18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
28c2ecf20Sopenharmony_ci//
38c2ecf20Sopenharmony_ci// Freescale DMA ALSA SoC PCM driver
48c2ecf20Sopenharmony_ci//
58c2ecf20Sopenharmony_ci// Author: Timur Tabi <timur@freescale.com>
68c2ecf20Sopenharmony_ci//
78c2ecf20Sopenharmony_ci// Copyright 2007-2010 Freescale Semiconductor, Inc.
88c2ecf20Sopenharmony_ci//
98c2ecf20Sopenharmony_ci// This driver implements ASoC support for the Elo DMA controller, which is
108c2ecf20Sopenharmony_ci// the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
118c2ecf20Sopenharmony_ci// the PCM driver is what handles the DMA buffer.
128c2ecf20Sopenharmony_ci
138c2ecf20Sopenharmony_ci#include <linux/module.h>
148c2ecf20Sopenharmony_ci#include <linux/init.h>
158c2ecf20Sopenharmony_ci#include <linux/platform_device.h>
168c2ecf20Sopenharmony_ci#include <linux/dma-mapping.h>
178c2ecf20Sopenharmony_ci#include <linux/interrupt.h>
188c2ecf20Sopenharmony_ci#include <linux/delay.h>
198c2ecf20Sopenharmony_ci#include <linux/gfp.h>
208c2ecf20Sopenharmony_ci#include <linux/of_address.h>
218c2ecf20Sopenharmony_ci#include <linux/of_irq.h>
228c2ecf20Sopenharmony_ci#include <linux/of_platform.h>
238c2ecf20Sopenharmony_ci#include <linux/list.h>
248c2ecf20Sopenharmony_ci#include <linux/slab.h>
258c2ecf20Sopenharmony_ci
268c2ecf20Sopenharmony_ci#include <sound/core.h>
278c2ecf20Sopenharmony_ci#include <sound/pcm.h>
288c2ecf20Sopenharmony_ci#include <sound/pcm_params.h>
298c2ecf20Sopenharmony_ci#include <sound/soc.h>
308c2ecf20Sopenharmony_ci
318c2ecf20Sopenharmony_ci#include <asm/io.h>
328c2ecf20Sopenharmony_ci
338c2ecf20Sopenharmony_ci#include "fsl_dma.h"
348c2ecf20Sopenharmony_ci#include "fsl_ssi.h"	/* For the offset of stx0 and srx0 */
358c2ecf20Sopenharmony_ci
368c2ecf20Sopenharmony_ci#define DRV_NAME "fsl_dma"
378c2ecf20Sopenharmony_ci
388c2ecf20Sopenharmony_ci/*
398c2ecf20Sopenharmony_ci * The formats that the DMA controller supports, which is anything
408c2ecf20Sopenharmony_ci * that is 8, 16, or 32 bits.
418c2ecf20Sopenharmony_ci */
428c2ecf20Sopenharmony_ci#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
438c2ecf20Sopenharmony_ci			    SNDRV_PCM_FMTBIT_U8 	| \
448c2ecf20Sopenharmony_ci			    SNDRV_PCM_FMTBIT_S16_LE     | \
458c2ecf20Sopenharmony_ci			    SNDRV_PCM_FMTBIT_S16_BE     | \
468c2ecf20Sopenharmony_ci			    SNDRV_PCM_FMTBIT_U16_LE     | \
478c2ecf20Sopenharmony_ci			    SNDRV_PCM_FMTBIT_U16_BE     | \
488c2ecf20Sopenharmony_ci			    SNDRV_PCM_FMTBIT_S24_LE     | \
498c2ecf20Sopenharmony_ci			    SNDRV_PCM_FMTBIT_S24_BE     | \
508c2ecf20Sopenharmony_ci			    SNDRV_PCM_FMTBIT_U24_LE     | \
518c2ecf20Sopenharmony_ci			    SNDRV_PCM_FMTBIT_U24_BE     | \
528c2ecf20Sopenharmony_ci			    SNDRV_PCM_FMTBIT_S32_LE     | \
538c2ecf20Sopenharmony_ci			    SNDRV_PCM_FMTBIT_S32_BE     | \
548c2ecf20Sopenharmony_ci			    SNDRV_PCM_FMTBIT_U32_LE     | \
558c2ecf20Sopenharmony_ci			    SNDRV_PCM_FMTBIT_U32_BE)
568c2ecf20Sopenharmony_cistruct dma_object {
578c2ecf20Sopenharmony_ci	struct snd_soc_component_driver dai;
588c2ecf20Sopenharmony_ci	dma_addr_t ssi_stx_phys;
598c2ecf20Sopenharmony_ci	dma_addr_t ssi_srx_phys;
608c2ecf20Sopenharmony_ci	unsigned int ssi_fifo_depth;
618c2ecf20Sopenharmony_ci	struct ccsr_dma_channel __iomem *channel;
628c2ecf20Sopenharmony_ci	unsigned int irq;
638c2ecf20Sopenharmony_ci	bool assigned;
648c2ecf20Sopenharmony_ci};
658c2ecf20Sopenharmony_ci
668c2ecf20Sopenharmony_ci/*
678c2ecf20Sopenharmony_ci * The number of DMA links to use.  Two is the bare minimum, but if you
688c2ecf20Sopenharmony_ci * have really small links you might need more.
698c2ecf20Sopenharmony_ci */
708c2ecf20Sopenharmony_ci#define NUM_DMA_LINKS   2
718c2ecf20Sopenharmony_ci
728c2ecf20Sopenharmony_ci/** fsl_dma_private: p-substream DMA data
738c2ecf20Sopenharmony_ci *
748c2ecf20Sopenharmony_ci * Each substream has a 1-to-1 association with a DMA channel.
758c2ecf20Sopenharmony_ci *
768c2ecf20Sopenharmony_ci * The link[] array is first because it needs to be aligned on a 32-byte
778c2ecf20Sopenharmony_ci * boundary, so putting it first will ensure alignment without padding the
788c2ecf20Sopenharmony_ci * structure.
798c2ecf20Sopenharmony_ci *
808c2ecf20Sopenharmony_ci * @link[]: array of link descriptors
818c2ecf20Sopenharmony_ci * @dma_channel: pointer to the DMA channel's registers
828c2ecf20Sopenharmony_ci * @irq: IRQ for this DMA channel
838c2ecf20Sopenharmony_ci * @substream: pointer to the substream object, needed by the ISR
848c2ecf20Sopenharmony_ci * @ssi_sxx_phys: bus address of the STX or SRX register to use
858c2ecf20Sopenharmony_ci * @ld_buf_phys: physical address of the LD buffer
868c2ecf20Sopenharmony_ci * @current_link: index into link[] of the link currently being processed
878c2ecf20Sopenharmony_ci * @dma_buf_phys: physical address of the DMA buffer
888c2ecf20Sopenharmony_ci * @dma_buf_next: physical address of the next period to process
898c2ecf20Sopenharmony_ci * @dma_buf_end: physical address of the byte after the end of the DMA
908c2ecf20Sopenharmony_ci * @buffer period_size: the size of a single period
918c2ecf20Sopenharmony_ci * @num_periods: the number of periods in the DMA buffer
928c2ecf20Sopenharmony_ci */
938c2ecf20Sopenharmony_cistruct fsl_dma_private {
948c2ecf20Sopenharmony_ci	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
958c2ecf20Sopenharmony_ci	struct ccsr_dma_channel __iomem *dma_channel;
968c2ecf20Sopenharmony_ci	unsigned int irq;
978c2ecf20Sopenharmony_ci	struct snd_pcm_substream *substream;
988c2ecf20Sopenharmony_ci	dma_addr_t ssi_sxx_phys;
998c2ecf20Sopenharmony_ci	unsigned int ssi_fifo_depth;
1008c2ecf20Sopenharmony_ci	dma_addr_t ld_buf_phys;
1018c2ecf20Sopenharmony_ci	unsigned int current_link;
1028c2ecf20Sopenharmony_ci	dma_addr_t dma_buf_phys;
1038c2ecf20Sopenharmony_ci	dma_addr_t dma_buf_next;
1048c2ecf20Sopenharmony_ci	dma_addr_t dma_buf_end;
1058c2ecf20Sopenharmony_ci	size_t period_size;
1068c2ecf20Sopenharmony_ci	unsigned int num_periods;
1078c2ecf20Sopenharmony_ci};
1088c2ecf20Sopenharmony_ci
1098c2ecf20Sopenharmony_ci/**
1108c2ecf20Sopenharmony_ci * fsl_dma_hardare: define characteristics of the PCM hardware.
1118c2ecf20Sopenharmony_ci *
1128c2ecf20Sopenharmony_ci * The PCM hardware is the Freescale DMA controller.  This structure defines
1138c2ecf20Sopenharmony_ci * the capabilities of that hardware.
1148c2ecf20Sopenharmony_ci *
1158c2ecf20Sopenharmony_ci * Since the sampling rate and data format are not controlled by the DMA
1168c2ecf20Sopenharmony_ci * controller, we specify no limits for those values.  The only exception is
1178c2ecf20Sopenharmony_ci * period_bytes_min, which is set to a reasonably low value to prevent the
1188c2ecf20Sopenharmony_ci * DMA controller from generating too many interrupts per second.
