596		return min(btf_ptr_sz(btf), (size_t)t->size);
597	case BTF_KIND_PTR:
598		return btf_ptr_sz(btf);
599	case BTF_KIND_TYPEDEF:
600	case BTF_KIND_VOLATILE:
601	case BTF_KIND_CONST:
602	case BTF_KIND_RESTRICT:
603		return btf__align_of(btf, t->type);
604	case BTF_KIND_ARRAY:
605		return btf__align_of(btf, btf_array(t)->type);
606	case BTF_KIND_STRUCT:
607	case BTF_KIND_UNION: {
608		const struct btf_member *m = btf_members(t);
609		__u16 vlen = btf_vlen(t);
610		int i, max_align = 1, align;
611
612		for (i = 0; i < vlen; i++, m++) {
613			align = btf__align_of(btf, m->type);
614			if (align <= 0)
615				return align;
616			max_align = max(max_align, align);
617
618			/* if field offset isn't aligned according to field
619			 * type's alignment, then struct must be packed
620			 */
621			if (btf_member_bitfield_size(t, i) == 0 &&
622			    (m->offset % (8 * align)) != 0)
623				return 1;
624		}
625
626		/* if struct/union size isn't a multiple of its alignment,
627		 * then struct must be packed
628		 */
629		if ((t->size % max_align) != 0)
630			return 1;
631
632		return max_align;
633	}
634	default:
635		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
636		return 0;
637	}
638}
639
640int btf__resolve_type(const struct btf *btf, __u32 type_id)
641{
642	const struct btf_type *t;
643	int depth = 0;
644
645	t = btf__type_by_id(btf, type_id);
646	while (depth < MAX_RESOLVE_DEPTH &&
647	       !btf_type_is_void_or_null(t) &&
648	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
649		type_id = t->type;
650		t = btf__type_by_id(btf, type_id);
651		depth++;
652	}
653
654	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
655		return -EINVAL;
656
657	return type_id;
658}
659
660__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
661{
662	__u32 i;
663
664	if (!strcmp(type_name, "void"))
665		return 0;
666
667	for (i = 1; i <= btf->nr_types; i++) {
668		const struct btf_type *t = btf__type_by_id(btf, i);
669		const char *name = btf__name_by_offset(btf, t->name_off);
670
671		if (name && !strcmp(type_name, name))
672			return i;
673	}
674
675	return -ENOENT;
676}
677
678__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
679			     __u32 kind)
680{
681	__u32 i;
682
683	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
684		return 0;
685
686	for (i = 1; i <= btf->nr_types; i++) {
687		const struct btf_type *t = btf__type_by_id(btf, i);
688		const char *name;
689
690		if (btf_kind(t) != kind)
691			continue;
692		name = btf__name_by_offset(btf, t->name_off);
693		if (name && !strcmp(type_name, name))
694			return i;
695	}
696
697	return -ENOENT;
698}
699
700static bool btf_is_modifiable(const struct btf *btf)
701{
702	return (void *)btf->hdr != btf->raw_data;
703}
704
705void btf__free(struct btf *btf)
706{
707	if (IS_ERR_OR_NULL(btf))
708		return;
709
710	if (btf->fd >= 0)
711		close(btf->fd);
712
713	if (btf_is_modifiable(btf)) {
714		/* if BTF was modified after loading, it will have a split
715		 * in-memory representation for header, types, and strings
716		 * sections, so we need to free all of them individually. It
717		 * might still have a cached contiguous raw data present,
718		 * which will be unconditionally freed below.
719		 */
720		free(btf->hdr);
721		free(btf->types_data);
722		free(btf->strs_data);
723	}
724	free(btf->raw_data);
725	free(btf->raw_data_swapped);
726	free(btf->type_offs);
727	free(btf);
728}
729
730struct btf *btf__new_empty(void)
731{
732	struct btf *btf;
733
734	btf = calloc(1, sizeof(*btf));
735	if (!btf)
736		return ERR_PTR(-ENOMEM);
737
738	btf->fd = -1;
739	btf->ptr_sz = sizeof(void *);
740	btf->swapped_endian = false;
741
742	/* +1 for empty string at offset 0 */
743	btf->raw_size = sizeof(struct btf_header) + 1;
744	btf->raw_data = calloc(1, btf->raw_size);
745	if (!btf->raw_data) {
746		free(btf);
747		return ERR_PTR(-ENOMEM);
748	}
749
750	btf->hdr = btf->raw_data;
751	btf->hdr->hdr_len = sizeof(struct btf_header);
752	btf->hdr->magic = BTF_MAGIC;
753	btf->hdr->version = BTF_VERSION;
754
755	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
756	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
757	btf->hdr->str_len = 1; /* empty string at offset 0 */
758
759	return btf;
760}
761
762struct btf *btf__new(const void *data, __u32 size)
763{
764	struct btf *btf;
765	int err;
766
767	btf = calloc(1, sizeof(struct btf));
768	if (!btf)
769		return ERR_PTR(-ENOMEM);
770
771	btf->raw_data = malloc(size);
772	if (!btf->raw_data) {
773		err = -ENOMEM;
774		goto done;
775	}
776	memcpy(btf->raw_data, data, size);
777	btf->raw_size = size;
778
779	btf->hdr = btf->raw_data;
780	err = btf_parse_hdr(btf);
781	if (err)
782		goto done;
783
784	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
785	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
786
787	err = btf_parse_str_sec(btf);
788	err = err ?: btf_parse_type_sec(btf);
789	if (err)
790		goto done;
791
792	btf->fd = -1;
793
794done:
795	if (err) {
796		btf__free(btf);
797		return ERR_PTR(err);
798	}
799
800	return btf;
801}
802
803struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
804{
805	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
806	int err = 0, fd = -1, idx = 0;
807	struct btf *btf = NULL;
808	Elf_Scn *scn = NULL;
809	Elf *elf = NULL;
810	GElf_Ehdr ehdr;
811
812	if (elf_version(EV_CURRENT) == EV_NONE) {
813		pr_warn("failed to init libelf for %s\n", path);
814		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
815	}
816
817	fd = open(path, O_RDONLY);
818	if (fd < 0) {
819		err = -errno;
820		pr_warn("failed to open %s: %s\n", path, strerror(errno));
821		return ERR_PTR(err);
822	}
823
824	err = -LIBBPF_ERRNO__FORMAT;
825
826	elf = elf_begin(fd, ELF_C_READ, NULL);
827	if (!elf) {
828		pr_warn("failed to open %s as ELF file\n", path);
829		goto done;
830	}
831	if (!gelf_getehdr(elf, &ehdr)) {
832		pr_warn("failed to get EHDR from %s\n", path);
833		goto done;
834	}
835	if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
836		pr_warn("failed to get e_shstrndx from %s\n", path);
837		goto done;
838	}
839
840	while ((scn = elf_nextscn(elf, scn)) != NULL) {
841		GElf_Shdr sh;
842		char *name;
843
844		idx++;
845		if (gelf_getshdr(scn, &sh) != &sh) {
846			pr_warn("failed to get section(%d) header from %s\n",
847				idx, path);
848			goto done;
849		}
850		name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
851		if (!name) {
852			pr_warn("failed to get section(%d) name from %s\n",
853				idx, path);
854			goto done;
855		}
856		if (strcmp(name, BTF_ELF_SEC) == 0) {
857			btf_data = elf_getdata(scn, 0);
858			if (!btf_data) {
859				pr_warn("failed to get section(%d, %s) data from %s\n",
860					idx, name, path);
861				goto done;
862			}
863			continue;
864		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
865			btf_ext_data = elf_getdata(scn, 0);
866			if (!btf_ext_data) {
867				pr_warn("failed to get section(%d, %s) data from %s\n",
868					idx, name, path);
869				goto done;
870			}
871			continue;
872		}
873	}
874
875	err = 0;
876
877	if (!btf_data) {
878		err = -ENOENT;
879		goto done;
880	}
881	btf = btf__new(btf_data->d_buf, btf_data->d_size);
882	if (IS_ERR(btf))
883		goto done;
884
885	switch (gelf_getclass(elf)) {
886	case ELFCLASS32:
887		btf__set_pointer_size(btf, 4);
888		break;
889	case ELFCLASS64:
890		btf__set_pointer_size(btf, 8);
891		break;
892	default:
893		pr_warn("failed to get ELF class (bitness) for %s\n", path);
894		break;
895	}
896
897	if (btf_ext && btf_ext_data) {
898		*btf_ext = btf_ext__new(btf_ext_data->d_buf,
899					btf_ext_data->d_size);
900		if (IS_ERR(*btf_ext))
901			goto done;
902	} else if (btf_ext) {
903		*btf_ext = NULL;
904	}
905done:
906	if (elf)
907		elf_end(elf);
908	close(fd);
909
910	if (err)
911		return ERR_PTR(err);
912	/*
913	 * btf is always parsed before btf_ext, so no need to clean up
914	 * btf_ext, if btf loading failed
915	 */
916	if (IS_ERR(btf))
917		return btf;
918	if (btf_ext && IS_ERR(*btf_ext)) {
919		btf__free(btf);
920		err = PTR_ERR(*btf_ext);
921		return ERR_PTR(err);
922	}
923	return btf;
924}
925
926struct btf *btf__parse_raw(const char *path)
927{
928	struct btf *btf = NULL;
929	void *data = NULL;
930	FILE *f = NULL;
931	__u16 magic;
932	int err = 0;
933	long sz;
934
935	f = fopen(path, "rb");
936	if (!f) {
937		err = -errno;
938		goto err_out;
939	}
940
941	/* check BTF magic */
942	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
943		err = -EIO;
944		goto err_out;
945	}
946	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
947		/* definitely not a raw BTF */
948		err = -EPROTO;
949		goto err_out;
950	}
951
952	/* get file size */
953	if (fseek(f, 0, SEEK_END)) {
954		err = -errno;
955		goto err_out;
956	}
957	sz = ftell(f);
958	if (sz < 0) {
959		err = -errno;
960		goto err_out;
961	}
962	/* rewind to the start */
963	if (fseek(f, 0, SEEK_SET)) {
964		err = -errno;
965		goto err_out;
966	}
967
968	/* pre-alloc memory and read all of BTF data */
969	data = malloc(sz);
970	if (!data) {
971		err = -ENOMEM;
972		goto err_out;
973	}
974	if (fread(data, 1, sz, f) < sz) {
975		err = -EIO;
976		goto err_out;
977	}
978
979	/* finally parse BTF data */
980	btf = btf__new(data, sz);
981
982err_out:
983	free(data);
984	if (f)
985		fclose(f);
986	return err ? ERR_PTR(err) : btf;
987}
988
989struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
990{
991	struct btf *btf;
992
993	if (btf_ext)
994		*btf_ext = NULL;
995
996	btf = btf__parse_raw(path);
997	if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO)
998		return btf;
999
1000	return btf__parse_elf(path, btf_ext);
1001}
1002
1003static int compare_vsi_off(const void *_a, const void *_b)
1004{
1005	const struct btf_var_secinfo *a = _a;
1006	const struct btf_var_secinfo *b = _b;
1007
1008	return a->offset - b->offset;
1009}
1010
1011static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
1012			     struct btf_type *t)
1013{
1014	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
1015	const char *name = btf__name_by_offset(btf, t->name_off);
1016	const struct btf_type *t_var;
1017	struct btf_var_secinfo *vsi;
1018	const struct btf_var *var;
1019	int ret;
1020
1021	if (!name) {
1022		pr_debug("No name found in string section for DATASEC kind.\n");
1023		return -ENOENT;
1024	}
1025
1026	/* .extern datasec size and var offsets were set correctly during
1027	 * extern collection step, so just skip straight to sorting variables
1028	 */
1029	if (t->size)
1030		goto sort_vars;
1031
1032	ret = bpf_object__section_size(obj, name, &size);
1033	if (ret || !size || (t->size && t->size != size)) {
1034		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
1035		return -ENOENT;
1036	}
1037
1038	t->size = size;
1039
1040	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
1041		t_var = btf__type_by_id(btf, vsi->type);
1042		var = btf_var(t_var);
1043
1044		if (!btf_is_var(t_var)) {
1045			pr_debug("Non-VAR type seen in section %s\n", name);
1046			return -EINVAL;
1047		}
1048
1049		if (var->linkage == BTF_VAR_STATIC)
1050			continue;
1051
1052		name = btf__name_by_offset(btf, t_var->name_off);
1053		if (!name) {
1054			pr_debug("No name found in string section for VAR kind\n");
1055			return -ENOENT;
1056		}
1057
1058		ret = bpf_object__variable_offset(obj, name, &off);
1059		if (ret) {
1060			pr_debug("No offset found in symbol table for VAR %s\n",
1061				 name);
1062			return -ENOENT;
1063		}
1064
1065		vsi->offset = off;
1066	}
1067
1068sort_vars:
1069	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
1070	return 0;
1071}
1072
1073int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
1074{
1075	int err = 0;
1076	__u32 i;
1077
1078	for (i = 1; i <= btf->nr_types; i++) {
1079		struct btf_type *t = btf_type_by_id(btf, i);
1080
1081		/* Loader needs to fix up some of the things compiler
1082		 * couldn't get its hands on while emitting BTF. This
1083		 * is section size and global variable offset. We use
1084		 * the info from the ELF itself for this purpose.
