1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Codec driver for ST STA350 2.1-channel high-efficiency digital audio system
4 *
5 * Copyright: 2014 Raumfeld GmbH
6 * Author: Sven Brandau <info@brandau.biz>
7 *
8 * based on code from:
9 *	Raumfeld GmbH
10 *	  Johannes Stezenbach <js@sig21.net>
11 *	Wolfson Microelectronics PLC.
12 *	  Mark Brown <broonie@opensource.wolfsonmicro.com>
13 *	Freescale Semiconductor, Inc.
14 *	  Timur Tabi <timur@freescale.com>
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
18
19#include <linux/module.h>
20#include <linux/moduleparam.h>
21#include <linux/init.h>
22#include <linux/delay.h>
23#include <linux/pm.h>
24#include <linux/i2c.h>
25#include <linux/of_device.h>
26#include <linux/of_gpio.h>
27#include <linux/regmap.h>
28#include <linux/regulator/consumer.h>
29#include <linux/gpio/consumer.h>
30#include <linux/slab.h>
31#include <sound/core.h>
32#include <sound/pcm.h>
33#include <sound/pcm_params.h>
34#include <sound/soc.h>
35#include <sound/soc-dapm.h>
36#include <sound/initval.h>
37#include <sound/tlv.h>
38
39#include <sound/sta350.h>
40#include "sta350.h"
41
42#define STA350_RATES (SNDRV_PCM_RATE_32000 | \
43		      SNDRV_PCM_RATE_44100 | \
44		      SNDRV_PCM_RATE_48000 | \
45		      SNDRV_PCM_RATE_88200 | \
46		      SNDRV_PCM_RATE_96000 | \
47		      SNDRV_PCM_RATE_176400 | \
48		      SNDRV_PCM_RATE_192000)
49
50#define STA350_FORMATS \
51	(SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_S16_BE  | \
52	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
53	 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
54	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
55	 SNDRV_PCM_FMTBIT_S24_LE  | SNDRV_PCM_FMTBIT_S24_BE  | \
56	 SNDRV_PCM_FMTBIT_S32_LE  | SNDRV_PCM_FMTBIT_S32_BE)
57
58/* Power-up register defaults */
59static const struct reg_default sta350_regs[] = {
60	{  0x0, 0x63 },
61	{  0x1, 0x80 },
62	{  0x2, 0xdf },
63	{  0x3, 0x40 },
64	{  0x4, 0xc2 },
65	{  0x5, 0x5c },
66	{  0x6, 0x00 },
67	{  0x7, 0xff },
68	{  0x8, 0x60 },
69	{  0x9, 0x60 },
70	{  0xa, 0x60 },
71	{  0xb, 0x00 },
72	{  0xc, 0x00 },
73	{  0xd, 0x00 },
74	{  0xe, 0x00 },
75	{  0xf, 0x40 },
76	{ 0x10, 0x80 },
77	{ 0x11, 0x77 },
78	{ 0x12, 0x6a },
79	{ 0x13, 0x69 },
80	{ 0x14, 0x6a },
81	{ 0x15, 0x69 },
82	{ 0x16, 0x00 },
83	{ 0x17, 0x00 },
84	{ 0x18, 0x00 },
85	{ 0x19, 0x00 },
86	{ 0x1a, 0x00 },
87	{ 0x1b, 0x00 },
88	{ 0x1c, 0x00 },
89	{ 0x1d, 0x00 },
90	{ 0x1e, 0x00 },
91	{ 0x1f, 0x00 },
92	{ 0x20, 0x00 },
93	{ 0x21, 0x00 },
94	{ 0x22, 0x00 },
95	{ 0x23, 0x00 },
96	{ 0x24, 0x00 },
97	{ 0x25, 0x00 },
98	{ 0x26, 0x00 },
99	{ 0x27, 0x2a },
100	{ 0x28, 0xc0 },
101	{ 0x29, 0xf3 },
102	{ 0x2a, 0x33 },
103	{ 0x2b, 0x00 },
104	{ 0x2c, 0x0c },
105	{ 0x31, 0x00 },
106	{ 0x36, 0x00 },
107	{ 0x37, 0x00 },
108	{ 0x38, 0x00 },
109	{ 0x39, 0x01 },
110	{ 0x3a, 0xee },
111	{ 0x3b, 0xff },
112	{ 0x3c, 0x7e },
113	{ 0x3d, 0xc0 },
114	{ 0x3e, 0x26 },
115	{ 0x3f, 0x00 },
116	{ 0x48, 0x00 },
117	{ 0x49, 0x00 },
118	{ 0x4a, 0x00 },
119	{ 0x4b, 0x04 },
120	{ 0x4c, 0x00 },
121};
122
123static const struct regmap_range sta350_write_regs_range[] = {
124	regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
125	regmap_reg_range(STA350_C1CFG,  STA350_FDRC2),
126	regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
127	regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
128};
129
130static const struct regmap_range sta350_read_regs_range[] = {
131	regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
132	regmap_reg_range(STA350_C1CFG,  STA350_STATUS),
133	regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
134	regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
135};
136
137static const struct regmap_range sta350_volatile_regs_range[] = {
138	regmap_reg_range(STA350_CFADDR2, STA350_CFUD),
139	regmap_reg_range(STA350_STATUS,  STA350_STATUS),
140};
141
142static const struct regmap_access_table sta350_write_regs = {
143	.yes_ranges =	sta350_write_regs_range,
144	.n_yes_ranges =	ARRAY_SIZE(sta350_write_regs_range),
145};
146
147static const struct regmap_access_table sta350_read_regs = {
148	.yes_ranges =	sta350_read_regs_range,
149	.n_yes_ranges =	ARRAY_SIZE(sta350_read_regs_range),
150};
151
152static const struct regmap_access_table sta350_volatile_regs = {
153	.yes_ranges =	sta350_volatile_regs_range,
154	.n_yes_ranges =	ARRAY_SIZE(sta350_volatile_regs_range),
155};
156
157/* regulator power supply names */
158static const char * const sta350_supply_names[] = {
159	"vdd-dig",	/* digital supply, 3.3V */
160	"vdd-pll",	/* pll supply, 3.3V */
161	"vcc"		/* power amp supply, 5V - 26V */
162};
163
164/* codec private data */
165struct sta350_priv {
166	struct regmap *regmap;
167	struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)];
168	struct sta350_platform_data *pdata;
169
170	unsigned int mclk;
171	unsigned int format;
172
173	u32 coef_shadow[STA350_COEF_COUNT];
174	int shutdown;
175
176	struct gpio_desc *gpiod_nreset;
177	struct gpio_desc *gpiod_power_down;
178
179	struct mutex coeff_lock;
180};
181
182static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1);
183static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
184static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0);
185
186static const char * const sta350_drc_ac[] = {
187	"Anti-Clipping", "Dynamic Range Compression"
188};
189static const char * const sta350_auto_gc_mode[] = {
190	"User", "AC no clipping", "AC limited clipping (10%)",
191	"DRC nighttime listening mode"
192};
193static const char * const sta350_auto_xo_mode[] = {
194	"User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz",
195	"200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz",
196	"340Hz", "360Hz"
197};
198static const char * const sta350_binary_output[] = {
199	"FFX 3-state output - normal operation", "Binary output"
200};
201static const char * const sta350_limiter_select[] = {
202	"Limiter Disabled", "Limiter #1", "Limiter #2"