1198c2ecf20Sopenharmony_ci *
1208c2ecf20Sopenharmony_ci * Since each link descriptor has a 32-bit byte count field, we set
1218c2ecf20Sopenharmony_ci * period_bytes_max to the largest 32-bit number.  We also have no maximum
1228c2ecf20Sopenharmony_ci * number of periods.
1238c2ecf20Sopenharmony_ci *
1248c2ecf20Sopenharmony_ci * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
1258c2ecf20Sopenharmony_ci * limitation in the SSI driver requires the sample rates for playback and
1268c2ecf20Sopenharmony_ci * capture to be the same.
1278c2ecf20Sopenharmony_ci */
1288c2ecf20Sopenharmony_cistatic const struct snd_pcm_hardware fsl_dma_hardware = {
1298c2ecf20Sopenharmony_ci
1308c2ecf20Sopenharmony_ci	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
1318c2ecf20Sopenharmony_ci				  SNDRV_PCM_INFO_MMAP |
1328c2ecf20Sopenharmony_ci				  SNDRV_PCM_INFO_MMAP_VALID |
1338c2ecf20Sopenharmony_ci				  SNDRV_PCM_INFO_JOINT_DUPLEX |
1348c2ecf20Sopenharmony_ci				  SNDRV_PCM_INFO_PAUSE,
1358c2ecf20Sopenharmony_ci	.formats		= FSLDMA_PCM_FORMATS,
1368c2ecf20Sopenharmony_ci	.period_bytes_min       = 512,  	/* A reasonable limit */
1378c2ecf20Sopenharmony_ci	.period_bytes_max       = (u32) -1,
1388c2ecf20Sopenharmony_ci	.periods_min    	= NUM_DMA_LINKS,
1398c2ecf20Sopenharmony_ci	.periods_max    	= (unsigned int) -1,
1408c2ecf20Sopenharmony_ci	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
1418c2ecf20Sopenharmony_ci};
1428c2ecf20Sopenharmony_ci
1438c2ecf20Sopenharmony_ci/**
1448c2ecf20Sopenharmony_ci * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
1458c2ecf20Sopenharmony_ci *
1468c2ecf20Sopenharmony_ci * This function should be called by the ISR whenever the DMA controller
1478c2ecf20Sopenharmony_ci * halts data transfer.
1488c2ecf20Sopenharmony_ci */
1498c2ecf20Sopenharmony_cistatic void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
1508c2ecf20Sopenharmony_ci{
1518c2ecf20Sopenharmony_ci	snd_pcm_stop_xrun(substream);
1528c2ecf20Sopenharmony_ci}
1538c2ecf20Sopenharmony_ci
1548c2ecf20Sopenharmony_ci/**
1558c2ecf20Sopenharmony_ci * fsl_dma_update_pointers - update LD pointers to point to the next period
1568c2ecf20Sopenharmony_ci *
1578c2ecf20Sopenharmony_ci * As each period is completed, this function changes the link
1588c2ecf20Sopenharmony_ci * descriptor pointers for that period to point to the next period.
1598c2ecf20Sopenharmony_ci */
1608c2ecf20Sopenharmony_cistatic void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
1618c2ecf20Sopenharmony_ci{
1628c2ecf20Sopenharmony_ci	struct fsl_dma_link_descriptor *link =
1638c2ecf20Sopenharmony_ci		&dma_private->link[dma_private->current_link];
1648c2ecf20Sopenharmony_ci
1658c2ecf20Sopenharmony_ci	/* Update our link descriptors to point to the next period. On a 36-bit
1668c2ecf20Sopenharmony_ci	 * system, we also need to update the ESAD bits.  We also set (keep) the
1678c2ecf20Sopenharmony_ci	 * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
1688c2ecf20Sopenharmony_ci	 */
1698c2ecf20Sopenharmony_ci	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1708c2ecf20Sopenharmony_ci		link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
1718c2ecf20Sopenharmony_ci#ifdef CONFIG_PHYS_64BIT
1728c2ecf20Sopenharmony_ci		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
1738c2ecf20Sopenharmony_ci			upper_32_bits(dma_private->dma_buf_next));
1748c2ecf20Sopenharmony_ci#endif
1758c2ecf20Sopenharmony_ci	} else {
1768c2ecf20Sopenharmony_ci		link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
1778c2ecf20Sopenharmony_ci#ifdef CONFIG_PHYS_64BIT
1788c2ecf20Sopenharmony_ci		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
1798c2ecf20Sopenharmony_ci			upper_32_bits(dma_private->dma_buf_next));
1808c2ecf20Sopenharmony_ci#endif
1818c2ecf20Sopenharmony_ci	}
1828c2ecf20Sopenharmony_ci
1838c2ecf20Sopenharmony_ci	/* Update our variables for next time */
1848c2ecf20Sopenharmony_ci	dma_private->dma_buf_next += dma_private->period_size;
1858c2ecf20Sopenharmony_ci
1868c2ecf20Sopenharmony_ci	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
1878c2ecf20Sopenharmony_ci		dma_private->dma_buf_next = dma_private->dma_buf_phys;
1888c2ecf20Sopenharmony_ci
1898c2ecf20Sopenharmony_ci	if (++dma_private->current_link >= NUM_DMA_LINKS)
1908c2ecf20Sopenharmony_ci		dma_private->current_link = 0;
1918c2ecf20Sopenharmony_ci}
1928c2ecf20Sopenharmony_ci
1938c2ecf20Sopenharmony_ci/**
1948c2ecf20Sopenharmony_ci * fsl_dma_isr: interrupt handler for the DMA controller
1958c2ecf20Sopenharmony_ci *
1968c2ecf20Sopenharmony_ci * @irq: IRQ of the DMA channel
1978c2ecf20Sopenharmony_ci * @dev_id: pointer to the dma_private structure for this DMA channel
1988c2ecf20Sopenharmony_ci */
1998c2ecf20Sopenharmony_cistatic irqreturn_t fsl_dma_isr(int irq, void *dev_id)
2008c2ecf20Sopenharmony_ci{
2018c2ecf20Sopenharmony_ci	struct fsl_dma_private *dma_private = dev_id;
2028c2ecf20Sopenharmony_ci	struct snd_pcm_substream *substream = dma_private->substream;
2038c2ecf20Sopenharmony_ci	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
2048c2ecf20Sopenharmony_ci	struct device *dev = rtd->dev;
2058c2ecf20Sopenharmony_ci	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
2068c2ecf20Sopenharmony_ci	irqreturn_t ret = IRQ_NONE;
2078c2ecf20Sopenharmony_ci	u32 sr, sr2 = 0;
2088c2ecf20Sopenharmony_ci
2098c2ecf20Sopenharmony_ci	/* We got an interrupt, so read the status register to see what we
2108c2ecf20Sopenharmony_ci	   were interrupted for.
2118c2ecf20Sopenharmony_ci	 */
2128c2ecf20Sopenharmony_ci	sr = in_be32(&dma_channel->sr);
2138c2ecf20Sopenharmony_ci
2148c2ecf20Sopenharmony_ci	if (sr & CCSR_DMA_SR_TE) {
2158c2ecf20Sopenharmony_ci		dev_err(dev, "dma transmit error\n");
2168c2ecf20Sopenharmony_ci		fsl_dma_abort_stream(substream);
2178c2ecf20Sopenharmony_ci		sr2 |= CCSR_DMA_SR_TE;
2188c2ecf20Sopenharmony_ci		ret = IRQ_HANDLED;
2198c2ecf20Sopenharmony_ci	}
2208c2ecf20Sopenharmony_ci
2218c2ecf20Sopenharmony_ci	if (sr & CCSR_DMA_SR_CH)
2228c2ecf20Sopenharmony_ci		ret = IRQ_HANDLED;
2238c2ecf20Sopenharmony_ci
2248c2ecf20Sopenharmony_ci	if (sr & CCSR_DMA_SR_PE) {
2258c2ecf20Sopenharmony_ci		dev_err(dev, "dma programming error\n");
2268c2ecf20Sopenharmony_ci		fsl_dma_abort_stream(substream);
2278c2ecf20Sopenharmony_ci		sr2 |= CCSR_DMA_SR_PE;
2288c2ecf20Sopenharmony_ci		ret = IRQ_HANDLED;
2298c2ecf20Sopenharmony_ci	}
2308c2ecf20Sopenharmony_ci
2318c2ecf20Sopenharmony_ci	if (sr & CCSR_DMA_SR_EOLNI) {
2328c2ecf20Sopenharmony_ci		sr2 |= CCSR_DMA_SR_EOLNI;
2338c2ecf20Sopenharmony_ci		ret = IRQ_HANDLED;
2348c2ecf20Sopenharmony_ci	}
2358c2ecf20Sopenharmony_ci
2368c2ecf20Sopenharmony_ci	if (sr & CCSR_DMA_SR_CB)
2378c2ecf20Sopenharmony_ci		ret = IRQ_HANDLED;
2388c2ecf20Sopenharmony_ci
2398c2ecf20Sopenharmony_ci	if (sr & CCSR_DMA_SR_EOSI) {
2408c2ecf20Sopenharmony_ci		/* Tell ALSA we completed a period. */
2418c2ecf20Sopenharmony_ci		snd_pcm_period_elapsed(substream);
2428c2ecf20Sopenharmony_ci
2438c2ecf20Sopenharmony_ci		/*
2448c2ecf20Sopenharmony_ci		 * Update our link descriptors to point to the next period. We
2458c2ecf20Sopenharmony_ci		 * only need to do this if the number of periods is not equal to
2468c2ecf20Sopenharmony_ci		 * the number of links.
