xref: /kernel/linux/linux-5.10/sound/soc/soc-ops.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0+
2//
3// soc-ops.c  --  Generic ASoC operations
4//
5// Copyright 2005 Wolfson Microelectronics PLC.
6// Copyright 2005 Openedhand Ltd.
7// Copyright (C) 2010 Slimlogic Ltd.
8// Copyright (C) 2010 Texas Instruments Inc.
9//
10// Author: Liam Girdwood <lrg@slimlogic.co.uk>
11//         with code, comments and ideas from :-
12//         Richard Purdie <richard@openedhand.com>
13
14#include <linux/module.h>
15#include <linux/moduleparam.h>
16#include <linux/init.h>
17#include <linux/delay.h>
18#include <linux/pm.h>
19#include <linux/bitops.h>
20#include <linux/ctype.h>
21#include <linux/slab.h>
22#include <sound/core.h>
23#include <sound/jack.h>
24#include <sound/pcm.h>
25#include <sound/pcm_params.h>
26#include <sound/soc.h>
27#include <sound/soc-dpcm.h>
28#include <sound/initval.h>
29
30/**
31 * snd_soc_info_enum_double - enumerated double mixer info callback
32 * @kcontrol: mixer control
33 * @uinfo: control element information
34 *
35 * Callback to provide information about a double enumerated
36 * mixer control.
37 *
38 * Returns 0 for success.
39 */
40int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41	struct snd_ctl_elem_info *uinfo)
42{
43	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44
45	return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46				 e->items, e->texts);
47}
48EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49
50/**
51 * snd_soc_get_enum_double - enumerated double mixer get callback
52 * @kcontrol: mixer control
53 * @ucontrol: control element information
54 *
55 * Callback to get the value of a double enumerated mixer.
56 *
57 * Returns 0 for success.
58 */
59int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60	struct snd_ctl_elem_value *ucontrol)
61{
62	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64	unsigned int val, item;
65	unsigned int reg_val;
66
67	reg_val = snd_soc_component_read(component, e->reg);
68	val = (reg_val >> e->shift_l) & e->mask;
69	item = snd_soc_enum_val_to_item(e, val);
70	ucontrol->value.enumerated.item[0] = item;
71	if (e->shift_l != e->shift_r) {
72		val = (reg_val >> e->shift_r) & e->mask;
73		item = snd_soc_enum_val_to_item(e, val);
74		ucontrol->value.enumerated.item[1] = item;
75	}
76
77	return 0;
78}
79EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
80
81/**
82 * snd_soc_put_enum_double - enumerated double mixer put callback
83 * @kcontrol: mixer control
84 * @ucontrol: control element information
85 *
86 * Callback to set the value of a double enumerated mixer.
87 *
88 * Returns 0 for success.
89 */
90int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
91	struct snd_ctl_elem_value *ucontrol)
92{
93	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
95	unsigned int *item = ucontrol->value.enumerated.item;
96	unsigned int val;
97	unsigned int mask;
98
99	if (item[0] >= e->items)
100		return -EINVAL;
101	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
102	mask = e->mask << e->shift_l;
103	if (e->shift_l != e->shift_r) {
104		if (item[1] >= e->items)
105			return -EINVAL;
106		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
107		mask |= e->mask << e->shift_r;
108	}
109
110	return snd_soc_component_update_bits(component, e->reg, mask, val);
111}
112EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
113
114/**
115 * snd_soc_read_signed - Read a codec register and interpret as signed value
116 * @component: component
117 * @reg: Register to read
118 * @mask: Mask to use after shifting the register value
119 * @shift: Right shift of register value
120 * @sign_bit: Bit that describes if a number is negative or not.
121 * @signed_val: Pointer to where the read value should be stored
122 *
123 * This functions reads a codec register. The register value is shifted right
124 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
125 * the given registervalue into a signed integer if sign_bit is non-zero.