1085		 */
1086		if (btf_is_datasec(t)) {
1087			err = btf_fixup_datasec(obj, btf, t);
1088			if (err)
1089				break;
1090		}
1091	}
1092
1093	return err;
1094}
1095
1096static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1097
1098int btf__load(struct btf *btf)
1099{
1100	__u32 log_buf_size = 0, raw_size;
1101	char *log_buf = NULL;
1102	void *raw_data;
1103	int err = 0;
1104
1105	if (btf->fd >= 0)
1106		return -EEXIST;
1107
1108retry_load:
1109	if (log_buf_size) {
1110		log_buf = malloc(log_buf_size);
1111		if (!log_buf)
1112			return -ENOMEM;
1113
1114		*log_buf = 0;
1115	}
1116
1117	raw_data = btf_get_raw_data(btf, &raw_size, false);
1118	if (!raw_data) {
1119		err = -ENOMEM;
1120		goto done;
1121	}
1122	/* cache native raw data representation */
1123	btf->raw_size = raw_size;
1124	btf->raw_data = raw_data;
1125
1126	btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
1127	if (btf->fd < 0) {
1128		if (!log_buf || errno == ENOSPC) {
1129			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
1130					   log_buf_size << 1);
1131			free(log_buf);
1132			goto retry_load;
1133		}
1134
1135		err = -errno;
1136		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
1137		if (*log_buf)
1138			pr_warn("%s\n", log_buf);
1139		goto done;
1140	}
1141
1142done:
1143	free(log_buf);
1144	return err;
1145}
1146
1147int btf__fd(const struct btf *btf)
1148{
1149	return btf->fd;
1150}
1151
1152void btf__set_fd(struct btf *btf, int fd)
1153{
1154	btf->fd = fd;
1155}
1156
1157static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1158{
1159	struct btf_header *hdr = btf->hdr;
1160	struct btf_type *t;
1161	void *data, *p;
1162	__u32 data_sz;
1163	int i;
1164
1165	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1166	if (data) {
1167		*size = btf->raw_size;
1168		return data;
1169	}
1170
1171	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1172	data = calloc(1, data_sz);
1173	if (!data)
1174		return NULL;
1175	p = data;
1176
1177	memcpy(p, hdr, hdr->hdr_len);
1178	if (swap_endian)
1179		btf_bswap_hdr(p);
1180	p += hdr->hdr_len;
1181
1182	memcpy(p, btf->types_data, hdr->type_len);
1183	if (swap_endian) {
1184		for (i = 1; i <= btf->nr_types; i++) {
1185			t = p  + btf->type_offs[i];
1186			/* btf_bswap_type_rest() relies on native t->info, so
1187			 * we swap base type info after we swapped all the
1188			 * additional information
1189			 */
1190			if (btf_bswap_type_rest(t))
1191				goto err_out;
1192			btf_bswap_type_base(t);
1193		}
1194	}
1195	p += hdr->type_len;
1196
1197	memcpy(p, btf->strs_data, hdr->str_len);
1198	p += hdr->str_len;
1199
1200	*size = data_sz;
1201	return data;
1202err_out:
1203	free(data);
1204	return NULL;
1205}
1206
1207const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
1208{
1209	struct btf *btf = (struct btf *)btf_ro;
1210	__u32 data_sz;
1211	void *data;
1212
1213	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1214	if (!data)
1215		return NULL;
1216
1217	btf->raw_size = data_sz;
1218	if (btf->swapped_endian)
1219		btf->raw_data_swapped = data;
1220	else
1221		btf->raw_data = data;
1222	*size = data_sz;
1223	return data;
1224}
1225
1226const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1227{
1228	if (offset < btf->hdr->str_len)
1229		return btf->strs_data + offset;
1230	else
1231		return NULL;
1232}
1233
1234const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1235{
1236	return btf__str_by_offset(btf, offset);
1237}
1238
1239int btf__get_from_id(__u32 id, struct btf **btf)
1240{
1241	struct bpf_btf_info btf_info = { 0 };
1242	__u32 len = sizeof(btf_info);
1243	__u32 last_size;
1244	int btf_fd;
1245	void *ptr;
1246	int err;
1247
1248	err = 0;
1249	*btf = NULL;
1250	btf_fd = bpf_btf_get_fd_by_id(id);
1251	if (btf_fd < 0)
1252		return 0;
1253
1254	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1255	 * let's start with a sane default - 4KiB here - and resize it only if
1256	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1257	 */
1258	btf_info.btf_size = 4096;
1259	last_size = btf_info.btf_size;
1260	ptr = malloc(last_size);
1261	if (!ptr) {
1262		err = -ENOMEM;
1263		goto exit_free;
1264	}
1265
1266	memset(ptr, 0, last_size);
1267	btf_info.btf = ptr_to_u64(ptr);
1268	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1269
1270	if (!err && btf_info.btf_size > last_size) {
1271		void *temp_ptr;
1272
1273		last_size = btf_info.btf_size;
1274		temp_ptr = realloc(ptr, last_size);
1275		if (!temp_ptr) {
1276			err = -ENOMEM;
1277			goto exit_free;
1278		}
1279		ptr = temp_ptr;
1280		memset(ptr, 0, last_size);
1281		btf_info.btf = ptr_to_u64(ptr);
1282		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1283	}
1284
1285	if (err || btf_info.btf_size > last_size) {
1286		err = errno;
1287		goto exit_free;
1288	}
1289
1290	*btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size);
1291	if (IS_ERR(*btf)) {
1292		err = PTR_ERR(*btf);
1293		*btf = NULL;
1294	}
1295
1296exit_free:
1297	close(btf_fd);
1298	free(ptr);
1299
1300	return err;
1301}
1302
1303int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1304			 __u32 expected_key_size, __u32 expected_value_size,
1305			 __u32 *key_type_id, __u32 *value_type_id)
1306{
1307	const struct btf_type *container_type;
1308	const struct btf_member *key, *value;
1309	const size_t max_name = 256;
1310	char container_name[max_name];
1311	__s64 key_size, value_size;
1312	__s32 container_id;
1313
1314	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
1315	    max_name) {
1316		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1317			map_name, map_name);
1318		return -EINVAL;
1319	}
1320
1321	container_id = btf__find_by_name(btf, container_name);
1322	if (container_id < 0) {
1323		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1324			 map_name, container_name);
1325		return container_id;
1326	}
1327
1328	container_type = btf__type_by_id(btf, container_id);
1329	if (!container_type) {
1330		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1331			map_name, container_id);
1332		return -EINVAL;
1333	}
1334
1335	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1336		pr_warn("map:%s container_name:%s is an invalid container struct\n",
1337			map_name, container_name);
1338		return -EINVAL;
1339	}
1340
1341	key = btf_members(container_type);
1342	value = key + 1;
1343
1344	key_size = btf__resolve_size(btf, key->type);
1345	if (key_size < 0) {
1346		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1347		return key_size;
1348	}
1349
1350	if (expected_key_size != key_size) {
1351		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1352			map_name, (__u32)key_size, expected_key_size);
1353		return -EINVAL;
1354	}
1355
1356	value_size = btf__resolve_size(btf, value->type);
1357	if (value_size < 0) {
1358		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1359		return value_size;
1360	}
1361
1362	if (expected_value_size != value_size) {
1363		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1364			map_name, (__u32)value_size, expected_value_size);
1365		return -EINVAL;
1366	}
1367
1368	*key_type_id = key->type;
1369	*value_type_id = value->type;
1370
1371	return 0;
1372}
1373
1374static size_t strs_hash_fn(const void *key, void *ctx)
1375{
1376	struct btf *btf = ctx;
1377	const char *str = btf->strs_data + (long)key;
1378
1379	return str_hash(str);
1380}
1381
1382static bool strs_hash_equal_fn(const void *key1, const void *key2, void *ctx)
1383{
1384	struct btf *btf = ctx;
1385	const char *str1 = btf->strs_data + (long)key1;
1386	const char *str2 = btf->strs_data + (long)key2;
1387
1388	return strcmp(str1, str2) == 0;
1389}
1390
1391static void btf_invalidate_raw_data(struct btf *btf)
1392{
1393	if (btf->raw_data) {
1394		free(btf->raw_data);
1395		btf->raw_data = NULL;
1396	}
1397	if (btf->raw_data_swapped) {
1398		free(btf->raw_data_swapped);
1399		btf->raw_data_swapped = NULL;
1400	}
1401}
1402
1403/* Ensure BTF is ready to be modified (by splitting into a three memory
1404 * regions for header, types, and strings). Also invalidate cached
1405 * raw_data, if any.
1406 */
1407static int btf_ensure_modifiable(struct btf *btf)
1408{
1409	void *hdr, *types, *strs, *strs_end, *s;
1410	struct hashmap *hash = NULL;
1411	long off;
1412	int err;
1413
1414	if (btf_is_modifiable(btf)) {
1415		/* any BTF modification invalidates raw_data */
1416		btf_invalidate_raw_data(btf);
1417		return 0;
1418	}
1419
1420	/* split raw data into three memory regions */
1421	hdr = malloc(btf->hdr->hdr_len);
1422	types = malloc(btf->hdr->type_len);
1423	strs = malloc(btf->hdr->str_len);
1424	if (!hdr || !types || !strs)
1425		goto err_out;
1426
1427	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1428	memcpy(types, btf->types_data, btf->hdr->type_len);
1429	memcpy(strs, btf->strs_data, btf->hdr->str_len);
1430
1431	/* build lookup index for all strings */
1432	hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, btf);
1433	if (IS_ERR(hash)) {
1434		err = PTR_ERR(hash);
1435		hash = NULL;
1436		goto err_out;
1437	}
1438
1439	strs_end = strs + btf->hdr->str_len;
1440	for (off = 0, s = strs; s < strs_end; off += strlen(s) + 1, s = strs + off) {
1441		/* hashmap__add() returns EEXIST if string with the same
1442		 * content already is in the hash map
1443		 */
1444		err = hashmap__add(hash, (void *)off, (void *)off);
1445		if (err == -EEXIST)
1446			continue; /* duplicate */
1447		if (err)
1448			goto err_out;
1449	}
1450
1451	/* only when everything was successful, update internal state */
1452	btf->hdr = hdr;
1453	btf->types_data = types;
1454	btf->types_data_cap = btf->hdr->type_len;
1455	btf->strs_data = strs;
1456	btf->strs_data_cap = btf->hdr->str_len;
1457	btf->strs_hash = hash;
1458	/* if BTF was created from scratch, all strings are guaranteed to be
1459	 * unique and deduplicated
1460	 */
1461	btf->strs_deduped = btf->hdr->str_len <= 1;
1462
1463	/* invalidate raw_data representation */
1464	btf_invalidate_raw_data(btf);
1465
1466	return 0;
1467
1468err_out:
1469	hashmap__free(hash);
1470	free(hdr);
1471	free(types);
1472	free(strs);
1473	return -ENOMEM;
1474}
1475
1476static void *btf_add_str_mem(struct btf *btf, size_t add_sz)
1477{
1478	return btf_add_mem(&btf->strs_data, &btf->strs_data_cap, 1,
1479			   btf->hdr->str_len, BTF_MAX_STR_OFFSET, add_sz);
1480}
1481
1482/* Find an offset in BTF string section that corresponds to a given string *s*.
1483 * Returns:
1484 *   - >0 offset into string section, if string is found;
1485 *   - -ENOENT, if string is not in the string section;
1486 *   - <0, on any other error.
1487 */
1488int btf__find_str(struct btf *btf, const char *s)
1489{
1490	long old_off, new_off, len;
1491	void *p;
1492
1493	/* BTF needs to be in a modifiable state to build string lookup index */
1494	if (btf_ensure_modifiable(btf))
1495		return -ENOMEM;
1496
1497	/* see btf__add_str() for why we do this */
1498	len = strlen(s) + 1;
1499	p = btf_add_str_mem(btf, len);
1500	if (!p)
1501		return -ENOMEM;
1502
1503	new_off = btf->hdr->str_len;
1504	memcpy(p, s, len);
1505
1506	if (hashmap__find(btf->strs_hash, (void *)new_off, (void **)&old_off))
1507		return old_off;
1508
1509	return -ENOENT;
1510}
1511
1512/* Add a string s to the BTF string section.
1513 * Returns:
1514 *   - > 0 offset into string section, on success;
1515 *   - < 0, on error.
1516 */
1517int btf__add_str(struct btf *btf, const char *s)
1518{
1519	long old_off, new_off, len;
1520	void *p;
1521	int err;
1522
1523	if (btf_ensure_modifiable(btf))
1524		return -ENOMEM;
1525
1526	/* Hashmap keys are always offsets within btf->strs_data, so to even
1527	 * look up some string from the "outside", we need to first append it
1528	 * at the end, so that it can be addressed with an offset. Luckily,
1529	 * until btf->hdr->str_len is incremented, that string is just a piece
1530	 * of garbage for the rest of BTF code, so no harm, no foul. On the
1531	 * other hand, if the string is unique, it's already appended and
1532	 * ready to be used, only a simple btf->hdr->str_len increment away.
1533	 */
1534	len = strlen(s) + 1;
1535	p = btf_add_str_mem(btf, len);
1536	if (!p)
1537		return -ENOMEM;
1538
1539	new_off = btf->hdr->str_len;
1540	memcpy(p, s, len);
1541
1542	/* Now attempt to add the string, but only if the string with the same
1543	 * contents doesn't exist already (HASHMAP_ADD strategy). If such
1544	 * string exists, we'll get its offset in old_off (that's old_key).
1545	 */
1546	err = hashmap__insert(btf->strs_hash, (void *)new_off, (void *)new_off,
1547			      HASHMAP_ADD, (const void **)&old_off, NULL);
1548	if (err == -EEXIST)
1549		return old_off; /* duplicated string, return existing offset */
1550	if (err)
1551		return err;
1552
1553	btf->hdr->str_len += len; /* new unique string, adjust data length */
1554	return new_off;
1555}
1556
1557static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1558{
1559	return btf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1560			   btf->hdr->type_len, UINT_MAX, add_sz);
1561}
1562
1563static __u32 btf_type_info(int kind, int vlen, int kflag)
1564{
1565	return (kflag << 31) | (kind << 24) | vlen;
1566}
1567
1568static void btf_type_inc_vlen(struct btf_type *t)
1569{
1570	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1571}
1572
1573/*
1574 * Append new BTF_KIND_INT type with:
1575 *   - *name* - non-empty, non-NULL type name;
1576 *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1577 *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1578 * Returns:
1579 *   - >0, type ID of newly added BTF type;
1580 *   - <0, on error.
1581 */
1582int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1583{
1584	struct btf_type *t;
1585	int sz, err, name_off;
1586
1587	/* non-empty name */
1588	if (!name || !name[0])
1589		return -EINVAL;
1590	/* byte_sz must be power of 2 */
1591	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1592		return -EINVAL;
1593	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1594		return -EINVAL;
1595
1596	/* deconstruct BTF, if necessary, and invalidate raw_data */
1597	if (btf_ensure_modifiable(btf))
1598		return -ENOMEM;
1599
1600	sz = sizeof(struct btf_type) + sizeof(int);
1601	t = btf_add_type_mem(btf, sz);
1602	if (!t)
1603		return -ENOMEM;
1604
1605	/* if something goes wrong later, we might end up with an extra string,
1606	 * but that shouldn't be a problem, because BTF can't be constructed
1607	 * completely anyway and will most probably be just discarded
1608	 */
1609	name_off = btf__add_str(btf, name);
1610	if (name_off < 0)
1611		return name_off;
1612
1613	t->name_off = name_off;
1614	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1615	t->size = byte_sz;
1616	/* set INT info, we don't allow setting legacy bit offset/size */
1617	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1618
1619	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1620	if (err)
1621		return err;
1622
1623	btf->hdr->type_len += sz;
1624	btf->hdr->str_off += sz;
1625	btf->nr_types++;
1626	return btf->nr_types;
1627}
1628
1629/* it's completely legal to append BTF types with type IDs pointing forward to
1630 * types that haven't been appended yet, so we only make sure that id looks
1631 * sane, we can't guarantee that ID will always be valid
1632 */
1633static int validate_type_id(int id)
1634{
1635	if (id < 0 || id > BTF_MAX_NR_TYPES)
1636		return -EINVAL;
1637	return 0;
1638}
1639
1640/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1641static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1642{
1643	struct btf_type *t;
1644	int sz, name_off = 0, err;
1645
1646	if (validate_type_id(ref_type_id))
1647		return -EINVAL;
1648
1649	if (btf_ensure_modifiable(btf))
1650		return -ENOMEM;
1651
1652	sz = sizeof(struct btf_type);
1653	t = btf_add_type_mem(btf, sz);
1654	if (!t)
1655		return -ENOMEM;
1656
1657	if (name && name[0]) {
1658		name_off = btf__add_str(btf, name);
1659		if (name_off < 0)
1660			return name_off;
1661	}
1662
1663	t->name_off = name_off;
1664	t->info = btf_type_info(kind, 0, 0);
1665	t->type = ref_type_id;
1666
1667	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1668	if (err)
1669		return err;
1670
1671	btf->hdr->type_len += sz;
1672	btf->hdr->str_off += sz;
1673	btf->nr_types++;
1674	return btf->nr_types;
1675}
1676
1677/*
1678 * Append new BTF_KIND_PTR type with:
1679 *   - *ref_type_id* - referenced type ID, it might not exist yet;
1680 * Returns:
1681 *   - >0, type ID of newly added BTF type;
1682 *   - <0, on error.