2478c2ecf20Sopenharmony_ci		 */
2488c2ecf20Sopenharmony_ci		if (dma_private->num_periods != NUM_DMA_LINKS)
2498c2ecf20Sopenharmony_ci			fsl_dma_update_pointers(dma_private);
2508c2ecf20Sopenharmony_ci
2518c2ecf20Sopenharmony_ci		sr2 |= CCSR_DMA_SR_EOSI;
2528c2ecf20Sopenharmony_ci		ret = IRQ_HANDLED;
2538c2ecf20Sopenharmony_ci	}
2548c2ecf20Sopenharmony_ci
2558c2ecf20Sopenharmony_ci	if (sr & CCSR_DMA_SR_EOLSI) {
2568c2ecf20Sopenharmony_ci		sr2 |= CCSR_DMA_SR_EOLSI;
2578c2ecf20Sopenharmony_ci		ret = IRQ_HANDLED;
2588c2ecf20Sopenharmony_ci	}
2598c2ecf20Sopenharmony_ci
2608c2ecf20Sopenharmony_ci	/* Clear the bits that we set */
2618c2ecf20Sopenharmony_ci	if (sr2)
2628c2ecf20Sopenharmony_ci		out_be32(&dma_channel->sr, sr2);
2638c2ecf20Sopenharmony_ci
2648c2ecf20Sopenharmony_ci	return ret;
2658c2ecf20Sopenharmony_ci}
2668c2ecf20Sopenharmony_ci
2678c2ecf20Sopenharmony_ci/**
2688c2ecf20Sopenharmony_ci * fsl_dma_new: initialize this PCM driver.
2698c2ecf20Sopenharmony_ci *
2708c2ecf20Sopenharmony_ci * This function is called when the codec driver calls snd_soc_new_pcms(),
2718c2ecf20Sopenharmony_ci * once for each .dai_link in the machine driver's snd_soc_card
2728c2ecf20Sopenharmony_ci * structure.
2738c2ecf20Sopenharmony_ci *
2748c2ecf20Sopenharmony_ci * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
2758c2ecf20Sopenharmony_ci * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
2768c2ecf20Sopenharmony_ci * is specified. Therefore, any DMA buffers we allocate will always be in low
2778c2ecf20Sopenharmony_ci * memory, but we support for 36-bit physical addresses anyway.
2788c2ecf20Sopenharmony_ci *
2798c2ecf20Sopenharmony_ci * Regardless of where the memory is actually allocated, since the device can
2808c2ecf20Sopenharmony_ci * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
2818c2ecf20Sopenharmony_ci */
2828c2ecf20Sopenharmony_cistatic int fsl_dma_new(struct snd_soc_component *component,
2838c2ecf20Sopenharmony_ci		       struct snd_soc_pcm_runtime *rtd)
2848c2ecf20Sopenharmony_ci{
2858c2ecf20Sopenharmony_ci	struct snd_card *card = rtd->card->snd_card;
2868c2ecf20Sopenharmony_ci	struct snd_pcm *pcm = rtd->pcm;
2878c2ecf20Sopenharmony_ci	int ret;
2888c2ecf20Sopenharmony_ci
2898c2ecf20Sopenharmony_ci	ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
2908c2ecf20Sopenharmony_ci	if (ret)
2918c2ecf20Sopenharmony_ci		return ret;
2928c2ecf20Sopenharmony_ci
2938c2ecf20Sopenharmony_ci	/* Some codecs have separate DAIs for playback and capture, so we
2948c2ecf20Sopenharmony_ci	 * should allocate a DMA buffer only for the streams that are valid.
2958c2ecf20Sopenharmony_ci	 */
2968c2ecf20Sopenharmony_ci
2978c2ecf20Sopenharmony_ci	if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
2988c2ecf20Sopenharmony_ci		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
2998c2ecf20Sopenharmony_ci			fsl_dma_hardware.buffer_bytes_max,
3008c2ecf20Sopenharmony_ci			&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
3018c2ecf20Sopenharmony_ci		if (ret) {
3028c2ecf20Sopenharmony_ci			dev_err(card->dev, "can't alloc playback dma buffer\n");
3038c2ecf20Sopenharmony_ci			return ret;
3048c2ecf20Sopenharmony_ci		}
3058c2ecf20Sopenharmony_ci	}
3068c2ecf20Sopenharmony_ci
3078c2ecf20Sopenharmony_ci	if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
3088c2ecf20Sopenharmony_ci		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
3098c2ecf20Sopenharmony_ci			fsl_dma_hardware.buffer_bytes_max,
3108c2ecf20Sopenharmony_ci			&pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
3118c2ecf20Sopenharmony_ci		if (ret) {
3128c2ecf20Sopenharmony_ci			dev_err(card->dev, "can't alloc capture dma buffer\n");
3138c2ecf20Sopenharmony_ci			snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
3148c2ecf20Sopenharmony_ci			return ret;
3158c2ecf20Sopenharmony_ci		}
3168c2ecf20Sopenharmony_ci	}
3178c2ecf20Sopenharmony_ci
3188c2ecf20Sopenharmony_ci	return 0;
3198c2ecf20Sopenharmony_ci}
3208c2ecf20Sopenharmony_ci
3218c2ecf20Sopenharmony_ci/**
3228c2ecf20Sopenharmony_ci * fsl_dma_open: open a new substream.
3238c2ecf20Sopenharmony_ci *
3248c2ecf20Sopenharmony_ci * Each substream has its own DMA buffer.
3258c2ecf20Sopenharmony_ci *
3268c2ecf20Sopenharmony_ci * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
3278c2ecf20Sopenharmony_ci * descriptors that ping-pong from one period to the next.  For example, if
3288c2ecf20Sopenharmony_ci * there are six periods and two link descriptors, this is how they look
3298c2ecf20Sopenharmony_ci * before playback starts:
3308c2ecf20Sopenharmony_ci *
3318c2ecf20Sopenharmony_ci *      	   The last link descriptor
3328c2ecf20Sopenharmony_ci *   ____________  points back to the first
3338c2ecf20Sopenharmony_ci *  |   	 |
3348c2ecf20Sopenharmony_ci *  V   	 |
3358c2ecf20Sopenharmony_ci *  ___    ___   |
3368c2ecf20Sopenharmony_ci * |   |->|   |->|
3378c2ecf20Sopenharmony_ci * |___|  |___|
3388c2ecf20Sopenharmony_ci *   |      |
3398c2ecf20Sopenharmony_ci *   |      |
3408c2ecf20Sopenharmony_ci *   V      V
3418c2ecf20Sopenharmony_ci *  _________________________________________
3428c2ecf20Sopenharmony_ci * |      |      |      |      |      |      |  The DMA buffer is
3438c2ecf20Sopenharmony_ci * |      |      |      |      |      |      |    divided into 6 parts
3448c2ecf20Sopenharmony_ci * |______|______|______|______|______|______|
3458c2ecf20Sopenharmony_ci *
3468c2ecf20Sopenharmony_ci * and here's how they look after the first period is finished playing:
3478c2ecf20Sopenharmony_ci *
3488c2ecf20Sopenharmony_ci *   ____________
3498c2ecf20Sopenharmony_ci *  |   	 |
3508c2ecf20Sopenharmony_ci *  V   	 |
3518c2ecf20Sopenharmony_ci *  ___    ___   |
3528c2ecf20Sopenharmony_ci * |   |->|   |->|
3538c2ecf20Sopenharmony_ci * |___|  |___|
3548c2ecf20Sopenharmony_ci *   |      |
3558c2ecf20Sopenharmony_ci *   |______________
3568c2ecf20Sopenharmony_ci *          |       |
3578c2ecf20Sopenharmony_ci *          V       V
3588c2ecf20Sopenharmony_ci *  _________________________________________
3598c2ecf20Sopenharmony_ci * |      |      |      |      |      |      |
3608c2ecf20Sopenharmony_ci * |      |      |      |      |      |      |
3618c2ecf20Sopenharmony_ci * |______|______|______|______|______|______|
3628c2ecf20Sopenharmony_ci *
3638c2ecf20Sopenharmony_ci * The first link descriptor now points to the third period.  The DMA
3648c2ecf20Sopenharmony_ci * controller is currently playing the second period.  When it finishes, it
3658c2ecf20Sopenharmony_ci * will jump back to the first descriptor and play the third period.