126 *
127 * Returns 0 on sucess, otherwise an error value
128 */
129static int snd_soc_read_signed(struct snd_soc_component *component,
130	unsigned int reg, unsigned int mask, unsigned int shift,
131	unsigned int sign_bit, int *signed_val)
132{
133	int ret;
134	unsigned int val;
135
136	val = snd_soc_component_read(component, reg);
137	val = (val >> shift) & mask;
138
139	if (!sign_bit) {
140		*signed_val = val;
141		return 0;
142	}
143
144	/* non-negative number */
145	if (!(val & BIT(sign_bit))) {
146		*signed_val = val;
147		return 0;
148	}
149
150	ret = val;
151
152	/*
153	 * The register most probably does not contain a full-sized int.
154	 * Instead we have an arbitrary number of bits in a signed
155	 * representation which has to be translated into a full-sized int.
156	 * This is done by filling up all bits above the sign-bit.
157	 */
158	ret |= ~((int)(BIT(sign_bit) - 1));
159
160	*signed_val = ret;
161
162	return 0;
163}
164
165/**
166 * snd_soc_info_volsw - single mixer info callback
167 * @kcontrol: mixer control
168 * @uinfo: control element information
169 *
170 * Callback to provide information about a single mixer control, or a double
171 * mixer control that spans 2 registers.
172 *
173 * Returns 0 for success.
174 */
175int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
176	struct snd_ctl_elem_info *uinfo)
177{
178	struct soc_mixer_control *mc =
179		(struct soc_mixer_control *)kcontrol->private_value;
180	int platform_max;
181
182	if (!mc->platform_max)
183		mc->platform_max = mc->max;
184	platform_max = mc->platform_max;
185
186	if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
187		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
188	else
189		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
190
191	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
192	uinfo->value.integer.min = 0;
193	uinfo->value.integer.max = platform_max - mc->min;
194	return 0;
195}
196EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
197
198/**
199 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
200 * @kcontrol: mixer control
201 * @uinfo: control element information
202 *
203 * Callback to provide information about a single mixer control, or a double
204 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
205 * have a range that represents both positive and negative values either side
206 * of zero but without a sign bit.
207 *
208 * Returns 0 for success.
209 */
210int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
211			  struct snd_ctl_elem_info *uinfo)
212{
213	struct soc_mixer_control *mc =
214		(struct soc_mixer_control *)kcontrol->private_value;
215
216	snd_soc_info_volsw(kcontrol, uinfo);
217	/* Max represents the number of levels in an SX control not the
218	 * maximum value, so add the minimum value back on
219	 */
220	uinfo->value.integer.max += mc->min;
221
222	return 0;
223}
224EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
225
226/**
227 * snd_soc_get_volsw - single mixer get callback
228 * @kcontrol: mixer control
229 * @ucontrol: control element information
230 *
231 * Callback to get the value of a single mixer control, or a double mixer
232 * control that spans 2 registers.
233 *
234 * Returns 0 for success.
235 */
236int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
237	struct snd_ctl_elem_value *ucontrol)
238{
239	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
240	struct soc_mixer_control *mc =
241		(struct soc_mixer_control *)kcontrol->private_value;
242	unsigned int reg = mc->reg;
243	unsigned int reg2 = mc->rreg;
244	unsigned int shift = mc->shift;
245	unsigned int rshift = mc->rshift;
246	int max = mc->max;
247	int min = mc->min;
248	int sign_bit = mc->sign_bit;
249	unsigned int mask = (1 << fls(max)) - 1;
250	unsigned int invert = mc->invert;
251	int val;
252	int ret;
253
254	if (sign_bit)
255		mask = BIT(sign_bit + 1) - 1;
256
257	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
258	if (ret)
259		return ret;
260
261	ucontrol->value.integer.value[0] = val - min;
262	if (invert)
263		ucontrol->value.integer.value[0] =
264			max - ucontrol->value.integer.value[0];
265
266	if (snd_soc_volsw_is_stereo(mc)) {
267		if (reg == reg2)
268			ret = snd_soc_read_signed(component, reg, mask, rshift,
269				sign_bit, &val);
270		else
271			ret = snd_soc_read_signed(component, reg2, mask, shift,
272				sign_bit, &val);
273		if (ret)
274			return ret;
275
276		ucontrol->value.integer.value[1] = val - min;
277		if (invert)
278			ucontrol->value.integer.value[1] =
279				max - ucontrol->value.integer.value[1];
280	}
281
282	return 0;
283}
284EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
285
286/**
287 * snd_soc_put_volsw - single mixer put callback
288 * @kcontrol: mixer control
289 * @ucontrol: control element information
290 *
291 * Callback to set the value of a single mixer control, or a double mixer
292 * control that spans 2 registers.