1683 */
1684int btf__add_ptr(struct btf *btf, int ref_type_id)
1685{
1686	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1687}
1688
1689/*
1690 * Append new BTF_KIND_ARRAY type with:
1691 *   - *index_type_id* - type ID of the type describing array index;
1692 *   - *elem_type_id* - type ID of the type describing array element;
1693 *   - *nr_elems* - the size of the array;
1694 * Returns:
1695 *   - >0, type ID of newly added BTF type;
1696 *   - <0, on error.
1697 */
1698int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1699{
1700	struct btf_type *t;
1701	struct btf_array *a;
1702	int sz, err;
1703
1704	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1705		return -EINVAL;
1706
1707	if (btf_ensure_modifiable(btf))
1708		return -ENOMEM;
1709
1710	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1711	t = btf_add_type_mem(btf, sz);
1712	if (!t)
1713		return -ENOMEM;
1714
1715	t->name_off = 0;
1716	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1717	t->size = 0;
1718
1719	a = btf_array(t);
1720	a->type = elem_type_id;
1721	a->index_type = index_type_id;
1722	a->nelems = nr_elems;
1723
1724	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1725	if (err)
1726		return err;
1727
1728	btf->hdr->type_len += sz;
1729	btf->hdr->str_off += sz;
1730	btf->nr_types++;
1731	return btf->nr_types;
1732}
1733
1734/* generic STRUCT/UNION append function */
1735static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1736{
1737	struct btf_type *t;
1738	int sz, err, name_off = 0;
1739
1740	if (btf_ensure_modifiable(btf))
1741		return -ENOMEM;
1742
1743	sz = sizeof(struct btf_type);
1744	t = btf_add_type_mem(btf, sz);
1745	if (!t)
1746		return -ENOMEM;
1747
1748	if (name && name[0]) {
1749		name_off = btf__add_str(btf, name);
1750		if (name_off < 0)
1751			return name_off;
1752	}
1753
1754	/* start out with vlen=0 and no kflag; this will be adjusted when
1755	 * adding each member
1756	 */
1757	t->name_off = name_off;
1758	t->info = btf_type_info(kind, 0, 0);
1759	t->size = bytes_sz;
1760
1761	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1762	if (err)
1763		return err;
1764
1765	btf->hdr->type_len += sz;
1766	btf->hdr->str_off += sz;
1767	btf->nr_types++;
1768	return btf->nr_types;
1769}
1770
1771/*
1772 * Append new BTF_KIND_STRUCT type with:
1773 *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1774 *   - *byte_sz* - size of the struct, in bytes;
1775 *
1776 * Struct initially has no fields in it. Fields can be added by
1777 * btf__add_field() right after btf__add_struct() succeeds.
1778 *
1779 * Returns:
1780 *   - >0, type ID of newly added BTF type;
1781 *   - <0, on error.
1782 */
1783int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1784{
1785	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1786}
1787
1788/*
1789 * Append new BTF_KIND_UNION type with:
1790 *   - *name* - name of the union, can be NULL or empty for anonymous union;
1791 *   - *byte_sz* - size of the union, in bytes;
1792 *
1793 * Union initially has no fields in it. Fields can be added by
1794 * btf__add_field() right after btf__add_union() succeeds. All fields
1795 * should have *bit_offset* of 0.
1796 *
1797 * Returns:
1798 *   - >0, type ID of newly added BTF type;
1799 *   - <0, on error.
1800 */
1801int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1802{
1803	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1804}
1805
1806/*
1807 * Append new field for the current STRUCT/UNION type with:
1808 *   - *name* - name of the field, can be NULL or empty for anonymous field;
1809 *   - *type_id* - type ID for the type describing field type;
1810 *   - *bit_offset* - bit offset of the start of the field within struct/union;
1811 *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1812 * Returns:
1813 *   -  0, on success;
1814 *   - <0, on error.
1815 */
1816int btf__add_field(struct btf *btf, const char *name, int type_id,
1817		   __u32 bit_offset, __u32 bit_size)
1818{
1819	struct btf_type *t;
1820	struct btf_member *m;
1821	bool is_bitfield;
1822	int sz, name_off = 0;
1823
1824	/* last type should be union/struct */
1825	if (btf->nr_types == 0)
1826		return -EINVAL;
1827	t = btf_type_by_id(btf, btf->nr_types);
1828	if (!btf_is_composite(t))
1829		return -EINVAL;
1830
1831	if (validate_type_id(type_id))
1832		return -EINVAL;
1833	/* best-effort bit field offset/size enforcement */
1834	is_bitfield = bit_size || (bit_offset % 8 != 0);
1835	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
1836		return -EINVAL;
1837
1838	/* only offset 0 is allowed for unions */
1839	if (btf_is_union(t) && bit_offset)
1840		return -EINVAL;
1841
1842	/* decompose and invalidate raw data */
1843	if (btf_ensure_modifiable(btf))
1844		return -ENOMEM;
1845
1846	sz = sizeof(struct btf_member);
1847	m = btf_add_type_mem(btf, sz);
1848	if (!m)
1849		return -ENOMEM;
1850
1851	if (name && name[0]) {
1852		name_off = btf__add_str(btf, name);
1853		if (name_off < 0)
1854			return name_off;
1855	}
1856
1857	m->name_off = name_off;
1858	m->type = type_id;
1859	m->offset = bit_offset | (bit_size << 24);
1860
1861	/* btf_add_type_mem can invalidate t pointer */
1862	t = btf_type_by_id(btf, btf->nr_types);
1863	/* update parent type's vlen and kflag */
1864	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
1865
1866	btf->hdr->type_len += sz;
1867	btf->hdr->str_off += sz;
1868	return 0;
1869}
1870
1871/*
1872 * Append new BTF_KIND_ENUM type with:
1873 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
1874 *   - *byte_sz* - size of the enum, in bytes.
1875 *
1876 * Enum initially has no enum values in it (and corresponds to enum forward
1877 * declaration). Enumerator values can be added by btf__add_enum_value()
1878 * immediately after btf__add_enum() succeeds.
1879 *
1880 * Returns:
1881 *   - >0, type ID of newly added BTF type;
1882 *   - <0, on error.
1883 */
1884int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
1885{
1886	struct btf_type *t;
1887	int sz, err, name_off = 0;
1888
1889	/* byte_sz must be power of 2 */
1890	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
1891		return -EINVAL;
1892
1893	if (btf_ensure_modifiable(btf))
1894		return -ENOMEM;
1895
1896	sz = sizeof(struct btf_type);
1897	t = btf_add_type_mem(btf, sz);
1898	if (!t)
1899		return -ENOMEM;
1900
1901	if (name && name[0]) {
1902		name_off = btf__add_str(btf, name);
1903		if (name_off < 0)
1904			return name_off;
1905	}
1906
1907	/* start out with vlen=0; it will be adjusted when adding enum values */
1908	t->name_off = name_off;
1909	t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
1910	t->size = byte_sz;
1911
1912	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1913	if (err)
1914		return err;
1915
1916	btf->hdr->type_len += sz;
1917	btf->hdr->str_off += sz;
1918	btf->nr_types++;
1919	return btf->nr_types;
1920}
1921
1922/*
1923 * Append new enum value for the current ENUM type with:
1924 *   - *name* - name of the enumerator value, can't be NULL or empty;
1925 *   - *value* - integer value corresponding to enum value *name*;
1926 * Returns:
1927 *   -  0, on success;
1928 *   - <0, on error.
1929 */
1930int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
1931{
1932	struct btf_type *t;
1933	struct btf_enum *v;
1934	int sz, name_off;
1935
1936	/* last type should be BTF_KIND_ENUM */
1937	if (btf->nr_types == 0)
1938		return -EINVAL;
1939	t = btf_type_by_id(btf, btf->nr_types);
1940	if (!btf_is_enum(t))
1941		return -EINVAL;
1942
1943	/* non-empty name */
1944	if (!name || !name[0])
1945		return -EINVAL;
1946	if (value < INT_MIN || value > UINT_MAX)
1947		return -E2BIG;
1948
1949	/* decompose and invalidate raw data */
1950	if (btf_ensure_modifiable(btf))
1951		return -ENOMEM;
1952
1953	sz = sizeof(struct btf_enum);
1954	v = btf_add_type_mem(btf, sz);
1955	if (!v)
1956		return -ENOMEM;
1957
1958	name_off = btf__add_str(btf, name);
1959	if (name_off < 0)
1960		return name_off;
1961
1962	v->name_off = name_off;
1963	v->val = value;
1964
1965	/* update parent type's vlen */
1966	t = btf_type_by_id(btf, btf->nr_types);
1967	btf_type_inc_vlen(t);
1968
1969	btf->hdr->type_len += sz;
1970	btf->hdr->str_off += sz;
1971	return 0;
1972}
1973
1974/*
1975 * Append new BTF_KIND_FWD type with:
1976 *   - *name*, non-empty/non-NULL name;
1977 *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
1978 *     BTF_FWD_UNION, or BTF_FWD_ENUM;
1979 * Returns:
1980 *   - >0, type ID of newly added BTF type;
1981 *   - <0, on error.
1982 */
1983int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
1984{
1985	if (!name || !name[0])
1986		return -EINVAL;
1987
1988	switch (fwd_kind) {
1989	case BTF_FWD_STRUCT:
1990	case BTF_FWD_UNION: {
1991		struct btf_type *t;
1992		int id;
1993
1994		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
1995		if (id <= 0)
1996			return id;
1997		t = btf_type_by_id(btf, id);
1998		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
1999		return id;
2000	}
2001	case BTF_FWD_ENUM:
2002		/* enum forward in BTF currently is just an enum with no enum
2003		 * values; we also assume a standard 4-byte size for it
2004		 */
2005		return btf__add_enum(btf, name, sizeof(int));
2006	default:
2007		return -EINVAL;
2008	}
2009}
2010
2011/*
2012 * Append new BTF_KING_TYPEDEF type with:
2013 *   - *name*, non-empty/non-NULL name;
2014 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2015 * Returns:
2016 *   - >0, type ID of newly added BTF type;
2017 *   - <0, on error.
2018 */
2019int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2020{
2021	if (!name || !name[0])
2022		return -EINVAL;
2023
2024	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2025}
2026
2027/*
2028 * Append new BTF_KIND_VOLATILE type with:
2029 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2030 * Returns:
2031 *   - >0, type ID of newly added BTF type;
2032 *   - <0, on error.
2033 */
2034int btf__add_volatile(struct btf *btf, int ref_type_id)
2035{
2036	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2037}
2038
2039/*
2040 * Append new BTF_KIND_CONST type with:
2041 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2042 * Returns:
2043 *   - >0, type ID of newly added BTF type;
2044 *   - <0, on error.
2045 */
2046int btf__add_const(struct btf *btf, int ref_type_id)
2047{
2048	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2049}
2050
2051/*
2052 * Append new BTF_KIND_RESTRICT type with:
2053 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2054 * Returns:
2055 *   - >0, type ID of newly added BTF type;
2056 *   - <0, on error.
2057 */
2058int btf__add_restrict(struct btf *btf, int ref_type_id)
2059{
2060	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2061}
2062
2063/*
2064 * Append new BTF_KIND_FUNC type with:
2065 *   - *name*, non-empty/non-NULL name;
2066 *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2067 * Returns:
2068 *   - >0, type ID of newly added BTF type;
2069 *   - <0, on error.
2070 */
2071int btf__add_func(struct btf *btf, const char *name,
2072		  enum btf_func_linkage linkage, int proto_type_id)
2073{
2074	int id;
2075
2076	if (!name || !name[0])
2077		return -EINVAL;
2078	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2079	    linkage != BTF_FUNC_EXTERN)
2080		return -EINVAL;
2081
2082	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2083	if (id > 0) {
2084		struct btf_type *t = btf_type_by_id(btf, id);
2085
2086		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2087	}
2088	return id;
2089}
2090
2091/*
2092 * Append new BTF_KIND_FUNC_PROTO with:
2093 *   - *ret_type_id* - type ID for return result of a function.
2094 *
2095 * Function prototype initially has no arguments, but they can be added by
2096 * btf__add_func_param() one by one, immediately after
2097 * btf__add_func_proto() succeeded.
2098 *
2099 * Returns:
2100 *   - >0, type ID of newly added BTF type;
2101 *   - <0, on error.
2102 */
2103int btf__add_func_proto(struct btf *btf, int ret_type_id)
2104{
2105	struct btf_type *t;
2106	int sz, err;
2107
2108	if (validate_type_id(ret_type_id))
2109		return -EINVAL;
2110
2111	if (btf_ensure_modifiable(btf))
2112		return -ENOMEM;
2113
2114	sz = sizeof(struct btf_type);
2115	t = btf_add_type_mem(btf, sz);
2116	if (!t)
2117		return -ENOMEM;
2118
2119	/* start out with vlen=0; this will be adjusted when adding enum
2120	 * values, if necessary
2121	 */
2122	t->name_off = 0;
2123	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2124	t->type = ret_type_id;
2125
2126	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
2127	if (err)
2128		return err;
2129
2130	btf->hdr->type_len += sz;
2131	btf->hdr->str_off += sz;
2132	btf->nr_types++;
2133	return btf->nr_types;
2134}
2135
2136/*
2137 * Append new function parameter for current FUNC_PROTO type with:
2138 *   - *name* - parameter name, can be NULL or empty;
2139 *   - *type_id* - type ID describing the type of the parameter.
2140 * Returns:
2141 *   -  0, on success;
2142 *   - <0, on error.