3668c2ecf20Sopenharmony_ci *
3678c2ecf20Sopenharmony_ci * There are four reasons we do this:
3688c2ecf20Sopenharmony_ci *
3698c2ecf20Sopenharmony_ci * 1. The only way to get the DMA controller to automatically restart the
3708c2ecf20Sopenharmony_ci *    transfer when it gets to the end of the buffer is to use chaining
3718c2ecf20Sopenharmony_ci *    mode.  Basic direct mode doesn't offer that feature.
3728c2ecf20Sopenharmony_ci * 2. We need to receive an interrupt at the end of every period.  The DMA
3738c2ecf20Sopenharmony_ci *    controller can generate an interrupt at the end of every link transfer
3748c2ecf20Sopenharmony_ci *    (aka segment).  Making each period into a DMA segment will give us the
3758c2ecf20Sopenharmony_ci *    interrupts we need.
3768c2ecf20Sopenharmony_ci * 3. By creating only two link descriptors, regardless of the number of
3778c2ecf20Sopenharmony_ci *    periods, we do not need to reallocate the link descriptors if the
3788c2ecf20Sopenharmony_ci *    number of periods changes.
3798c2ecf20Sopenharmony_ci * 4. All of the audio data is still stored in a single, contiguous DMA
3808c2ecf20Sopenharmony_ci *    buffer, which is what ALSA expects.  We're just dividing it into
3818c2ecf20Sopenharmony_ci *    contiguous parts, and creating a link descriptor for each one.
3828c2ecf20Sopenharmony_ci */
3838c2ecf20Sopenharmony_cistatic int fsl_dma_open(struct snd_soc_component *component,
3848c2ecf20Sopenharmony_ci			struct snd_pcm_substream *substream)
3858c2ecf20Sopenharmony_ci{
3868c2ecf20Sopenharmony_ci	struct snd_pcm_runtime *runtime = substream->runtime;
3878c2ecf20Sopenharmony_ci	struct device *dev = component->dev;
3888c2ecf20Sopenharmony_ci	struct dma_object *dma =
3898c2ecf20Sopenharmony_ci		container_of(component->driver, struct dma_object, dai);
3908c2ecf20Sopenharmony_ci	struct fsl_dma_private *dma_private;
3918c2ecf20Sopenharmony_ci	struct ccsr_dma_channel __iomem *dma_channel;
3928c2ecf20Sopenharmony_ci	dma_addr_t ld_buf_phys;
3938c2ecf20Sopenharmony_ci	u64 temp_link;  	/* Pointer to next link descriptor */
3948c2ecf20Sopenharmony_ci	u32 mr;
3958c2ecf20Sopenharmony_ci	unsigned int channel;
3968c2ecf20Sopenharmony_ci	int ret = 0;
3978c2ecf20Sopenharmony_ci	unsigned int i;
3988c2ecf20Sopenharmony_ci
3998c2ecf20Sopenharmony_ci	/*
4008c2ecf20Sopenharmony_ci	 * Reject any DMA buffer whose size is not a multiple of the period
4018c2ecf20Sopenharmony_ci	 * size.  We need to make sure that the DMA buffer can be evenly divided
4028c2ecf20Sopenharmony_ci	 * into periods.
4038c2ecf20Sopenharmony_ci	 */
4048c2ecf20Sopenharmony_ci	ret = snd_pcm_hw_constraint_integer(runtime,
4058c2ecf20Sopenharmony_ci		SNDRV_PCM_HW_PARAM_PERIODS);
4068c2ecf20Sopenharmony_ci	if (ret < 0) {
4078c2ecf20Sopenharmony_ci		dev_err(dev, "invalid buffer size\n");
4088c2ecf20Sopenharmony_ci		return ret;
4098c2ecf20Sopenharmony_ci	}
4108c2ecf20Sopenharmony_ci
4118c2ecf20Sopenharmony_ci	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
4128c2ecf20Sopenharmony_ci
4138c2ecf20Sopenharmony_ci	if (dma->assigned) {
4148c2ecf20Sopenharmony_ci		dev_err(dev, "dma channel already assigned\n");
4158c2ecf20Sopenharmony_ci		return -EBUSY;
4168c2ecf20Sopenharmony_ci	}
4178c2ecf20Sopenharmony_ci
4188c2ecf20Sopenharmony_ci	dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
4198c2ecf20Sopenharmony_ci					 &ld_buf_phys, GFP_KERNEL);
4208c2ecf20Sopenharmony_ci	if (!dma_private) {
4218c2ecf20Sopenharmony_ci		dev_err(dev, "can't allocate dma private data\n");
4228c2ecf20Sopenharmony_ci		return -ENOMEM;
4238c2ecf20Sopenharmony_ci	}
4248c2ecf20Sopenharmony_ci	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
4258c2ecf20Sopenharmony_ci		dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
4268c2ecf20Sopenharmony_ci	else
4278c2ecf20Sopenharmony_ci		dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
4288c2ecf20Sopenharmony_ci
4298c2ecf20Sopenharmony_ci	dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
4308c2ecf20Sopenharmony_ci	dma_private->dma_channel = dma->channel;
4318c2ecf20Sopenharmony_ci	dma_private->irq = dma->irq;
4328c2ecf20Sopenharmony_ci	dma_private->substream = substream;
4338c2ecf20Sopenharmony_ci	dma_private->ld_buf_phys = ld_buf_phys;
4348c2ecf20Sopenharmony_ci	dma_private->dma_buf_phys = substream->dma_buffer.addr;
4358c2ecf20Sopenharmony_ci
4368c2ecf20Sopenharmony_ci	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
4378c2ecf20Sopenharmony_ci			  dma_private);
4388c2ecf20Sopenharmony_ci	if (ret) {
4398c2ecf20Sopenharmony_ci		dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
4408c2ecf20Sopenharmony_ci			dma_private->irq, ret);
4418c2ecf20Sopenharmony_ci		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
4428c2ecf20Sopenharmony_ci			dma_private, dma_private->ld_buf_phys);
4438c2ecf20Sopenharmony_ci		return ret;
4448c2ecf20Sopenharmony_ci	}
4458c2ecf20Sopenharmony_ci
4468c2ecf20Sopenharmony_ci	dma->assigned = true;
4478c2ecf20Sopenharmony_ci
4488c2ecf20Sopenharmony_ci	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
4498c2ecf20Sopenharmony_ci	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
4508c2ecf20Sopenharmony_ci	runtime->private_data = dma_private;
4518c2ecf20Sopenharmony_ci
4528c2ecf20Sopenharmony_ci	/* Program the fixed DMA controller parameters */
4538c2ecf20Sopenharmony_ci
4548c2ecf20Sopenharmony_ci	dma_channel = dma_private->dma_channel;
4558c2ecf20Sopenharmony_ci
4568c2ecf20Sopenharmony_ci	temp_link = dma_private->ld_buf_phys +
4578c2ecf20Sopenharmony_ci		sizeof(struct fsl_dma_link_descriptor);
4588c2ecf20Sopenharmony_ci
4598c2ecf20Sopenharmony_ci	for (i = 0; i < NUM_DMA_LINKS; i++) {
4608c2ecf20Sopenharmony_ci		dma_private->link[i].next = cpu_to_be64(temp_link);
4618c2ecf20Sopenharmony_ci
4628c2ecf20Sopenharmony_ci		temp_link += sizeof(struct fsl_dma_link_descriptor);
4638c2ecf20Sopenharmony_ci	}
4648c2ecf20Sopenharmony_ci	/* The last link descriptor points to the first */
4658c2ecf20Sopenharmony_ci	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
4668c2ecf20Sopenharmony_ci
4678c2ecf20Sopenharmony_ci	/* Tell the DMA controller where the first link descriptor is */
4688c2ecf20Sopenharmony_ci	out_be32(&dma_channel->clndar,
4698c2ecf20Sopenharmony_ci		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
4708c2ecf20Sopenharmony_ci	out_be32(&dma_channel->eclndar,
4718c2ecf20Sopenharmony_ci		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
4728c2ecf20Sopenharmony_ci
4738c2ecf20Sopenharmony_ci	/* The manual says the BCR must be clear before enabling EMP */
4748c2ecf20Sopenharmony_ci	out_be32(&dma_channel->bcr, 0);
4758c2ecf20Sopenharmony_ci
4768c2ecf20Sopenharmony_ci	/*
4778c2ecf20Sopenharmony_ci	 * Program the mode register for interrupts, external master control,
4788c2ecf20Sopenharmony_ci	 * and source/destination hold.  Also clear the Channel Abort bit.
4798c2ecf20Sopenharmony_ci	 */
4808c2ecf20Sopenharmony_ci	mr = in_be32(&dma_channel->mr) &
4818c2ecf20Sopenharmony_ci		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
4828c2ecf20Sopenharmony_ci
4838c2ecf20Sopenharmony_ci	/*
4848c2ecf20Sopenharmony_ci	 * We want External Master Start and External Master Pause enabled,
4858c2ecf20Sopenharmony_ci	 * because the SSI is controlling the DMA controller.  We want the DMA
4868c2ecf20Sopenharmony_ci	 * controller to be set up in advance, and then we signal only the SSI
4878c2ecf20Sopenharmony_ci	 * to start transferring.
