1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * omap-mcbsp.c  --  OMAP ALSA SoC DAI driver using McBSP port
4 *
5 * Copyright (C) 2008 Nokia Corporation
6 *
7 * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
8 *          Peter Ujfalusi <peter.ujfalusi@ti.com>
9 */
10
11#include <linux/init.h>
12#include <linux/module.h>
13#include <linux/device.h>
14#include <linux/pm_runtime.h>
15#include <linux/of.h>
16#include <linux/of_device.h>
17#include <sound/core.h>
18#include <sound/pcm.h>
19#include <sound/pcm_params.h>
20#include <sound/initval.h>
21#include <sound/soc.h>
22#include <sound/dmaengine_pcm.h>
23
24#include "omap-mcbsp-priv.h"
25#include "omap-mcbsp.h"
26#include "sdma-pcm.h"
27
28#define OMAP_MCBSP_RATES	(SNDRV_PCM_RATE_8000_96000)
29
30enum {
31	OMAP_MCBSP_WORD_8 = 0,
32	OMAP_MCBSP_WORD_12,
33	OMAP_MCBSP_WORD_16,
34	OMAP_MCBSP_WORD_20,
35	OMAP_MCBSP_WORD_24,
36	OMAP_MCBSP_WORD_32,
37};
38
39static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
40{
41	dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
42	dev_dbg(mcbsp->dev, "DRR2:  0x%04x\n", MCBSP_READ(mcbsp, DRR2));
43	dev_dbg(mcbsp->dev, "DRR1:  0x%04x\n", MCBSP_READ(mcbsp, DRR1));
44	dev_dbg(mcbsp->dev, "DXR2:  0x%04x\n", MCBSP_READ(mcbsp, DXR2));
45	dev_dbg(mcbsp->dev, "DXR1:  0x%04x\n", MCBSP_READ(mcbsp, DXR1));
46	dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
47	dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
48	dev_dbg(mcbsp->dev, "RCR2:  0x%04x\n", MCBSP_READ(mcbsp, RCR2));
49	dev_dbg(mcbsp->dev, "RCR1:  0x%04x\n", MCBSP_READ(mcbsp, RCR1));
50	dev_dbg(mcbsp->dev, "XCR2:  0x%04x\n", MCBSP_READ(mcbsp, XCR2));
51	dev_dbg(mcbsp->dev, "XCR1:  0x%04x\n", MCBSP_READ(mcbsp, XCR1));
52	dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
53	dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
54	dev_dbg(mcbsp->dev, "PCR0:  0x%04x\n", MCBSP_READ(mcbsp, PCR0));
55	dev_dbg(mcbsp->dev, "***********************\n");
56}
57
58static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
59{
60	struct clk *fck_src;
61	const char *src;
62	int r;
63
64	if (fck_src_id == MCBSP_CLKS_PAD_SRC)
65		src = "pad_fck";
66	else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
67		src = "prcm_fck";
68	else
69		return -EINVAL;
70
71	fck_src = clk_get(mcbsp->dev, src);
72	if (IS_ERR(fck_src)) {
73		dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
74		return -EINVAL;
75	}
76
77	if (mcbsp->active)
78		pm_runtime_put_sync(mcbsp->dev);
79
80	r = clk_set_parent(mcbsp->fclk, fck_src);
81	if (r)
82		dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
83			src);
84
85	if (mcbsp->active)
86		pm_runtime_get_sync(mcbsp->dev);
87
88	clk_put(fck_src);
89
90	return r;
91}
92
93static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
94{
95	struct omap_mcbsp *mcbsp = data;
96	u16 irqst;
97
98	irqst = MCBSP_READ(mcbsp, IRQST);
99	dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
100
101	if (irqst & RSYNCERREN)
102		dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
103	if (irqst & RFSREN)
104		dev_dbg(mcbsp->dev, "RX Frame Sync\n");
105	if (irqst & REOFEN)
106		dev_dbg(mcbsp->dev, "RX End Of Frame\n");
107	if (irqst & RRDYEN)
108		dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
109	if (irqst & RUNDFLEN)
110		dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
111	if (irqst & ROVFLEN)
112		dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
113
114	if (irqst & XSYNCERREN)
115		dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
116	if (irqst & XFSXEN)
117		dev_dbg(mcbsp->dev, "TX Frame Sync\n");
118	if (irqst & XEOFEN)
119		dev_dbg(mcbsp->dev, "TX End Of Frame\n");
120	if (irqst & XRDYEN)
121		dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
122	if (irqst & XUNDFLEN)
123		dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
124	if (irqst & XOVFLEN)
125		dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
126	if (irqst & XEMPTYEOFEN)
127		dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
128
129	MCBSP_WRITE(mcbsp, IRQST, irqst);
130
131	return IRQ_HANDLED;
132}
133
134static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
135{
136	struct omap_mcbsp *mcbsp = data;
137	u16 irqst_spcr2;
138
139	irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
140	dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
141
142	if (irqst_spcr2 & XSYNC_ERR) {
143		dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
144			irqst_spcr2);
145		/* Writing zero to XSYNC_ERR clears the IRQ */
146		MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
147	}
148
149	return IRQ_HANDLED;
150}
151
152static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
153{
154	struct omap_mcbsp *mcbsp = data;
155	u16 irqst_spcr1;
156
157	irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
158	dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
159
160	if (irqst_spcr1 & RSYNC_ERR) {
161		dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
162			irqst_spcr1);
163		/* Writing zero to RSYNC_ERR clears the IRQ */
164		MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
165	}
166
167	return IRQ_HANDLED;
168}
169
170/*
171 * omap_mcbsp_config simply write a config to the
172 * appropriate McBSP.