2143 */
2144int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2145{
2146	struct btf_type *t;
2147	struct btf_param *p;
2148	int sz, name_off = 0;
2149
2150	if (validate_type_id(type_id))
2151		return -EINVAL;
2152
2153	/* last type should be BTF_KIND_FUNC_PROTO */
2154	if (btf->nr_types == 0)
2155		return -EINVAL;
2156	t = btf_type_by_id(btf, btf->nr_types);
2157	if (!btf_is_func_proto(t))
2158		return -EINVAL;
2159
2160	/* decompose and invalidate raw data */
2161	if (btf_ensure_modifiable(btf))
2162		return -ENOMEM;
2163
2164	sz = sizeof(struct btf_param);
2165	p = btf_add_type_mem(btf, sz);
2166	if (!p)
2167		return -ENOMEM;
2168
2169	if (name && name[0]) {
2170		name_off = btf__add_str(btf, name);
2171		if (name_off < 0)
2172			return name_off;
2173	}
2174
2175	p->name_off = name_off;
2176	p->type = type_id;
2177
2178	/* update parent type's vlen */
2179	t = btf_type_by_id(btf, btf->nr_types);
2180	btf_type_inc_vlen(t);
2181
2182	btf->hdr->type_len += sz;
2183	btf->hdr->str_off += sz;
2184	return 0;
2185}
2186
2187/*
2188 * Append new BTF_KIND_VAR type with:
2189 *   - *name* - non-empty/non-NULL name;
2190 *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2191 *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2192 *   - *type_id* - type ID of the type describing the type of the variable.
2193 * Returns:
2194 *   - >0, type ID of newly added BTF type;
2195 *   - <0, on error.
2196 */
2197int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2198{
2199	struct btf_type *t;
2200	struct btf_var *v;
2201	int sz, err, name_off;
2202
2203	/* non-empty name */
2204	if (!name || !name[0])
2205		return -EINVAL;
2206	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2207	    linkage != BTF_VAR_GLOBAL_EXTERN)
2208		return -EINVAL;
2209	if (validate_type_id(type_id))
2210		return -EINVAL;
2211
2212	/* deconstruct BTF, if necessary, and invalidate raw_data */
2213	if (btf_ensure_modifiable(btf))
2214		return -ENOMEM;
2215
2216	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2217	t = btf_add_type_mem(btf, sz);
2218	if (!t)
2219		return -ENOMEM;
2220
2221	name_off = btf__add_str(btf, name);
2222	if (name_off < 0)
2223		return name_off;
2224
2225	t->name_off = name_off;
2226	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2227	t->type = type_id;
2228
2229	v = btf_var(t);
2230	v->linkage = linkage;
2231
2232	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
2233	if (err)
2234		return err;
2235
2236	btf->hdr->type_len += sz;
2237	btf->hdr->str_off += sz;
2238	btf->nr_types++;
2239	return btf->nr_types;
2240}
2241
2242/*
2243 * Append new BTF_KIND_DATASEC type with:
2244 *   - *name* - non-empty/non-NULL name;
2245 *   - *byte_sz* - data section size, in bytes.
2246 *
2247 * Data section is initially empty. Variables info can be added with
2248 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2249 *
2250 * Returns:
2251 *   - >0, type ID of newly added BTF type;
2252 *   - <0, on error.
2253 */
2254int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2255{
2256	struct btf_type *t;
2257	int sz, err, name_off;
2258
2259	/* non-empty name */
2260	if (!name || !name[0])
2261		return -EINVAL;
2262
2263	if (btf_ensure_modifiable(btf))
2264		return -ENOMEM;
2265
2266	sz = sizeof(struct btf_type);
2267	t = btf_add_type_mem(btf, sz);
2268	if (!t)
2269		return -ENOMEM;
2270
2271	name_off = btf__add_str(btf, name);
2272	if (name_off < 0)
2273		return name_off;
2274
2275	/* start with vlen=0, which will be update as var_secinfos are added */
2276	t->name_off = name_off;
2277	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2278	t->size = byte_sz;
2279
2280	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
2281	if (err)
2282		return err;
2283
2284	btf->hdr->type_len += sz;
2285	btf->hdr->str_off += sz;
2286	btf->nr_types++;
2287	return btf->nr_types;
2288}
2289
2290/*
2291 * Append new data section variable information entry for current DATASEC type:
2292 *   - *var_type_id* - type ID, describing type of the variable;
2293 *   - *offset* - variable offset within data section, in bytes;
2294 *   - *byte_sz* - variable size, in bytes.
2295 *
2296 * Returns:
2297 *   -  0, on success;
2298 *   - <0, on error.
2299 */
2300int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2301{
2302	struct btf_type *t;
2303	struct btf_var_secinfo *v;
2304	int sz;
2305
2306	/* last type should be BTF_KIND_DATASEC */
2307	if (btf->nr_types == 0)
2308		return -EINVAL;
2309	t = btf_type_by_id(btf, btf->nr_types);
2310	if (!btf_is_datasec(t))
2311		return -EINVAL;
2312
2313	if (validate_type_id(var_type_id))
2314		return -EINVAL;
2315
2316	/* decompose and invalidate raw data */
2317	if (btf_ensure_modifiable(btf))
2318		return -ENOMEM;
2319
2320	sz = sizeof(struct btf_var_secinfo);
2321	v = btf_add_type_mem(btf, sz);
2322	if (!v)
2323		return -ENOMEM;
2324
2325	v->type = var_type_id;
2326	v->offset = offset;
2327	v->size = byte_sz;
2328
2329	/* update parent type's vlen */
2330	t = btf_type_by_id(btf, btf->nr_types);
2331	btf_type_inc_vlen(t);
2332
2333	btf->hdr->type_len += sz;
2334	btf->hdr->str_off += sz;
2335	return 0;
2336}
2337
2338struct btf_ext_sec_setup_param {
2339	__u32 off;
2340	__u32 len;
2341	__u32 min_rec_size;
2342	struct btf_ext_info *ext_info;
2343	const char *desc;
2344};
2345
2346static int btf_ext_setup_info(struct btf_ext *btf_ext,
2347			      struct btf_ext_sec_setup_param *ext_sec)
2348{
2349	const struct btf_ext_info_sec *sinfo;
2350	struct btf_ext_info *ext_info;
2351	__u32 info_left, record_size;
2352	/* The start of the info sec (including the __u32 record_size). */
2353	void *info;
2354
2355	if (ext_sec->len == 0)
2356		return 0;
2357
2358	if (ext_sec->off & 0x03) {
2359		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2360		     ext_sec->desc);
2361		return -EINVAL;
2362	}
2363
2364	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2365	info_left = ext_sec->len;
2366
2367	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2368		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2369			 ext_sec->desc, ext_sec->off, ext_sec->len);
2370		return -EINVAL;
2371	}
2372
2373	/* At least a record size */
2374	if (info_left < sizeof(__u32)) {
2375		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2376		return -EINVAL;
2377	}
2378
2379	/* The record size needs to meet the minimum standard */
2380	record_size = *(__u32 *)info;
2381	if (record_size < ext_sec->min_rec_size ||
2382	    record_size & 0x03) {
2383		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2384			 ext_sec->desc, record_size);
2385		return -EINVAL;
2386	}
2387
2388	sinfo = info + sizeof(__u32);
2389	info_left -= sizeof(__u32);
2390
2391	/* If no records, return failure now so .BTF.ext won't be used. */
2392	if (!info_left) {
2393		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2394		return -EINVAL;
2395	}
2396
2397	while (info_left) {
2398		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2399		__u64 total_record_size;
2400		__u32 num_records;
2401
2402		if (info_left < sec_hdrlen) {
2403			pr_debug("%s section header is not found in .BTF.ext\n",
2404			     ext_sec->desc);
2405			return -EINVAL;
2406		}
2407
2408		num_records = sinfo->num_info;
2409		if (num_records == 0) {
2410			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2411			     ext_sec->desc);
2412			return -EINVAL;
2413		}
2414
2415		total_record_size = sec_hdrlen +
2416				    (__u64)num_records * record_size;
2417		if (info_left < total_record_size) {
2418			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2419			     ext_sec->desc);
2420			return -EINVAL;
2421		}
2422
2423		info_left -= total_record_size;
2424		sinfo = (void *)sinfo + total_record_size;
2425	}
2426
2427	ext_info = ext_sec->ext_info;
2428	ext_info->len = ext_sec->len - sizeof(__u32);
2429	ext_info->rec_size = record_size;
2430	ext_info->info = info + sizeof(__u32);
2431
2432	return 0;
2433}
2434
2435static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2436{
2437	struct btf_ext_sec_setup_param param = {
2438		.off = btf_ext->hdr->func_info_off,
2439		.len = btf_ext->hdr->func_info_len,
2440		.min_rec_size = sizeof(struct bpf_func_info_min),
2441		.ext_info = &btf_ext->func_info,
2442		.desc = "func_info"
2443	};
2444
2445	return btf_ext_setup_info(btf_ext, &param);
2446}
2447
2448static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2449{
2450	struct btf_ext_sec_setup_param param = {
2451		.off = btf_ext->hdr->line_info_off,
2452		.len = btf_ext->hdr->line_info_len,
2453		.min_rec_size = sizeof(struct bpf_line_info_min),
2454		.ext_info = &btf_ext->line_info,
2455		.desc = "line_info",
2456	};
2457
2458	return btf_ext_setup_info(btf_ext, &param);
2459}
2460
2461static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2462{
2463	struct btf_ext_sec_setup_param param = {
2464		.off = btf_ext->hdr->core_relo_off,
2465		.len = btf_ext->hdr->core_relo_len,
2466		.min_rec_size = sizeof(struct bpf_core_relo),
2467		.ext_info = &btf_ext->core_relo_info,
2468		.desc = "core_relo",
2469	};
2470
2471	return btf_ext_setup_info(btf_ext, &param);
2472}
2473
2474static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2475{
2476	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2477
2478	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2479	    data_size < hdr->hdr_len) {
2480		pr_debug("BTF.ext header not found");
2481		return -EINVAL;
2482	}
2483
2484	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2485		pr_warn("BTF.ext in non-native endianness is not supported\n");
2486		return -ENOTSUP;
2487	} else if (hdr->magic != BTF_MAGIC) {
2488		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2489		return -EINVAL;
2490	}
2491
2492	if (hdr->version != BTF_VERSION) {
2493		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2494		return -ENOTSUP;
2495	}
2496
2497	if (hdr->flags) {
2498		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2499		return -ENOTSUP;
2500	}
2501
2502	if (data_size == hdr->hdr_len) {
2503		pr_debug("BTF.ext has no data\n");
2504		return -EINVAL;
2505	}
2506
2507	return 0;
2508}
2509
2510void btf_ext__free(struct btf_ext *btf_ext)
2511{
2512	if (IS_ERR_OR_NULL(btf_ext))
2513		return;
2514	free(btf_ext->data);
2515	free(btf_ext);
2516}
2517
2518struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
2519{
2520	struct btf_ext *btf_ext;
2521	int err;
2522
2523	err = btf_ext_parse_hdr(data, size);
2524	if (err)
2525		return ERR_PTR(err);
2526
2527	btf_ext = calloc(1, sizeof(struct btf_ext));
2528	if (!btf_ext)
2529		return ERR_PTR(-ENOMEM);
2530
2531	btf_ext->data_size = size;
2532	btf_ext->data = malloc(size);
2533	if (!btf_ext->data) {
2534		err = -ENOMEM;
2535		goto done;
2536	}
2537	memcpy(btf_ext->data, data, size);
2538
2539	if (btf_ext->hdr->hdr_len <
2540	    offsetofend(struct btf_ext_header, line_info_len))
2541		goto done;
2542	err = btf_ext_setup_func_info(btf_ext);
2543	if (err)
2544		goto done;
2545
2546	err = btf_ext_setup_line_info(btf_ext);
2547	if (err)
2548		goto done;
2549
2550	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
2551		goto done;
2552	err = btf_ext_setup_core_relos(btf_ext);
2553	if (err)
2554		goto done;
2555
2556done:
2557	if (err) {
2558		btf_ext__free(btf_ext);
2559		return ERR_PTR(err);
2560	}
2561
2562	return btf_ext;
2563}
2564
2565const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2566{
2567	*size = btf_ext->data_size;
2568	return btf_ext->data;
2569}
2570
2571static int btf_ext_reloc_info(const struct btf *btf,
2572			      const struct btf_ext_info *ext_info,
2573			      const char *sec_name, __u32 insns_cnt,
2574			      void **info, __u32 *cnt)
2575{
2576	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2577	__u32 i, record_size, existing_len, records_len;
2578	struct btf_ext_info_sec *sinfo;
2579	const char *info_sec_name;
2580	__u64 remain_len;
2581	void *data;
2582
2583	record_size = ext_info->rec_size;
2584	sinfo = ext_info->info;
2585	remain_len = ext_info->len;
2586	while (remain_len > 0) {
2587		records_len = sinfo->num_info * record_size;
2588		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2589		if (strcmp(info_sec_name, sec_name)) {
2590			remain_len -= sec_hdrlen + records_len;
2591			sinfo = (void *)sinfo + sec_hdrlen + records_len;
2592			continue;
2593		}
2594
2595		existing_len = (*cnt) * record_size;
2596		data = realloc(*info, existing_len + records_len);
2597		if (!data)
2598			return -ENOMEM;
2599
2600		memcpy(data + existing_len, sinfo->data, records_len);
2601		/* adjust insn_off only, the rest data will be passed
2602		 * to the kernel.
2603		 */
2604		for (i = 0; i < sinfo->num_info; i++) {
2605			__u32 *insn_off;
2606
2607			insn_off = data + existing_len + (i * record_size);
2608			*insn_off = *insn_off / sizeof(struct bpf_insn) +
2609				insns_cnt;
2610		}
2611		*info = data;
2612		*cnt += sinfo->num_info;
2613		return 0;
2614	}
2615
2616	return -ENOENT;
2617}
2618
2619int btf_ext__reloc_func_info(const struct btf *btf,
2620			     const struct btf_ext *btf_ext,
2621			     const char *sec_name, __u32 insns_cnt,
2622			     void **func_info, __u32 *cnt)
2623{
2624	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2625				  insns_cnt, func_info, cnt);
2626}
2627
2628int btf_ext__reloc_line_info(const struct btf *btf,
2629			     const struct btf_ext *btf_ext,
2630			     const char *sec_name, __u32 insns_cnt,
2631			     void **line_info, __u32 *cnt)
2632{
2633	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2634				  insns_cnt, line_info, cnt);
2635}
2636
2637__u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2638{
2639	return btf_ext->func_info.rec_size;
2640}
2641
2642__u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2643{
2644	return btf_ext->line_info.rec_size;
2645}
2646
2647struct btf_dedup;
2648
2649static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2650				       const struct btf_dedup_opts *opts);
2651static void btf_dedup_free(struct btf_dedup *d);
2652static int btf_dedup_strings(struct btf_dedup *d);
2653static int btf_dedup_prim_types(struct btf_dedup *d);
2654static int btf_dedup_struct_types(struct btf_dedup *d);
2655static int btf_dedup_ref_types(struct btf_dedup *d);
2656static int btf_dedup_compact_types(struct btf_dedup *d);
2657static int btf_dedup_remap_types(struct btf_dedup *d);
2658
2659/*
2660 * Deduplicate BTF types and strings.