4888c2ecf20Sopenharmony_ci	 *
4898c2ecf20Sopenharmony_ci	 * We want End-Of-Segment Interrupts enabled, because this will generate
4908c2ecf20Sopenharmony_ci	 * an interrupt at the end of each segment (each link descriptor
4918c2ecf20Sopenharmony_ci	 * represents one segment).  Each DMA segment is the same thing as an
4928c2ecf20Sopenharmony_ci	 * ALSA period, so this is how we get an interrupt at the end of every
4938c2ecf20Sopenharmony_ci	 * period.
4948c2ecf20Sopenharmony_ci	 *
4958c2ecf20Sopenharmony_ci	 * We want Error Interrupt enabled, so that we can get an error if
4968c2ecf20Sopenharmony_ci	 * the DMA controller is mis-programmed somehow.
4978c2ecf20Sopenharmony_ci	 */
4988c2ecf20Sopenharmony_ci	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
4998c2ecf20Sopenharmony_ci		CCSR_DMA_MR_EMS_EN;
5008c2ecf20Sopenharmony_ci
5018c2ecf20Sopenharmony_ci	/* For playback, we want the destination address to be held.  For
5028c2ecf20Sopenharmony_ci	   capture, set the source address to be held. */
5038c2ecf20Sopenharmony_ci	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
5048c2ecf20Sopenharmony_ci		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
5058c2ecf20Sopenharmony_ci
5068c2ecf20Sopenharmony_ci	out_be32(&dma_channel->mr, mr);
5078c2ecf20Sopenharmony_ci
5088c2ecf20Sopenharmony_ci	return 0;
5098c2ecf20Sopenharmony_ci}
5108c2ecf20Sopenharmony_ci
5118c2ecf20Sopenharmony_ci/**
5128c2ecf20Sopenharmony_ci * fsl_dma_hw_params: continue initializing the DMA links
5138c2ecf20Sopenharmony_ci *
5148c2ecf20Sopenharmony_ci * This function obtains hardware parameters about the opened stream and
5158c2ecf20Sopenharmony_ci * programs the DMA controller accordingly.
5168c2ecf20Sopenharmony_ci *
5178c2ecf20Sopenharmony_ci * One drawback of big-endian is that when copying integers of different
5188c2ecf20Sopenharmony_ci * sizes to a fixed-sized register, the address to which the integer must be
5198c2ecf20Sopenharmony_ci * copied is dependent on the size of the integer.
5208c2ecf20Sopenharmony_ci *
5218c2ecf20Sopenharmony_ci * For example, if P is the address of a 32-bit register, and X is a 32-bit
5228c2ecf20Sopenharmony_ci * integer, then X should be copied to address P.  However, if X is a 16-bit
5238c2ecf20Sopenharmony_ci * integer, then it should be copied to P+2.  If X is an 8-bit register,
5248c2ecf20Sopenharmony_ci * then it should be copied to P+3.
5258c2ecf20Sopenharmony_ci *
5268c2ecf20Sopenharmony_ci * So for playback of 8-bit samples, the DMA controller must transfer single
5278c2ecf20Sopenharmony_ci * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
5288c2ecf20Sopenharmony_ci * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
5298c2ecf20Sopenharmony_ci *
5308c2ecf20Sopenharmony_ci * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
5318c2ecf20Sopenharmony_ci * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
5328c2ecf20Sopenharmony_ci * and 8 bytes at a time).  So we do not support packed 24-bit samples.
5338c2ecf20Sopenharmony_ci * 24-bit data must be padded to 32 bits.
5348c2ecf20Sopenharmony_ci */
5358c2ecf20Sopenharmony_cistatic int fsl_dma_hw_params(struct snd_soc_component *component,
5368c2ecf20Sopenharmony_ci			     struct snd_pcm_substream *substream,
5378c2ecf20Sopenharmony_ci			     struct snd_pcm_hw_params *hw_params)
5388c2ecf20Sopenharmony_ci{
5398c2ecf20Sopenharmony_ci	struct snd_pcm_runtime *runtime = substream->runtime;
5408c2ecf20Sopenharmony_ci	struct fsl_dma_private *dma_private = runtime->private_data;
5418c2ecf20Sopenharmony_ci	struct device *dev = component->dev;
5428c2ecf20Sopenharmony_ci
5438c2ecf20Sopenharmony_ci	/* Number of bits per sample */
5448c2ecf20Sopenharmony_ci	unsigned int sample_bits =
5458c2ecf20Sopenharmony_ci		snd_pcm_format_physical_width(params_format(hw_params));
5468c2ecf20Sopenharmony_ci
5478c2ecf20Sopenharmony_ci	/* Number of bytes per frame */
5488c2ecf20Sopenharmony_ci	unsigned int sample_bytes = sample_bits / 8;
5498c2ecf20Sopenharmony_ci
5508c2ecf20Sopenharmony_ci	/* Bus address of SSI STX register */
5518c2ecf20Sopenharmony_ci	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
5528c2ecf20Sopenharmony_ci
5538c2ecf20Sopenharmony_ci	/* Size of the DMA buffer, in bytes */
5548c2ecf20Sopenharmony_ci	size_t buffer_size = params_buffer_bytes(hw_params);
5558c2ecf20Sopenharmony_ci
5568c2ecf20Sopenharmony_ci	/* Number of bytes per period */
5578c2ecf20Sopenharmony_ci	size_t period_size = params_period_bytes(hw_params);
5588c2ecf20Sopenharmony_ci
5598c2ecf20Sopenharmony_ci	/* Pointer to next period */
5608c2ecf20Sopenharmony_ci	dma_addr_t temp_addr = substream->dma_buffer.addr;
5618c2ecf20Sopenharmony_ci
5628c2ecf20Sopenharmony_ci	/* Pointer to DMA controller */
5638c2ecf20Sopenharmony_ci	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
5648c2ecf20Sopenharmony_ci
5658c2ecf20Sopenharmony_ci	u32 mr; /* DMA Mode Register */
5668c2ecf20Sopenharmony_ci
5678c2ecf20Sopenharmony_ci	unsigned int i;
5688c2ecf20Sopenharmony_ci
5698c2ecf20Sopenharmony_ci	/* Initialize our DMA tracking variables */
5708c2ecf20Sopenharmony_ci	dma_private->period_size = period_size;
5718c2ecf20Sopenharmony_ci	dma_private->num_periods = params_periods(hw_params);
5728c2ecf20Sopenharmony_ci	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
5738c2ecf20Sopenharmony_ci	dma_private->dma_buf_next = dma_private->dma_buf_phys +
5748c2ecf20Sopenharmony_ci		(NUM_DMA_LINKS * period_size);
5758c2ecf20Sopenharmony_ci
5768c2ecf20Sopenharmony_ci	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
5778c2ecf20Sopenharmony_ci		/* This happens if the number of periods == NUM_DMA_LINKS */
5788c2ecf20Sopenharmony_ci		dma_private->dma_buf_next = dma_private->dma_buf_phys;
5798c2ecf20Sopenharmony_ci
5808c2ecf20Sopenharmony_ci	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
5818c2ecf20Sopenharmony_ci		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
5828c2ecf20Sopenharmony_ci
5838c2ecf20Sopenharmony_ci	/* Due to a quirk of the SSI's STX register, the target address
5848c2ecf20Sopenharmony_ci	 * for the DMA operations depends on the sample size.  So we calculate
5858c2ecf20Sopenharmony_ci	 * that offset here.  While we're at it, also tell the DMA controller
5868c2ecf20Sopenharmony_ci	 * how much data to transfer per sample.
5878c2ecf20Sopenharmony_ci	 */
5888c2ecf20Sopenharmony_ci	switch (sample_bits) {
5898c2ecf20Sopenharmony_ci	case 8:
5908c2ecf20Sopenharmony_ci		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
5918c2ecf20Sopenharmony_ci		ssi_sxx_phys += 3;
5928c2ecf20Sopenharmony_ci		break;
5938c2ecf20Sopenharmony_ci	case 16:
5948c2ecf20Sopenharmony_ci		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
5958c2ecf20Sopenharmony_ci		ssi_sxx_phys += 2;
5968c2ecf20Sopenharmony_ci		break;
5978c2ecf20Sopenharmony_ci	case 32:
5988c2ecf20Sopenharmony_ci		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
5998c2ecf20Sopenharmony_ci		break;
6008c2ecf20Sopenharmony_ci	default:
6018c2ecf20Sopenharmony_ci		/* We should never get here */
6028c2ecf20Sopenharmony_ci		dev_err(dev, "unsupported sample size %u\n", sample_bits);
6038c2ecf20Sopenharmony_ci		return -EINVAL;
6048c2ecf20Sopenharmony_ci	}
6058c2ecf20Sopenharmony_ci
6068c2ecf20Sopenharmony_ci	/*
6078c2ecf20Sopenharmony_ci	 * BWC determines how many bytes are sent/received before the DMA
6088c2ecf20Sopenharmony_ci	 * controller checks the SSI to see if it needs to stop. BWC should
6098c2ecf20Sopenharmony_ci	 * always be a multiple of the frame size, so that we always transmit
6108c2ecf20Sopenharmony_ci	 * whole frames.  Each frame occupies two slots in the FIFO.  The
6118c2ecf20Sopenharmony_ci	 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
6128c2ecf20Sopenharmony_ci	 * (MR[BWC] can only represent even powers of two).