293 *
294 * Returns 0 for success.
295 */
296int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
297	struct snd_ctl_elem_value *ucontrol)
298{
299	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
300	struct soc_mixer_control *mc =
301		(struct soc_mixer_control *)kcontrol->private_value;
302	unsigned int reg = mc->reg;
303	unsigned int reg2 = mc->rreg;
304	unsigned int shift = mc->shift;
305	unsigned int rshift = mc->rshift;
306	int max = mc->max;
307	int min = mc->min;
308	unsigned int sign_bit = mc->sign_bit;
309	unsigned int mask = (1 << fls(max)) - 1;
310	unsigned int invert = mc->invert;
311	int err, ret;
312	bool type_2r = false;
313	unsigned int val2 = 0;
314	unsigned int val, val_mask;
315
316	if (sign_bit)
317		mask = BIT(sign_bit + 1) - 1;
318
319	val = ucontrol->value.integer.value[0];
320	if (mc->platform_max && ((int)val + min) > mc->platform_max)
321		return -EINVAL;
322	if (val > max - min)
323		return -EINVAL;
324	if (val < 0)
325		return -EINVAL;
326	val = (val + min) & mask;
327	if (invert)
328		val = max - val;
329	val_mask = mask << shift;
330	val = val << shift;
331	if (snd_soc_volsw_is_stereo(mc)) {
332		val2 = ucontrol->value.integer.value[1];
333		if (mc->platform_max && ((int)val2 + min) > mc->platform_max)
334			return -EINVAL;
335		if (val2 > max - min)
336			return -EINVAL;
337		if (val2 < 0)
338			return -EINVAL;
339		val2 = (val2 + min) & mask;
340		if (invert)
341			val2 = max - val2;
342		if (reg == reg2) {
343			val_mask |= mask << rshift;
344			val |= val2 << rshift;
345		} else {
346			val2 = val2 << shift;
347			type_2r = true;
348		}
349	}
350	err = snd_soc_component_update_bits(component, reg, val_mask, val);
351	if (err < 0)
352		return err;
353	ret = err;
354
355	if (type_2r) {
356		err = snd_soc_component_update_bits(component, reg2, val_mask,
357						    val2);
358		/* Don't discard any error code or drop change flag */
359		if (ret == 0 || err < 0) {
360			ret = err;
361		}
362	}
363
364	return ret;
365}
366EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
367
368/**
369 * snd_soc_get_volsw_sx - single mixer get callback
370 * @kcontrol: mixer control
371 * @ucontrol: control element information
372 *
373 * Callback to get the value of a single mixer control, or a double mixer
374 * control that spans 2 registers.
375 *
376 * Returns 0 for success.
377 */
378int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
379		      struct snd_ctl_elem_value *ucontrol)
380{
381	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
382	struct soc_mixer_control *mc =
383	    (struct soc_mixer_control *)kcontrol->private_value;
384	unsigned int reg = mc->reg;
385	unsigned int reg2 = mc->rreg;
386	unsigned int shift = mc->shift;
387	unsigned int rshift = mc->rshift;
388	int max = mc->max;
389	int min = mc->min;
390	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
391	unsigned int val;
392
393	val = snd_soc_component_read(component, reg);
394	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
395
396	if (snd_soc_volsw_is_stereo(mc)) {
397		val = snd_soc_component_read(component, reg2);
398		val = ((val >> rshift) - min) & mask;
399		ucontrol->value.integer.value[1] = val;
400	}
401
402	return 0;
403}
404EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
405
406/**
407 * snd_soc_put_volsw_sx - double mixer set callback
408 * @kcontrol: mixer control
409 * @ucontrol: control element information
410 *
411 * Callback to set the value of a double mixer control that spans 2 registers.
412 *
413 * Returns 0 for success.
