1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *   intel_hdmi_audio.c - Intel HDMI audio driver
4 *
5 *  Copyright (C) 2016 Intel Corp
6 *  Authors:	Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
7 *		Ramesh Babu K V	<ramesh.babu@intel.com>
8 *		Vaibhav Agarwal <vaibhav.agarwal@intel.com>
9 *		Jerome Anand <jerome.anand@intel.com>
10 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 * ALSA driver for Intel HDMI audio
14 */
15
16#include <linux/types.h>
17#include <linux/platform_device.h>
18#include <linux/io.h>
19#include <linux/slab.h>
20#include <linux/module.h>
21#include <linux/interrupt.h>
22#include <linux/pm_runtime.h>
23#include <linux/dma-mapping.h>
24#include <linux/delay.h>
25#include <sound/core.h>
26#include <sound/asoundef.h>
27#include <sound/pcm.h>
28#include <sound/pcm_params.h>
29#include <sound/initval.h>
30#include <sound/control.h>
31#include <sound/jack.h>
32#include <drm/drm_edid.h>
33#include <drm/intel_lpe_audio.h>
34#include "intel_hdmi_audio.h"
35
36#define for_each_pipe(card_ctx, pipe) \
37	for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
38#define for_each_port(card_ctx, port) \
39	for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
40
41/*standard module options for ALSA. This module supports only one card*/
42static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
43static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
44static bool single_port;
45
46module_param_named(index, hdmi_card_index, int, 0444);
47MODULE_PARM_DESC(index,
48		"Index value for INTEL Intel HDMI Audio controller.");
49module_param_named(id, hdmi_card_id, charp, 0444);
50MODULE_PARM_DESC(id,
51		"ID string for INTEL Intel HDMI Audio controller.");
52module_param(single_port, bool, 0444);
53MODULE_PARM_DESC(single_port,
54		"Single-port mode (for compatibility)");
55
56/*
57 * ELD SA bits in the CEA Speaker Allocation data block
58 */
59static const int eld_speaker_allocation_bits[] = {
60	[0] = FL | FR,
61	[1] = LFE,
62	[2] = FC,
63	[3] = RL | RR,
64	[4] = RC,
65	[5] = FLC | FRC,
66	[6] = RLC | RRC,
67	/* the following are not defined in ELD yet */
68	[7] = 0,
69};
70
71/*
72 * This is an ordered list!
73 *
74 * The preceding ones have better chances to be selected by
75 * hdmi_channel_allocation().
76 */
77static struct cea_channel_speaker_allocation channel_allocations[] = {
78/*                        channel:   7     6    5    4    3     2    1    0  */
79{ .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
80				/* 2.1 */
81{ .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
82				/* Dolby Surround */
83{ .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
84				/* surround40 */
85{ .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
86				/* surround41 */
87{ .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
88				/* surround50 */
89{ .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
90				/* surround51 */
91{ .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
92				/* 6.1 */
93{ .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
94				/* surround71 */
95{ .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
96
97{ .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
98{ .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
99{ .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
100{ .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
101{ .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
102{ .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
103{ .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
104{ .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
105{ .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
106{ .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
107{ .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
108{ .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
109{ .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
110{ .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
111{ .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
112{ .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
113{ .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
114{ .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
115{ .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
116{ .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
117{ .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
118{ .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
119{ .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
120};
121
122static const struct channel_map_table map_tables[] = {
123	{ SNDRV_CHMAP_FL,       0x00,   FL },
124	{ SNDRV_CHMAP_FR,       0x01,   FR },
125	{ SNDRV_CHMAP_RL,       0x04,   RL },
126	{ SNDRV_CHMAP_RR,       0x05,   RR },
127	{ SNDRV_CHMAP_LFE,      0x02,   LFE },
128	{ SNDRV_CHMAP_FC,       0x03,   FC },
129	{ SNDRV_CHMAP_RLC,      0x06,   RLC },
130	{ SNDRV_CHMAP_RRC,      0x07,   RRC },
131	{} /* terminator */
132};
133
134/* hardware capability structure */
135static const struct snd_pcm_hardware had_pcm_hardware = {
136	.info =	(SNDRV_PCM_INFO_INTERLEAVED |
137		SNDRV_PCM_INFO_MMAP |
138		SNDRV_PCM_INFO_MMAP_VALID |
139		SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
140	.formats = (SNDRV_PCM_FMTBIT_S16_LE |
141		    SNDRV_PCM_FMTBIT_S24_LE |
142		    SNDRV_PCM_FMTBIT_S32_LE),
143	.rates = SNDRV_PCM_RATE_32000 |
144		SNDRV_PCM_RATE_44100 |
145		SNDRV_PCM_RATE_48000 |
146		SNDRV_PCM_RATE_88200 |
147		SNDRV_PCM_RATE_96000 |
148		SNDRV_PCM_RATE_176400 |
149		SNDRV_PCM_RATE_192000,
150	.rate_min = HAD_MIN_RATE,
151	.rate_max = HAD_MAX_RATE,
152	.channels_min = HAD_MIN_CHANNEL,
153	.channels_max = HAD_MAX_CHANNEL,
154	.buffer_bytes_max = HAD_MAX_BUFFER,
155	.period_bytes_min = HAD_MIN_PERIOD_BYTES,
156	.period_bytes_max = HAD_MAX_PERIOD_BYTES,
157	.periods_min = HAD_MIN_PERIODS,
158	.periods_max = HAD_MAX_PERIODS,
159	.fifo_size = HAD_FIFO_SIZE,
160};
161
162/* Get the active PCM substream;
163 * Call had_substream_put() for unreferecing.
164 * Don't call this inside had_spinlock, as it takes by itself
165 */
166static struct snd_pcm_substream *
167had_substream_get(struct snd_intelhad *intelhaddata)
168{
169	struct snd_pcm_substream *substream;
170	unsigned long flags;
171
172	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
173	substream = intelhaddata->stream_info.substream;
174	if (substream)
175		intelhaddata->stream_info.substream_refcount++;
176	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
177	return substream;
178}
179
180/* Unref the active PCM substream;
181 * Don't call this inside had_spinlock, as it takes by itself
182 */
183static void had_substream_put(struct snd_intelhad *intelhaddata)
184{
185	unsigned long flags;
186
187	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
188	intelhaddata->stream_info.substream_refcount--;
189	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
190}
191
192static u32 had_config_offset(int pipe)
193{
194	switch (pipe) {
195	default:
196	case 0:
197		return AUDIO_HDMI_CONFIG_A;
198	case 1:
199		return AUDIO_HDMI_CONFIG_B;
200	case 2:
201		return AUDIO_HDMI_CONFIG_C;
202	}
203}
204
205/* Register access functions */
206static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
207				 int pipe, u32 reg)
208{
209	return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
210}
211
212static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
213				   int pipe, u32 reg, u32 val)
214{
215	iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
216}
217
218static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
219{
220	if (!ctx->connected)
221		*val = 0;
222	else
223		*val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
224}
225
226static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
227{
228	if (ctx->connected)
229		had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
230}
231
232/*
233 * enable / disable audio configuration
234 *
235 * The normal read/modify should not directly be used on VLV2 for
236 * updating AUD_CONFIG register.