6138c2ecf20Sopenharmony_ci	 *
6148c2ecf20Sopenharmony_ci	 * To simplify the process, we set BWC to the largest value that is
6158c2ecf20Sopenharmony_ci	 * less than or equal to the FIFO watermark.  For playback, this ensures
6168c2ecf20Sopenharmony_ci	 * that we transfer the maximum amount without overrunning the FIFO.
6178c2ecf20Sopenharmony_ci	 * For capture, this ensures that we transfer the maximum amount without
6188c2ecf20Sopenharmony_ci	 * underrunning the FIFO.
6198c2ecf20Sopenharmony_ci	 *
6208c2ecf20Sopenharmony_ci	 * f = SSI FIFO depth
6218c2ecf20Sopenharmony_ci	 * w = SSI watermark value (which equals f - 2)
6228c2ecf20Sopenharmony_ci	 * b = DMA bandwidth count (in bytes)
6238c2ecf20Sopenharmony_ci	 * s = sample size (in bytes, which equals frame_size * 2)
6248c2ecf20Sopenharmony_ci	 *
6258c2ecf20Sopenharmony_ci	 * For playback, we never transmit more than the transmit FIFO
6268c2ecf20Sopenharmony_ci	 * watermark, otherwise we might write more data than the FIFO can hold.
6278c2ecf20Sopenharmony_ci	 * The watermark is equal to the FIFO depth minus two.
6288c2ecf20Sopenharmony_ci	 *
6298c2ecf20Sopenharmony_ci	 * For capture, two equations must hold:
6308c2ecf20Sopenharmony_ci	 *	w > f - (b / s)
6318c2ecf20Sopenharmony_ci	 *	w >= b / s
6328c2ecf20Sopenharmony_ci	 *
6338c2ecf20Sopenharmony_ci	 * So, b > 2 * s, but b must also be <= s * w.  To simplify, we set
6348c2ecf20Sopenharmony_ci	 * b = s * w, which is equal to
6358c2ecf20Sopenharmony_ci	 *      (dma_private->ssi_fifo_depth - 2) * sample_bytes.
6368c2ecf20Sopenharmony_ci	 */
6378c2ecf20Sopenharmony_ci	mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
6388c2ecf20Sopenharmony_ci
6398c2ecf20Sopenharmony_ci	out_be32(&dma_channel->mr, mr);
6408c2ecf20Sopenharmony_ci
6418c2ecf20Sopenharmony_ci	for (i = 0; i < NUM_DMA_LINKS; i++) {
6428c2ecf20Sopenharmony_ci		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
6438c2ecf20Sopenharmony_ci
6448c2ecf20Sopenharmony_ci		link->count = cpu_to_be32(period_size);
6458c2ecf20Sopenharmony_ci
6468c2ecf20Sopenharmony_ci		/* The snoop bit tells the DMA controller whether it should tell
6478c2ecf20Sopenharmony_ci		 * the ECM to snoop during a read or write to an address. For
6488c2ecf20Sopenharmony_ci		 * audio, we use DMA to transfer data between memory and an I/O
6498c2ecf20Sopenharmony_ci		 * device (the SSI's STX0 or SRX0 register). Snooping is only
6508c2ecf20Sopenharmony_ci		 * needed if there is a cache, so we need to snoop memory
6518c2ecf20Sopenharmony_ci		 * addresses only.  For playback, that means we snoop the source
6528c2ecf20Sopenharmony_ci		 * but not the destination.  For capture, we snoop the
6538c2ecf20Sopenharmony_ci		 * destination but not the source.
6548c2ecf20Sopenharmony_ci		 *
6558c2ecf20Sopenharmony_ci		 * Note that failing to snoop properly is unlikely to cause
6568c2ecf20Sopenharmony_ci		 * cache incoherency if the period size is larger than the
6578c2ecf20Sopenharmony_ci		 * size of L1 cache.  This is because filling in one period will
6588c2ecf20Sopenharmony_ci		 * flush out the data for the previous period.  So if you
6598c2ecf20Sopenharmony_ci		 * increased period_bytes_min to a large enough size, you might
6608c2ecf20Sopenharmony_ci		 * get more performance by not snooping, and you'll still be
6618c2ecf20Sopenharmony_ci		 * okay.  You'll need to update fsl_dma_update_pointers() also.
6628c2ecf20Sopenharmony_ci		 */
6638c2ecf20Sopenharmony_ci		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
6648c2ecf20Sopenharmony_ci			link->source_addr = cpu_to_be32(temp_addr);
6658c2ecf20Sopenharmony_ci			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
6668c2ecf20Sopenharmony_ci				upper_32_bits(temp_addr));
6678c2ecf20Sopenharmony_ci
6688c2ecf20Sopenharmony_ci			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
6698c2ecf20Sopenharmony_ci			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
6708c2ecf20Sopenharmony_ci				upper_32_bits(ssi_sxx_phys));
6718c2ecf20Sopenharmony_ci		} else {
6728c2ecf20Sopenharmony_ci			link->source_addr = cpu_to_be32(ssi_sxx_phys);
6738c2ecf20Sopenharmony_ci			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
6748c2ecf20Sopenharmony_ci				upper_32_bits(ssi_sxx_phys));
6758c2ecf20Sopenharmony_ci
6768c2ecf20Sopenharmony_ci			link->dest_addr = cpu_to_be32(temp_addr);
6778c2ecf20Sopenharmony_ci			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
6788c2ecf20Sopenharmony_ci				upper_32_bits(temp_addr));
6798c2ecf20Sopenharmony_ci		}
6808c2ecf20Sopenharmony_ci
6818c2ecf20Sopenharmony_ci		temp_addr += period_size;
6828c2ecf20Sopenharmony_ci	}
6838c2ecf20Sopenharmony_ci
6848c2ecf20Sopenharmony_ci	return 0;
6858c2ecf20Sopenharmony_ci}
6868c2ecf20Sopenharmony_ci
6878c2ecf20Sopenharmony_ci/**
6888c2ecf20Sopenharmony_ci * fsl_dma_pointer: determine the current position of the DMA transfer
6898c2ecf20Sopenharmony_ci *
6908c2ecf20Sopenharmony_ci * This function is called by ALSA when ALSA wants to know where in the
6918c2ecf20Sopenharmony_ci * stream buffer the hardware currently is.
6928c2ecf20Sopenharmony_ci *
6938c2ecf20Sopenharmony_ci * For playback, the SAR register contains the physical address of the most
6948c2ecf20Sopenharmony_ci * recent DMA transfer.  For capture, the value is in the DAR register.
6958c2ecf20Sopenharmony_ci *
6968c2ecf20Sopenharmony_ci * The base address of the buffer is stored in the source_addr field of the
6978c2ecf20Sopenharmony_ci * first link descriptor.
6988c2ecf20Sopenharmony_ci */
6998c2ecf20Sopenharmony_cistatic snd_pcm_uframes_t fsl_dma_pointer(struct snd_soc_component *component,
7008c2ecf20Sopenharmony_ci					 struct snd_pcm_substream *substream)
7018c2ecf20Sopenharmony_ci{
7028c2ecf20Sopenharmony_ci	struct snd_pcm_runtime *runtime = substream->runtime;
7038c2ecf20Sopenharmony_ci	struct fsl_dma_private *dma_private = runtime->private_data;
7048c2ecf20Sopenharmony_ci	struct device *dev = component->dev;
7058c2ecf20Sopenharmony_ci	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
7068c2ecf20Sopenharmony_ci	dma_addr_t position;
7078c2ecf20Sopenharmony_ci	snd_pcm_uframes_t frames;
7088c2ecf20Sopenharmony_ci
7098c2ecf20Sopenharmony_ci	/* Obtain the current DMA pointer, but don't read the ESAD bits if we
7108c2ecf20Sopenharmony_ci	 * only have 32-bit DMA addresses.  This function is typically called
7118c2ecf20Sopenharmony_ci	 * in interrupt context, so we need to optimize it.
7128c2ecf20Sopenharmony_ci	 */
7138c2ecf20Sopenharmony_ci	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
7148c2ecf20Sopenharmony_ci		position = in_be32(&dma_channel->sar);
7158c2ecf20Sopenharmony_ci#ifdef CONFIG_PHYS_64BIT
7168c2ecf20Sopenharmony_ci		position |= (u64)(in_be32(&dma_channel->satr) &
7178c2ecf20Sopenharmony_ci				  CCSR_DMA_ATR_ESAD_MASK) << 32;
7188c2ecf20Sopenharmony_ci#endif
7198c2ecf20Sopenharmony_ci	} else {
7208c2ecf20Sopenharmony_ci		position = in_be32(&dma_channel->dar);
7218c2ecf20Sopenharmony_ci#ifdef CONFIG_PHYS_64BIT
7228c2ecf20Sopenharmony_ci		position |= (u64)(in_be32(&dma_channel->datr) &
7238c2ecf20Sopenharmony_ci				  CCSR_DMA_ATR_ESAD_MASK) << 32;
7248c2ecf20Sopenharmony_ci#endif
7258c2ecf20Sopenharmony_ci	}
7268c2ecf20Sopenharmony_ci
7278c2ecf20Sopenharmony_ci	/*
7288c2ecf20Sopenharmony_ci	 * When capture is started, the SSI immediately starts to fill its FIFO.