173 * You either call this function or set the McBSP registers
174 * by yourself before calling omap_mcbsp_start().
175 */
176static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
177			      const struct omap_mcbsp_reg_cfg *config)
178{
179	dev_dbg(mcbsp->dev, "Configuring McBSP%d  phys_base: 0x%08lx\n",
180		mcbsp->id, mcbsp->phys_base);
181
182	/* We write the given config */
183	MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
184	MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
185	MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
186	MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
187	MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
188	MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
189	MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
190	MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
191	MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
192	MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
193	MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
194	if (mcbsp->pdata->has_ccr) {
195		MCBSP_WRITE(mcbsp, XCCR, config->xccr);
196		MCBSP_WRITE(mcbsp, RCCR, config->rccr);
197	}
198	/* Enable wakeup behavior */
199	if (mcbsp->pdata->has_wakeup)
200		MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
201
202	/* Enable TX/RX sync error interrupts by default */
203	if (mcbsp->irq)
204		MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
205			    RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
206}
207
208/**
209 * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
210 * @mcbsp: omap_mcbsp struct for the McBSP instance
211 * @stream: Stream direction (playback/capture)
212 *
213 * Returns the address of mcbsp data transmit register or data receive register
214 * to be used by DMA for transferring/receiving data
215 */
216static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
217				     unsigned int stream)
218{
219	int data_reg;
220
221	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
222		if (mcbsp->pdata->reg_size == 2)
223			data_reg = OMAP_MCBSP_REG_DXR1;
224		else
225			data_reg = OMAP_MCBSP_REG_DXR;
226	} else {
227		if (mcbsp->pdata->reg_size == 2)
228			data_reg = OMAP_MCBSP_REG_DRR1;
229		else
230			data_reg = OMAP_MCBSP_REG_DRR;
231	}
232
233	return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
234}
235
236/*
237 * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
238 * The threshold parameter is 1 based, and it is converted (threshold - 1)
239 * for the THRSH2 register.
240 */
241static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
242{
243	if (threshold && threshold <= mcbsp->max_tx_thres)
244		MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
245}
246
247/*
248 * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
249 * The threshold parameter is 1 based, and it is converted (threshold - 1)
250 * for the THRSH1 register.
251 */
252static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
253{
254	if (threshold && threshold <= mcbsp->max_rx_thres)
255		MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
256}
257
258/*
259 * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
260 */
261static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
262{
263	u16 buffstat;
264
265	/* Returns the number of free locations in the buffer */
266	buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
267
268	/* Number of slots are different in McBSP ports */
269	return mcbsp->pdata->buffer_size - buffstat;
270}
271
272/*
273 * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
274 * to reach the threshold value (when the DMA will be triggered to read it)
275 */
276static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
277{
278	u16 buffstat, threshold;
279
280	/* Returns the number of used locations in the buffer */
281	buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
282	/* RX threshold */
283	threshold = MCBSP_READ(mcbsp, THRSH1);
284
285	/* Return the number of location till we reach the threshold limit */
286	if (threshold <= buffstat)
287		return 0;
288	else
289		return threshold - buffstat;
290}
291
292static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
293{
294	void *reg_cache;
295	int err;
296
297	reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
298	if (!reg_cache)
299		return -ENOMEM;
300
301	spin_lock(&mcbsp->lock);
302	if (!mcbsp->free) {
303		dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
304		err = -EBUSY;
305		goto err_kfree;
306	}
307
308	mcbsp->free = false;
309	mcbsp->reg_cache = reg_cache;
310	spin_unlock(&mcbsp->lock);
311
312	if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
313		mcbsp->pdata->ops->request(mcbsp->id - 1);
314
315	/*
316	 * Make sure that transmitter, receiver and sample-rate generator are
317	 * not running before activating IRQs.
318	 */
319	MCBSP_WRITE(mcbsp, SPCR1, 0);
320	MCBSP_WRITE(mcbsp, SPCR2, 0);
321
322	if (mcbsp->irq) {
323		err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
324				  "McBSP", (void *)mcbsp);
325		if (err != 0) {
326			dev_err(mcbsp->dev, "Unable to request IRQ\n");
327			goto err_clk_disable;
328		}
329	} else {
330		err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
331				  "McBSP TX", (void *)mcbsp);
332		if (err != 0) {
333			dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
334			goto err_clk_disable;
335		}
336
337		err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
338				  "McBSP RX", (void *)mcbsp);
339		if (err != 0) {
340			dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
341			goto err_free_irq;
342		}
343	}
344
345	return 0;
346err_free_irq:
347	free_irq(mcbsp->tx_irq, (void *)mcbsp);
348err_clk_disable:
349	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
350		mcbsp->pdata->ops->free(mcbsp->id - 1);
351
352	/* Disable wakeup behavior */
353	if (mcbsp->pdata->has_wakeup)
354		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
355
356	spin_lock(&mcbsp->lock);
357	mcbsp->free = true;
358	mcbsp->reg_cache = NULL;
359err_kfree:
360	spin_unlock(&mcbsp->lock);
361	kfree(reg_cache);
362
363	return err;
364}
365
366static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
367{
368	void *reg_cache;
369
370	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
371		mcbsp->pdata->ops->free(mcbsp->id - 1);
372
373	/* Disable wakeup behavior */
374	if (mcbsp->pdata->has_wakeup)
375		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
376
377	/* Disable interrupt requests */
378	if (mcbsp->irq)
379		MCBSP_WRITE(mcbsp, IRQEN, 0);
380
381	if (mcbsp->irq) {
382		free_irq(mcbsp->irq, (void *)mcbsp);
383	} else {
384		free_irq(mcbsp->rx_irq, (void *)mcbsp);
385		free_irq(mcbsp->tx_irq, (void *)mcbsp);
386	}
387
388	reg_cache = mcbsp->reg_cache;
389
390	/*
391	 * Select CLKS source from internal source unconditionally before
392	 * marking the McBSP port as free.