237 * This is because:
238 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
239 * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
240 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
241 * register. This field should be 1xy binary for configuration with 6 or
242 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
243 * causes the "channels" field to be updated as 0xy binary resulting in
244 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
245 * appropriate value when doing read-modify of AUD_CONFIG register.
246 */
247static void had_enable_audio(struct snd_intelhad *intelhaddata,
248			     bool enable)
249{
250	/* update the cached value */
251	intelhaddata->aud_config.regx.aud_en = enable;
252	had_write_register(intelhaddata, AUD_CONFIG,
253			   intelhaddata->aud_config.regval);
254}
255
256/* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
257static void had_ack_irqs(struct snd_intelhad *ctx)
258{
259	u32 status_reg;
260
261	if (!ctx->connected)
262		return;
263	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
264	status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
265	had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
266	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
267}
268
269/* Reset buffer pointers */
270static void had_reset_audio(struct snd_intelhad *intelhaddata)
271{
272	had_write_register(intelhaddata, AUD_HDMI_STATUS,
273			   AUD_HDMI_STATUSG_MASK_FUNCRST);
274	had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
275}
276
277/*
278 * initialize audio channel status registers
279 * This function is called in the prepare callback
280 */
281static int had_prog_status_reg(struct snd_pcm_substream *substream,
282			struct snd_intelhad *intelhaddata)
283{
284	union aud_ch_status_0 ch_stat0 = {.regval = 0};
285	union aud_ch_status_1 ch_stat1 = {.regval = 0};
286
287	ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
288					  IEC958_AES0_NONAUDIO) >> 1;
289	ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
290					  IEC958_AES3_CON_CLOCK) >> 4;
291
292	switch (substream->runtime->rate) {
293	case AUD_SAMPLE_RATE_32:
294		ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
295		break;
296
297	case AUD_SAMPLE_RATE_44_1:
298		ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
299		break;
300	case AUD_SAMPLE_RATE_48:
301		ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
302		break;
303	case AUD_SAMPLE_RATE_88_2:
304		ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
305		break;
306	case AUD_SAMPLE_RATE_96:
307		ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
308		break;
309	case AUD_SAMPLE_RATE_176_4:
310		ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
311		break;
312	case AUD_SAMPLE_RATE_192:
313		ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
314		break;
315
316	default:
317		/* control should never come here */
318		return -EINVAL;
319	}
320
321	had_write_register(intelhaddata,
322			   AUD_CH_STATUS_0, ch_stat0.regval);
323
324	switch (substream->runtime->format) {
325	case SNDRV_PCM_FORMAT_S16_LE:
326		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
327		ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
328		break;
329	case SNDRV_PCM_FORMAT_S24_LE:
330	case SNDRV_PCM_FORMAT_S32_LE:
331		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
332		ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
333		break;
334	default:
335		return -EINVAL;
336	}
337
338	had_write_register(intelhaddata,
339			   AUD_CH_STATUS_1, ch_stat1.regval);
340	return 0;
341}
342
343/*
344 * function to initialize audio
345 * registers and buffer confgiuration registers
346 * This function is called in the prepare callback
347 */
348static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
349			       struct snd_intelhad *intelhaddata)
350{
351	union aud_cfg cfg_val = {.regval = 0};
352	union aud_buf_config buf_cfg = {.regval = 0};
353	u8 channels;
354
355	had_prog_status_reg(substream, intelhaddata);
356
357	buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
358	buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
359	buf_cfg.regx.aud_delay = 0;
360	had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
361
362	channels = substream->runtime->channels;
363	cfg_val.regx.num_ch = channels - 2;
364	if (channels <= 2)
365		cfg_val.regx.layout = LAYOUT0;
366	else
367		cfg_val.regx.layout = LAYOUT1;
368
369	if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
370		cfg_val.regx.packet_mode = 1;
371
372	if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
373		cfg_val.regx.left_align = 1;
374
375	cfg_val.regx.val_bit = 1;
376
377	/* fix up the DP bits */
378	if (intelhaddata->dp_output) {
379		cfg_val.regx.dp_modei = 1;
380		cfg_val.regx.set = 1;
381	}
382
383	had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
384	intelhaddata->aud_config = cfg_val;
385	return 0;
386}
387
388/*
389 * Compute derived values in channel_allocations[].
390 */
391static void init_channel_allocations(void)
392{
393	int i, j;
394	struct cea_channel_speaker_allocation *p;
395
396	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
397		p = channel_allocations + i;
398		p->channels = 0;
399		p->spk_mask = 0;
400		for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
401			if (p->speakers[j]) {
402				p->channels++;
403				p->spk_mask |= p->speakers[j];
404			}
405	}
406}
407
408/*
409 * The transformation takes two steps:
410 *
411 *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
412 *            spk_mask => (channel_allocations[])         => ai->CA
413 *
414 * TODO: it could select the wrong CA from multiple candidates.
415 */
416static int had_channel_allocation(struct snd_intelhad *intelhaddata,
417				  int channels)
418{
419	int i;
420	int ca = 0;
421	int spk_mask = 0;
422
423	/*
424	 * CA defaults to 0 for basic stereo audio
425	 */
426	if (channels <= 2)
427		return 0;
428
429	/*
430	 * expand ELD's speaker allocation mask
431	 *
432	 * ELD tells the speaker mask in a compact(paired) form,
433	 * expand ELD's notions to match the ones used by Audio InfoFrame.
434	 */
435
436	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
437		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
438			spk_mask |= eld_speaker_allocation_bits[i];
439	}
440
441	/* search for the first working match in the CA table */
442	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
443		if (channels == channel_allocations[i].channels &&
444		(spk_mask & channel_allocations[i].spk_mask) ==
445				channel_allocations[i].spk_mask) {
446			ca = channel_allocations[i].ca_index;
447			break;
448		}
449	}
450
451	dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
452
453	return ca;
454}
455
456/* from speaker bit mask to ALSA API channel position */
457static int spk_to_chmap(int spk)
458{
459	const struct channel_map_table *t = map_tables;
460
461	for (; t->map; t++) {
462		if (t->spk_mask == spk)
463			return t->map;
464	}
465	return 0;
466}
467
468static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
469{
470	int i, c;
471	int spk_mask = 0;
472	struct snd_pcm_chmap_elem *chmap;
473	u8 eld_high, eld_high_mask = 0xF0;
474	u8 high_msb;
475
476	kfree(intelhaddata->chmap->chmap);
477	intelhaddata->chmap->chmap = NULL;
478
479	chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
480	if (!chmap)
481		return;
482
483	dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
484		intelhaddata->eld[DRM_ELD_SPEAKER]);
485
486	/* WA: Fix the max channel supported to 8 */
487
488	/*
489	 * Sink may support more than 8 channels, if eld_high has more than
490	 * one bit set. SOC supports max 8 channels.