7298c2ecf20Sopenharmony_ci	 * This means that the DMA controller is not started until the FIFO is
7308c2ecf20Sopenharmony_ci	 * full.  However, ALSA calls this function before that happens, when
7318c2ecf20Sopenharmony_ci	 * MR.DAR is still zero.  In this case, just return zero to indicate
7328c2ecf20Sopenharmony_ci	 * that nothing has been received yet.
7338c2ecf20Sopenharmony_ci	 */
7348c2ecf20Sopenharmony_ci	if (!position)
7358c2ecf20Sopenharmony_ci		return 0;
7368c2ecf20Sopenharmony_ci
7378c2ecf20Sopenharmony_ci	if ((position < dma_private->dma_buf_phys) ||
7388c2ecf20Sopenharmony_ci	    (position > dma_private->dma_buf_end)) {
7398c2ecf20Sopenharmony_ci		dev_err(dev, "dma pointer is out of range, halting stream\n");
7408c2ecf20Sopenharmony_ci		return SNDRV_PCM_POS_XRUN;
7418c2ecf20Sopenharmony_ci	}
7428c2ecf20Sopenharmony_ci
7438c2ecf20Sopenharmony_ci	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
7448c2ecf20Sopenharmony_ci
7458c2ecf20Sopenharmony_ci	/*
7468c2ecf20Sopenharmony_ci	 * If the current address is just past the end of the buffer, wrap it
7478c2ecf20Sopenharmony_ci	 * around.
7488c2ecf20Sopenharmony_ci	 */
7498c2ecf20Sopenharmony_ci	if (frames == runtime->buffer_size)
7508c2ecf20Sopenharmony_ci		frames = 0;
7518c2ecf20Sopenharmony_ci
7528c2ecf20Sopenharmony_ci	return frames;
7538c2ecf20Sopenharmony_ci}
7548c2ecf20Sopenharmony_ci
7558c2ecf20Sopenharmony_ci/**
7568c2ecf20Sopenharmony_ci * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
7578c2ecf20Sopenharmony_ci *
7588c2ecf20Sopenharmony_ci * Release the resources allocated in fsl_dma_hw_params() and de-program the
7598c2ecf20Sopenharmony_ci * registers.
7608c2ecf20Sopenharmony_ci *
7618c2ecf20Sopenharmony_ci * This function can be called multiple times.
7628c2ecf20Sopenharmony_ci */
7638c2ecf20Sopenharmony_cistatic int fsl_dma_hw_free(struct snd_soc_component *component,
7648c2ecf20Sopenharmony_ci			   struct snd_pcm_substream *substream)
7658c2ecf20Sopenharmony_ci{
7668c2ecf20Sopenharmony_ci	struct snd_pcm_runtime *runtime = substream->runtime;
7678c2ecf20Sopenharmony_ci	struct fsl_dma_private *dma_private = runtime->private_data;
7688c2ecf20Sopenharmony_ci
7698c2ecf20Sopenharmony_ci	if (dma_private) {
7708c2ecf20Sopenharmony_ci		struct ccsr_dma_channel __iomem *dma_channel;
7718c2ecf20Sopenharmony_ci
7728c2ecf20Sopenharmony_ci		dma_channel = dma_private->dma_channel;
7738c2ecf20Sopenharmony_ci
7748c2ecf20Sopenharmony_ci		/* Stop the DMA */
7758c2ecf20Sopenharmony_ci		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
7768c2ecf20Sopenharmony_ci		out_be32(&dma_channel->mr, 0);
7778c2ecf20Sopenharmony_ci
7788c2ecf20Sopenharmony_ci		/* Reset all the other registers */
7798c2ecf20Sopenharmony_ci		out_be32(&dma_channel->sr, -1);
7808c2ecf20Sopenharmony_ci		out_be32(&dma_channel->clndar, 0);
7818c2ecf20Sopenharmony_ci		out_be32(&dma_channel->eclndar, 0);
7828c2ecf20Sopenharmony_ci		out_be32(&dma_channel->satr, 0);
7838c2ecf20Sopenharmony_ci		out_be32(&dma_channel->sar, 0);
7848c2ecf20Sopenharmony_ci		out_be32(&dma_channel->datr, 0);
7858c2ecf20Sopenharmony_ci		out_be32(&dma_channel->dar, 0);
7868c2ecf20Sopenharmony_ci		out_be32(&dma_channel->bcr, 0);
7878c2ecf20Sopenharmony_ci		out_be32(&dma_channel->nlndar, 0);
7888c2ecf20Sopenharmony_ci		out_be32(&dma_channel->enlndar, 0);
7898c2ecf20Sopenharmony_ci	}
7908c2ecf20Sopenharmony_ci
7918c2ecf20Sopenharmony_ci	return 0;
7928c2ecf20Sopenharmony_ci}
7938c2ecf20Sopenharmony_ci
7948c2ecf20Sopenharmony_ci/**
7958c2ecf20Sopenharmony_ci * fsl_dma_close: close the stream.
7968c2ecf20Sopenharmony_ci */
7978c2ecf20Sopenharmony_cistatic int fsl_dma_close(struct snd_soc_component *component,
7988c2ecf20Sopenharmony_ci			 struct snd_pcm_substream *substream)
7998c2ecf20Sopenharmony_ci{
8008c2ecf20Sopenharmony_ci	struct snd_pcm_runtime *runtime = substream->runtime;
8018c2ecf20Sopenharmony_ci	struct fsl_dma_private *dma_private = runtime->private_data;
8028c2ecf20Sopenharmony_ci	struct device *dev = component->dev;
8038c2ecf20Sopenharmony_ci	struct dma_object *dma =
8048c2ecf20Sopenharmony_ci		container_of(component->driver, struct dma_object, dai);
8058c2ecf20Sopenharmony_ci
8068c2ecf20Sopenharmony_ci	if (dma_private) {
8078c2ecf20Sopenharmony_ci		if (dma_private->irq)
8088c2ecf20Sopenharmony_ci			free_irq(dma_private->irq, dma_private);
8098c2ecf20Sopenharmony_ci
8108c2ecf20Sopenharmony_ci		/* Deallocate the fsl_dma_private structure */
8118c2ecf20Sopenharmony_ci		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
8128c2ecf20Sopenharmony_ci				  dma_private, dma_private->ld_buf_phys);
8138c2ecf20Sopenharmony_ci		substream->runtime->private_data = NULL;
8148c2ecf20Sopenharmony_ci	}
8158c2ecf20Sopenharmony_ci
8168c2ecf20Sopenharmony_ci	dma->assigned = false;
8178c2ecf20Sopenharmony_ci
8188c2ecf20Sopenharmony_ci	return 0;
8198c2ecf20Sopenharmony_ci}
8208c2ecf20Sopenharmony_ci
8218c2ecf20Sopenharmony_ci/*
8228c2ecf20Sopenharmony_ci * Remove this PCM driver.
8238c2ecf20Sopenharmony_ci */
8248c2ecf20Sopenharmony_cistatic void fsl_dma_free_dma_buffers(struct snd_soc_component *component,
8258c2ecf20Sopenharmony_ci				     struct snd_pcm *pcm)
8268c2ecf20Sopenharmony_ci{
8278c2ecf20Sopenharmony_ci	struct snd_pcm_substream *substream;
8288c2ecf20Sopenharmony_ci	unsigned int i;
8298c2ecf20Sopenharmony_ci
8308c2ecf20Sopenharmony_ci	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
8318c2ecf20Sopenharmony_ci		substream = pcm->streams[i].substream;
8328c2ecf20Sopenharmony_ci		if (substream) {
8338c2ecf20Sopenharmony_ci			snd_dma_free_pages(&substream->dma_buffer);
8348c2ecf20Sopenharmony_ci			substream->dma_buffer.area = NULL;
8358c2ecf20Sopenharmony_ci			substream->dma_buffer.addr = 0;
8368c2ecf20Sopenharmony_ci		}
8378c2ecf20Sopenharmony_ci	}
8388c2ecf20Sopenharmony_ci}
8398c2ecf20Sopenharmony_ci
8408c2ecf20Sopenharmony_ci/**
8418c2ecf20Sopenharmony_ci * find_ssi_node -- returns the SSI node that points to its DMA channel node
8428c2ecf20Sopenharmony_ci *
8438c2ecf20Sopenharmony_ci * Although this DMA driver attempts to operate independently of the other
8448c2ecf20Sopenharmony_ci * devices, it still needs to determine some information about the SSI device
8458c2ecf20Sopenharmony_ci * that it's working with.  Unfortunately, the device tree does not contain
8468c2ecf20Sopenharmony_ci * a pointer from the DMA channel node to the SSI node -- the pointer goes the
8478c2ecf20Sopenharmony_ci * other way.  So we need to scan the device tree for SSI nodes until we find
8488c2ecf20Sopenharmony_ci * the one that points to the given DMA channel node.  It's ugly, but at least
8498c2ecf20Sopenharmony_ci * it's contained in this one function.