203};
204static const char * const sta350_limiter_attack_rate[] = {
205	"3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
206	"0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
207	"0.0645", "0.0564", "0.0501", "0.0451"
208};
209static const char * const sta350_limiter_release_rate[] = {
210	"0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
211	"0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
212	"0.0134", "0.0117", "0.0110", "0.0104"
213};
214static const char * const sta350_noise_shaper_type[] = {
215	"Third order", "Fourth order"
216};
217
218static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv,
219	0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
220	8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
221);
222
223static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv,
224	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
225	1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
226	2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
227	3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
228	8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
229);
230
231static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv,
232	0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
233	8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
234	14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
235);
236
237static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv,
238	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
239	1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
240	3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
241	5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
242	13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
243);
244
245static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum,
246			    STA350_CONFD, STA350_CONFD_DRC_SHIFT,
247			    sta350_drc_ac);
248static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum,
249			    STA350_CONFE, STA350_CONFE_NSBW_SHIFT,
250			    sta350_noise_shaper_type);
251static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum,
252			    STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT,
253			    sta350_auto_gc_mode);
254static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum,
255			    STA350_AUTO2, STA350_AUTO2_XO_SHIFT,
256			    sta350_auto_xo_mode);
257static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum,
258			    STA350_C1CFG, STA350_CxCFG_BO_SHIFT,
259			    sta350_binary_output);
260static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum,
261			    STA350_C2CFG, STA350_CxCFG_BO_SHIFT,
262			    sta350_binary_output);
263static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum,
264			    STA350_C3CFG, STA350_CxCFG_BO_SHIFT,
265			    sta350_binary_output);
266static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum,
267			    STA350_C1CFG, STA350_CxCFG_LS_SHIFT,
268			    sta350_limiter_select);
269static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum,
270			    STA350_C2CFG, STA350_CxCFG_LS_SHIFT,
271			    sta350_limiter_select);
272static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum,
273			    STA350_C3CFG, STA350_CxCFG_LS_SHIFT,
274			    sta350_limiter_select);
275static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum,
276			    STA350_L1AR, STA350_LxA_SHIFT,
277			    sta350_limiter_attack_rate);
278static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum,
279			    STA350_L2AR, STA350_LxA_SHIFT,
280			    sta350_limiter_attack_rate);
281static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum,
282			    STA350_L1AR, STA350_LxR_SHIFT,
283			    sta350_limiter_release_rate);
284static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum,
285			    STA350_L2AR, STA350_LxR_SHIFT,
286			    sta350_limiter_release_rate);
287
288/*
289 * byte array controls for setting biquad, mixer, scaling coefficients;
290 * for biquads all five coefficients need to be set in one go,
291 * mixer and pre/postscale coefs can be set individually;
292 * each coef is 24bit, the bytes are ordered in the same way
293 * as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0)
294 */
295
296static int sta350_coefficient_info(struct snd_kcontrol *kcontrol,
297				   struct snd_ctl_elem_info *uinfo)
298{
299	int numcoef = kcontrol->private_value >> 16;
300	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
301	uinfo->count = 3 * numcoef;
302	return 0;
303}
304
305static int sta350_coefficient_get(struct snd_kcontrol *kcontrol,
306				  struct snd_ctl_elem_value *ucontrol)
307{
308	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
309	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
310	int numcoef = kcontrol->private_value >> 16;
311	int index = kcontrol->private_value & 0xffff;
312	unsigned int cfud, val;
313	int i, ret = 0;
314
315	mutex_lock(&sta350->coeff_lock);
316
317	/* preserve reserved bits in STA350_CFUD */
318	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
319	cfud &= 0xf0;
320	/*
321	 * chip documentation does not say if the bits are self clearing,
322	 * so do it explicitly
323	 */
324	regmap_write(sta350->regmap, STA350_CFUD, cfud);
325
326	regmap_write(sta350->regmap, STA350_CFADDR2, index);
327	if (numcoef == 1) {
328		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04);
329	} else if (numcoef == 5) {
330		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08);
331	} else {
332		ret = -EINVAL;
333		goto exit_unlock;
334	}
335
336	for (i = 0; i < 3 * numcoef; i++) {
337		regmap_read(sta350->regmap, STA350_B1CF1 + i, &val);
338		ucontrol->value.bytes.data[i] = val;
339	}
340
341exit_unlock:
342	mutex_unlock(&sta350->coeff_lock);
343
344	return ret;
345}
346
347static int sta350_coefficient_put(struct snd_kcontrol *kcontrol,
348				  struct snd_ctl_elem_value *ucontrol)
349{
350	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