491	 * Refer eld_speaker_allocation_bits, for sink speaker allocation
492	 */
493
494	/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
495	eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
496	if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
497		/* eld_high & (eld_high-1): if more than 1 bit set */
498		/* 0x1F: 7 channels */
499		for (i = 1; i < 4; i++) {
500			high_msb = eld_high & (0x80 >> i);
501			if (high_msb) {
502				intelhaddata->eld[DRM_ELD_SPEAKER] &=
503					high_msb | 0xF;
504				break;
505			}
506		}
507	}
508
509	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
510		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
511			spk_mask |= eld_speaker_allocation_bits[i];
512	}
513
514	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
515		if (spk_mask == channel_allocations[i].spk_mask) {
516			for (c = 0; c < channel_allocations[i].channels; c++) {
517				chmap->map[c] = spk_to_chmap(
518					channel_allocations[i].speakers[
519						(MAX_SPEAKERS - 1) - c]);
520			}
521			chmap->channels = channel_allocations[i].channels;
522			intelhaddata->chmap->chmap = chmap;
523			break;
524		}
525	}
526	if (i >= ARRAY_SIZE(channel_allocations))
527		kfree(chmap);
528}
529
530/*
531 * ALSA API channel-map control callbacks
532 */
533static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
534				struct snd_ctl_elem_info *uinfo)
535{
536	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
537	uinfo->count = HAD_MAX_CHANNEL;
538	uinfo->value.integer.min = 0;
539	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
540	return 0;
541}
542
543static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
544				struct snd_ctl_elem_value *ucontrol)
545{
546	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
547	struct snd_intelhad *intelhaddata = info->private_data;
548	int i;
549	const struct snd_pcm_chmap_elem *chmap;
550
551	memset(ucontrol->value.integer.value, 0,
552	       sizeof(long) * HAD_MAX_CHANNEL);
553	mutex_lock(&intelhaddata->mutex);
554	if (!intelhaddata->chmap->chmap) {
555		mutex_unlock(&intelhaddata->mutex);
556		return 0;
557	}
558
559	chmap = intelhaddata->chmap->chmap;
560	for (i = 0; i < chmap->channels; i++)
561		ucontrol->value.integer.value[i] = chmap->map[i];
562	mutex_unlock(&intelhaddata->mutex);
563
564	return 0;
565}
566
567static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
568						struct snd_pcm *pcm)
569{
570	int err;
571
572	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
573			NULL, 0, (unsigned long)intelhaddata,
574			&intelhaddata->chmap);
575	if (err < 0)
576		return err;
577
578	intelhaddata->chmap->private_data = intelhaddata;
579	intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
580	intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
581	intelhaddata->chmap->chmap = NULL;
582	return 0;
583}
584
585/*
586 * Initialize Data Island Packets registers
587 * This function is called in the prepare callback
588 */
589static void had_prog_dip(struct snd_pcm_substream *substream,
590			 struct snd_intelhad *intelhaddata)
591{
592	int i;
593	union aud_ctrl_st ctrl_state = {.regval = 0};
594	union aud_info_frame2 frame2 = {.regval = 0};
595	union aud_info_frame3 frame3 = {.regval = 0};
596	u8 checksum = 0;
597	u32 info_frame;
598	int channels;
599	int ca;
600
601	channels = substream->runtime->channels;
602
603	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
604
605	ca = had_channel_allocation(intelhaddata, channels);
606	if (intelhaddata->dp_output) {
607		info_frame = DP_INFO_FRAME_WORD1;
608		frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
609	} else {
610		info_frame = HDMI_INFO_FRAME_WORD1;
611		frame2.regx.chnl_cnt = substream->runtime->channels - 1;
612		frame3.regx.chnl_alloc = ca;
613
614		/* Calculte the byte wide checksum for all valid DIP words */
615		for (i = 0; i < BYTES_PER_WORD; i++)
616			checksum += (info_frame >> (i * 8)) & 0xff;
617		for (i = 0; i < BYTES_PER_WORD; i++)
618			checksum += (frame2.regval >> (i * 8)) & 0xff;
619		for (i = 0; i < BYTES_PER_WORD; i++)
620			checksum += (frame3.regval >> (i * 8)) & 0xff;
621
622		frame2.regx.chksum = -(checksum);
623	}
624
625	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
626	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
627	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
628
629	/* program remaining DIP words with zero */
630	for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
631		had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
632
633	ctrl_state.regx.dip_freq = 1;
634	ctrl_state.regx.dip_en_sta = 1;
635	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
636}
637
638static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
639{
640	u32 maud_val;
641
642	/* Select maud according to DP 1.2 spec */
643	if (link_rate == DP_2_7_GHZ) {
644		switch (aud_samp_freq) {
645		case AUD_SAMPLE_RATE_32:
646			maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
647			break;
648
649		case AUD_SAMPLE_RATE_44_1:
650			maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
651			break;
652
653		case AUD_SAMPLE_RATE_48:
654			maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
655			break;
656
657		case AUD_SAMPLE_RATE_88_2:
658			maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
659			break;
660
661		case AUD_SAMPLE_RATE_96:
662			maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
663			break;
664
665		case AUD_SAMPLE_RATE_176_4:
666			maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
667			break;
668
669		case HAD_MAX_RATE:
670			maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
671			break;
672
673		default:
674			maud_val = -EINVAL;
675			break;
676		}
677	} else if (link_rate == DP_1_62_GHZ) {
678		switch (aud_samp_freq) {
679		case AUD_SAMPLE_RATE_32:
680			maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
681			break;
682
683		case AUD_SAMPLE_RATE_44_1:
684			maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
685			break;
686
687		case AUD_SAMPLE_RATE_48:
688			maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
689			break;
690
691		case AUD_SAMPLE_RATE_88_2:
692			maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
693			break;
694
695		case AUD_SAMPLE_RATE_96:
696			maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
697			break;
698
699		case AUD_SAMPLE_RATE_176_4:
700			maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
701			break;
702
703		case HAD_MAX_RATE:
704			maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
705			break;
706
707		default:
708			maud_val = -EINVAL;
709			break;
710		}
711	} else
712		maud_val = -EINVAL;
713
714	return maud_val;
715}
716
717/*
718 * Program HDMI audio CTS value
719 *
720 * @aud_samp_freq: sampling frequency of audio data
721 * @tmds: sampling frequency of the display data
722 * @link_rate: DP link rate
723 * @n_param: N value, depends on aud_samp_freq
724 * @intelhaddata: substream private data
725 *
726 * Program CTS register based on the audio and display sampling frequency
727 */
728static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
729			 u32 n_param, struct snd_intelhad *intelhaddata)
730{
731	u32 cts_val;
732	u64 dividend, divisor;
733
734	if (intelhaddata->dp_output) {
735		/* Substitute cts_val with Maud according to DP 1.2 spec*/
736		cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
737	} else {
738		/* Calculate CTS according to HDMI 1.3a spec*/
739		dividend = (u64)tmds * n_param*1000;
740		divisor = 128 * aud_samp_freq;
741		cts_val = div64_u64(dividend, divisor);
742	}
743	dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
744		 tmds, n_param, cts_val);
745	had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
746}
747
748static int had_calculate_n_value(u32 aud_samp_freq)
749{
750	int n_val;
751
752	/* Select N according to HDMI 1.3a spec*/
753	switch (aud_samp_freq) {
754	case AUD_SAMPLE_RATE_32:
755		n_val = 4096;
756		break;
757
758	case AUD_SAMPLE_RATE_44_1:
759		n_val = 6272;
760		break;
761
762	case AUD_SAMPLE_RATE_48:
763		n_val = 6144;
764		break;
765
766	case AUD_SAMPLE_RATE_88_2:
767		n_val = 12544;
768		break;
769
770	case AUD_SAMPLE_RATE_96:
771		n_val = 12288;
772		break;
773
774	case AUD_SAMPLE_RATE_176_4:
775		n_val = 25088;
776		break;
777
778	case HAD_MAX_RATE:
779		n_val = 24576;
780		break;
781
782	default:
783		n_val = -EINVAL;
784		break;
785	}
786	return n_val;
787}
788
789/*
790 * Program HDMI audio N value
791 *
792 * @aud_samp_freq: sampling frequency of audio data
793 * @n_param: N value, depends on aud_samp_freq
794 * @intelhaddata: substream private data
795 *
796 * This function is called in the prepare callback.