393	 * If the external clock source via MCBSP_CLKS pin has been selected the
394	 * system will refuse to enter idle if the CLKS pin source is not reset
395	 * back to internal source.
396	 */
397	if (!mcbsp_omap1())
398		omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
399
400	spin_lock(&mcbsp->lock);
401	if (mcbsp->free)
402		dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
403	else
404		mcbsp->free = true;
405	mcbsp->reg_cache = NULL;
406	spin_unlock(&mcbsp->lock);
407
408	kfree(reg_cache);
409}
410
411/*
412 * Here we start the McBSP, by enabling transmitter, receiver or both.
413 * If no transmitter or receiver is active prior calling, then sample-rate
414 * generator and frame sync are started.
415 */
416static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
417{
418	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
419	int rx = !tx;
420	int enable_srg = 0;
421	u16 w;
422
423	if (mcbsp->st_data)
424		omap_mcbsp_st_start(mcbsp);
425
426	/* Only enable SRG, if McBSP is master */
427	w = MCBSP_READ_CACHE(mcbsp, PCR0);
428	if (w & (FSXM | FSRM | CLKXM | CLKRM))
429		enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
430				MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
431
432	if (enable_srg) {
433		/* Start the sample generator */
434		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
435		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
436	}
437
438	/* Enable transmitter and receiver */
439	tx &= 1;
440	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
441	MCBSP_WRITE(mcbsp, SPCR2, w | tx);
442
443	rx &= 1;
444	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
445	MCBSP_WRITE(mcbsp, SPCR1, w | rx);
446
447	/*
448	 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
449	 * REVISIT: 100us may give enough time for two CLKSRG, however
450	 * due to some unknown PM related, clock gating etc. reason it
451	 * is now at 500us.
452	 */
453	udelay(500);
454
455	if (enable_srg) {
456		/* Start frame sync */
457		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
458		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
459	}
460
461	if (mcbsp->pdata->has_ccr) {
462		/* Release the transmitter and receiver */
463		w = MCBSP_READ_CACHE(mcbsp, XCCR);
464		w &= ~(tx ? XDISABLE : 0);
465		MCBSP_WRITE(mcbsp, XCCR, w);
466		w = MCBSP_READ_CACHE(mcbsp, RCCR);
467		w &= ~(rx ? RDISABLE : 0);
468		MCBSP_WRITE(mcbsp, RCCR, w);
469	}
470
471	/* Dump McBSP Regs */
472	omap_mcbsp_dump_reg(mcbsp);
473}
474
475static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
476{
477	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
478	int rx = !tx;
479	int idle;
480	u16 w;
481
482	/* Reset transmitter */
483	tx &= 1;
484	if (mcbsp->pdata->has_ccr) {
485		w = MCBSP_READ_CACHE(mcbsp, XCCR);
486		w |= (tx ? XDISABLE : 0);
487		MCBSP_WRITE(mcbsp, XCCR, w);
488	}
489	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
490	MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
491
492	/* Reset receiver */
493	rx &= 1;
494	if (mcbsp->pdata->has_ccr) {
495		w = MCBSP_READ_CACHE(mcbsp, RCCR);
496		w |= (rx ? RDISABLE : 0);
497		MCBSP_WRITE(mcbsp, RCCR, w);
498	}
499	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
500	MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
501
502	idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
503			MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
504
505	if (idle) {
506		/* Reset the sample rate generator */
507		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
508		MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
509	}
510
511	if (mcbsp->st_data)
512		omap_mcbsp_st_stop(mcbsp);
513}
514
515#define max_thres(m)			(mcbsp->pdata->buffer_size)
516#define valid_threshold(m, val)		((val) <= max_thres(m))
517#define THRESHOLD_PROP_BUILDER(prop)					\
518static ssize_t prop##_show(struct device *dev,				\
519			struct device_attribute *attr, char *buf)	\
520{									\
521	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
522									\
523	return sprintf(buf, "%u\n", mcbsp->prop);			\
524}									\
525									\
526static ssize_t prop##_store(struct device *dev,				\
527				struct device_attribute *attr,		\
528				const char *buf, size_t size)		\
529{									\
530	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
531	unsigned long val;						\
532	int status;							\
533									\
534	status = kstrtoul(buf, 0, &val);				\
535	if (status)							\
536		return status;						\
537									\
538	if (!valid_threshold(mcbsp, val))				\
539		return -EDOM;						\
540									\
541	mcbsp->prop = val;						\
542	return size;							\
543}									\
544									\
545static DEVICE_ATTR(prop, 0644, prop##_show, prop##_store)
546
547THRESHOLD_PROP_BUILDER(max_tx_thres);
548THRESHOLD_PROP_BUILDER(max_rx_thres);
549
550static const char * const dma_op_modes[] = {
551	"element", "threshold",
552};
553
554static ssize_t dma_op_mode_show(struct device *dev,
555				struct device_attribute *attr, char *buf)
556{
557	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
558	int dma_op_mode, i = 0;
559	ssize_t len = 0;
560	const char * const *s;
561
562	dma_op_mode = mcbsp->dma_op_mode;
563
564	for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
565		if (dma_op_mode == i)
566			len += sprintf(buf + len, "[%s] ", *s);
567		else
568			len += sprintf(buf + len, "%s ", *s);
569	}
570	len += sprintf(buf + len, "\n");
571
572	return len;
573}
574
575static ssize_t dma_op_mode_store(struct device *dev,
576				 struct device_attribute *attr, const char *buf,
577				 size_t size)
578{
579	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
580	int i;
581
582	i = sysfs_match_string(dma_op_modes, buf);
583	if (i < 0)
584		return i;
585
586	spin_lock_irq(&mcbsp->lock);
587	if (!mcbsp->free) {
588		size = -EBUSY;
589		goto unlock;
590	}
591	mcbsp->dma_op_mode = i;
592
593unlock:
594	spin_unlock_irq(&mcbsp->lock);
595
596	return size;
597}
598
599static DEVICE_ATTR_RW(dma_op_mode);
600
601static const struct attribute *additional_attrs[] = {
602	&dev_attr_max_tx_thres.attr,
603	&dev_attr_max_rx_thres.attr,
604	&dev_attr_dma_op_mode.attr,
605	NULL,
606};
607
608static const struct attribute_group additional_attr_group = {
609	.attrs = (struct attribute **)additional_attrs,
610};
611
612/*
613 * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
614 * 730 has only 2 McBSP, and both of them are MPU peripherals.