351	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
352	int numcoef = kcontrol->private_value >> 16;
353	int index = kcontrol->private_value & 0xffff;
354	unsigned int cfud;
355	int i;
356
357	/* preserve reserved bits in STA350_CFUD */
358	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
359	cfud &= 0xf0;
360	/*
361	 * chip documentation does not say if the bits are self clearing,
362	 * so do it explicitly
363	 */
364	regmap_write(sta350->regmap, STA350_CFUD, cfud);
365
366	regmap_write(sta350->regmap, STA350_CFADDR2, index);
367	for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++)
368		sta350->coef_shadow[index + i] =
369			  (ucontrol->value.bytes.data[3 * i] << 16)
370			| (ucontrol->value.bytes.data[3 * i + 1] << 8)
371			| (ucontrol->value.bytes.data[3 * i + 2]);
372	for (i = 0; i < 3 * numcoef; i++)
373		regmap_write(sta350->regmap, STA350_B1CF1 + i,
374			     ucontrol->value.bytes.data[i]);
375	if (numcoef == 1)
376		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
377	else if (numcoef == 5)
378		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02);
379	else
380		return -EINVAL;
381
382	return 0;
383}
384
385static int sta350_sync_coef_shadow(struct snd_soc_component *component)
386{
387	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
388	unsigned int cfud;
389	int i;
390
391	/* preserve reserved bits in STA350_CFUD */
392	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
393	cfud &= 0xf0;
394
395	for (i = 0; i < STA350_COEF_COUNT; i++) {
396		regmap_write(sta350->regmap, STA350_CFADDR2, i);
397		regmap_write(sta350->regmap, STA350_B1CF1,
398			     (sta350->coef_shadow[i] >> 16) & 0xff);
399		regmap_write(sta350->regmap, STA350_B1CF2,
400			     (sta350->coef_shadow[i] >> 8) & 0xff);
401		regmap_write(sta350->regmap, STA350_B1CF3,
402			     (sta350->coef_shadow[i]) & 0xff);
403		/*
404		 * chip documentation does not say if the bits are
405		 * self-clearing, so do it explicitly
406		 */
407		regmap_write(sta350->regmap, STA350_CFUD, cfud);
408		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
409	}
410	return 0;
411}
412
413static int sta350_cache_sync(struct snd_soc_component *component)
414{
415	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
416	unsigned int mute;
417	int rc;
418
419	/* mute during register sync */
420	regmap_read(sta350->regmap, STA350_CFUD, &mute);
421	regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE);
422	sta350_sync_coef_shadow(component);
423	rc = regcache_sync(sta350->regmap);
424	regmap_write(sta350->regmap, STA350_MMUTE, mute);
425	return rc;
426}
427
428#define SINGLE_COEF(xname, index) \
429{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
430	.info = sta350_coefficient_info, \
431	.get = sta350_coefficient_get,\
432	.put = sta350_coefficient_put, \
433	.private_value = index | (1 << 16) }
434
435#define BIQUAD_COEFS(xname, index) \
436{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
437	.info = sta350_coefficient_info, \
438	.get = sta350_coefficient_get,\
439	.put = sta350_coefficient_put, \
440	.private_value = index | (5 << 16) }
441
442static const struct snd_kcontrol_new sta350_snd_controls[] = {
443SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv),
444/* VOL */
445SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv),
446SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv),
447SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv),
448/* CONFD */
449SOC_SINGLE("High Pass Filter Bypass Switch",
450	   STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1),
451SOC_SINGLE("De-emphasis Filter Switch",
452	   STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0),
453SOC_SINGLE("DSP Bypass Switch",
454	   STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0),
455SOC_SINGLE("Post-scale Link Switch",
456	   STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0),
457SOC_SINGLE("Biquad Coefficient Link Switch",
458	   STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0),
459SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum),
460SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum),
461SOC_SINGLE("Zero-detect Mute Enable Switch",
462	   STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0),
463SOC_SINGLE("Submix Mode Switch",
464	   STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0),
465/* CONFE */
466SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0),
467SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0),
468/* MUTE */
469SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1),
470SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1),
471SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1),
472SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1),
473/* AUTOx */
474SOC_ENUM("Automode GC", sta350_auto_gc_enum),
475SOC_ENUM("Automode XO", sta350_auto_xo_enum),
476/* CxCFG */
477SOC_SINGLE("Ch1 Tone Control Bypass Switch",
478	   STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
479SOC_SINGLE("Ch2 Tone Control Bypass Switch",
480	   STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
481SOC_SINGLE("Ch1 EQ Bypass Switch",
482	   STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
483SOC_SINGLE("Ch2 EQ Bypass Switch",
484	   STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
485SOC_SINGLE("Ch1 Master Volume Bypass Switch",
486	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
487SOC_SINGLE("Ch2 Master Volume Bypass Switch",
488	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
489SOC_SINGLE("Ch3 Master Volume Bypass Switch",
490	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
491SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum),
492SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum),
493SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum),
494SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum),
495SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum),
496SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum),