797 * It programs based on the audio and display sampling frequency
798 */
799static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
800		      struct snd_intelhad *intelhaddata)
801{
802	int n_val;
803
804	if (intelhaddata->dp_output) {
805		/*
806		 * According to DP specs, Maud and Naud values hold
807		 * a relationship, which is stated as:
808		 * Maud/Naud = 512 * fs / f_LS_Clk
809		 * where, fs is the sampling frequency of the audio stream
810		 * and Naud is 32768 for Async clock.
811		 */
812
813		n_val = DP_NAUD_VAL;
814	} else
815		n_val =	had_calculate_n_value(aud_samp_freq);
816
817	if (n_val < 0)
818		return n_val;
819
820	had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
821	*n_param = n_val;
822	return 0;
823}
824
825/*
826 * PCM ring buffer handling
827 *
828 * The hardware provides a ring buffer with the fixed 4 buffer descriptors
829 * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
830 * moves at each period elapsed.  The below illustrates how it works:
831 *
832 * At time=0
833 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
834 *  BD  | 0 | 1 | 2 | 3 |
835 *
836 * At time=1 (period elapsed)
837 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
838 *  BD      | 1 | 2 | 3 | 0 |
839 *
840 * At time=2 (second period elapsed)
841 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
842 *  BD          | 2 | 3 | 0 | 1 |
843 *
844 * The bd_head field points to the index of the BD to be read.  It's also the
845 * position to be filled at next.  The pcm_head and the pcm_filled fields
846 * point to the indices of the current position and of the next position to
847 * be filled, respectively.  For PCM buffer there are both _head and _filled
848 * because they may be difference when nperiods > 4.  For example, in the
849 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
850 *
851 * pcm_head (=1) --v               v-- pcm_filled (=5)
852 *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
853 *       BD      | 1 | 2 | 3 | 0 |
854 *  bd_head (=1) --^               ^-- next to fill (= bd_head)
855 *
856 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
857 * the hardware skips those BDs in the loop.
858 *
859 * An exceptional setup is the case with nperiods=1.  Since we have to update
860 * BDs after finishing one BD processing, we'd need at least two BDs, where
861 * both BDs point to the same content, the same address, the same size of the
862 * whole PCM buffer.
863 */
864
865#define AUD_BUF_ADDR(x)		(AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
866#define AUD_BUF_LEN(x)		(AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
867
868/* Set up a buffer descriptor at the "filled" position */
869static void had_prog_bd(struct snd_pcm_substream *substream,
870			struct snd_intelhad *intelhaddata)
871{
872	int idx = intelhaddata->bd_head;
873	int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
874	u32 addr = substream->runtime->dma_addr + ofs;
875
876	addr |= AUD_BUF_VALID;
877	if (!substream->runtime->no_period_wakeup)
878		addr |= AUD_BUF_INTR_EN;
879	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
880	had_write_register(intelhaddata, AUD_BUF_LEN(idx),
881			   intelhaddata->period_bytes);
882
883	/* advance the indices to the next */
884	intelhaddata->bd_head++;
885	intelhaddata->bd_head %= intelhaddata->num_bds;
886	intelhaddata->pcmbuf_filled++;
887	intelhaddata->pcmbuf_filled %= substream->runtime->periods;
888}
889
890/* invalidate a buffer descriptor with the given index */
891static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
892			      int idx)
893{
894	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
895	had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
896}
897
898/* Initial programming of ring buffer */
899static void had_init_ringbuf(struct snd_pcm_substream *substream,
900			     struct snd_intelhad *intelhaddata)
901{
902	struct snd_pcm_runtime *runtime = substream->runtime;
903	int i, num_periods;
904
905	num_periods = runtime->periods;
906	intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
907	/* set the minimum 2 BDs for num_periods=1 */
908	intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
909	intelhaddata->period_bytes =
910		frames_to_bytes(runtime, runtime->period_size);
911	WARN_ON(intelhaddata->period_bytes & 0x3f);
912
913	intelhaddata->bd_head = 0;
914	intelhaddata->pcmbuf_head = 0;
915	intelhaddata->pcmbuf_filled = 0;
916
917	for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
918		if (i < intelhaddata->num_bds)
919			had_prog_bd(substream, intelhaddata);
920		else /* invalidate the rest */
921			had_invalidate_bd(intelhaddata, i);
922	}
923
924	intelhaddata->bd_head = 0; /* reset at head again before starting */
925}
926
927/* process a bd, advance to the next */
928static void had_advance_ringbuf(struct snd_pcm_substream *substream,
929				struct snd_intelhad *intelhaddata)
930{
931	int num_periods = substream->runtime->periods;
932
933	/* reprogram the next buffer */
934	had_prog_bd(substream, intelhaddata);
935
936	/* proceed to next */
937	intelhaddata->pcmbuf_head++;
938	intelhaddata->pcmbuf_head %= num_periods;
939}
940
941/* process the current BD(s);
942 * returns the current PCM buffer byte position, or -EPIPE for underrun.