414 */
415int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
416			 struct snd_ctl_elem_value *ucontrol)
417{
418	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
419	struct soc_mixer_control *mc =
420	    (struct soc_mixer_control *)kcontrol->private_value;
421
422	unsigned int reg = mc->reg;
423	unsigned int reg2 = mc->rreg;
424	unsigned int shift = mc->shift;
425	unsigned int rshift = mc->rshift;
426	int max = mc->max;
427	int min = mc->min;
428	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
429	int err = 0;
430	unsigned int val, val_mask, val2 = 0;
431
432	val = ucontrol->value.integer.value[0];
433	if (mc->platform_max && val > mc->platform_max)
434		return -EINVAL;
435	if (val > max)
436		return -EINVAL;
437	if (val < 0)
438		return -EINVAL;
439	val_mask = mask << shift;
440	val = (val + min) & mask;
441	val = val << shift;
442
443	err = snd_soc_component_update_bits(component, reg, val_mask, val);
444	if (err < 0)
445		return err;
446
447	if (snd_soc_volsw_is_stereo(mc)) {
448		val2 = ucontrol->value.integer.value[1];
449
450		if (mc->platform_max && val2 > mc->platform_max)
451			return -EINVAL;
452		if (val2 > max)
453			return -EINVAL;
454
455		val_mask = mask << rshift;
456		val2 = (val2 + min) & mask;
457		val2 = val2 << rshift;
458
459		err = snd_soc_component_update_bits(component, reg2, val_mask,
460			val2);
461	}
462	return err;
463}
464EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
465
466/**
467 * snd_soc_info_volsw_range - single mixer info callback with range.
468 * @kcontrol: mixer control
469 * @uinfo: control element information
470 *
471 * Callback to provide information, within a range, about a single
472 * mixer control.
473 *
474 * returns 0 for success.
475 */
476int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
477	struct snd_ctl_elem_info *uinfo)
478{
479	struct soc_mixer_control *mc =
480		(struct soc_mixer_control *)kcontrol->private_value;
481	int platform_max;
482	int min = mc->min;
483
484	if (!mc->platform_max)
485		mc->platform_max = mc->max;
486	platform_max = mc->platform_max;
487
488	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
489	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
490	uinfo->value.integer.min = 0;
491	uinfo->value.integer.max = platform_max - min;
492
493	return 0;
494}
495EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
496
497/**
498 * snd_soc_put_volsw_range - single mixer put value callback with range.
499 * @kcontrol: mixer control
500 * @ucontrol: control element information
501 *
502 * Callback to set the value, within a range, for a single mixer control.
503 *
504 * Returns 0 for success.
505 */
506int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
507	struct snd_ctl_elem_value *ucontrol)
508{
509	struct soc_mixer_control *mc =
510		(struct soc_mixer_control *)kcontrol->private_value;
511	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
512	unsigned int reg = mc->reg;
513	unsigned int rreg = mc->rreg;
514	unsigned int shift = mc->shift;
515	int min = mc->min;
516	int max = mc->max;
517	unsigned int mask = (1 << fls(max)) - 1;
518	unsigned int invert = mc->invert;
519	unsigned int val, val_mask;
520	int err, ret, tmp;
521
522	tmp = ucontrol->value.integer.value[0];
523	if (tmp < 0)
524		return -EINVAL;
525	if (mc->platform_max && tmp > mc->platform_max)
526		return -EINVAL;
527	if (tmp > mc->max - mc->min)
528		return -EINVAL;
529
530	if (invert)
531		val = (max - ucontrol->value.integer.value[0]) & mask;
532	else
533		val = ((ucontrol->value.integer.value[0] + min) & mask);
534	val_mask = mask << shift;
535	val = val << shift;
536
537	err = snd_soc_component_update_bits(component, reg, val_mask, val);
538	if (err < 0)
539		return err;
540	ret = err;
541
542	if (snd_soc_volsw_is_stereo(mc)) {
543		tmp = ucontrol->value.integer.value[1];
544		if (tmp < 0)
545			return -EINVAL;
546		if (mc->platform_max && tmp > mc->platform_max)
547			return -EINVAL;
548		if (tmp > mc->max - mc->min)
549			return -EINVAL;
550
551		if (invert)
552			val = (max - ucontrol->value.integer.value[1]) & mask;
553		else
554			val = ((ucontrol->value.integer.value[1] + min) & mask);
555		val_mask = mask << shift;
556		val = val << shift;
557
558		err = snd_soc_component_update_bits(component, rreg, val_mask,
559			val);
560		/* Don't discard any error code or drop change flag */
561		if (ret == 0 || err < 0) {
562			ret = err;
563		}
564	}
565
566	return ret;
567}
568EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
569
570/**
571 * snd_soc_get_volsw_range - single mixer get callback with range
572 * @kcontrol: mixer control
573 * @ucontrol: control element information
574 *
575 * Callback to get the value, within a range, of a single mixer control.