497/* TONE */
498SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume",
499		     STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv),
500SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume",
501		     STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv),
502SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum),
503SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum),
504SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum),
505SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum),
506
507/*
508 * depending on mode, the attack/release thresholds have
509 * two different enum definitions; provide both
510 */
511SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)",
512	       STA350_L1ATRT, STA350_LxA_SHIFT,
513	       16, 0, sta350_limiter_ac_attack_tlv),
514SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)",
515	       STA350_L2ATRT, STA350_LxA_SHIFT,
516	       16, 0, sta350_limiter_ac_attack_tlv),
517SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)",
518	       STA350_L1ATRT, STA350_LxR_SHIFT,
519	       16, 0, sta350_limiter_ac_release_tlv),
520SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)",
521	       STA350_L2ATRT, STA350_LxR_SHIFT,
522	       16, 0, sta350_limiter_ac_release_tlv),
523SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)",
524	       STA350_L1ATRT, STA350_LxA_SHIFT,
525	       16, 0, sta350_limiter_drc_attack_tlv),
526SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)",
527	       STA350_L2ATRT, STA350_LxA_SHIFT,
528	       16, 0, sta350_limiter_drc_attack_tlv),
529SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)",
530	       STA350_L1ATRT, STA350_LxR_SHIFT,
531	       16, 0, sta350_limiter_drc_release_tlv),
532SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)",
533	       STA350_L2ATRT, STA350_LxR_SHIFT,
534	       16, 0, sta350_limiter_drc_release_tlv),
535
536BIQUAD_COEFS("Ch1 - Biquad 1", 0),
537BIQUAD_COEFS("Ch1 - Biquad 2", 5),
538BIQUAD_COEFS("Ch1 - Biquad 3", 10),
539BIQUAD_COEFS("Ch1 - Biquad 4", 15),
540BIQUAD_COEFS("Ch2 - Biquad 1", 20),
541BIQUAD_COEFS("Ch2 - Biquad 2", 25),
542BIQUAD_COEFS("Ch2 - Biquad 3", 30),
543BIQUAD_COEFS("Ch2 - Biquad 4", 35),
544BIQUAD_COEFS("High-pass", 40),
545BIQUAD_COEFS("Low-pass", 45),
546SINGLE_COEF("Ch1 - Prescale", 50),
547SINGLE_COEF("Ch2 - Prescale", 51),
548SINGLE_COEF("Ch1 - Postscale", 52),
549SINGLE_COEF("Ch2 - Postscale", 53),
550SINGLE_COEF("Ch3 - Postscale", 54),
551SINGLE_COEF("Thermal warning - Postscale", 55),
552SINGLE_COEF("Ch1 - Mix 1", 56),
553SINGLE_COEF("Ch1 - Mix 2", 57),
554SINGLE_COEF("Ch2 - Mix 1", 58),
555SINGLE_COEF("Ch2 - Mix 2", 59),
556SINGLE_COEF("Ch3 - Mix 1", 60),
557SINGLE_COEF("Ch3 - Mix 2", 61),
558};
559
560static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = {
561SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0),
562SND_SOC_DAPM_OUTPUT("LEFT"),
563SND_SOC_DAPM_OUTPUT("RIGHT"),
564SND_SOC_DAPM_OUTPUT("SUB"),
565};
566
567static const struct snd_soc_dapm_route sta350_dapm_routes[] = {
568	{ "LEFT", NULL, "DAC" },
569	{ "RIGHT", NULL, "DAC" },
570	{ "SUB", NULL, "DAC" },
571	{ "DAC", NULL, "Playback" },
572};
573
574/* MCLK interpolation ratio per fs */
575static struct {
576	int fs;
577	int ir;
578} interpolation_ratios[] = {
579	{ 32000, 0 },
580	{ 44100, 0 },
581	{ 48000, 0 },
582	{ 88200, 1 },
583	{ 96000, 1 },
584	{ 176400, 2 },
585	{ 192000, 2 },
586};
587
588/* MCLK to fs clock ratios */
589static int mcs_ratio_table[3][6] = {
590	{ 768, 512, 384, 256, 128, 576 },
591	{ 384, 256, 192, 128,  64,   0 },
592	{ 192, 128,  96,  64,  32,   0 },
593};
594
595/**
596 * sta350_set_dai_sysclk - configure MCLK
597 * @codec_dai: the codec DAI
598 * @clk_id: the clock ID (ignored)
599 * @freq: the MCLK input frequency
600 * @dir: the clock direction (ignored)
601 *
602 * The value of MCLK is used to determine which sample rates are supported
603 * by the STA350, based on the mcs_ratio_table.
604 *
605 * This function must be called by the machine driver's 'startup' function,
606 * otherwise the list of supported sample rates will not be available in
607 * time for ALSA.
608 */
609static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai,
610				 int clk_id, unsigned int freq, int dir)
611{
612	struct snd_soc_component *component = codec_dai->component;
613	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
614
615	dev_dbg(component->dev, "mclk=%u\n", freq);
616	sta350->mclk = freq;
617
618	return 0;
619}
620
621/**
622 * sta350_set_dai_fmt - configure the codec for the selected audio format
623 * @codec_dai: the codec DAI
624 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
625 *
626 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
627 * codec accordingly.
628 */
629static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai,
630			      unsigned int fmt)
631{
632	struct snd_soc_component *component = codec_dai->component;
633	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
634	unsigned int confb = 0;
635
636	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
637	case SND_SOC_DAIFMT_CBS_CFS:
638		break;
639	default:
640		return -EINVAL;
641	}
642
643	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
644	case SND_SOC_DAIFMT_I2S:
645	case SND_SOC_DAIFMT_RIGHT_J:
646	case SND_SOC_DAIFMT_LEFT_J:
647		sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
648		break;
649	default:
650		return -EINVAL;
651	}
652
653	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
654	case SND_SOC_DAIFMT_NB_NF:
655		confb |= STA350_CONFB_C2IM;
656		break;
657	case SND_SOC_DAIFMT_NB_IF:
658		confb |= STA350_CONFB_C1IM;
659		break;
660	default:
661		return -EINVAL;
662	}
663
664	return regmap_update_bits(sta350->regmap, STA350_CONFB,
665				  STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb);
666}
667
668/**
669 * sta350_hw_params - program the STA350 with the given hardware parameters.