615 */
616static int omap_mcbsp_init(struct platform_device *pdev)
617{
618	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
619	struct resource *res;
620	int ret = 0;
621
622	spin_lock_init(&mcbsp->lock);
623	mcbsp->free = true;
624
625	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
626	if (!res)
627		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
628
629	mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
630	if (IS_ERR(mcbsp->io_base))
631		return PTR_ERR(mcbsp->io_base);
632
633	mcbsp->phys_base = res->start;
634	mcbsp->reg_cache_size = resource_size(res);
635
636	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
637	if (!res)
638		mcbsp->phys_dma_base = mcbsp->phys_base;
639	else
640		mcbsp->phys_dma_base = res->start;
641
642	/*
643	 * OMAP1, 2 uses two interrupt lines: TX, RX
644	 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
645	 * OMAP4 and newer SoC only have the combined IRQ line.
646	 * Use the combined IRQ if available since it gives better debugging
647	 * possibilities.
648	 */
649	mcbsp->irq = platform_get_irq_byname(pdev, "common");
650	if (mcbsp->irq == -ENXIO) {
651		mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
652
653		if (mcbsp->tx_irq == -ENXIO) {
654			mcbsp->irq = platform_get_irq(pdev, 0);
655			mcbsp->tx_irq = 0;
656		} else {
657			mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
658			mcbsp->irq = 0;
659		}
660	}
661
662	if (!pdev->dev.of_node) {
663		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
664		if (!res) {
665			dev_err(&pdev->dev, "invalid tx DMA channel\n");
666			return -ENODEV;
667		}
668		mcbsp->dma_req[0] = res->start;
669		mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
670
671		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
672		if (!res) {
673			dev_err(&pdev->dev, "invalid rx DMA channel\n");
674			return -ENODEV;
675		}
676		mcbsp->dma_req[1] = res->start;
677		mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
678	} else {
679		mcbsp->dma_data[0].filter_data = "tx";
680		mcbsp->dma_data[1].filter_data = "rx";
681	}
682
683	mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
684						SNDRV_PCM_STREAM_PLAYBACK);
685	mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
686						SNDRV_PCM_STREAM_CAPTURE);
687
688	mcbsp->fclk = devm_clk_get(&pdev->dev, "fck");
689	if (IS_ERR(mcbsp->fclk)) {
690		ret = PTR_ERR(mcbsp->fclk);
691		dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
692		return ret;
693	}
694
695	mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
696	if (mcbsp->pdata->buffer_size) {
697		/*
698		 * Initially configure the maximum thresholds to a safe value.
699		 * The McBSP FIFO usage with these values should not go under
700		 * 16 locations.
701		 * If the whole FIFO without safety buffer is used, than there
702		 * is a possibility that the DMA will be not able to push the
703		 * new data on time, causing channel shifts in runtime.
704		 */
705		mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
706		mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
707
708		ret = sysfs_create_group(&mcbsp->dev->kobj,
709					 &additional_attr_group);
710		if (ret) {
711			dev_err(mcbsp->dev,
712				"Unable to create additional controls\n");
713			return ret;
714		}
715	}
716
717	ret = omap_mcbsp_st_init(pdev);
718	if (ret)
719		goto err_st;
720
721	return 0;
722
723err_st:
724	if (mcbsp->pdata->buffer_size)
725		sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
726	return ret;
727}
728
729/*
730 * Stream DMA parameters. DMA request line and port address are set runtime
731 * since they are different between OMAP1 and later OMAPs
732 */
733static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
734		unsigned int packet_size)
735{
736	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
737	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
738	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
739	int words;
740
741	/* No need to proceed further if McBSP does not have FIFO */
742	if (mcbsp->pdata->buffer_size == 0)
743		return;
744
745	/*
746	 * Configure McBSP threshold based on either:
747	 * packet_size, when the sDMA is in packet mode, or based on the
748	 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1
749	 * for mono streams.
750	 */
751	if (packet_size)
752		words = packet_size;
753	else
754		words = 1;
755
756	/* Configure McBSP internal buffer usage */
757	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
758		omap_mcbsp_set_tx_threshold(mcbsp, words);
759	else
760		omap_mcbsp_set_rx_threshold(mcbsp, words);
761}
762
763static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
764				    struct snd_pcm_hw_rule *rule)
765{
766	struct snd_interval *buffer_size = hw_param_interval(params,
767					SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
768	struct snd_interval *channels = hw_param_interval(params,
769					SNDRV_PCM_HW_PARAM_CHANNELS);
770	struct omap_mcbsp *mcbsp = rule->private;
771	struct snd_interval frames;
772	int size;
773
774	snd_interval_any(&frames);
775	size = mcbsp->pdata->buffer_size;
776
777	frames.min = size / channels->min;
778	frames.integer = 1;
779	return snd_interval_refine(buffer_size, &frames);
780}
781
782static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
783				  struct snd_soc_dai *cpu_dai)
784{
785	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
786	int err = 0;
787
788	if (!snd_soc_dai_active(cpu_dai))
789		err = omap_mcbsp_request(mcbsp);
790
791	/*
792	 * OMAP3 McBSP FIFO is word structured.