943 */
944static int had_process_ringbuf(struct snd_pcm_substream *substream,
945			       struct snd_intelhad *intelhaddata)
946{
947	int len, processed;
948	unsigned long flags;
949
950	processed = 0;
951	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
952	for (;;) {
953		/* get the remaining bytes on the buffer */
954		had_read_register(intelhaddata,
955				  AUD_BUF_LEN(intelhaddata->bd_head),
956				  &len);
957		if (len < 0 || len > intelhaddata->period_bytes) {
958			dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
959				len);
960			len = -EPIPE;
961			goto out;
962		}
963
964		if (len > 0) /* OK, this is the current buffer */
965			break;
966
967		/* len=0 => already empty, check the next buffer */
968		if (++processed >= intelhaddata->num_bds) {
969			len = -EPIPE; /* all empty? - report underrun */
970			goto out;
971		}
972		had_advance_ringbuf(substream, intelhaddata);
973	}
974
975	len = intelhaddata->period_bytes - len;
976	len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
977 out:
978	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
979	return len;
980}
981
982/* called from irq handler */
983static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
984{
985	struct snd_pcm_substream *substream;
986
987	substream = had_substream_get(intelhaddata);
988	if (!substream)
989		return; /* no stream? - bail out */
990
991	if (!intelhaddata->connected) {
992		snd_pcm_stop_xrun(substream);
993		goto out; /* disconnected? - bail out */
994	}
995
996	/* process or stop the stream */
997	if (had_process_ringbuf(substream, intelhaddata) < 0)
998		snd_pcm_stop_xrun(substream);
999	else
1000		snd_pcm_period_elapsed(substream);
1001
1002 out:
1003	had_substream_put(intelhaddata);
1004}
1005
1006/*
1007 * The interrupt status 'sticky' bits might not be cleared by
1008 * setting '1' to that bit once...
1009 */
1010static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1011{
1012	int i;
1013	u32 val;
1014
1015	for (i = 0; i < 100; i++) {
1016		/* clear bit30, 31 AUD_HDMI_STATUS */
1017		had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1018		if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1019			return;
1020		udelay(100);
1021		cond_resched();
1022		had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1023	}
1024	dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1025}
1026
1027/* Perform some reset procedure but only when need_reset is set;
1028 * this is called from prepare or hw_free callbacks once after trigger STOP
1029 * or underrun has been processed in order to settle down the h/w state.
1030 */
1031static void had_do_reset(struct snd_intelhad *intelhaddata)
1032{
1033	if (!intelhaddata->need_reset || !intelhaddata->connected)
1034		return;
1035
1036	/* Reset buffer pointers */
1037	had_reset_audio(intelhaddata);
1038	wait_clear_underrun_bit(intelhaddata);
1039	intelhaddata->need_reset = false;
1040}
1041
1042/* called from irq handler */
1043static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1044{
1045	struct snd_pcm_substream *substream;
1046
1047	/* Report UNDERRUN error to above layers */
1048	substream = had_substream_get(intelhaddata);
1049	if (substream) {
1050		snd_pcm_stop_xrun(substream);
1051		had_substream_put(intelhaddata);
1052	}
1053	intelhaddata->need_reset = true;
1054}
1055
1056/*
1057 * ALSA PCM open callback
1058 */
1059static int had_pcm_open(struct snd_pcm_substream *substream)
1060{
1061	struct snd_intelhad *intelhaddata;
1062	struct snd_pcm_runtime *runtime;
1063	int retval;
1064
1065	intelhaddata = snd_pcm_substream_chip(substream);
1066	runtime = substream->runtime;
1067
1068	pm_runtime_get_sync(intelhaddata->dev);
1069
1070	/* set the runtime hw parameter with local snd_pcm_hardware struct */
1071	runtime->hw = had_pcm_hardware;
1072
1073	retval = snd_pcm_hw_constraint_integer(runtime,
1074			 SNDRV_PCM_HW_PARAM_PERIODS);
1075	if (retval < 0)
1076		goto error;
1077
1078	/* Make sure, that the period size is always aligned
1079	 * 64byte boundary
1080	 */
1081	retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1082			SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1083	if (retval < 0)
1084		goto error;
1085
1086	retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1087	if (retval < 0)
1088		goto error;
1089
1090	/* expose PCM substream */
1091	spin_lock_irq(&intelhaddata->had_spinlock);
1092	intelhaddata->stream_info.substream = substream;
1093	intelhaddata->stream_info.substream_refcount++;
1094	spin_unlock_irq(&intelhaddata->had_spinlock);
1095
1096	return retval;
1097 error:
1098	pm_runtime_mark_last_busy(intelhaddata->dev);
1099	pm_runtime_put_autosuspend(intelhaddata->dev);
1100	return retval;
1101}
1102
1103/*
1104 * ALSA PCM close callback
1105 */
1106static int had_pcm_close(struct snd_pcm_substream *substream)
1107{
1108	struct snd_intelhad *intelhaddata;
1109
1110	intelhaddata = snd_pcm_substream_chip(substream);
1111
1112	/* unreference and sync with the pending PCM accesses */
1113	spin_lock_irq(&intelhaddata->had_spinlock);
1114	intelhaddata->stream_info.substream = NULL;
1115	intelhaddata->stream_info.substream_refcount--;
1116	while (intelhaddata->stream_info.substream_refcount > 0) {
1117		spin_unlock_irq(&intelhaddata->had_spinlock);
1118		cpu_relax();
1119		spin_lock_irq(&intelhaddata->had_spinlock);
1120	}
1121	spin_unlock_irq(&intelhaddata->had_spinlock);
1122
1123	pm_runtime_mark_last_busy(intelhaddata->dev);
1124	pm_runtime_put_autosuspend(intelhaddata->dev);
1125	return 0;
1126}
1127
1128/*
1129 * ALSA PCM hw_params callback
1130 */
1131static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1132			     struct snd_pcm_hw_params *hw_params)
1133{
1134	struct snd_intelhad *intelhaddata;
1135	int buf_size;
1136
1137	intelhaddata = snd_pcm_substream_chip(substream);
1138	buf_size = params_buffer_bytes(hw_params);
1139	dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1140		__func__, buf_size);
1141	return 0;
1142}
1143
1144/*
1145 * ALSA PCM hw_free callback
1146 */
1147static int had_pcm_hw_free(struct snd_pcm_substream *substream)
1148{
1149	struct snd_intelhad *intelhaddata;
1150
1151	intelhaddata = snd_pcm_substream_chip(substream);
1152	had_do_reset(intelhaddata);
1153
1154	return 0;
1155}
1156
1157/*
1158 * ALSA PCM trigger callback
1159 */
1160static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1161{
1162	int retval = 0;
1163	struct snd_intelhad *intelhaddata;
1164
1165	intelhaddata = snd_pcm_substream_chip(substream);
1166
1167	spin_lock(&intelhaddata->had_spinlock);
1168	switch (cmd) {
1169	case SNDRV_PCM_TRIGGER_START:
1170	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1171	case SNDRV_PCM_TRIGGER_RESUME:
1172		/* Enable Audio */
1173		had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1174		had_enable_audio(intelhaddata, true);
1175		break;
1176
1177	case SNDRV_PCM_TRIGGER_STOP:
1178	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1179		/* Disable Audio */
1180		had_enable_audio(intelhaddata, false);
1181		intelhaddata->need_reset = true;
1182		break;
1183
1184	default:
1185		retval = -EINVAL;
1186	}
1187	spin_unlock(&intelhaddata->had_spinlock);
1188	return retval;