670 * @substream: the audio stream
671 * @params: the hardware parameters to set
672 * @dai: the SOC DAI (ignored)
673 *
674 * This function programs the hardware with the values provided.
675 * Specifically, the sample rate and the data format.
676 */
677static int sta350_hw_params(struct snd_pcm_substream *substream,
678			    struct snd_pcm_hw_params *params,
679			    struct snd_soc_dai *dai)
680{
681	struct snd_soc_component *component = dai->component;
682	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
683	int i, mcs = -EINVAL, ir = -EINVAL;
684	unsigned int confa, confb;
685	unsigned int rate, ratio;
686	int ret;
687
688	if (!sta350->mclk) {
689		dev_err(component->dev,
690			"sta350->mclk is unset. Unable to determine ratio\n");
691		return -EIO;
692	}
693
694	rate = params_rate(params);
695	ratio = sta350->mclk / rate;
696	dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio);
697
698	for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
699		if (interpolation_ratios[i].fs == rate) {
700			ir = interpolation_ratios[i].ir;
701			break;
702		}
703	}
704
705	if (ir < 0) {
706		dev_err(component->dev, "Unsupported samplerate: %u\n", rate);
707		return -EINVAL;
708	}
709
710	for (i = 0; i < 6; i++) {
711		if (mcs_ratio_table[ir][i] == ratio) {
712			mcs = i;
713			break;
714		}
715	}
716
717	if (mcs < 0) {
718		dev_err(component->dev, "Unresolvable ratio: %u\n", ratio);
719		return -EINVAL;
720	}
721
722	confa = (ir << STA350_CONFA_IR_SHIFT) |
723		(mcs << STA350_CONFA_MCS_SHIFT);
724	confb = 0;
725
726	switch (params_width(params)) {
727	case 24:
728		dev_dbg(component->dev, "24bit\n");
729		fallthrough;
730	case 32:
731		dev_dbg(component->dev, "24bit or 32bit\n");
732		switch (sta350->format) {
733		case SND_SOC_DAIFMT_I2S:
734			confb |= 0x0;
735			break;
736		case SND_SOC_DAIFMT_LEFT_J:
737			confb |= 0x1;
738			break;
739		case SND_SOC_DAIFMT_RIGHT_J:
740			confb |= 0x2;
741			break;
742		}
743
744		break;
745	case 20:
746		dev_dbg(component->dev, "20bit\n");
747		switch (sta350->format) {
748		case SND_SOC_DAIFMT_I2S:
749			confb |= 0x4;
750			break;
751		case SND_SOC_DAIFMT_LEFT_J:
752			confb |= 0x5;
753			break;
754		case SND_SOC_DAIFMT_RIGHT_J:
755			confb |= 0x6;
756			break;
757		}
758
759		break;
760	case 18:
761		dev_dbg(component->dev, "18bit\n");
762		switch (sta350->format) {
763		case SND_SOC_DAIFMT_I2S:
764			confb |= 0x8;
765			break;
766		case SND_SOC_DAIFMT_LEFT_J:
767			confb |= 0x9;
768			break;
769		case SND_SOC_DAIFMT_RIGHT_J:
770			confb |= 0xa;
771			break;
772		}
773
774		break;
775	case 16:
776		dev_dbg(component->dev, "16bit\n");
777		switch (sta350->format) {
778		case SND_SOC_DAIFMT_I2S:
779			confb |= 0x0;
780			break;
781		case SND_SOC_DAIFMT_LEFT_J:
782			confb |= 0xd;
783			break;
784		case SND_SOC_DAIFMT_RIGHT_J:
785			confb |= 0xe;
786			break;
787		}
788
789		break;
790	default:
791		return -EINVAL;
792	}
793
794	ret = regmap_update_bits(sta350->regmap, STA350_CONFA,
795				 STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK,
796				 confa);
797	if (ret < 0)
798		return ret;
799
800	ret = regmap_update_bits(sta350->regmap, STA350_CONFB,
801				 STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB,
802				 confb);
803	if (ret < 0)
804		return ret;
805
806	return 0;
807}
808
809static int sta350_startup_sequence(struct sta350_priv *sta350)
810{
811	if (sta350->gpiod_power_down)
812		gpiod_set_value(sta350->gpiod_power_down, 1);
813
814	if (sta350->gpiod_nreset) {
815		gpiod_set_value(sta350->gpiod_nreset, 0);
816		mdelay(1);
817		gpiod_set_value(sta350->gpiod_nreset, 1);
818		mdelay(1);
819	}
820
821	return 0;
822}
823
824/**
825 * sta350_set_bias_level - DAPM callback
826 * @component: the component device
827 * @level: DAPM power level
828 *
829 * This is called by ALSA to put the component into low power mode
830 * or to wake it up.  If the component is powered off completely
831 * all registers must be restored after power on.