793	 * McBSP2 has 1024 + 256 = 1280 word long buffer,
794	 * McBSP1,3,4,5 has 128 word long buffer
795	 * This means that the size of the FIFO depends on the sample format.
796	 * For example on McBSP3:
797	 * 16bit samples: size is 128 * 2 = 256 bytes
798	 * 32bit samples: size is 128 * 4 = 512 bytes
799	 * It is simpler to place constraint for buffer and period based on
800	 * channels.
801	 * McBSP3 as example again (16 or 32 bit samples):
802	 * 1 channel (mono): size is 128 frames (128 words)
803	 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
804	 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
805	 */
806	if (mcbsp->pdata->buffer_size) {
807		/*
808		* Rule for the buffer size. We should not allow
809		* smaller buffer than the FIFO size to avoid underruns.
810		* This applies only for the playback stream.
811		*/
812		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
813			snd_pcm_hw_rule_add(substream->runtime, 0,
814					    SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
815					    omap_mcbsp_hwrule_min_buffersize,
816					    mcbsp,
817					    SNDRV_PCM_HW_PARAM_CHANNELS, -1);
818
819		/* Make sure, that the period size is always even */
820		snd_pcm_hw_constraint_step(substream->runtime, 0,
821					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
822	}
823
824	return err;
825}
826
827static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
828				    struct snd_soc_dai *cpu_dai)
829{
830	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
831	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
832	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
833	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
834
835	if (mcbsp->latency[stream2])
836		cpu_latency_qos_update_request(&mcbsp->pm_qos_req,
837					       mcbsp->latency[stream2]);
838	else if (mcbsp->latency[stream1])
839		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
840
841	mcbsp->latency[stream1] = 0;
842
843	if (!snd_soc_dai_active(cpu_dai)) {
844		omap_mcbsp_free(mcbsp);
845		mcbsp->configured = 0;
846	}
847}
848
849static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
850				  struct snd_soc_dai *cpu_dai)
851{
852	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
853	struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
854	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
855	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
856	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
857	int latency = mcbsp->latency[stream2];
858
859	/* Prevent omap hardware from hitting off between FIFO fills */
860	if (!latency || mcbsp->latency[stream1] < latency)
861		latency = mcbsp->latency[stream1];
862
863	if (cpu_latency_qos_request_active(pm_qos_req))
864		cpu_latency_qos_update_request(pm_qos_req, latency);
865	else if (latency)
866		cpu_latency_qos_add_request(pm_qos_req, latency);
867
868	return 0;
869}
870
871static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
872				  struct snd_soc_dai *cpu_dai)
873{
874	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
875
876	switch (cmd) {
877	case SNDRV_PCM_TRIGGER_START:
878	case SNDRV_PCM_TRIGGER_RESUME:
879	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
880		mcbsp->active++;
881		omap_mcbsp_start(mcbsp, substream->stream);
882		break;
883
884	case SNDRV_PCM_TRIGGER_STOP:
885	case SNDRV_PCM_TRIGGER_SUSPEND:
886	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
887		omap_mcbsp_stop(mcbsp, substream->stream);
888		mcbsp->active--;
889		break;
890	default:
891		return -EINVAL;
892	}
893
894	return 0;
895}
896
897static snd_pcm_sframes_t omap_mcbsp_dai_delay(
898			struct snd_pcm_substream *substream,
899			struct snd_soc_dai *dai)
900{
901	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
902	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
903	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
904	u16 fifo_use;
905	snd_pcm_sframes_t delay;
906
907	/* No need to proceed further if McBSP does not have FIFO */
908	if (mcbsp->pdata->buffer_size == 0)
909		return 0;
910
911	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
912		fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
913	else
914		fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
915
916	/*
917	 * Divide the used locations with the channel count to get the
918	 * FIFO usage in samples (don't care about partial samples in the
919	 * buffer).
920	 */
921	delay = fifo_use / substream->runtime->channels;
922
923	return delay;
924}
925
926static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
927				    struct snd_pcm_hw_params *params,
928				    struct snd_soc_dai *cpu_dai)
929{
930	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
931	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
932	struct snd_dmaengine_dai_dma_data *dma_data;
933	int wlen, channels, wpf;
934	int pkt_size = 0;
935	unsigned int format, div, framesize, master;
936	unsigned int buffer_size = mcbsp->pdata->buffer_size;
937
938	dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
939	channels = params_channels(params);
940
941	switch (params_format(params)) {
942	case SNDRV_PCM_FORMAT_S16_LE:
943		wlen = 16;
944		break;
945	case SNDRV_PCM_FORMAT_S32_LE:
946		wlen = 32;
947		break;
948	default:
949		return -EINVAL;
950	}
951	if (buffer_size) {
952		int latency;
953
954		if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
955			int period_words, max_thrsh;
956			int divider = 0;
957
958			period_words = params_period_bytes(params) / (wlen / 8);
959			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
960				max_thrsh = mcbsp->max_tx_thres;
961			else
962				max_thrsh = mcbsp->max_rx_thres;
963			/*
964			 * Use sDMA packet mode if McBSP is in threshold mode:
965			 * If period words less than the FIFO size the packet
966			 * size is set to the number of period words, otherwise
967			 * Look for the biggest threshold value which divides
968			 * the period size evenly.