1189}
1190
1191/*
1192 * ALSA PCM prepare callback
1193 */
1194static int had_pcm_prepare(struct snd_pcm_substream *substream)
1195{
1196	int retval;
1197	u32 disp_samp_freq, n_param;
1198	u32 link_rate = 0;
1199	struct snd_intelhad *intelhaddata;
1200	struct snd_pcm_runtime *runtime;
1201
1202	intelhaddata = snd_pcm_substream_chip(substream);
1203	runtime = substream->runtime;
1204
1205	dev_dbg(intelhaddata->dev, "period_size=%d\n",
1206		(int)frames_to_bytes(runtime, runtime->period_size));
1207	dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1208	dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1209		(int)snd_pcm_lib_buffer_bytes(substream));
1210	dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1211	dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1212
1213	had_do_reset(intelhaddata);
1214
1215	/* Get N value in KHz */
1216	disp_samp_freq = intelhaddata->tmds_clock_speed;
1217
1218	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1219	if (retval) {
1220		dev_err(intelhaddata->dev,
1221			"programming N value failed %#x\n", retval);
1222		goto prep_end;
1223	}
1224
1225	if (intelhaddata->dp_output)
1226		link_rate = intelhaddata->link_rate;
1227
1228	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1229		     n_param, intelhaddata);
1230
1231	had_prog_dip(substream, intelhaddata);
1232
1233	retval = had_init_audio_ctrl(substream, intelhaddata);
1234
1235	/* Prog buffer address */
1236	had_init_ringbuf(substream, intelhaddata);
1237
1238	/*
1239	 * Program channel mapping in following order:
1240	 * FL, FR, C, LFE, RL, RR
1241	 */
1242
1243	had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1244
1245prep_end:
1246	return retval;
1247}
1248
1249/*
1250 * ALSA PCM pointer callback
1251 */
1252static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1253{
1254	struct snd_intelhad *intelhaddata;
1255	int len;
1256
1257	intelhaddata = snd_pcm_substream_chip(substream);
1258
1259	if (!intelhaddata->connected)
1260		return SNDRV_PCM_POS_XRUN;
1261
1262	len = had_process_ringbuf(substream, intelhaddata);
1263	if (len < 0)
1264		return SNDRV_PCM_POS_XRUN;
1265	len = bytes_to_frames(substream->runtime, len);
1266	/* wrapping may happen when periods=1 */
1267	len %= substream->runtime->buffer_size;
1268	return len;
1269}
1270
1271/*
1272 * ALSA PCM mmap callback
1273 */
1274static int had_pcm_mmap(struct snd_pcm_substream *substream,
1275			struct vm_area_struct *vma)
1276{
1277	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1278	return remap_pfn_range(vma, vma->vm_start,
1279			substream->runtime->dma_addr >> PAGE_SHIFT,
1280			vma->vm_end - vma->vm_start, vma->vm_page_prot);
1281}
1282
1283/*
1284 * ALSA PCM ops
1285 */
1286static const struct snd_pcm_ops had_pcm_ops = {
1287	.open =		had_pcm_open,
1288	.close =	had_pcm_close,
1289	.hw_params =	had_pcm_hw_params,
1290	.hw_free =	had_pcm_hw_free,
1291	.prepare =	had_pcm_prepare,
1292	.trigger =	had_pcm_trigger,
1293	.pointer =	had_pcm_pointer,
1294	.mmap =		had_pcm_mmap,
1295};
1296
1297/* process mode change of the running stream; called in mutex */
1298static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1299{
1300	struct snd_pcm_substream *substream;
1301	int retval = 0;
1302	u32 disp_samp_freq, n_param;
1303	u32 link_rate = 0;
1304
1305	substream = had_substream_get(intelhaddata);
1306	if (!substream)
1307		return 0;
1308
1309	/* Disable Audio */
1310	had_enable_audio(intelhaddata, false);
1311
1312	/* Update CTS value */
1313	disp_samp_freq = intelhaddata->tmds_clock_speed;
1314
1315	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1316	if (retval) {
1317		dev_err(intelhaddata->dev,
1318			"programming N value failed %#x\n", retval);
1319		goto out;
1320	}
1321
1322	if (intelhaddata->dp_output)
1323		link_rate = intelhaddata->link_rate;
1324
1325	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1326		     n_param, intelhaddata);
1327
1328	/* Enable Audio */
1329	had_enable_audio(intelhaddata, true);
1330
1331out:
1332	had_substream_put(intelhaddata);
1333	return retval;
1334}
1335
1336/* process hot plug, called from wq with mutex locked */
1337static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1338{
1339	struct snd_pcm_substream *substream;
1340
1341	spin_lock_irq(&intelhaddata->had_spinlock);
1342	if (intelhaddata->connected) {
1343		dev_dbg(intelhaddata->dev, "Device already connected\n");
1344		spin_unlock_irq(&intelhaddata->had_spinlock);
1345		return;
1346	}
1347
1348	/* Disable Audio */
1349	had_enable_audio(intelhaddata, false);
1350
1351	intelhaddata->connected = true;
1352	dev_dbg(intelhaddata->dev,
1353		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1354			__func__, __LINE__);
1355	spin_unlock_irq(&intelhaddata->had_spinlock);
1356
1357	had_build_channel_allocation_map(intelhaddata);
1358
1359	/* Report to above ALSA layer */
1360	substream = had_substream_get(intelhaddata);
1361	if (substream) {
1362		snd_pcm_stop_xrun(substream);
1363		had_substream_put(intelhaddata);
1364	}
1365
1366	snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1367}
1368
1369/* process hot unplug, called from wq with mutex locked */
1370static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1371{
1372	struct snd_pcm_substream *substream;
1373
1374	spin_lock_irq(&intelhaddata->had_spinlock);
1375	if (!intelhaddata->connected) {
1376		dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1377		spin_unlock_irq(&intelhaddata->had_spinlock);
1378		return;
1379
1380	}
1381
1382	/* Disable Audio */
1383	had_enable_audio(intelhaddata, false);
1384
1385	intelhaddata->connected = false;
1386	dev_dbg(intelhaddata->dev,
1387		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1388			__func__, __LINE__);
1389	spin_unlock_irq(&intelhaddata->had_spinlock);
1390
1391	kfree(intelhaddata->chmap->chmap);
1392	intelhaddata->chmap->chmap = NULL;
1393
1394	/* Report to above ALSA layer */
1395	substream = had_substream_get(intelhaddata);
1396	if (substream) {
1397		snd_pcm_stop_xrun(substream);
1398		had_substream_put(intelhaddata);
1399	}
1400
1401	snd_jack_report(intelhaddata->jack, 0);
1402}
1403
1404/*
1405 * ALSA iec958 and ELD controls
1406 */
1407
1408static int had_iec958_info(struct snd_kcontrol *kcontrol,
1409				struct snd_ctl_elem_info *uinfo)
1410{
1411	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1412	uinfo->count = 1;
1413	return 0;
1414}
1415
1416static int had_iec958_get(struct snd_kcontrol *kcontrol,
1417				struct snd_ctl_elem_value *ucontrol)
1418{
1419	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1420
1421	mutex_lock(&intelhaddata->mutex);
1422	ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1423	ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1424	ucontrol->value.iec958.status[2] =
1425					(intelhaddata->aes_bits >> 16) & 0xff;
1426	ucontrol->value.iec958.status[3] =
1427					(intelhaddata->aes_bits >> 24) & 0xff;
1428	mutex_unlock(&intelhaddata->mutex);
1429	return 0;
1430}
1431
1432static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1433				struct snd_ctl_elem_value *ucontrol)
1434{
1435	ucontrol->value.iec958.status[0] = 0xff;
1436	ucontrol->value.iec958.status[1] = 0xff;