2661 *
2662 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2663 * section with all BTF type descriptors and string data. It overwrites that
2664 * memory in-place with deduplicated types and strings without any loss of
2665 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2666 * is provided, all the strings referenced from .BTF.ext section are honored
2667 * and updated to point to the right offsets after deduplication.
2668 *
2669 * If function returns with error, type/string data might be garbled and should
2670 * be discarded.
2671 *
2672 * More verbose and detailed description of both problem btf_dedup is solving,
2673 * as well as solution could be found at:
2674 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2675 *
2676 * Problem description and justification
2677 * =====================================
2678 *
2679 * BTF type information is typically emitted either as a result of conversion
2680 * from DWARF to BTF or directly by compiler. In both cases, each compilation
2681 * unit contains information about a subset of all the types that are used
2682 * in an application. These subsets are frequently overlapping and contain a lot
2683 * of duplicated information when later concatenated together into a single
2684 * binary. This algorithm ensures that each unique type is represented by single
2685 * BTF type descriptor, greatly reducing resulting size of BTF data.
2686 *
2687 * Compilation unit isolation and subsequent duplication of data is not the only
2688 * problem. The same type hierarchy (e.g., struct and all the type that struct
2689 * references) in different compilation units can be represented in BTF to
2690 * various degrees of completeness (or, rather, incompleteness) due to
2691 * struct/union forward declarations.
2692 *
2693 * Let's take a look at an example, that we'll use to better understand the
2694 * problem (and solution). Suppose we have two compilation units, each using
2695 * same `struct S`, but each of them having incomplete type information about
2696 * struct's fields:
2697 *
2698 * // CU #1:
2699 * struct S;
2700 * struct A {
2701 *	int a;
2702 *	struct A* self;
2703 *	struct S* parent;
2704 * };
2705 * struct B;
2706 * struct S {
2707 *	struct A* a_ptr;
2708 *	struct B* b_ptr;
2709 * };
2710 *
2711 * // CU #2:
2712 * struct S;
2713 * struct A;
2714 * struct B {
2715 *	int b;
2716 *	struct B* self;
2717 *	struct S* parent;
2718 * };
2719 * struct S {
2720 *	struct A* a_ptr;
2721 *	struct B* b_ptr;
2722 * };
2723 *
2724 * In case of CU #1, BTF data will know only that `struct B` exist (but no
2725 * more), but will know the complete type information about `struct A`. While
2726 * for CU #2, it will know full type information about `struct B`, but will
2727 * only know about forward declaration of `struct A` (in BTF terms, it will
2728 * have `BTF_KIND_FWD` type descriptor with name `B`).
2729 *
2730 * This compilation unit isolation means that it's possible that there is no
2731 * single CU with complete type information describing structs `S`, `A`, and
2732 * `B`. Also, we might get tons of duplicated and redundant type information.
2733 *
2734 * Additional complication we need to keep in mind comes from the fact that
2735 * types, in general, can form graphs containing cycles, not just DAGs.
2736 *
2737 * While algorithm does deduplication, it also merges and resolves type
2738 * information (unless disabled throught `struct btf_opts`), whenever possible.
2739 * E.g., in the example above with two compilation units having partial type
2740 * information for structs `A` and `B`, the output of algorithm will emit
2741 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2742 * (as well as type information for `int` and pointers), as if they were defined
2743 * in a single compilation unit as:
2744 *
2745 * struct A {
2746 *	int a;
2747 *	struct A* self;
2748 *	struct S* parent;
2749 * };
2750 * struct B {
2751 *	int b;
2752 *	struct B* self;
2753 *	struct S* parent;
2754 * };
2755 * struct S {
2756 *	struct A* a_ptr;
2757 *	struct B* b_ptr;
2758 * };
2759 *
2760 * Algorithm summary
2761 * =================
2762 *
2763 * Algorithm completes its work in 6 separate passes:
2764 *
2765 * 1. Strings deduplication.
2766 * 2. Primitive types deduplication (int, enum, fwd).
2767 * 3. Struct/union types deduplication.
2768 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
2769 *    protos, and const/volatile/restrict modifiers).
2770 * 5. Types compaction.
2771 * 6. Types remapping.
2772 *
2773 * Algorithm determines canonical type descriptor, which is a single
2774 * representative type for each truly unique type. This canonical type is the
2775 * one that will go into final deduplicated BTF type information. For
2776 * struct/unions, it is also the type that algorithm will merge additional type
2777 * information into (while resolving FWDs), as it discovers it from data in
2778 * other CUs. Each input BTF type eventually gets either mapped to itself, if
2779 * that type is canonical, or to some other type, if that type is equivalent
2780 * and was chosen as canonical representative. This mapping is stored in
2781 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2782 * FWD type got resolved to.
2783 *
2784 * To facilitate fast discovery of canonical types, we also maintain canonical
2785 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2786 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2787 * that match that signature. With sufficiently good choice of type signature
2788 * hashing function, we can limit number of canonical types for each unique type
2789 * signature to a very small number, allowing to find canonical type for any
2790 * duplicated type very quickly.
2791 *
2792 * Struct/union deduplication is the most critical part and algorithm for
2793 * deduplicating structs/unions is described in greater details in comments for
2794 * `btf_dedup_is_equiv` function.
2795 */
2796int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
2797	       const struct btf_dedup_opts *opts)
2798{
2799	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
2800	int err;
2801
2802	if (IS_ERR(d)) {
2803		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
2804		return -EINVAL;
2805	}
2806
2807	if (btf_ensure_modifiable(btf))
2808		return -ENOMEM;
2809
2810	err = btf_dedup_strings(d);
2811	if (err < 0) {
2812		pr_debug("btf_dedup_strings failed:%d\n", err);
2813		goto done;
2814	}
2815	err = btf_dedup_prim_types(d);
2816	if (err < 0) {
2817		pr_debug("btf_dedup_prim_types failed:%d\n", err);
2818		goto done;
2819	}
2820	err = btf_dedup_struct_types(d);
2821	if (err < 0) {
2822		pr_debug("btf_dedup_struct_types failed:%d\n", err);
2823		goto done;
2824	}
2825	err = btf_dedup_ref_types(d);
2826	if (err < 0) {
2827		pr_debug("btf_dedup_ref_types failed:%d\n", err);
2828		goto done;
2829	}
2830	err = btf_dedup_compact_types(d);
2831	if (err < 0) {
2832		pr_debug("btf_dedup_compact_types failed:%d\n", err);
2833		goto done;
2834	}
2835	err = btf_dedup_remap_types(d);
2836	if (err < 0) {
2837		pr_debug("btf_dedup_remap_types failed:%d\n", err);
2838		goto done;
2839	}
2840
2841done:
2842	btf_dedup_free(d);
2843	return err;
2844}
2845
2846#define BTF_UNPROCESSED_ID ((__u32)-1)
2847#define BTF_IN_PROGRESS_ID ((__u32)-2)
2848
2849struct btf_dedup {
2850	/* .BTF section to be deduped in-place */
2851	struct btf *btf;
2852	/*
2853	 * Optional .BTF.ext section. When provided, any strings referenced
2854	 * from it will be taken into account when deduping strings
2855	 */
2856	struct btf_ext *btf_ext;
2857	/*
2858	 * This is a map from any type's signature hash to a list of possible
2859	 * canonical representative type candidates. Hash collisions are
2860	 * ignored, so even types of various kinds can share same list of
2861	 * candidates, which is fine because we rely on subsequent
2862	 * btf_xxx_equal() checks to authoritatively verify type equality.
2863	 */
2864	struct hashmap *dedup_table;
2865	/* Canonical types map */
2866	__u32 *map;
2867	/* Hypothetical mapping, used during type graph equivalence checks */
2868	__u32 *hypot_map;
2869	__u32 *hypot_list;
2870	size_t hypot_cnt;
2871	size_t hypot_cap;
2872	/* Various option modifying behavior of algorithm */
2873	struct btf_dedup_opts opts;
2874};
2875
2876struct btf_str_ptr {
2877	const char *str;
2878	__u32 new_off;
2879	bool used;
2880};
2881
2882struct btf_str_ptrs {
2883	struct btf_str_ptr *ptrs;
2884	const char *data;
2885	__u32 cnt;
2886	__u32 cap;
2887};
2888
2889static long hash_combine(long h, long value)
2890{
2891	return h * 31 + value;
2892}
2893
2894#define for_each_dedup_cand(d, node, hash) \
2895	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
2896
2897static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
2898{
2899	return hashmap__append(d->dedup_table,
2900			       (void *)hash, (void *)(long)type_id);
2901}
2902
2903static int btf_dedup_hypot_map_add(struct btf_dedup *d,
2904				   __u32 from_id, __u32 to_id)
2905{
2906	if (d->hypot_cnt == d->hypot_cap) {
2907		__u32 *new_list;
2908
2909		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
2910		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
2911		if (!new_list)
2912			return -ENOMEM;
2913		d->hypot_list = new_list;
2914	}
2915	d->hypot_list[d->hypot_cnt++] = from_id;
2916	d->hypot_map[from_id] = to_id;
2917	return 0;
2918}
2919
2920static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
2921{
2922	int i;
2923
2924	for (i = 0; i < d->hypot_cnt; i++)
2925		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
2926	d->hypot_cnt = 0;
2927}
2928
2929static void btf_dedup_free(struct btf_dedup *d)
2930{
2931	hashmap__free(d->dedup_table);
2932	d->dedup_table = NULL;
2933
2934	free(d->map);
2935	d->map = NULL;
2936
2937	free(d->hypot_map);
2938	d->hypot_map = NULL;
2939
2940	free(d->hypot_list);
2941	d->hypot_list = NULL;
2942
2943	free(d);
2944}
2945
2946static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
2947{
2948	return (size_t)key;
2949}
2950
2951static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
2952{
2953	return 0;
2954}
2955
2956static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
2957{
2958	return k1 == k2;
2959}
2960
2961static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2962				       const struct btf_dedup_opts *opts)
2963{
2964	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
2965	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
2966	int i, err = 0;
2967
2968	if (!d)
2969		return ERR_PTR(-ENOMEM);
2970
2971	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
2972	/* dedup_table_size is now used only to force collisions in tests */
2973	if (opts && opts->dedup_table_size == 1)
2974		hash_fn = btf_dedup_collision_hash_fn;
2975
2976	d->btf = btf;
2977	d->btf_ext = btf_ext;
2978
2979	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
2980	if (IS_ERR(d->dedup_table)) {
2981		err = PTR_ERR(d->dedup_table);
2982		d->dedup_table = NULL;
2983		goto done;
2984	}
2985
2986	d->map = malloc(sizeof(__u32) * (1 + btf->nr_types));
2987	if (!d->map) {
2988		err = -ENOMEM;
2989		goto done;
2990	}
2991	/* special BTF "void" type is made canonical immediately */
2992	d->map[0] = 0;
2993	for (i = 1; i <= btf->nr_types; i++) {
2994		struct btf_type *t = btf_type_by_id(d->btf, i);
2995
2996		/* VAR and DATASEC are never deduped and are self-canonical */
2997		if (btf_is_var(t) || btf_is_datasec(t))
2998			d->map[i] = i;
2999		else
3000			d->map[i] = BTF_UNPROCESSED_ID;
3001	}
3002
3003	d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types));
3004	if (!d->hypot_map) {
3005		err = -ENOMEM;
3006		goto done;
3007	}
3008	for (i = 0; i <= btf->nr_types; i++)
3009		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3010
3011done:
3012	if (err) {
3013		btf_dedup_free(d);
3014		return ERR_PTR(err);
3015	}
3016
3017	return d;
3018}
3019
3020typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
3021
3022/*
3023 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3024 * string and pass pointer to it to a provided callback `fn`.
3025 */
3026static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
3027{
3028	void *line_data_cur, *line_data_end;
3029	int i, j, r, rec_size;
3030	struct btf_type *t;
3031
3032	for (i = 1; i <= d->btf->nr_types; i++) {
3033		t = btf_type_by_id(d->btf, i);
3034		r = fn(&t->name_off, ctx);
3035		if (r)
3036			return r;
3037
3038		switch (btf_kind(t)) {
3039		case BTF_KIND_STRUCT:
3040		case BTF_KIND_UNION: {
3041			struct btf_member *m = btf_members(t);
3042			__u16 vlen = btf_vlen(t);
3043
3044			for (j = 0; j < vlen; j++) {
3045				r = fn(&m->name_off, ctx);
3046				if (r)
3047					return r;
3048				m++;
3049			}
3050			break;
3051		}
3052		case BTF_KIND_ENUM: {
3053			struct btf_enum *m = btf_enum(t);
3054			__u16 vlen = btf_vlen(t);
3055
3056			for (j = 0; j < vlen; j++) {
3057				r = fn(&m->name_off, ctx);
3058				if (r)
3059					return r;
3060				m++;
3061			}
3062			break;
3063		}
3064		case BTF_KIND_FUNC_PROTO: {
3065			struct btf_param *m = btf_params(t);
3066			__u16 vlen = btf_vlen(t);
3067
3068			for (j = 0; j < vlen; j++) {
3069				r = fn(&m->name_off, ctx);
3070				if (r)
3071					return r;
3072				m++;
3073			}
3074			break;
3075		}
3076		default:
3077			break;
3078		}
3079	}
3080
3081	if (!d->btf_ext)
3082		return 0;
3083
3084	line_data_cur = d->btf_ext->line_info.info;
3085	line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
3086	rec_size = d->btf_ext->line_info.rec_size;
3087
3088	while (line_data_cur < line_data_end) {
3089		struct btf_ext_info_sec *sec = line_data_cur;
3090		struct bpf_line_info_min *line_info;
3091		__u32 num_info = sec->num_info;
3092
3093		r = fn(&sec->sec_name_off, ctx);
3094		if (r)
3095			return r;
3096
3097		line_data_cur += sizeof(struct btf_ext_info_sec);
3098		for (i = 0; i < num_info; i++) {
3099			line_info = line_data_cur;
3100			r = fn(&line_info->file_name_off, ctx);
3101			if (r)
3102				return r;
3103			r = fn(&line_info->line_off, ctx);
3104			if (r)
3105				return r;
3106			line_data_cur += rec_size;
3107		}
3108	}
3109
3110	return 0;
3111}
3112
3113static int str_sort_by_content(const void *a1, const void *a2)
3114{
3115	const struct btf_str_ptr *p1 = a1;
3116	const struct btf_str_ptr *p2 = a2;
3117
3118	return strcmp(p1->str, p2->str);
3119}
3120
3121static int str_sort_by_offset(const void *a1, const void *a2)
3122{
3123	const struct btf_str_ptr *p1 = a1;
3124	const struct btf_str_ptr *p2 = a2;
3125
3126	if (p1->str != p2->str)
3127		return p1->str < p2->str ? -1 : 1;
3128	return 0;
3129}
3130
3131static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem)
3132{
3133	const struct btf_str_ptr *p = pelem;
3134
3135	if (str_ptr != p->str)
3136		return (const char *)str_ptr < p->str ? -1 : 1;
3137	return 0;
3138}
3139
3140static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx)
3141{
3142	struct btf_str_ptrs *strs;
3143	struct btf_str_ptr *s;
3144
3145	if (*str_off_ptr == 0)
3146		return 0;
3147
3148	strs = ctx;
3149	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
3150		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
3151	if (!s)
3152		return -EINVAL;
3153	s->used = true;
3154	return 0;
3155}
3156
3157static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx)
3158{
3159	struct btf_str_ptrs *strs;
3160	struct btf_str_ptr *s;
3161
3162	if (*str_off_ptr == 0)
3163		return 0;
3164
3165	strs = ctx;
3166	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
3167		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
3168	if (!s)
3169		return -EINVAL;
3170	*str_off_ptr = s->new_off;
3171	return 0;
3172}
3173
3174/*
3175 * Dedup string and filter out those that are not referenced from either .BTF
3176 * or .BTF.ext (if provided) sections.