969			 */
970			divider = period_words / max_thrsh;
971			if (period_words % max_thrsh)
972				divider++;
973			while (period_words % divider &&
974				divider < period_words)
975				divider++;
976			if (divider == period_words)
977				return -EINVAL;
978
979			pkt_size = period_words / divider;
980		} else if (channels > 1) {
981			/* Use packet mode for non mono streams */
982			pkt_size = channels;
983		}
984
985		latency = (buffer_size - pkt_size) / channels;
986		latency = latency * USEC_PER_SEC /
987			  (params->rate_num / params->rate_den);
988		mcbsp->latency[substream->stream] = latency;
989
990		omap_mcbsp_set_threshold(substream, pkt_size);
991	}
992
993	dma_data->maxburst = pkt_size;
994
995	if (mcbsp->configured) {
996		/* McBSP already configured by another stream */
997		return 0;
998	}
999
1000	regs->rcr2	&= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
1001	regs->xcr2	&= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
1002	regs->rcr1	&= ~(RFRLEN1(0x7f) | RWDLEN1(7));
1003	regs->xcr1	&= ~(XFRLEN1(0x7f) | XWDLEN1(7));
1004	format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
1005	wpf = channels;
1006	if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
1007			      format == SND_SOC_DAIFMT_LEFT_J)) {
1008		/* Use dual-phase frames */
1009		regs->rcr2	|= RPHASE;
1010		regs->xcr2	|= XPHASE;
1011		/* Set 1 word per (McBSP) frame for phase1 and phase2 */
1012		wpf--;
1013		regs->rcr2	|= RFRLEN2(wpf - 1);
1014		regs->xcr2	|= XFRLEN2(wpf - 1);
1015	}
1016
1017	regs->rcr1	|= RFRLEN1(wpf - 1);
1018	regs->xcr1	|= XFRLEN1(wpf - 1);
1019
1020	switch (params_format(params)) {
1021	case SNDRV_PCM_FORMAT_S16_LE:
1022		/* Set word lengths */
1023		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_16);
1024		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_16);
1025		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_16);
1026		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_16);
1027		break;
1028	case SNDRV_PCM_FORMAT_S32_LE:
1029		/* Set word lengths */
1030		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_32);
1031		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_32);
1032		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_32);
1033		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_32);
1034		break;
1035	default:
1036		/* Unsupported PCM format */
1037		return -EINVAL;
1038	}
1039
1040	/* In McBSP master modes, FRAME (i.e. sample rate) is generated
1041	 * by _counting_ BCLKs. Calculate frame size in BCLKs */
1042	master = mcbsp->fmt & SND_SOC_DAIFMT_MASTER_MASK;
1043	if (master ==	SND_SOC_DAIFMT_CBS_CFS) {
1044		div = mcbsp->clk_div ? mcbsp->clk_div : 1;
1045		framesize = (mcbsp->in_freq / div) / params_rate(params);
1046
1047		if (framesize < wlen * channels) {
1048			printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
1049					"channels\n", __func__);
1050			return -EINVAL;
1051		}
1052	} else
1053		framesize = wlen * channels;
1054
1055	/* Set FS period and length in terms of bit clock periods */
1056	regs->srgr2	&= ~FPER(0xfff);
1057	regs->srgr1	&= ~FWID(0xff);
1058	switch (format) {
1059	case SND_SOC_DAIFMT_I2S:
1060	case SND_SOC_DAIFMT_LEFT_J:
1061		regs->srgr2	|= FPER(framesize - 1);
1062		regs->srgr1	|= FWID((framesize >> 1) - 1);
1063		break;
1064	case SND_SOC_DAIFMT_DSP_A:
1065	case SND_SOC_DAIFMT_DSP_B:
1066		regs->srgr2	|= FPER(framesize - 1);
1067		regs->srgr1	|= FWID(0);
1068		break;
1069	}
1070
1071	omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
1072	mcbsp->wlen = wlen;
1073	mcbsp->configured = 1;
1074
1075	return 0;
1076}
1077
1078/*
1079 * This must be called before _set_clkdiv and _set_sysclk since McBSP register
1080 * cache is initialized here
1081 */
1082static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
1083				      unsigned int fmt)
1084{
1085	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1086	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1087	bool inv_fs = false;
1088
1089	if (mcbsp->configured)
1090		return 0;
1091
1092	mcbsp->fmt = fmt;
1093	memset(regs, 0, sizeof(*regs));
1094	/* Generic McBSP register settings */
1095	regs->spcr2	|= XINTM(3) | FREE;
1096	regs->spcr1	|= RINTM(3);
1097	/* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
1098	if (!mcbsp->pdata->has_ccr) {
1099		regs->rcr2	|= RFIG;
1100		regs->xcr2	|= XFIG;
1101	}
1102
1103	/* Configure XCCR/RCCR only for revisions which have ccr registers */
1104	if (mcbsp->pdata->has_ccr) {
1105		regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
1106		regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
1107	}
1108
1109	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1110	case SND_SOC_DAIFMT_I2S:
1111		/* 1-bit data delay */
1112		regs->rcr2	|= RDATDLY(1);
1113		regs->xcr2	|= XDATDLY(1);
1114		break;
1115	case SND_SOC_DAIFMT_LEFT_J:
1116		/* 0-bit data delay */
1117		regs->rcr2	|= RDATDLY(0);
1118		regs->xcr2	|= XDATDLY(0);
1119		regs->spcr1	|= RJUST(2);
1120		/* Invert FS polarity configuration */
1121		inv_fs = true;
1122		break;
1123	case SND_SOC_DAIFMT_DSP_A:
1124		/* 1-bit data delay */
1125		regs->rcr2      |= RDATDLY(1);
1126		regs->xcr2      |= XDATDLY(1);
1127		/* Invert FS polarity configuration */
1128		inv_fs = true;
1129		break;
1130	case SND_SOC_DAIFMT_DSP_B:
1131		/* 0-bit data delay */
1132		regs->rcr2      |= RDATDLY(0);
1133		regs->xcr2      |= XDATDLY(0);
1134		/* Invert FS polarity configuration */
1135		inv_fs = true;
1136		break;
1137	default:
1138		/* Unsupported data format */
1139		return -EINVAL;
1140	}
1141
1142	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1143	case SND_SOC_DAIFMT_CBS_CFS:
1144		/* McBSP master. Set FS and bit clocks as outputs */
1145		regs->pcr0	|= FSXM | FSRM |
1146				   CLKXM | CLKRM;
1147		/* Sample rate generator drives the FS */
1148		regs->srgr2	|= FSGM;
1149		break;
1150	case SND_SOC_DAIFMT_CBM_CFS:
1151		/* McBSP slave. FS clock as output */
1152		regs->srgr2	|= FSGM;
1153		regs->pcr0	|= FSXM | FSRM;
1154		break;
1155	case SND_SOC_DAIFMT_CBM_CFM:
1156		/* McBSP slave */
1157		break;
1158	default:
1159		/* Unsupported master/slave configuration */
1160		return -EINVAL;
1161	}
1162
1163	/* Set bit clock (CLKX/CLKR) and FS polarities */
1164	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1165	case SND_SOC_DAIFMT_NB_NF:
1166		/*
1167		 * Normal BCLK + FS.