832 */
833static int sta350_set_bias_level(struct snd_soc_component *component,
834				 enum snd_soc_bias_level level)
835{
836	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
837	int ret;
838
839	dev_dbg(component->dev, "level = %d\n", level);
840	switch (level) {
841	case SND_SOC_BIAS_ON:
842		break;
843
844	case SND_SOC_BIAS_PREPARE:
845		/* Full power on */
846		regmap_update_bits(sta350->regmap, STA350_CONFF,
847				   STA350_CONFF_PWDN | STA350_CONFF_EAPD,
848				   STA350_CONFF_PWDN | STA350_CONFF_EAPD);
849		break;
850
851	case SND_SOC_BIAS_STANDBY:
852		if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
853			ret = regulator_bulk_enable(
854				ARRAY_SIZE(sta350->supplies),
855				sta350->supplies);
856			if (ret < 0) {
857				dev_err(component->dev,
858					"Failed to enable supplies: %d\n",
859					ret);
860				return ret;
861			}
862			sta350_startup_sequence(sta350);
863			sta350_cache_sync(component);
864		}
865
866		/* Power down */
867		regmap_update_bits(sta350->regmap, STA350_CONFF,
868				   STA350_CONFF_PWDN | STA350_CONFF_EAPD,
869				   0);
870
871		break;
872
873	case SND_SOC_BIAS_OFF:
874		/* The chip runs through the power down sequence for us */
875		regmap_update_bits(sta350->regmap, STA350_CONFF,
876				   STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0);
877
878		/* power down: low */
879		if (sta350->gpiod_power_down)
880			gpiod_set_value(sta350->gpiod_power_down, 0);
881
882		if (sta350->gpiod_nreset)
883			gpiod_set_value(sta350->gpiod_nreset, 0);
884
885		regulator_bulk_disable(ARRAY_SIZE(sta350->supplies),
886				       sta350->supplies);
887		break;
888	}
889	return 0;
890}
891
892static const struct snd_soc_dai_ops sta350_dai_ops = {
893	.hw_params	= sta350_hw_params,
894	.set_sysclk	= sta350_set_dai_sysclk,
895	.set_fmt	= sta350_set_dai_fmt,
896};
897
898static struct snd_soc_dai_driver sta350_dai = {
899	.name = "sta350-hifi",
900	.playback = {
901		.stream_name = "Playback",
902		.channels_min = 2,
903		.channels_max = 2,
904		.rates = STA350_RATES,
905		.formats = STA350_FORMATS,
906	},
907	.ops = &sta350_dai_ops,
908};
909
910static int sta350_probe(struct snd_soc_component *component)
911{
912	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
913	struct sta350_platform_data *pdata = sta350->pdata;
914	int i, ret = 0, thermal = 0;
915
916	ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies),
917				    sta350->supplies);
918	if (ret < 0) {
919		dev_err(component->dev, "Failed to enable supplies: %d\n", ret);
920		return ret;
921	}
922
923	ret = sta350_startup_sequence(sta350);
924	if (ret < 0) {
925		dev_err(component->dev, "Failed to startup device\n");
926		return ret;
927	}
928
929	/* CONFA */
930	if (!pdata->thermal_warning_recovery)
931		thermal |= STA350_CONFA_TWAB;
932	if (!pdata->thermal_warning_adjustment)
933		thermal |= STA350_CONFA_TWRB;
934	if (!pdata->fault_detect_recovery)
935		thermal |= STA350_CONFA_FDRB;
936	regmap_update_bits(sta350->regmap, STA350_CONFA,
937			   STA350_CONFA_TWAB | STA350_CONFA_TWRB |
938			   STA350_CONFA_FDRB,
939			   thermal);
940
941	/* CONFC */
942	regmap_update_bits(sta350->regmap, STA350_CONFC,
943			   STA350_CONFC_OM_MASK,
944			   pdata->ffx_power_output_mode
945				<< STA350_CONFC_OM_SHIFT);
946	regmap_update_bits(sta350->regmap, STA350_CONFC,
947			   STA350_CONFC_CSZ_MASK,
948			   pdata->drop_compensation_ns
949				<< STA350_CONFC_CSZ_SHIFT);
950	regmap_update_bits(sta350->regmap,
951			   STA350_CONFC,
952			   STA350_CONFC_OCRB,
953			   pdata->oc_warning_adjustment ?
954				STA350_CONFC_OCRB : 0);
955
956	/* CONFE */
957	regmap_update_bits(sta350->regmap, STA350_CONFE,
958			   STA350_CONFE_MPCV,
959			   pdata->max_power_use_mpcc ?
960				STA350_CONFE_MPCV : 0);
961	regmap_update_bits(sta350->regmap, STA350_CONFE,
962			   STA350_CONFE_MPC,
963			   pdata->max_power_correction ?
964				STA350_CONFE_MPC : 0);
965	regmap_update_bits(sta350->regmap, STA350_CONFE,
966			   STA350_CONFE_AME,
967			   pdata->am_reduction_mode ?
968				STA350_CONFE_AME : 0);
969	regmap_update_bits(sta350->regmap, STA350_CONFE,
970			   STA350_CONFE_PWMS,
971			   pdata->odd_pwm_speed_mode ?
972				STA350_CONFE_PWMS : 0);
973	regmap_update_bits(sta350->regmap, STA350_CONFE,
974			   STA350_CONFE_DCCV,
975			   pdata->distortion_compensation ?
976				STA350_CONFE_DCCV : 0);
977	/*  CONFF */
978	regmap_update_bits(sta350->regmap, STA350_CONFF,
979			   STA350_CONFF_IDE,
980			   pdata->invalid_input_detect_mute ?