3177 *
3178 * This is done by building index of all strings in BTF's string section,
3179 * then iterating over all entities that can reference strings (e.g., type
3180 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3181 * strings as used. After that all used strings are deduped and compacted into
3182 * sequential blob of memory and new offsets are calculated. Then all the string
3183 * references are iterated again and rewritten using new offsets.
3184 */
3185static int btf_dedup_strings(struct btf_dedup *d)
3186{
3187	char *start = d->btf->strs_data;
3188	char *end = start + d->btf->hdr->str_len;
3189	char *p = start, *tmp_strs = NULL;
3190	struct btf_str_ptrs strs = {
3191		.cnt = 0,
3192		.cap = 0,
3193		.ptrs = NULL,
3194		.data = start,
3195	};
3196	int i, j, err = 0, grp_idx;
3197	bool grp_used;
3198
3199	if (d->btf->strs_deduped)
3200		return 0;
3201
3202	/* build index of all strings */
3203	while (p < end) {
3204		if (strs.cnt + 1 > strs.cap) {
3205			struct btf_str_ptr *new_ptrs;
3206
3207			strs.cap += max(strs.cnt / 2, 16U);
3208			new_ptrs = libbpf_reallocarray(strs.ptrs, strs.cap, sizeof(strs.ptrs[0]));
3209			if (!new_ptrs) {
3210				err = -ENOMEM;
3211				goto done;
3212			}
3213			strs.ptrs = new_ptrs;
3214		}
3215
3216		strs.ptrs[strs.cnt].str = p;
3217		strs.ptrs[strs.cnt].used = false;
3218
3219		p += strlen(p) + 1;
3220		strs.cnt++;
3221	}
3222
3223	/* temporary storage for deduplicated strings */
3224	tmp_strs = malloc(d->btf->hdr->str_len);
3225	if (!tmp_strs) {
3226		err = -ENOMEM;
3227		goto done;
3228	}
3229
3230	/* mark all used strings */
3231	strs.ptrs[0].used = true;
3232	err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs);
3233	if (err)
3234		goto done;
3235
3236	/* sort strings by context, so that we can identify duplicates */
3237	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content);
3238
3239	/*
3240	 * iterate groups of equal strings and if any instance in a group was
3241	 * referenced, emit single instance and remember new offset
3242	 */
3243	p = tmp_strs;
3244	grp_idx = 0;
3245	grp_used = strs.ptrs[0].used;
3246	/* iterate past end to avoid code duplication after loop */
3247	for (i = 1; i <= strs.cnt; i++) {
3248		/*
3249		 * when i == strs.cnt, we want to skip string comparison and go
3250		 * straight to handling last group of strings (otherwise we'd
3251		 * need to handle last group after the loop w/ duplicated code)
3252		 */
3253		if (i < strs.cnt &&
3254		    !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) {
3255			grp_used = grp_used || strs.ptrs[i].used;
3256			continue;
3257		}
3258
3259		/*
3260		 * this check would have been required after the loop to handle
3261		 * last group of strings, but due to <= condition in a loop
3262		 * we avoid that duplication
3263		 */
3264		if (grp_used) {
3265			int new_off = p - tmp_strs;
3266			__u32 len = strlen(strs.ptrs[grp_idx].str);
3267
3268			memmove(p, strs.ptrs[grp_idx].str, len + 1);
3269			for (j = grp_idx; j < i; j++)
3270				strs.ptrs[j].new_off = new_off;
3271			p += len + 1;
3272		}
3273
3274		if (i < strs.cnt) {
3275			grp_idx = i;
3276			grp_used = strs.ptrs[i].used;
3277		}
3278	}
3279
3280	/* replace original strings with deduped ones */
3281	d->btf->hdr->str_len = p - tmp_strs;
3282	memmove(start, tmp_strs, d->btf->hdr->str_len);
3283	end = start + d->btf->hdr->str_len;
3284
3285	/* restore original order for further binary search lookups */
3286	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset);
3287
3288	/* remap string offsets */
3289	err = btf_for_each_str_off(d, btf_str_remap_offset, &strs);
3290	if (err)
3291		goto done;
3292
3293	d->btf->hdr->str_len = end - start;
3294	d->btf->strs_deduped = true;
3295
3296done:
3297	free(tmp_strs);
3298	free(strs.ptrs);
3299	return err;
3300}
3301
3302static long btf_hash_common(struct btf_type *t)
3303{
3304	long h;
3305
3306	h = hash_combine(0, t->name_off);
3307	h = hash_combine(h, t->info);
3308	h = hash_combine(h, t->size);
3309	return h;
3310}
3311
3312static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3313{
3314	return t1->name_off == t2->name_off &&
3315	       t1->info == t2->info &&
3316	       t1->size == t2->size;
3317}
3318
3319/* Calculate type signature hash of INT. */
3320static long btf_hash_int(struct btf_type *t)
3321{
3322	__u32 info = *(__u32 *)(t + 1);
3323	long h;
3324
3325	h = btf_hash_common(t);
3326	h = hash_combine(h, info);
3327	return h;
3328}
3329
3330/* Check structural equality of two INTs. */
3331static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
3332{
3333	__u32 info1, info2;
3334
3335	if (!btf_equal_common(t1, t2))
3336		return false;
3337	info1 = *(__u32 *)(t1 + 1);
3338	info2 = *(__u32 *)(t2 + 1);
3339	return info1 == info2;
3340}
3341
3342/* Calculate type signature hash of ENUM. */
3343static long btf_hash_enum(struct btf_type *t)
3344{
3345	long h;
3346
3347	/* don't hash vlen and enum members to support enum fwd resolving */
3348	h = hash_combine(0, t->name_off);
3349	h = hash_combine(h, t->info & ~0xffff);
3350	h = hash_combine(h, t->size);
3351	return h;
3352}
3353
3354/* Check structural equality of two ENUMs. */
3355static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3356{
3357	const struct btf_enum *m1, *m2;
3358	__u16 vlen;
3359	int i;
3360
3361	if (!btf_equal_common(t1, t2))
3362		return false;
3363
3364	vlen = btf_vlen(t1);
3365	m1 = btf_enum(t1);
3366	m2 = btf_enum(t2);
3367	for (i = 0; i < vlen; i++) {
3368		if (m1->name_off != m2->name_off || m1->val != m2->val)
3369			return false;
3370		m1++;
3371		m2++;
3372	}
3373	return true;
3374}
3375
3376static inline bool btf_is_enum_fwd(struct btf_type *t)
3377{
3378	return btf_is_enum(t) && btf_vlen(t) == 0;
3379}
3380
3381static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3382{
3383	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3384		return btf_equal_enum(t1, t2);
3385	/* ignore vlen when comparing */
3386	return t1->name_off == t2->name_off &&
3387	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3388	       t1->size == t2->size;
3389}
3390
3391/*
3392 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3393 * as referenced type IDs equivalence is established separately during type
3394 * graph equivalence check algorithm.
3395 */
3396static long btf_hash_struct(struct btf_type *t)
3397{
3398	const struct btf_member *member = btf_members(t);
3399	__u32 vlen = btf_vlen(t);
3400	long h = btf_hash_common(t);
3401	int i;
3402
3403	for (i = 0; i < vlen; i++) {
3404		h = hash_combine(h, member->name_off);
3405		h = hash_combine(h, member->offset);
3406		/* no hashing of referenced type ID, it can be unresolved yet */
3407		member++;
3408	}
3409	return h;
3410}
3411
3412/*
3413 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3414 * IDs. This check is performed during type graph equivalence check and
3415 * referenced types equivalence is checked separately.
3416 */
3417static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3418{
3419	const struct btf_member *m1, *m2;
3420	__u16 vlen;
3421	int i;
3422
3423	if (!btf_equal_common(t1, t2))
3424		return false;
3425
3426	vlen = btf_vlen(t1);
3427	m1 = btf_members(t1);
3428	m2 = btf_members(t2);
3429	for (i = 0; i < vlen; i++) {
3430		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3431			return false;
3432		m1++;
3433		m2++;
3434	}
3435	return true;
3436}
3437
3438/*
3439 * Calculate type signature hash of ARRAY, including referenced type IDs,
3440 * under assumption that they were already resolved to canonical type IDs and
3441 * are not going to change.
3442 */
3443static long btf_hash_array(struct btf_type *t)
3444{
3445	const struct btf_array *info = btf_array(t);
3446	long h = btf_hash_common(t);
3447
3448	h = hash_combine(h, info->type);
3449	h = hash_combine(h, info->index_type);
3450	h = hash_combine(h, info->nelems);
3451	return h;
3452}
3453
3454/*
3455 * Check exact equality of two ARRAYs, taking into account referenced
3456 * type IDs, under assumption that they were already resolved to canonical
3457 * type IDs and are not going to change.
3458 * This function is called during reference types deduplication to compare
3459 * ARRAY to potential canonical representative.
3460 */
3461static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3462{
3463	const struct btf_array *info1, *info2;
3464
3465	if (!btf_equal_common(t1, t2))
3466		return false;
3467
3468	info1 = btf_array(t1);
3469	info2 = btf_array(t2);
3470	return info1->type == info2->type &&
3471	       info1->index_type == info2->index_type &&
3472	       info1->nelems == info2->nelems;
3473}
3474
3475/*
3476 * Check structural compatibility of two ARRAYs, ignoring referenced type
3477 * IDs. This check is performed during type graph equivalence check and
3478 * referenced types equivalence is checked separately.
3479 */
3480static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3481{
3482	if (!btf_equal_common(t1, t2))
3483		return false;
3484
3485	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3486}
3487
3488/*
3489 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3490 * under assumption that they were already resolved to canonical type IDs and
3491 * are not going to change.
3492 */
3493static long btf_hash_fnproto(struct btf_type *t)
3494{
3495	const struct btf_param *member = btf_params(t);
3496	__u16 vlen = btf_vlen(t);
3497	long h = btf_hash_common(t);
3498	int i;
3499
3500	for (i = 0; i < vlen; i++) {
3501		h = hash_combine(h, member->name_off);
3502		h = hash_combine(h, member->type);
3503		member++;
3504	}
3505	return h;
3506}
3507
3508/*
3509 * Check exact equality of two FUNC_PROTOs, taking into account referenced
3510 * type IDs, under assumption that they were already resolved to canonical
3511 * type IDs and are not going to change.
3512 * This function is called during reference types deduplication to compare
3513 * FUNC_PROTO to potential canonical representative.
3514 */
3515static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3516{
3517	const struct btf_param *m1, *m2;
3518	__u16 vlen;
3519	int i;
3520
3521	if (!btf_equal_common(t1, t2))
3522		return false;
3523
3524	vlen = btf_vlen(t1);
3525	m1 = btf_params(t1);
3526	m2 = btf_params(t2);
3527	for (i = 0; i < vlen; i++) {
3528		if (m1->name_off != m2->name_off || m1->type != m2->type)
3529			return false;
3530		m1++;
3531		m2++;
3532	}
3533	return true;
3534}
3535
3536/*
3537 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3538 * IDs. This check is performed during type graph equivalence check and
3539 * referenced types equivalence is checked separately.