576 *
577 * Returns 0 for success.
578 */
579int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
580	struct snd_ctl_elem_value *ucontrol)
581{
582	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
583	struct soc_mixer_control *mc =
584		(struct soc_mixer_control *)kcontrol->private_value;
585	unsigned int reg = mc->reg;
586	unsigned int rreg = mc->rreg;
587	unsigned int shift = mc->shift;
588	int min = mc->min;
589	int max = mc->max;
590	unsigned int mask = (1 << fls(max)) - 1;
591	unsigned int invert = mc->invert;
592	unsigned int val;
593
594	val = snd_soc_component_read(component, reg);
595	ucontrol->value.integer.value[0] = (val >> shift) & mask;
596	if (invert)
597		ucontrol->value.integer.value[0] =
598			max - ucontrol->value.integer.value[0];
599	else
600		ucontrol->value.integer.value[0] =
601			ucontrol->value.integer.value[0] - min;
602
603	if (snd_soc_volsw_is_stereo(mc)) {
604		val = snd_soc_component_read(component, rreg);
605		ucontrol->value.integer.value[1] = (val >> shift) & mask;
606		if (invert)
607			ucontrol->value.integer.value[1] =
608				max - ucontrol->value.integer.value[1];
609		else
610			ucontrol->value.integer.value[1] =
611				ucontrol->value.integer.value[1] - min;
612	}
613
614	return 0;
615}
616EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
617
618/**
619 * snd_soc_limit_volume - Set new limit to an existing volume control.
620 *
621 * @card: where to look for the control
622 * @name: Name of the control
623 * @max: new maximum limit
624 *
625 * Return 0 for success, else error.
626 */
627int snd_soc_limit_volume(struct snd_soc_card *card,
628	const char *name, int max)
629{
630	struct snd_kcontrol *kctl;
631	struct soc_mixer_control *mc;
632	int ret = -EINVAL;
633
634	/* Sanity check for name and max */
635	if (unlikely(!name || max <= 0))
636		return -EINVAL;
637
638	kctl = snd_soc_card_get_kcontrol(card, name);
639	if (kctl) {
640		mc = (struct soc_mixer_control *)kctl->private_value;
641		if (max <= mc->max) {
642			mc->platform_max = max;
643			ret = 0;
644		}
645	}
646	return ret;
647}
648EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
649
650int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
651		       struct snd_ctl_elem_info *uinfo)
652{
653	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
654	struct soc_bytes *params = (void *)kcontrol->private_value;
655
656	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
657	uinfo->count = params->num_regs * component->val_bytes;
658
659	return 0;
660}
661EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
662
663int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
664		      struct snd_ctl_elem_value *ucontrol)
665{
666	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
667	struct soc_bytes *params = (void *)kcontrol->private_value;
668	int ret;
669
670	if (component->regmap)
671		ret = regmap_raw_read(component->regmap, params->base,
672				      ucontrol->value.bytes.data,
673				      params->num_regs * component->val_bytes);
674	else
675		ret = -EINVAL;
676
677	/* Hide any masked bytes to ensure consistent data reporting */
678	if (ret == 0 && params->mask) {
679		switch (component->val_bytes) {
680		case 1:
681			ucontrol->value.bytes.data[0] &= ~params->mask;
682			break;
683		case 2:
684			((u16 *)(&ucontrol->value.bytes.data))[0]
685				&= cpu_to_be16(~params->mask);
686			break;
687		case 4:
688			((u32 *)(&ucontrol->value.bytes.data))[0]
689				&= cpu_to_be32(~params->mask);
690			break;
691		default:
692			return -EINVAL;
693		}
694	}
695
696	return ret;
697}
698EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
699
700int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
701		      struct snd_ctl_elem_value *ucontrol)
702{
703	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
704	struct soc_bytes *params = (void *)kcontrol->private_value;
705	int ret, len;
706	unsigned int val, mask;
707	void *data;
708
709	if (!component->regmap || !params->num_regs)
710		return -EINVAL;
711
712	len = params->num_regs * component->val_bytes;
713
714	data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
715	if (!data)
716		return -ENOMEM;
717
718	/*
719	 * If we've got a mask then we need to preserve the register
720	 * bits.  We shouldn't modify the incoming data so take a
721	 * copy.