1168		 * FS active low. TX data driven on falling edge of bit clock
1169		 * and RX data sampled on rising edge of bit clock.
1170		 */
1171		regs->pcr0	|= FSXP | FSRP |
1172				   CLKXP | CLKRP;
1173		break;
1174	case SND_SOC_DAIFMT_NB_IF:
1175		regs->pcr0	|= CLKXP | CLKRP;
1176		break;
1177	case SND_SOC_DAIFMT_IB_NF:
1178		regs->pcr0	|= FSXP | FSRP;
1179		break;
1180	case SND_SOC_DAIFMT_IB_IF:
1181		break;
1182	default:
1183		return -EINVAL;
1184	}
1185	if (inv_fs)
1186		regs->pcr0 ^= FSXP | FSRP;
1187
1188	return 0;
1189}
1190
1191static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
1192				     int div_id, int div)
1193{
1194	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1195	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1196
1197	if (div_id != OMAP_MCBSP_CLKGDV)
1198		return -ENODEV;
1199
1200	mcbsp->clk_div = div;
1201	regs->srgr1	&= ~CLKGDV(0xff);
1202	regs->srgr1	|= CLKGDV(div - 1);
1203
1204	return 0;
1205}
1206
1207static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
1208					 int clk_id, unsigned int freq,
1209					 int dir)
1210{
1211	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1212	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1213	int err = 0;
1214
1215	if (mcbsp->active) {
1216		if (freq == mcbsp->in_freq)
1217			return 0;
1218		else
1219			return -EBUSY;
1220	}
1221
1222	mcbsp->in_freq = freq;
1223	regs->srgr2 &= ~CLKSM;
1224	regs->pcr0 &= ~SCLKME;
1225
1226	switch (clk_id) {
1227	case OMAP_MCBSP_SYSCLK_CLK:
1228		regs->srgr2	|= CLKSM;
1229		break;
1230	case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
1231		if (mcbsp_omap1()) {
1232			err = -EINVAL;
1233			break;
1234		}
1235		err = omap2_mcbsp_set_clks_src(mcbsp,
1236					       MCBSP_CLKS_PRCM_SRC);
1237		break;
1238	case OMAP_MCBSP_SYSCLK_CLKS_EXT:
1239		if (mcbsp_omap1()) {
1240			err = 0;
1241			break;
1242		}
1243		err = omap2_mcbsp_set_clks_src(mcbsp,
1244					       MCBSP_CLKS_PAD_SRC);
1245		break;
1246
1247	case OMAP_MCBSP_SYSCLK_CLKX_EXT:
1248		regs->srgr2	|= CLKSM;
1249		regs->pcr0	|= SCLKME;
1250		/*
1251		 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
1252		 * disable output on those pins. This enables to inject the
1253		 * reference clock through CLKX/CLKR. For this to work
1254		 * set_dai_sysclk() _needs_ to be called after set_dai_fmt().