981				STA350_CONFF_IDE : 0);
982	regmap_update_bits(sta350->regmap, STA350_CONFF,
983			   STA350_CONFF_OCFG_MASK,
984			   pdata->output_conf
985				<< STA350_CONFF_OCFG_SHIFT);
986
987	/* channel to output mapping */
988	regmap_update_bits(sta350->regmap, STA350_C1CFG,
989			   STA350_CxCFG_OM_MASK,
990			   pdata->ch1_output_mapping
991				<< STA350_CxCFG_OM_SHIFT);
992	regmap_update_bits(sta350->regmap, STA350_C2CFG,
993			   STA350_CxCFG_OM_MASK,
994			   pdata->ch2_output_mapping
995				<< STA350_CxCFG_OM_SHIFT);
996	regmap_update_bits(sta350->regmap, STA350_C3CFG,
997			   STA350_CxCFG_OM_MASK,
998			   pdata->ch3_output_mapping
999				<< STA350_CxCFG_OM_SHIFT);
1000
1001	/* miscellaneous registers */
1002	regmap_update_bits(sta350->regmap, STA350_MISC1,
1003			   STA350_MISC1_CPWMEN,
1004			   pdata->activate_mute_output ?
1005				STA350_MISC1_CPWMEN : 0);
1006	regmap_update_bits(sta350->regmap, STA350_MISC1,
1007			   STA350_MISC1_BRIDGOFF,
1008			   pdata->bridge_immediate_off ?
1009				STA350_MISC1_BRIDGOFF : 0);
1010	regmap_update_bits(sta350->regmap, STA350_MISC1,
1011			   STA350_MISC1_NSHHPEN,
1012			   pdata->noise_shape_dc_cut ?
1013				STA350_MISC1_NSHHPEN : 0);
1014	regmap_update_bits(sta350->regmap, STA350_MISC1,
1015			   STA350_MISC1_RPDNEN,
1016			   pdata->powerdown_master_vol ?
1017				STA350_MISC1_RPDNEN: 0);
1018
1019	regmap_update_bits(sta350->regmap, STA350_MISC2,
1020			   STA350_MISC2_PNDLSL_MASK,
1021			   pdata->powerdown_delay_divider
1022				<< STA350_MISC2_PNDLSL_SHIFT);
1023
1024	/* initialize coefficient shadow RAM with reset values */
1025	for (i = 4; i <= 49; i += 5)
1026		sta350->coef_shadow[i] = 0x400000;
1027	for (i = 50; i <= 54; i++)
1028		sta350->coef_shadow[i] = 0x7fffff;
1029	sta350->coef_shadow[55] = 0x5a9df7;
1030	sta350->coef_shadow[56] = 0x7fffff;
1031	sta350->coef_shadow[59] = 0x7fffff;
1032	sta350->coef_shadow[60] = 0x400000;
1033	sta350->coef_shadow[61] = 0x400000;
1034
1035	snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY);
1036	/* Bias level configuration will have done an extra enable */
1037	regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1038
1039	return 0;
1040}
1041
1042static void sta350_remove(struct snd_soc_component *component)
1043{
1044	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
1045
1046	regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1047}
1048
1049static const struct snd_soc_component_driver sta350_component = {
1050	.probe			= sta350_probe,
1051	.remove			= sta350_remove,
1052	.set_bias_level		= sta350_set_bias_level,
1053	.controls		= sta350_snd_controls,
1054	.num_controls		= ARRAY_SIZE(sta350_snd_controls),
1055	.dapm_widgets		= sta350_dapm_widgets,
1056	.num_dapm_widgets	= ARRAY_SIZE(sta350_dapm_widgets),
1057	.dapm_routes		= sta350_dapm_routes,
1058	.num_dapm_routes	= ARRAY_SIZE(sta350_dapm_routes),
1059	.suspend_bias_off	= 1,
1060	.idle_bias_on		= 1,
1061	.use_pmdown_time	= 1,
1062	.endianness		= 1,
1063	.non_legacy_dai_naming	= 1,
1064};
1065
1066static const struct regmap_config sta350_regmap = {
1067	.reg_bits =		8,
1068	.val_bits =		8,
1069	.max_register =		STA350_MISC2,
1070	.reg_defaults =		sta350_regs,
1071	.num_reg_defaults =	ARRAY_SIZE(sta350_regs),
1072	.cache_type =		REGCACHE_RBTREE,
1073	.wr_table =		&sta350_write_regs,
1074	.rd_table =		&sta350_read_regs,
1075	.volatile_table =	&sta350_volatile_regs,
1076};
1077
1078#ifdef CONFIG_OF
1079static const struct of_device_id st350_dt_ids[] = {
1080	{ .compatible = "st,sta350", },
1081	{ }
1082};
1083MODULE_DEVICE_TABLE(of, st350_dt_ids);
1084
1085static const char * const sta350_ffx_modes[] = {
1086	[STA350_FFX_PM_DROP_COMP]		= "drop-compensation",
1087	[STA350_FFX_PM_TAPERED_COMP]		= "tapered-compensation",
1088	[STA350_FFX_PM_FULL_POWER]		= "full-power-mode",
1089	[STA350_FFX_PM_VARIABLE_DROP_COMP]	= "variable-drop-compensation",
1090};
1091
1092static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350)
1093{
1094	struct device_node *np = dev->of_node;
1095	struct sta350_platform_data *pdata;
1096	const char *ffx_power_mode;
1097	u16 tmp;
1098	u8 tmp8;
1099
1100	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1101	if (!pdata)
1102		return -ENOMEM;
1103
1104	of_property_read_u8(np, "st,output-conf",
1105			    &pdata->output_conf);
1106	of_property_read_u8(np, "st,ch1-output-mapping",
1107			    &pdata->ch1_output_mapping);
1108	of_property_read_u8(np, "st,ch2-output-mapping",
1109			    &pdata->ch2_output_mapping);
1110	of_property_read_u8(np, "st,ch3-output-mapping",
1111			    &pdata->ch3_output_mapping);
1112
1113	if (of_get_property(np, "st,thermal-warning-recovery", NULL))
1114		pdata->thermal_warning_recovery = 1;
1115	if (of_get_property(np, "st,thermal-warning-adjustment", NULL))
1116		pdata->thermal_warning_adjustment = 1;