3540 */
3541static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3542{
3543	const struct btf_param *m1, *m2;
3544	__u16 vlen;
3545	int i;
3546
3547	/* skip return type ID */
3548	if (t1->name_off != t2->name_off || t1->info != t2->info)
3549		return false;
3550
3551	vlen = btf_vlen(t1);
3552	m1 = btf_params(t1);
3553	m2 = btf_params(t2);
3554	for (i = 0; i < vlen; i++) {
3555		if (m1->name_off != m2->name_off)
3556			return false;
3557		m1++;
3558		m2++;
3559	}
3560	return true;
3561}
3562
3563/*
3564 * Deduplicate primitive types, that can't reference other types, by calculating
3565 * their type signature hash and comparing them with any possible canonical
3566 * candidate. If no canonical candidate matches, type itself is marked as
3567 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3568 */
3569static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3570{
3571	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3572	struct hashmap_entry *hash_entry;
3573	struct btf_type *cand;
3574	/* if we don't find equivalent type, then we are canonical */
3575	__u32 new_id = type_id;
3576	__u32 cand_id;
3577	long h;
3578
3579	switch (btf_kind(t)) {
3580	case BTF_KIND_CONST:
3581	case BTF_KIND_VOLATILE:
3582	case BTF_KIND_RESTRICT:
3583	case BTF_KIND_PTR:
3584	case BTF_KIND_TYPEDEF:
3585	case BTF_KIND_ARRAY:
3586	case BTF_KIND_STRUCT:
3587	case BTF_KIND_UNION:
3588	case BTF_KIND_FUNC:
3589	case BTF_KIND_FUNC_PROTO:
3590	case BTF_KIND_VAR:
3591	case BTF_KIND_DATASEC:
3592		return 0;
3593
3594	case BTF_KIND_INT:
3595		h = btf_hash_int(t);
3596		for_each_dedup_cand(d, hash_entry, h) {
3597			cand_id = (__u32)(long)hash_entry->value;
3598			cand = btf_type_by_id(d->btf, cand_id);
3599			if (btf_equal_int(t, cand)) {
3600				new_id = cand_id;
3601				break;
3602			}
3603		}
3604		break;
3605
3606	case BTF_KIND_ENUM:
3607		h = btf_hash_enum(t);
3608		for_each_dedup_cand(d, hash_entry, h) {
3609			cand_id = (__u32)(long)hash_entry->value;
3610			cand = btf_type_by_id(d->btf, cand_id);
3611			if (btf_equal_enum(t, cand)) {
3612				new_id = cand_id;
3613				break;
3614			}
3615			if (d->opts.dont_resolve_fwds)
3616				continue;
3617			if (btf_compat_enum(t, cand)) {
3618				if (btf_is_enum_fwd(t)) {
3619					/* resolve fwd to full enum */
3620					new_id = cand_id;
3621					break;
3622				}
3623				/* resolve canonical enum fwd to full enum */
3624				d->map[cand_id] = type_id;
3625			}
3626		}
3627		break;
3628
3629	case BTF_KIND_FWD:
3630		h = btf_hash_common(t);
3631		for_each_dedup_cand(d, hash_entry, h) {
3632			cand_id = (__u32)(long)hash_entry->value;
3633			cand = btf_type_by_id(d->btf, cand_id);
3634			if (btf_equal_common(t, cand)) {
3635				new_id = cand_id;
3636				break;
3637			}
3638		}
3639		break;
3640
3641	default:
3642		return -EINVAL;
3643	}
3644
3645	d->map[type_id] = new_id;
3646	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3647		return -ENOMEM;
3648
3649	return 0;
3650}
3651
3652static int btf_dedup_prim_types(struct btf_dedup *d)
3653{
3654	int i, err;
3655
3656	for (i = 1; i <= d->btf->nr_types; i++) {
3657		err = btf_dedup_prim_type(d, i);
3658		if (err)
3659			return err;
3660	}
3661	return 0;
3662}
3663
3664/*
3665 * Check whether type is already mapped into canonical one (could be to itself).
3666 */
3667static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3668{
3669	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3670}
3671
3672/*
3673 * Resolve type ID into its canonical type ID, if any; otherwise return original
3674 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3675 * STRUCT/UNION link and resolve it into canonical type ID as well.
3676 */
3677static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3678{
3679	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3680		type_id = d->map[type_id];
3681	return type_id;
3682}
3683
3684/*
3685 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3686 * type ID.
3687 */
3688static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3689{
3690	__u32 orig_type_id = type_id;
3691
3692	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3693		return type_id;
3694
3695	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3696		type_id = d->map[type_id];
3697
3698	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3699		return type_id;
3700
3701	return orig_type_id;
3702}
3703
3704
3705static inline __u16 btf_fwd_kind(struct btf_type *t)
3706{
3707	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3708}
3709
3710/*
3711 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3712 * call it "candidate graph" in this description for brevity) to a type graph
3713 * formed by (potential) canonical struct/union ("canonical graph" for brevity
3714 * here, though keep in mind that not all types in canonical graph are
3715 * necessarily canonical representatives themselves, some of them might be
3716 * duplicates or its uniqueness might not have been established yet).
3717 * Returns:
3718 *  - >0, if type graphs are equivalent;
3719 *  -  0, if not equivalent;
3720 *  - <0, on error.
3721 *
3722 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3723 * equivalence of BTF types at each step. If at any point BTF types in candidate
3724 * and canonical graphs are not compatible structurally, whole graphs are
3725 * incompatible. If types are structurally equivalent (i.e., all information
3726 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3727 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3728 * If a type references other types, then those referenced types are checked
3729 * for equivalence recursively.
3730 *
3731 * During DFS traversal, if we find that for current `canon_id` type we
3732 * already have some mapping in hypothetical map, we check for two possible
3733 * situations:
3734 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3735 *     happen when type graphs have cycles. In this case we assume those two
3736 *     types are equivalent.
3737 *   - `canon_id` is mapped to different type. This is contradiction in our
3738 *     hypothetical mapping, because same graph in canonical graph corresponds
3739 *     to two different types in candidate graph, which for equivalent type
3740 *     graphs shouldn't happen. This condition terminates equivalence check
3741 *     with negative result.
3742 *
3743 * If type graphs traversal exhausts types to check and find no contradiction,
3744 * then type graphs are equivalent.
3745 *
3746 * When checking types for equivalence, there is one special case: FWD types.
3747 * If FWD type resolution is allowed and one of the types (either from canonical
3748 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3749 * flag) and their names match, hypothetical mapping is updated to point from
3750 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3751 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3752 *
3753 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3754 * if there are two exactly named (or anonymous) structs/unions that are
3755 * compatible structurally, one of which has FWD field, while other is concrete
3756 * STRUCT/UNION, but according to C sources they are different structs/unions
3757 * that are referencing different types with the same name. This is extremely
3758 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3759 * this logic is causing problems.
3760 *
3761 * Doing FWD resolution means that both candidate and/or canonical graphs can
3762 * consists of portions of the graph that come from multiple compilation units.
3763 * This is due to the fact that types within single compilation unit are always
3764 * deduplicated and FWDs are already resolved, if referenced struct/union
3765 * definiton is available. So, if we had unresolved FWD and found corresponding
3766 * STRUCT/UNION, they will be from different compilation units. This
3767 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3768 * type graph will likely have at least two different BTF types that describe
3769 * same type (e.g., most probably there will be two different BTF types for the
3770 * same 'int' primitive type) and could even have "overlapping" parts of type
3771 * graph that describe same subset of types.
3772 *
3773 * This in turn means that our assumption that each type in canonical graph
3774 * must correspond to exactly one type in candidate graph might not hold
3775 * anymore and will make it harder to detect contradictions using hypothetical
3776 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3777 * resolution only in canonical graph. FWDs in candidate graphs are never
3778 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3779 * that can occur:
3780 *   - Both types in canonical and candidate graphs are FWDs. If they are
3781 *     structurally equivalent, then they can either be both resolved to the
3782 *     same STRUCT/UNION or not resolved at all. In both cases they are
3783 *     equivalent and there is no need to resolve FWD on candidate side.
3784 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3785 *     so nothing to resolve as well, algorithm will check equivalence anyway.
3786 *   - Type in canonical graph is FWD, while type in candidate is concrete
3787 *     STRUCT/UNION. In this case candidate graph comes from single compilation
3788 *     unit, so there is exactly one BTF type for each unique C type. After
3789 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
3790 *     in canonical graph mapping to single BTF type in candidate graph, but
3791 *     because hypothetical mapping maps from canonical to candidate types, it's
3792 *     alright, and we still maintain the property of having single `canon_id`
3793 *     mapping to single `cand_id` (there could be two different `canon_id`
3794 *     mapped to the same `cand_id`, but it's not contradictory).
3795 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3796 *     graph is FWD. In this case we are just going to check compatibility of
3797 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3798 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3799 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3800 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3801 *     canonical graph.
3802 */
3803static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
3804			      __u32 canon_id)
3805{
3806	struct btf_type *cand_type;
3807	struct btf_type *canon_type;
3808	__u32 hypot_type_id;
3809	__u16 cand_kind;
3810	__u16 canon_kind;
3811	int i, eq;
3812
3813	/* if both resolve to the same canonical, they must be equivalent */
3814	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
3815		return 1;
3816
3817	canon_id = resolve_fwd_id(d, canon_id);
3818
3819	hypot_type_id = d->hypot_map[canon_id];
3820	if (hypot_type_id <= BTF_MAX_NR_TYPES)
3821		return hypot_type_id == cand_id;
3822
3823	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
3824		return -ENOMEM;
3825
3826	cand_type = btf_type_by_id(d->btf, cand_id);
3827	canon_type = btf_type_by_id(d->btf, canon_id);
3828	cand_kind = btf_kind(cand_type);
3829	canon_kind = btf_kind(canon_type);
3830
3831	if (cand_type->name_off != canon_type->name_off)
3832		return 0;
3833
3834	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
3835	if (!d->opts.dont_resolve_fwds
3836	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
3837	    && cand_kind != canon_kind) {
3838		__u16 real_kind;
3839		__u16 fwd_kind;
3840
3841		if (cand_kind == BTF_KIND_FWD) {
3842			real_kind = canon_kind;
3843			fwd_kind = btf_fwd_kind(cand_type);
3844		} else {
3845			real_kind = cand_kind;
3846			fwd_kind = btf_fwd_kind(canon_type);
3847		}
3848		return fwd_kind == real_kind;
3849	}
3850
3851	if (cand_kind != canon_kind)
3852		return 0;
3853
3854	switch (cand_kind) {
3855	case BTF_KIND_INT:
3856		return btf_equal_int(cand_type, canon_type);
3857
3858	case BTF_KIND_ENUM:
3859		if (d->opts.dont_resolve_fwds)
3860			return btf_equal_enum(cand_type, canon_type);
3861		else
3862			return btf_compat_enum(cand_type, canon_type);
3863
3864	case BTF_KIND_FWD:
3865		return btf_equal_common(cand_type, canon_type);
3866
3867	case BTF_KIND_CONST:
3868	case BTF_KIND_VOLATILE:
3869	case BTF_KIND_RESTRICT:
3870	case BTF_KIND_PTR:
3871	case BTF_KIND_TYPEDEF:
3872	case BTF_KIND_FUNC:
3873		if (cand_type->info != canon_type->info)
3874			return 0;
3875		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3876
3877	case BTF_KIND_ARRAY: {
3878		const struct btf_array *cand_arr, *canon_arr;
3879
3880		if (!btf_compat_array(cand_type, canon_type))
3881			return 0;
3882		cand_arr = btf_array(cand_type);
3883		canon_arr = btf_array(canon_type);
3884		eq = btf_dedup_is_equiv(d,
3885			cand_arr->index_type, canon_arr->index_type);
3886		if (eq <= 0)
3887			return eq;
3888		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
3889	}
3890
3891	case BTF_KIND_STRUCT:
3892	case BTF_KIND_UNION: {
3893		const struct btf_member *cand_m, *canon_m;
3894		__u16 vlen;
3895
3896		if (!btf_shallow_equal_struct(cand_type, canon_type))
3897			return 0;
3898		vlen = btf_vlen(cand_type);
3899		cand_m = btf_members(cand_type);
3900		canon_m = btf_members(canon_type);
3901		for (i = 0; i < vlen; i++) {
3902			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
3903			if (eq <= 0)
3904				return eq;
3905			cand_m++;
3906			canon_m++;
3907		}
3908
3909		return 1;
3910	}
3911
3912	case BTF_KIND_FUNC_PROTO: {
3913		const struct btf_param *cand_p, *canon_p;
3914		__u16 vlen;
3915
3916		if (!btf_compat_fnproto(cand_type, canon_type))
3917			return 0;
3918		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3919		if (eq <= 0)
3920			return eq;
3921		vlen = btf_vlen(cand_type);
3922		cand_p = btf_params(cand_type);
3923		canon_p = btf_params(canon_type);
3924		for (i = 0; i < vlen; i++) {
3925			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
3926			if (eq <= 0)
3927				return eq;
3928			cand_p++;
3929			canon_p++;
3930		}
3931		return 1;
3932	}
3933
3934	default:
3935		return -EINVAL;
3936	}
3937	return 0;
3938}
3939
3940/*
3941 * Use hypothetical mapping, produced by successful type graph equivalence
3942 * check, to augment existing struct/union canonical mapping, where possible.
3943 *
3944 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
3945 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
3946 * it doesn't matter if FWD type was part of canonical graph or candidate one,
3947 * we are recording the mapping anyway. As opposed to carefulness required
3948 * for struct/union correspondence mapping (described below), for FWD resolution
3949 * it's not important, as by the time that FWD type (reference type) will be
3950 * deduplicated all structs/unions will be deduped already anyway.
3951 *
3952 * Recording STRUCT/UNION mapping is purely a performance optimization and is
3953 * not required for correctness. It needs to be done carefully to ensure that
3954 * struct/union from candidate's type graph is not mapped into corresponding
3955 * struct/union from canonical type graph that itself hasn't been resolved into
3956 * canonical representative. The only guarantee we have is that canonical
3957 * struct/union was determined as canonical and that won't change. But any
3958 * types referenced through that struct/union fields could have been not yet
3959 * resolved, so in case like that it's too early to establish any kind of
3960 * correspondence between structs/unions.
3961 *
3962 * No canonical correspondence is derived for primitive types (they are already
3963 * deduplicated completely already anyway) or reference types (they rely on
3964 * stability of struct/union canonical relationship for equivalence checks).
3965 */
3966static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
3967{
3968	__u32 cand_type_id, targ_type_id;
3969	__u16 t_kind, c_kind;
3970	__u32 t_id, c_id;
3971	int i;
3972
3973	for (i = 0; i < d->hypot_cnt; i++) {
3974		cand_type_id = d->hypot_list[i];
3975		targ_type_id = d->hypot_map[cand_type_id];
3976		t_id = resolve_type_id(d, targ_type_id);
3977		c_id = resolve_type_id(d, cand_type_id);
3978		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
3979		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
3980		/*
3981		 * Resolve FWD into STRUCT/UNION.
3982		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
3983		 * mapped to canonical representative (as opposed to
3984		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
3985		 * eventually that struct is going to be mapped and all resolved
3986		 * FWDs will automatically resolve to correct canonical
3987		 * representative. This will happen before ref type deduping,
3988		 * which critically depends on stability of these mapping. This
3989		 * stability is not a requirement for STRUCT/UNION equivalence
3990		 * checks, though.
3991		 */
3992		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
3993			d->map[c_id] = t_id;
3994		else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
3995			d->map[t_id] = c_id;
3996
3997		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
3998		    c_kind != BTF_KIND_FWD &&
3999		    is_type_mapped(d, c_id) &&
4000		    !is_type_mapped(d, t_id)) {
4001			/*
4002			 * as a perf optimization, we can map struct/union
4003			 * that's part of type graph we just verified for
4004			 * equivalence. We can do that for struct/union that has
4005			 * canonical representative only, though.
4006			 */
4007			d->map[t_id] = c_id;
4008		}
4009	}
4010}
4011
4012/*
4013 * Deduplicate struct/union types.
4014 *
4015 * For each struct/union type its type signature hash is calculated, taking
4016 * into account type's name, size, number, order and names of fields, but
4017 * ignoring type ID's referenced from fields, because they might not be deduped
4018 * completely until after reference types deduplication phase. This type hash
4019 * is used to iterate over all potential canonical types, sharing same hash.
4020 * For each canonical candidate we check whether type graphs that they form
4021 * (through referenced types in fields and so on) are equivalent using algorithm
4022 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4023 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4024 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4025 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4026 * potentially map other structs/unions to their canonical representatives,
4027 * if such relationship hasn't yet been established. This speeds up algorithm
4028 * by eliminating some of the duplicate work.