1255		 */
1256		regs->pcr0	&= ~CLKXM;
1257		break;
1258	case OMAP_MCBSP_SYSCLK_CLKR_EXT:
1259		regs->pcr0	|= SCLKME;
1260		/* Disable ouput on CLKR pin in master mode */
1261		regs->pcr0	&= ~CLKRM;
1262		break;
1263	default:
1264		err = -ENODEV;
1265	}
1266
1267	return err;
1268}
1269
1270static const struct snd_soc_dai_ops mcbsp_dai_ops = {
1271	.startup	= omap_mcbsp_dai_startup,
1272	.shutdown	= omap_mcbsp_dai_shutdown,
1273	.prepare	= omap_mcbsp_dai_prepare,
1274	.trigger	= omap_mcbsp_dai_trigger,
1275	.delay		= omap_mcbsp_dai_delay,
1276	.hw_params	= omap_mcbsp_dai_hw_params,
1277	.set_fmt	= omap_mcbsp_dai_set_dai_fmt,
1278	.set_clkdiv	= omap_mcbsp_dai_set_clkdiv,
1279	.set_sysclk	= omap_mcbsp_dai_set_dai_sysclk,
1280};
1281
1282static int omap_mcbsp_probe(struct snd_soc_dai *dai)
1283{
1284	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1285
1286	pm_runtime_enable(mcbsp->dev);
1287
1288	snd_soc_dai_init_dma_data(dai,
1289				  &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
1290				  &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
1291
1292	return 0;
1293}
1294
1295static int omap_mcbsp_remove(struct snd_soc_dai *dai)
1296{
1297	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1298
1299	pm_runtime_disable(mcbsp->dev);
1300
1301	return 0;
1302}
1303
1304static struct snd_soc_dai_driver omap_mcbsp_dai = {
1305	.probe = omap_mcbsp_probe,
1306	.remove = omap_mcbsp_remove,
1307	.playback = {
1308		.channels_min = 1,
1309		.channels_max = 16,
1310		.rates = OMAP_MCBSP_RATES,
1311		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1312	},
1313	.capture = {
1314		.channels_min = 1,
1315		.channels_max = 16,
1316		.rates = OMAP_MCBSP_RATES,
1317		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1318	},
1319	.ops = &mcbsp_dai_ops,
1320};
1321
1322static const struct snd_soc_component_driver omap_mcbsp_component = {
1323	.name		= "omap-mcbsp",
1324};
1325
1326static struct omap_mcbsp_platform_data omap2420_pdata = {
1327	.reg_step = 4,
1328	.reg_size = 2,
1329};
1330
1331static struct omap_mcbsp_platform_data omap2430_pdata = {
1332	.reg_step = 4,
1333	.reg_size = 4,
1334	.has_ccr = true,
1335};
1336
1337static struct omap_mcbsp_platform_data omap3_pdata = {
1338	.reg_step = 4,
1339	.reg_size = 4,
1340	.has_ccr = true,
1341	.has_wakeup = true,
1342};
1343
1344static struct omap_mcbsp_platform_data omap4_pdata = {
1345	.reg_step = 4,
1346	.reg_size = 4,
1347	.has_ccr = true,
1348	.has_wakeup = true,
1349};
1350
1351static const struct of_device_id omap_mcbsp_of_match[] = {
1352	{
1353		.compatible = "ti,omap2420-mcbsp",
1354		.data = &omap2420_pdata,
1355	},
1356	{
1357		.compatible = "ti,omap2430-mcbsp",
1358		.data = &omap2430_pdata,
1359	},
1360	{
1361		.compatible = "ti,omap3-mcbsp",
1362		.data = &omap3_pdata,
1363	},
1364	{
1365		.compatible = "ti,omap4-mcbsp",
1366		.data = &omap4_pdata,
1367	},
1368	{ },
1369};
1370MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
1371
1372static int asoc_mcbsp_probe(struct platform_device *pdev)
1373{
1374	struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
1375	struct omap_mcbsp *mcbsp;
1376	const struct of_device_id *match;
1377	int ret;
1378
1379	match = of_match_device(omap_mcbsp_of_match, &pdev->dev);
1380	if (match) {
1381		struct device_node *node = pdev->dev.of_node;
1382		struct omap_mcbsp_platform_data *pdata_quirk = pdata;
1383		int buffer_size;
1384
1385		pdata = devm_kzalloc(&pdev->dev,
1386				     sizeof(struct omap_mcbsp_platform_data),
1387				     GFP_KERNEL);
1388		if (!pdata)
1389			return -ENOMEM;
1390
1391		memcpy(pdata, match->data, sizeof(*pdata));
1392		if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
1393			pdata->buffer_size = buffer_size;
1394		if (pdata_quirk)
1395			pdata->force_ick_on = pdata_quirk->force_ick_on;
1396	} else if (!pdata) {
1397		dev_err(&pdev->dev, "missing platform data.\n");
1398		return -EINVAL;
1399	}
1400	mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
1401	if (!mcbsp)
1402		return -ENOMEM;
1403
1404	mcbsp->id = pdev->id;
1405	mcbsp->pdata = pdata;
1406	mcbsp->dev = &pdev->dev;
1407	platform_set_drvdata(pdev, mcbsp);
1408
1409	ret = omap_mcbsp_init(pdev);
1410	if (ret)
1411		return ret;
1412
1413	if (mcbsp->pdata->reg_size == 2) {
1414		omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1415		omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1416	}
1417
1418	ret = devm_snd_soc_register_component(&pdev->dev,
1419					      &omap_mcbsp_component,
1420					      &omap_mcbsp_dai, 1);
1421	if (ret)
1422		return ret;
1423
1424	return sdma_pcm_platform_register(&pdev->dev, "tx", "rx");
1425}
1426
1427static int asoc_mcbsp_remove(struct platform_device *pdev)
1428{
1429	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
1430
1431	if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
1432		mcbsp->pdata->ops->free(mcbsp->id);
1433
1434	if (cpu_latency_qos_request_active(&mcbsp->pm_qos_req))
1435		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
1436
1437	if (mcbsp->pdata->buffer_size)
1438		sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
1439
1440	omap_mcbsp_st_cleanup(pdev);
1441
1442	return 0;
1443}
1444
1445static struct platform_driver asoc_mcbsp_driver = {
1446	.driver = {
1447			.name = "omap-mcbsp",
1448			.of_match_table = omap_mcbsp_of_match,
1449	},
1450
1451	.probe = asoc_mcbsp_probe,
1452	.remove = asoc_mcbsp_remove,
1453};
1454
1455module_platform_driver(asoc_mcbsp_driver);
1456
1457MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
1458MODULE_DESCRIPTION("OMAP I2S SoC Interface");
1459MODULE_LICENSE("GPL");
1460MODULE_ALIAS("platform:omap-mcbsp");
1461