1117	if (of_get_property(np, "st,fault-detect-recovery", NULL))
1118		pdata->fault_detect_recovery = 1;
1119
1120	pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP;
1121	if (!of_property_read_string(np, "st,ffx-power-output-mode",
1122				     &ffx_power_mode)) {
1123		int i, mode = -EINVAL;
1124
1125		for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++)
1126			if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i]))
1127				mode = i;
1128
1129		if (mode < 0)
1130			dev_warn(dev, "Unsupported ffx output mode: %s\n",
1131				 ffx_power_mode);
1132		else
1133			pdata->ffx_power_output_mode = mode;
1134	}
1135
1136	tmp = 140;
1137	of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
1138	pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
1139
1140	if (of_get_property(np, "st,overcurrent-warning-adjustment", NULL))
1141		pdata->oc_warning_adjustment = 1;
1142
1143	/* CONFE */
1144	if (of_get_property(np, "st,max-power-use-mpcc", NULL))
1145		pdata->max_power_use_mpcc = 1;
1146
1147	if (of_get_property(np, "st,max-power-correction", NULL))
1148		pdata->max_power_correction = 1;
1149
1150	if (of_get_property(np, "st,am-reduction-mode", NULL))
1151		pdata->am_reduction_mode = 1;
1152
1153	if (of_get_property(np, "st,odd-pwm-speed-mode", NULL))
1154		pdata->odd_pwm_speed_mode = 1;
1155
1156	if (of_get_property(np, "st,distortion-compensation", NULL))
1157		pdata->distortion_compensation = 1;
1158
1159	/* CONFF */
1160	if (of_get_property(np, "st,invalid-input-detect-mute", NULL))
1161		pdata->invalid_input_detect_mute = 1;
1162
1163	/* MISC */
1164	if (of_get_property(np, "st,activate-mute-output", NULL))
1165		pdata->activate_mute_output = 1;
1166
1167	if (of_get_property(np, "st,bridge-immediate-off", NULL))
1168		pdata->bridge_immediate_off = 1;
1169
1170	if (of_get_property(np, "st,noise-shape-dc-cut", NULL))
1171		pdata->noise_shape_dc_cut = 1;
1172
1173	if (of_get_property(np, "st,powerdown-master-volume", NULL))
1174		pdata->powerdown_master_vol = 1;
1175
1176	if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) {
1177		if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128)
1178			pdata->powerdown_delay_divider = ilog2(tmp8);
1179		else
1180			dev_warn(dev, "Unsupported powerdown delay divider %d\n",
1181				 tmp8);
1182	}
1183
1184	sta350->pdata = pdata;
1185
1186	return 0;
1187}
1188#endif
1189
1190static int sta350_i2c_probe(struct i2c_client *i2c,
1191			    const struct i2c_device_id *id)
1192{
1193	struct device *dev = &i2c->dev;
1194	struct sta350_priv *sta350;
1195	int ret, i;
1196
1197	sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL);
1198	if (!sta350)
1199		return -ENOMEM;
1200
1201	mutex_init(&sta350->coeff_lock);
1202	sta350->pdata = dev_get_platdata(dev);
1203
1204#ifdef CONFIG_OF
1205	if (dev->of_node) {
1206		ret = sta350_probe_dt(dev, sta350);
1207		if (ret < 0)
1208			return ret;
1209	}
1210#endif
1211
1212	/* GPIOs */
1213	sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
1214						       GPIOD_OUT_LOW);
1215	if (IS_ERR(sta350->gpiod_nreset))
1216		return PTR_ERR(sta350->gpiod_nreset);
1217
1218	sta350->gpiod_power_down = devm_gpiod_get_optional(dev, "power-down",
1219							   GPIOD_OUT_LOW);
1220	if (IS_ERR(sta350->gpiod_power_down))
1221		return PTR_ERR(sta350->gpiod_power_down);
1222
1223	/* regulators */
1224	for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++)
1225		sta350->supplies[i].supply = sta350_supply_names[i];
1226
1227	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies),
1228				      sta350->supplies);
1229	if (ret < 0) {
1230		dev_err(dev, "Failed to request supplies: %d\n", ret);
1231		return ret;
1232	}
1233
1234	sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap);
1235	if (IS_ERR(sta350->regmap)) {
1236		ret = PTR_ERR(sta350->regmap);
1237		dev_err(dev, "Failed to init regmap: %d\n", ret);
1238		return ret;
1239	}
1240
1241	i2c_set_clientdata(i2c, sta350);
1242
1243	ret = devm_snd_soc_register_component(dev, &sta350_component, &sta350_dai, 1);
1244	if (ret < 0)
1245		dev_err(dev, "Failed to register component (%d)\n", ret);
1246
1247	return ret;
1248}
1249
1250static int sta350_i2c_remove(struct i2c_client *client)
1251{
1252	return 0;
1253}
1254
1255static const struct i2c_device_id sta350_i2c_id[] = {
1256	{ "sta350", 0 },
1257	{ }
1258};
1259MODULE_DEVICE_TABLE(i2c, sta350_i2c_id);
1260
1261static struct i2c_driver sta350_i2c_driver = {
1262	.driver = {
1263		.name = "sta350",
1264		.of_match_table = of_match_ptr(st350_dt_ids),
1265	},
1266	.probe =    sta350_i2c_probe,
1267	.remove =   sta350_i2c_remove,
1268	.id_table = sta350_i2c_id,
1269};
1270
1271module_i2c_driver(sta350_i2c_driver);
1272
1273MODULE_DESCRIPTION("ASoC STA350 driver");
1274MODULE_AUTHOR("Sven Brandau <info@brandau.biz>");
1275MODULE_LICENSE("GPL");
1276