722	 */
723	if (params->mask) {
724		ret = regmap_read(component->regmap, params->base, &val);
725		if (ret != 0)
726			goto out;
727
728		val &= params->mask;
729
730		switch (component->val_bytes) {
731		case 1:
732			((u8 *)data)[0] &= ~params->mask;
733			((u8 *)data)[0] |= val;
734			break;
735		case 2:
736			mask = ~params->mask;
737			ret = regmap_parse_val(component->regmap,
738							&mask, &mask);
739			if (ret != 0)
740				goto out;
741
742			((u16 *)data)[0] &= mask;
743
744			ret = regmap_parse_val(component->regmap,
745							&val, &val);
746			if (ret != 0)
747				goto out;
748
749			((u16 *)data)[0] |= val;
750			break;
751		case 4:
752			mask = ~params->mask;
753			ret = regmap_parse_val(component->regmap,
754							&mask, &mask);
755			if (ret != 0)
756				goto out;
757
758			((u32 *)data)[0] &= mask;
759
760			ret = regmap_parse_val(component->regmap,
761							&val, &val);
762			if (ret != 0)
763				goto out;
764
765			((u32 *)data)[0] |= val;
766			break;
767		default:
768			ret = -EINVAL;
769			goto out;
770		}
771	}
772
773	ret = regmap_raw_write(component->regmap, params->base,
774			       data, len);
775
776out:
777	kfree(data);
778
779	return ret;
780}
781EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
782
783int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
784			struct snd_ctl_elem_info *ucontrol)
785{
786	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
787
788	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
789	ucontrol->count = params->max;
790
791	return 0;
792}
793EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
794
795int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
796				unsigned int size, unsigned int __user *tlv)
797{
798	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
799	unsigned int count = size < params->max ? size : params->max;
800	int ret = -ENXIO;
801
802	switch (op_flag) {
803	case SNDRV_CTL_TLV_OP_READ:
804		if (params->get)
805			ret = params->get(kcontrol, tlv, count);
806		break;
807	case SNDRV_CTL_TLV_OP_WRITE:
808		if (params->put)
809			ret = params->put(kcontrol, tlv, count);
810		break;
811	}
812	return ret;
813}
814EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
815
816/**
817 * snd_soc_info_xr_sx - signed multi register info callback
818 * @kcontrol: mreg control
819 * @uinfo: control element information
820 *
821 * Callback to provide information of a control that can
822 * span multiple codec registers which together
823 * forms a single signed value in a MSB/LSB manner.
824 *
825 * Returns 0 for success.
826 */
827int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
828	struct snd_ctl_elem_info *uinfo)
829{
830	struct soc_mreg_control *mc =
831		(struct soc_mreg_control *)kcontrol->private_value;
832	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
833	uinfo->count = 1;
834	uinfo->value.integer.min = mc->min;
835	uinfo->value.integer.max = mc->max;
836
837	return 0;
838}
839EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
840
841/**
842 * snd_soc_get_xr_sx - signed multi register get callback
843 * @kcontrol: mreg control
844 * @ucontrol: control element information
845 *
846 * Callback to get the value of a control that can span
847 * multiple codec registers which together forms a single
848 * signed value in a MSB/LSB manner. The control supports
849 * specifying total no of bits used to allow for bitfields
850 * across the multiple codec registers.
851 *
852 * Returns 0 for success.