8508c2ecf20Sopenharmony_ci */
8518c2ecf20Sopenharmony_cistatic struct device_node *find_ssi_node(struct device_node *dma_channel_np)
8528c2ecf20Sopenharmony_ci{
8538c2ecf20Sopenharmony_ci	struct device_node *ssi_np, *np;
8548c2ecf20Sopenharmony_ci
8558c2ecf20Sopenharmony_ci	for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
8568c2ecf20Sopenharmony_ci		/* Check each DMA phandle to see if it points to us.  We
8578c2ecf20Sopenharmony_ci		 * assume that device_node pointers are a valid comparison.
8588c2ecf20Sopenharmony_ci		 */
8598c2ecf20Sopenharmony_ci		np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
8608c2ecf20Sopenharmony_ci		of_node_put(np);
8618c2ecf20Sopenharmony_ci		if (np == dma_channel_np)
8628c2ecf20Sopenharmony_ci			return ssi_np;
8638c2ecf20Sopenharmony_ci
8648c2ecf20Sopenharmony_ci		np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
8658c2ecf20Sopenharmony_ci		of_node_put(np);
8668c2ecf20Sopenharmony_ci		if (np == dma_channel_np)
8678c2ecf20Sopenharmony_ci			return ssi_np;
8688c2ecf20Sopenharmony_ci	}
8698c2ecf20Sopenharmony_ci
8708c2ecf20Sopenharmony_ci	return NULL;
8718c2ecf20Sopenharmony_ci}
8728c2ecf20Sopenharmony_ci
8738c2ecf20Sopenharmony_cistatic int fsl_soc_dma_probe(struct platform_device *pdev)
8748c2ecf20Sopenharmony_ci{
8758c2ecf20Sopenharmony_ci	struct dma_object *dma;
8768c2ecf20Sopenharmony_ci	struct device_node *np = pdev->dev.of_node;
8778c2ecf20Sopenharmony_ci	struct device_node *ssi_np;
8788c2ecf20Sopenharmony_ci	struct resource res;
8798c2ecf20Sopenharmony_ci	const uint32_t *iprop;
8808c2ecf20Sopenharmony_ci	int ret;
8818c2ecf20Sopenharmony_ci
8828c2ecf20Sopenharmony_ci	/* Find the SSI node that points to us. */
8838c2ecf20Sopenharmony_ci	ssi_np = find_ssi_node(np);
8848c2ecf20Sopenharmony_ci	if (!ssi_np) {
8858c2ecf20Sopenharmony_ci		dev_err(&pdev->dev, "cannot find parent SSI node\n");
8868c2ecf20Sopenharmony_ci		return -ENODEV;
8878c2ecf20Sopenharmony_ci	}
8888c2ecf20Sopenharmony_ci
8898c2ecf20Sopenharmony_ci	ret = of_address_to_resource(ssi_np, 0, &res);
8908c2ecf20Sopenharmony_ci	if (ret) {
8918c2ecf20Sopenharmony_ci		dev_err(&pdev->dev, "could not determine resources for %pOF\n",
8928c2ecf20Sopenharmony_ci			ssi_np);
8938c2ecf20Sopenharmony_ci		of_node_put(ssi_np);
8948c2ecf20Sopenharmony_ci		return ret;
8958c2ecf20Sopenharmony_ci	}
8968c2ecf20Sopenharmony_ci
8978c2ecf20Sopenharmony_ci	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
8988c2ecf20Sopenharmony_ci	if (!dma) {
8998c2ecf20Sopenharmony_ci		of_node_put(ssi_np);
9008c2ecf20Sopenharmony_ci		return -ENOMEM;
9018c2ecf20Sopenharmony_ci	}
9028c2ecf20Sopenharmony_ci
9038c2ecf20Sopenharmony_ci	dma->dai.name = DRV_NAME;
9048c2ecf20Sopenharmony_ci	dma->dai.open = fsl_dma_open;
9058c2ecf20Sopenharmony_ci	dma->dai.close = fsl_dma_close;
9068c2ecf20Sopenharmony_ci	dma->dai.hw_params = fsl_dma_hw_params;
9078c2ecf20Sopenharmony_ci	dma->dai.hw_free = fsl_dma_hw_free;
9088c2ecf20Sopenharmony_ci	dma->dai.pointer = fsl_dma_pointer;
9098c2ecf20Sopenharmony_ci	dma->dai.pcm_construct = fsl_dma_new;
9108c2ecf20Sopenharmony_ci	dma->dai.pcm_destruct = fsl_dma_free_dma_buffers;
9118c2ecf20Sopenharmony_ci
9128c2ecf20Sopenharmony_ci	/* Store the SSI-specific information that we need */
9138c2ecf20Sopenharmony_ci	dma->ssi_stx_phys = res.start + REG_SSI_STX0;
9148c2ecf20Sopenharmony_ci	dma->ssi_srx_phys = res.start + REG_SSI_SRX0;
9158c2ecf20Sopenharmony_ci
9168c2ecf20Sopenharmony_ci	iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
9178c2ecf20Sopenharmony_ci	if (iprop)
9188c2ecf20Sopenharmony_ci		dma->ssi_fifo_depth = be32_to_cpup(iprop);
9198c2ecf20Sopenharmony_ci	else
9208c2ecf20Sopenharmony_ci                /* Older 8610 DTs didn't have the fifo-depth property */
9218c2ecf20Sopenharmony_ci		dma->ssi_fifo_depth = 8;
9228c2ecf20Sopenharmony_ci
9238c2ecf20Sopenharmony_ci	of_node_put(ssi_np);
9248c2ecf20Sopenharmony_ci
9258c2ecf20Sopenharmony_ci	ret = devm_snd_soc_register_component(&pdev->dev, &dma->dai, NULL, 0);
9268c2ecf20Sopenharmony_ci	if (ret) {
9278c2ecf20Sopenharmony_ci		dev_err(&pdev->dev, "could not register platform\n");
9288c2ecf20Sopenharmony_ci		kfree(dma);
9298c2ecf20Sopenharmony_ci		return ret;
9308c2ecf20Sopenharmony_ci	}
9318c2ecf20Sopenharmony_ci
9328c2ecf20Sopenharmony_ci	dma->channel = of_iomap(np, 0);
9338c2ecf20Sopenharmony_ci	dma->irq = irq_of_parse_and_map(np, 0);
9348c2ecf20Sopenharmony_ci
9358c2ecf20Sopenharmony_ci	dev_set_drvdata(&pdev->dev, dma);
9368c2ecf20Sopenharmony_ci
9378c2ecf20Sopenharmony_ci	return 0;
9388c2ecf20Sopenharmony_ci}
9398c2ecf20Sopenharmony_ci
9408c2ecf20Sopenharmony_cistatic int fsl_soc_dma_remove(struct platform_device *pdev)
9418c2ecf20Sopenharmony_ci{
9428c2ecf20Sopenharmony_ci	struct dma_object *dma = dev_get_drvdata(&pdev->dev);
9438c2ecf20Sopenharmony_ci
9448c2ecf20Sopenharmony_ci	iounmap(dma->channel);
9458c2ecf20Sopenharmony_ci	irq_dispose_mapping(dma->irq);
9468c2ecf20Sopenharmony_ci	kfree(dma);
9478c2ecf20Sopenharmony_ci
9488c2ecf20Sopenharmony_ci	return 0;
9498c2ecf20Sopenharmony_ci}
9508c2ecf20Sopenharmony_ci
9518c2ecf20Sopenharmony_cistatic const struct of_device_id fsl_soc_dma_ids[] = {
9528c2ecf20Sopenharmony_ci	{ .compatible = "fsl,ssi-dma-channel", },
9538c2ecf20Sopenharmony_ci	{}
9548c2ecf20Sopenharmony_ci};
9558c2ecf20Sopenharmony_ciMODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
9568c2ecf20Sopenharmony_ci
9578c2ecf20Sopenharmony_cistatic struct platform_driver fsl_soc_dma_driver = {
9588c2ecf20Sopenharmony_ci	.driver = {
9598c2ecf20Sopenharmony_ci		.name = "fsl-pcm-audio",
9608c2ecf20Sopenharmony_ci		.of_match_table = fsl_soc_dma_ids,
9618c2ecf20Sopenharmony_ci	},
9628c2ecf20Sopenharmony_ci	.probe = fsl_soc_dma_probe,
9638c2ecf20Sopenharmony_ci	.remove = fsl_soc_dma_remove,
9648c2ecf20Sopenharmony_ci};
9658c2ecf20Sopenharmony_ci
9668c2ecf20Sopenharmony_cimodule_platform_driver(fsl_soc_dma_driver);
9678c2ecf20Sopenharmony_ci
9688c2ecf20Sopenharmony_ciMODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
9698c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
9708c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL v2");
971