1437	ucontrol->value.iec958.status[2] = 0xff;
1438	ucontrol->value.iec958.status[3] = 0xff;
1439	return 0;
1440}
1441
1442static int had_iec958_put(struct snd_kcontrol *kcontrol,
1443				struct snd_ctl_elem_value *ucontrol)
1444{
1445	unsigned int val;
1446	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1447	int changed = 0;
1448
1449	val = (ucontrol->value.iec958.status[0] << 0) |
1450		(ucontrol->value.iec958.status[1] << 8) |
1451		(ucontrol->value.iec958.status[2] << 16) |
1452		(ucontrol->value.iec958.status[3] << 24);
1453	mutex_lock(&intelhaddata->mutex);
1454	if (intelhaddata->aes_bits != val) {
1455		intelhaddata->aes_bits = val;
1456		changed = 1;
1457	}
1458	mutex_unlock(&intelhaddata->mutex);
1459	return changed;
1460}
1461
1462static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1463			    struct snd_ctl_elem_info *uinfo)
1464{
1465	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1466	uinfo->count = HDMI_MAX_ELD_BYTES;
1467	return 0;
1468}
1469
1470static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1471			   struct snd_ctl_elem_value *ucontrol)
1472{
1473	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1474
1475	mutex_lock(&intelhaddata->mutex);
1476	memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1477	       HDMI_MAX_ELD_BYTES);
1478	mutex_unlock(&intelhaddata->mutex);
1479	return 0;
1480}
1481
1482static const struct snd_kcontrol_new had_controls[] = {
1483	{
1484		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1485		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1486		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1487		.info = had_iec958_info, /* shared */
1488		.get = had_iec958_mask_get,
1489	},
1490	{
1491		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1492		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1493		.info = had_iec958_info,
1494		.get = had_iec958_get,
1495		.put = had_iec958_put,
1496	},
1497	{
1498		.access = (SNDRV_CTL_ELEM_ACCESS_READ |
1499			   SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1500		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1501		.name = "ELD",
1502		.info = had_ctl_eld_info,
1503		.get = had_ctl_eld_get,
1504	},
1505};
1506
1507/*
1508 * audio interrupt handler
1509 */
1510static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1511{
1512	struct snd_intelhad_card *card_ctx = dev_id;
1513	u32 audio_stat[3] = {};
1514	int pipe, port;
1515
1516	for_each_pipe(card_ctx, pipe) {
1517		/* use raw register access to ack IRQs even while disconnected */
1518		audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1519							 AUD_HDMI_STATUS) &
1520			(HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1521
1522		if (audio_stat[pipe])
1523			had_write_register_raw(card_ctx, pipe,
1524					       AUD_HDMI_STATUS, audio_stat[pipe]);
1525	}
1526
1527	for_each_port(card_ctx, port) {
1528		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1529		int pipe = ctx->pipe;
1530
1531		if (pipe < 0)
1532			continue;
1533
1534		if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1535			had_process_buffer_done(ctx);
1536		if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1537			had_process_buffer_underrun(ctx);
1538	}
1539
1540	return IRQ_HANDLED;
1541}
1542
1543/*
1544 * monitor plug/unplug notification from i915; just kick off the work
1545 */
1546static void notify_audio_lpe(struct platform_device *pdev, int port)
1547{
1548	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1549	struct snd_intelhad *ctx;
1550
1551	ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1552	if (single_port)
1553		ctx->port = port;
1554
1555	schedule_work(&ctx->hdmi_audio_wq);
1556}
1557
1558/* the work to handle monitor hot plug/unplug */
1559static void had_audio_wq(struct work_struct *work)
1560{
1561	struct snd_intelhad *ctx =
1562		container_of(work, struct snd_intelhad, hdmi_audio_wq);
1563	struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1564	struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1565
1566	pm_runtime_get_sync(ctx->dev);
1567	mutex_lock(&ctx->mutex);
1568	if (ppdata->pipe < 0) {
1569		dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1570			__func__, ctx->port);
1571
1572		memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1573
1574		ctx->dp_output = false;
1575		ctx->tmds_clock_speed = 0;
1576		ctx->link_rate = 0;
1577
1578		/* Shut down the stream */
1579		had_process_hot_unplug(ctx);
1580
1581		ctx->pipe = -1;
1582	} else {
1583		dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1584			__func__, ctx->port, ppdata->ls_clock);
1585
1586		memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1587
1588		ctx->dp_output = ppdata->dp_output;
1589		if (ctx->dp_output) {
1590			ctx->tmds_clock_speed = 0;
1591			ctx->link_rate = ppdata->ls_clock;
1592		} else {
1593			ctx->tmds_clock_speed = ppdata->ls_clock;
1594			ctx->link_rate = 0;
1595		}
1596
1597		/*
1598		 * Shut down the stream before we change
1599		 * the pipe assignment for this pcm device
1600		 */
1601		had_process_hot_plug(ctx);
1602
1603		ctx->pipe = ppdata->pipe;
1604
1605		/* Restart the stream if necessary */
1606		had_process_mode_change(ctx);
1607	}
1608
1609	mutex_unlock(&ctx->mutex);
1610	pm_runtime_mark_last_busy(ctx->dev);
1611	pm_runtime_put_autosuspend(ctx->dev);
1612}
1613
1614/*
1615 * Jack interface
1616 */
1617static int had_create_jack(struct snd_intelhad *ctx,
1618			   struct snd_pcm *pcm)
1619{
1620	char hdmi_str[32];
1621	int err;
1622
1623	snprintf(hdmi_str, sizeof(hdmi_str),
1624		 "HDMI/DP,pcm=%d", pcm->device);
1625
1626	err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1627			   SND_JACK_AVOUT, &ctx->jack,
1628			   true, false);
1629	if (err < 0)
1630		return err;
1631	ctx->jack->private_data = ctx;
1632	return 0;
1633}
1634
1635/*
1636 * PM callbacks
1637 */
1638
1639static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1640{
1641	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1642
1643	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1644
1645	return 0;
1646}
1647
1648static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1649{
1650	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1651
1652	pm_runtime_mark_last_busy(dev);
1653
1654	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1655
1656	return 0;
1657}
1658
1659/* release resources */
1660static void hdmi_lpe_audio_free(struct snd_card *card)
1661{
1662	struct snd_intelhad_card *card_ctx = card->private_data;
1663	struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1664	int port;
1665
1666	spin_lock_irq(&pdata->lpe_audio_slock);
1667	pdata->notify_audio_lpe = NULL;
1668	spin_unlock_irq(&pdata->lpe_audio_slock);
1669
1670	for_each_port(card_ctx, port) {
1671		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1672
1673		cancel_work_sync(&ctx->hdmi_audio_wq);
1674	}
1675
1676	if (card_ctx->mmio_start)
1677		iounmap(card_ctx->mmio_start);
1678	if (card_ctx->irq >= 0)
1679		free_irq(card_ctx->irq, card_ctx);
1680}
1681
1682/*
1683 * hdmi_lpe_audio_probe - start bridge with i915
1684 *
1685 * This function is called when the i915 driver creates the
1686 * hdmi-lpe-audio platform device.