853 */
854int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
855	struct snd_ctl_elem_value *ucontrol)
856{
857	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
858	struct soc_mreg_control *mc =
859		(struct soc_mreg_control *)kcontrol->private_value;
860	unsigned int regbase = mc->regbase;
861	unsigned int regcount = mc->regcount;
862	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
863	unsigned int regwmask = (1UL<<regwshift)-1;
864	unsigned int invert = mc->invert;
865	unsigned long mask = (1UL<<mc->nbits)-1;
866	long min = mc->min;
867	long max = mc->max;
868	long val = 0;
869	unsigned int regval;
870	unsigned int i;
871
872	for (i = 0; i < regcount; i++) {
873		regval = snd_soc_component_read(component, regbase+i);
874		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
875	}
876	val &= mask;
877	if (min < 0 && val > max)
878		val |= ~mask;
879	if (invert)
880		val = max - val;
881	ucontrol->value.integer.value[0] = val;
882
883	return 0;
884}
885EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
886
887/**
888 * snd_soc_put_xr_sx - signed multi register get callback
889 * @kcontrol: mreg control
890 * @ucontrol: control element information
891 *
892 * Callback to set the value of a control that can span
893 * multiple codec registers which together forms a single
894 * signed value in a MSB/LSB manner. The control supports
895 * specifying total no of bits used to allow for bitfields
896 * across the multiple codec registers.
897 *
898 * Returns 0 for success.
899 */
900int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
901	struct snd_ctl_elem_value *ucontrol)
902{
903	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
904	struct soc_mreg_control *mc =
905		(struct soc_mreg_control *)kcontrol->private_value;
906	unsigned int regbase = mc->regbase;
907	unsigned int regcount = mc->regcount;
908	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
909	unsigned int regwmask = (1UL<<regwshift)-1;
910	unsigned int invert = mc->invert;
911	unsigned long mask = (1UL<<mc->nbits)-1;
912	long max = mc->max;
913	long val = ucontrol->value.integer.value[0];
914	unsigned int i, regval, regmask;
915	int err;
916
917	if (val < mc->min || val > mc->max)
918		return -EINVAL;
919	if (invert)
920		val = max - val;
921	val &= mask;
922	for (i = 0; i < regcount; i++) {
923		regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
924		regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
925		err = snd_soc_component_update_bits(component, regbase+i,
926				regmask, regval);
927		if (err < 0)
928			return err;
929	}
930
931	return 0;
932}
933EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
934
935/**
936 * snd_soc_get_strobe - strobe get callback
937 * @kcontrol: mixer control
938 * @ucontrol: control element information
939 *
940 * Callback get the value of a strobe mixer control.
941 *
942 * Returns 0 for success.
943 */
944int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
945	struct snd_ctl_elem_value *ucontrol)
946{
947	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
948	struct soc_mixer_control *mc =
949		(struct soc_mixer_control *)kcontrol->private_value;
950	unsigned int reg = mc->reg;
951	unsigned int shift = mc->shift;
952	unsigned int mask = 1 << shift;
953	unsigned int invert = mc->invert != 0;
954	unsigned int val;
955
956	val = snd_soc_component_read(component, reg);
957	val &= mask;
958
959	if (shift != 0 && val != 0)
960		val = val >> shift;
961	ucontrol->value.enumerated.item[0] = val ^ invert;
962
963	return 0;
964}
965EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
966
967/**
968 * snd_soc_put_strobe - strobe put callback
969 * @kcontrol: mixer control
970 * @ucontrol: control element information
971 *
972 * Callback strobe a register bit to high then low (or the inverse)
973 * in one pass of a single mixer enum control.
974 *
975 * Returns 1 for success.
976 */
977int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
978	struct snd_ctl_elem_value *ucontrol)
979{
980	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
981	struct soc_mixer_control *mc =
982		(struct soc_mixer_control *)kcontrol->private_value;
983	unsigned int reg = mc->reg;
984	unsigned int shift = mc->shift;
985	unsigned int mask = 1 << shift;
986	unsigned int invert = mc->invert != 0;
987	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
988	unsigned int val1 = (strobe ^ invert) ? mask : 0;
989	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
990	int err;
991
992	err = snd_soc_component_update_bits(component, reg, mask, val1);
993	if (err < 0)
994		return err;
995
996	return snd_soc_component_update_bits(component, reg, mask, val2);
997}
998EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
999