4029 *
4030 * If no matching canonical representative was found, struct/union is marked
4031 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4032 * for further look ups.
4033 */
4034static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4035{
4036	struct btf_type *cand_type, *t;
4037	struct hashmap_entry *hash_entry;
4038	/* if we don't find equivalent type, then we are canonical */
4039	__u32 new_id = type_id;
4040	__u16 kind;
4041	long h;
4042
4043	/* already deduped or is in process of deduping (loop detected) */
4044	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4045		return 0;
4046
4047	t = btf_type_by_id(d->btf, type_id);
4048	kind = btf_kind(t);
4049
4050	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4051		return 0;
4052
4053	h = btf_hash_struct(t);
4054	for_each_dedup_cand(d, hash_entry, h) {
4055		__u32 cand_id = (__u32)(long)hash_entry->value;
4056		int eq;
4057
4058		/*
4059		 * Even though btf_dedup_is_equiv() checks for
4060		 * btf_shallow_equal_struct() internally when checking two
4061		 * structs (unions) for equivalence, we need to guard here
4062		 * from picking matching FWD type as a dedup candidate.
4063		 * This can happen due to hash collision. In such case just
4064		 * relying on btf_dedup_is_equiv() would lead to potentially
4065		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4066		 * FWD and compatible STRUCT/UNION are considered equivalent.
4067		 */
4068		cand_type = btf_type_by_id(d->btf, cand_id);
4069		if (!btf_shallow_equal_struct(t, cand_type))
4070			continue;
4071
4072		btf_dedup_clear_hypot_map(d);
4073		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4074		if (eq < 0)
4075			return eq;
4076		if (!eq)
4077			continue;
4078		new_id = cand_id;
4079		btf_dedup_merge_hypot_map(d);
4080		break;
4081	}
4082
4083	d->map[type_id] = new_id;
4084	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4085		return -ENOMEM;
4086
4087	return 0;
4088}
4089
4090static int btf_dedup_struct_types(struct btf_dedup *d)
4091{
4092	int i, err;
4093
4094	for (i = 1; i <= d->btf->nr_types; i++) {
4095		err = btf_dedup_struct_type(d, i);
4096		if (err)
4097			return err;
4098	}
4099	return 0;
4100}
4101
4102/*
4103 * Deduplicate reference type.
4104 *
4105 * Once all primitive and struct/union types got deduplicated, we can easily
4106 * deduplicate all other (reference) BTF types. This is done in two steps:
4107 *
4108 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4109 * resolution can be done either immediately for primitive or struct/union types
4110 * (because they were deduped in previous two phases) or recursively for
4111 * reference types. Recursion will always terminate at either primitive or
4112 * struct/union type, at which point we can "unwind" chain of reference types
4113 * one by one. There is no danger of encountering cycles because in C type
4114 * system the only way to form type cycle is through struct/union, so any chain
4115 * of reference types, even those taking part in a type cycle, will inevitably
4116 * reach struct/union at some point.
4117 *
4118 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4119 * becomes "stable", in the sense that no further deduplication will cause
4120 * any changes to it. With that, it's now possible to calculate type's signature
4121 * hash (this time taking into account referenced type IDs) and loop over all
4122 * potential canonical representatives. If no match was found, current type
4123 * will become canonical representative of itself and will be added into
4124 * btf_dedup->dedup_table as another possible canonical representative.
4125 */
4126static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4127{
4128	struct hashmap_entry *hash_entry;
4129	__u32 new_id = type_id, cand_id;
4130	struct btf_type *t, *cand;
4131	/* if we don't find equivalent type, then we are representative type */
4132	int ref_type_id;
4133	long h;
4134
4135	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4136		return -ELOOP;
4137	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4138		return resolve_type_id(d, type_id);
4139
4140	t = btf_type_by_id(d->btf, type_id);
4141	d->map[type_id] = BTF_IN_PROGRESS_ID;
4142
4143	switch (btf_kind(t)) {
4144	case BTF_KIND_CONST:
4145	case BTF_KIND_VOLATILE:
4146	case BTF_KIND_RESTRICT:
4147	case BTF_KIND_PTR:
4148	case BTF_KIND_TYPEDEF:
4149	case BTF_KIND_FUNC:
4150		ref_type_id = btf_dedup_ref_type(d, t->type);
4151		if (ref_type_id < 0)
4152			return ref_type_id;
4153		t->type = ref_type_id;
4154
4155		h = btf_hash_common(t);
4156		for_each_dedup_cand(d, hash_entry, h) {
4157			cand_id = (__u32)(long)hash_entry->value;
4158			cand = btf_type_by_id(d->btf, cand_id);
4159			if (btf_equal_common(t, cand)) {
4160				new_id = cand_id;
4161				break;
4162			}
4163		}
4164		break;
4165
4166	case BTF_KIND_ARRAY: {
4167		struct btf_array *info = btf_array(t);
4168
4169		ref_type_id = btf_dedup_ref_type(d, info->type);
4170		if (ref_type_id < 0)
4171			return ref_type_id;
4172		info->type = ref_type_id;
4173
4174		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4175		if (ref_type_id < 0)
4176			return ref_type_id;
4177		info->index_type = ref_type_id;
4178
4179		h = btf_hash_array(t);
4180		for_each_dedup_cand(d, hash_entry, h) {
4181			cand_id = (__u32)(long)hash_entry->value;
4182			cand = btf_type_by_id(d->btf, cand_id);
4183			if (btf_equal_array(t, cand)) {
4184				new_id = cand_id;
4185				break;
4186			}
4187		}
4188		break;
4189	}
4190
4191	case BTF_KIND_FUNC_PROTO: {
4192		struct btf_param *param;
4193		__u16 vlen;
4194		int i;
4195
4196		ref_type_id = btf_dedup_ref_type(d, t->type);
4197		if (ref_type_id < 0)
4198			return ref_type_id;
4199		t->type = ref_type_id;
4200
4201		vlen = btf_vlen(t);
4202		param = btf_params(t);
4203		for (i = 0; i < vlen; i++) {
4204			ref_type_id = btf_dedup_ref_type(d, param->type);
4205			if (ref_type_id < 0)
4206				return ref_type_id;
4207			param->type = ref_type_id;
4208			param++;
4209		}
4210
4211		h = btf_hash_fnproto(t);
4212		for_each_dedup_cand(d, hash_entry, h) {
4213			cand_id = (__u32)(long)hash_entry->value;
4214			cand = btf_type_by_id(d->btf, cand_id);
4215			if (btf_equal_fnproto(t, cand)) {
4216				new_id = cand_id;
4217				break;
4218			}
4219		}
4220		break;
4221	}
4222
4223	default:
4224		return -EINVAL;
4225	}
4226
4227	d->map[type_id] = new_id;
4228	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4229		return -ENOMEM;
4230
4231	return new_id;
4232}
4233
4234static int btf_dedup_ref_types(struct btf_dedup *d)
4235{
4236	int i, err;
4237
4238	for (i = 1; i <= d->btf->nr_types; i++) {
4239		err = btf_dedup_ref_type(d, i);
4240		if (err < 0)
4241			return err;
4242	}
4243	/* we won't need d->dedup_table anymore */
4244	hashmap__free(d->dedup_table);
4245	d->dedup_table = NULL;
4246	return 0;
4247}
4248
4249/*
4250 * Compact types.
4251 *
4252 * After we established for each type its corresponding canonical representative
4253 * type, we now can eliminate types that are not canonical and leave only
4254 * canonical ones layed out sequentially in memory by copying them over
4255 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4256 * a map from original type ID to a new compacted type ID, which will be used
4257 * during next phase to "fix up" type IDs, referenced from struct/union and
4258 * reference types.
4259 */
4260static int btf_dedup_compact_types(struct btf_dedup *d)
4261{
4262	__u32 *new_offs;
4263	__u32 next_type_id = 1;
4264	void *p;
4265	int i, len;
4266
4267	/* we are going to reuse hypot_map to store compaction remapping */
4268	d->hypot_map[0] = 0;
4269	for (i = 1; i <= d->btf->nr_types; i++)
4270		d->hypot_map[i] = BTF_UNPROCESSED_ID;
4271
4272	p = d->btf->types_data;
4273
4274	for (i = 1; i <= d->btf->nr_types; i++) {
4275		if (d->map[i] != i)
4276			continue;
4277
4278		len = btf_type_size(btf__type_by_id(d->btf, i));
4279		if (len < 0)
4280			return len;
4281
4282		memmove(p, btf__type_by_id(d->btf, i), len);
4283		d->hypot_map[i] = next_type_id;
4284		d->btf->type_offs[next_type_id] = p - d->btf->types_data;
4285		p += len;
4286		next_type_id++;
4287	}
4288
4289	/* shrink struct btf's internal types index and update btf_header */
4290	d->btf->nr_types = next_type_id - 1;
4291	d->btf->type_offs_cap = d->btf->nr_types + 1;
4292	d->btf->hdr->type_len = p - d->btf->types_data;
4293	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4294				       sizeof(*new_offs));
4295	if (!new_offs)
4296		return -ENOMEM;
4297	d->btf->type_offs = new_offs;
4298	d->btf->hdr->str_off = d->btf->hdr->type_len;
4299	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4300	return 0;
4301}
4302
4303/*
4304 * Figure out final (deduplicated and compacted) type ID for provided original
4305 * `type_id` by first resolving it into corresponding canonical type ID and
4306 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4307 * which is populated during compaction phase.
4308 */
4309static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
4310{
4311	__u32 resolved_type_id, new_type_id;
4312
4313	resolved_type_id = resolve_type_id(d, type_id);
4314	new_type_id = d->hypot_map[resolved_type_id];
4315	if (new_type_id > BTF_MAX_NR_TYPES)
4316		return -EINVAL;
4317	return new_type_id;
4318}
4319
4320/*
4321 * Remap referenced type IDs into deduped type IDs.
4322 *
4323 * After BTF types are deduplicated and compacted, their final type IDs may
4324 * differ from original ones. The map from original to a corresponding
4325 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4326 * compaction phase. During remapping phase we are rewriting all type IDs
4327 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4328 * their final deduped type IDs.
4329 */
4330static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
4331{
4332	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4333	int i, r;
4334
4335	switch (btf_kind(t)) {
4336	case BTF_KIND_INT:
4337	case BTF_KIND_ENUM:
4338		break;
4339
4340	case BTF_KIND_FWD:
4341	case BTF_KIND_CONST:
4342	case BTF_KIND_VOLATILE:
4343	case BTF_KIND_RESTRICT:
4344	case BTF_KIND_PTR:
4345	case BTF_KIND_TYPEDEF:
4346	case BTF_KIND_FUNC:
4347	case BTF_KIND_VAR:
4348		r = btf_dedup_remap_type_id(d, t->type);
4349		if (r < 0)
4350			return r;
4351		t->type = r;
4352		break;
4353
4354	case BTF_KIND_ARRAY: {
4355		struct btf_array *arr_info = btf_array(t);
4356
4357		r = btf_dedup_remap_type_id(d, arr_info->type);
4358		if (r < 0)
4359			return r;
4360		arr_info->type = r;
4361		r = btf_dedup_remap_type_id(d, arr_info->index_type);
4362		if (r < 0)
4363			return r;
4364		arr_info->index_type = r;
4365		break;
4366	}
4367
4368	case BTF_KIND_STRUCT:
4369	case BTF_KIND_UNION: {
4370		struct btf_member *member = btf_members(t);
4371		__u16 vlen = btf_vlen(t);
4372
4373		for (i = 0; i < vlen; i++) {
4374			r = btf_dedup_remap_type_id(d, member->type);
4375			if (r < 0)
4376				return r;
4377			member->type = r;
4378			member++;
4379		}
4380		break;
4381	}
4382
4383	case BTF_KIND_FUNC_PROTO: {
4384		struct btf_param *param = btf_params(t);
4385		__u16 vlen = btf_vlen(t);
4386
4387		r = btf_dedup_remap_type_id(d, t->type);
4388		if (r < 0)
4389			return r;
4390		t->type = r;
4391
4392		for (i = 0; i < vlen; i++) {
4393			r = btf_dedup_remap_type_id(d, param->type);
4394			if (r < 0)
4395				return r;
4396			param->type = r;
4397			param++;
4398		}
4399		break;
4400	}
4401
4402	case BTF_KIND_DATASEC: {
4403		struct btf_var_secinfo *var = btf_var_secinfos(t);
4404		__u16 vlen = btf_vlen(t);
4405
4406		for (i = 0; i < vlen; i++) {
4407			r = btf_dedup_remap_type_id(d, var->type);
4408			if (r < 0)
4409				return r;
4410			var->type = r;
4411			var++;
4412		}
4413		break;
4414	}
4415
4416	default:
4417		return -EINVAL;
4418	}
4419
4420	return 0;
4421}
4422
4423static int btf_dedup_remap_types(struct btf_dedup *d)
4424{
4425	int i, r;
4426
4427	for (i = 1; i <= d->btf->nr_types; i++) {
4428		r = btf_dedup_remap_type(d, i);
4429		if (r < 0)
4430			return r;
4431	}
4432	return 0;
4433}
4434
4435/*
4436 * Probe few well-known locations for vmlinux kernel image and try to load BTF
4437 * data out of it to use for target BTF.
4438 */
4439struct btf *libbpf_find_kernel_btf(void)
4440{
4441	struct {
4442		const char *path_fmt;
4443		bool raw_btf;
4444	} locations[] = {
4445		/* try canonical vmlinux BTF through sysfs first */
4446		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4447		/* fall back to trying to find vmlinux ELF on disk otherwise */
4448		{ "/boot/vmlinux-%1$s" },
4449		{ "/lib/modules/%1$s/vmlinux-%1$s" },
4450		{ "/lib/modules/%1$s/build/vmlinux" },
4451		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
4452		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
4453		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4454		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4455	};
4456	char path[PATH_MAX + 1];
4457	struct utsname buf;
4458	struct btf *btf;
4459	int i;
4460
4461	uname(&buf);
4462
4463	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4464		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4465
4466		if (access(path, R_OK))
4467			continue;
4468
4469		if (locations[i].raw_btf)
4470			btf = btf__parse_raw(path);
4471		else
4472			btf = btf__parse_elf(path, NULL);
4473
4474		pr_debug("loading kernel BTF '%s': %ld\n",
4475			 path, IS_ERR(btf) ? PTR_ERR(btf) : 0);
4476		if (IS_ERR(btf))
4477			continue;
4478
4479		return btf;
4480	}
4481
4482	pr_warn("failed to find valid kernel BTF\n");
4483	return ERR_PTR(-ESRCH);
4484}
4485