1687 */
1688static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1689{
1690	struct snd_card *card;
1691	struct snd_intelhad_card *card_ctx;
1692	struct snd_intelhad *ctx;
1693	struct snd_pcm *pcm;
1694	struct intel_hdmi_lpe_audio_pdata *pdata;
1695	int irq;
1696	struct resource *res_mmio;
1697	int port, ret;
1698
1699	pdata = pdev->dev.platform_data;
1700	if (!pdata) {
1701		dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1702		return -EINVAL;
1703	}
1704
1705	/* get resources */
1706	irq = platform_get_irq(pdev, 0);
1707	if (irq < 0)
1708		return irq;
1709
1710	res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1711	if (!res_mmio) {
1712		dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1713		return -ENXIO;
1714	}
1715
1716	/* create a card instance with ALSA framework */
1717	ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1718			   THIS_MODULE, sizeof(*card_ctx), &card);
1719	if (ret)
1720		return ret;
1721
1722	card_ctx = card->private_data;
1723	card_ctx->dev = &pdev->dev;
1724	card_ctx->card = card;
1725	strcpy(card->driver, INTEL_HAD);
1726	strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1727	strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1728
1729	card_ctx->irq = -1;
1730
1731	card->private_free = hdmi_lpe_audio_free;
1732
1733	platform_set_drvdata(pdev, card_ctx);
1734
1735	card_ctx->num_pipes = pdata->num_pipes;
1736	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1737
1738	for_each_port(card_ctx, port) {
1739		ctx = &card_ctx->pcm_ctx[port];
1740		ctx->card_ctx = card_ctx;
1741		ctx->dev = card_ctx->dev;
1742		ctx->port = single_port ? -1 : port;
1743		ctx->pipe = -1;
1744
1745		spin_lock_init(&ctx->had_spinlock);
1746		mutex_init(&ctx->mutex);
1747		INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1748	}
1749
1750	dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1751		__func__, (unsigned int)res_mmio->start,
1752		(unsigned int)res_mmio->end);
1753
1754	card_ctx->mmio_start = ioremap(res_mmio->start,
1755					       (size_t)(resource_size(res_mmio)));
1756	if (!card_ctx->mmio_start) {
1757		dev_err(&pdev->dev, "Could not get ioremap\n");
1758		ret = -EACCES;
1759		goto err;
1760	}
1761
1762	/* setup interrupt handler */
1763	ret = request_irq(irq, display_pipe_interrupt_handler, 0,
1764			  pdev->name, card_ctx);
1765	if (ret < 0) {
1766		dev_err(&pdev->dev, "request_irq failed\n");
1767		goto err;
1768	}
1769
1770	card_ctx->irq = irq;
1771
1772	/* only 32bit addressable */
1773	dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1774	dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1775
1776	init_channel_allocations();
1777
1778	card_ctx->num_pipes = pdata->num_pipes;
1779	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1780
1781	for_each_port(card_ctx, port) {
1782		int i;
1783
1784		ctx = &card_ctx->pcm_ctx[port];
1785		ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1786				  MAX_CAP_STREAMS, &pcm);
1787		if (ret)
1788			goto err;
1789
1790		/* setup private data which can be retrieved when required */
1791		pcm->private_data = ctx;
1792		pcm->info_flags = 0;
1793		strlcpy(pcm->name, card->shortname, strlen(card->shortname));
1794		/* setup the ops for playabck */
1795		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1796
1797		/* allocate dma pages;
1798		 * try to allocate 600k buffer as default which is large enough
1799		 */
1800		snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_UC,
1801					       card->dev, HAD_DEFAULT_BUFFER,
1802					       HAD_MAX_BUFFER);
1803
1804		/* create controls */
1805		for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1806			struct snd_kcontrol *kctl;
1807
1808			kctl = snd_ctl_new1(&had_controls[i], ctx);
1809			if (!kctl) {
1810				ret = -ENOMEM;
1811				goto err;
1812			}
1813
1814			kctl->id.device = pcm->device;
1815
1816			ret = snd_ctl_add(card, kctl);
1817			if (ret < 0)
1818				goto err;
1819		}
1820
1821		/* Register channel map controls */
1822		ret = had_register_chmap_ctls(ctx, pcm);
1823		if (ret < 0)
1824			goto err;
1825
1826		ret = had_create_jack(ctx, pcm);
1827		if (ret < 0)
1828			goto err;
1829	}
1830
1831	ret = snd_card_register(card);
1832	if (ret)
1833		goto err;
1834
1835	spin_lock_irq(&pdata->lpe_audio_slock);
1836	pdata->notify_audio_lpe = notify_audio_lpe;
1837	spin_unlock_irq(&pdata->lpe_audio_slock);
1838
1839	pm_runtime_use_autosuspend(&pdev->dev);
1840	pm_runtime_mark_last_busy(&pdev->dev);
1841
1842	dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1843	for_each_port(card_ctx, port) {
1844		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1845
1846		schedule_work(&ctx->hdmi_audio_wq);
1847	}
1848
1849	return 0;
1850
1851err:
1852	snd_card_free(card);
1853	return ret;
1854}
1855
1856/*
1857 * hdmi_lpe_audio_remove - stop bridge with i915
1858 *
1859 * This function is called when the platform device is destroyed.
1860 */
1861static int hdmi_lpe_audio_remove(struct platform_device *pdev)
1862{
1863	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1864
1865	snd_card_free(card_ctx->card);
1866	return 0;
1867}
1868
1869static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1870	SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1871};
1872
1873static struct platform_driver hdmi_lpe_audio_driver = {
1874	.driver		= {
1875		.name  = "hdmi-lpe-audio",
1876		.pm = &hdmi_lpe_audio_pm,
1877	},
1878	.probe          = hdmi_lpe_audio_probe,
1879	.remove		= hdmi_lpe_audio_remove,
1880};
1881
1882module_platform_driver(hdmi_lpe_audio_driver);
1883MODULE_ALIAS("platform:hdmi_lpe_audio");
1884
1885MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1886MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1887MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1888MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1889MODULE_DESCRIPTION("Intel HDMI Audio driver");
1890MODULE_LICENSE("GPL v2");
1891MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");
1892