1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Nuvoton NAU8825 audio codec driver
4 *
5 * Copyright 2015 Google Chromium project.
6 *  Author: Anatol Pomozov <anatol@chromium.org>
7 * Copyright 2015 Nuvoton Technology Corp.
8 *  Co-author: Meng-Huang Kuo <mhkuo@nuvoton.com>
9 */
10
11#include <linux/module.h>
12#include <linux/delay.h>
13#include <linux/init.h>
14#include <linux/i2c.h>
15#include <linux/regmap.h>
16#include <linux/slab.h>
17#include <linux/clk.h>
18#include <linux/acpi.h>
19#include <linux/math64.h>
20#include <linux/semaphore.h>
21
22#include <sound/initval.h>
23#include <sound/tlv.h>
24#include <sound/core.h>
25#include <sound/pcm.h>
26#include <sound/pcm_params.h>
27#include <sound/soc.h>
28#include <sound/jack.h>
29
30
31#include "nau8825.h"
32
33
34#define NUVOTON_CODEC_DAI "nau8825-hifi"
35
36#define NAU_FREF_MAX 13500000
37#define NAU_FVCO_MAX 124000000
38#define NAU_FVCO_MIN 90000000
39
40/* cross talk suppression detection */
41#define LOG10_MAGIC 646456993
42#define GAIN_AUGMENT 22500
43#define SIDETONE_BASE 207000
44
45/* the maximum frequency of CLK_ADC and CLK_DAC */
46#define CLK_DA_AD_MAX 6144000
47
48static int nau8825_configure_sysclk(struct nau8825 *nau8825,
49		int clk_id, unsigned int freq);
50
51struct nau8825_fll {
52	int mclk_src;
53	int ratio;
54	int fll_frac;
55	int fll_int;
56	int clk_ref_div;
57};
58
59struct nau8825_fll_attr {
60	unsigned int param;
61	unsigned int val;
62};
63
64/* scaling for mclk from sysclk_src output */
65static const struct nau8825_fll_attr mclk_src_scaling[] = {
66	{ 1, 0x0 },
67	{ 2, 0x2 },
68	{ 4, 0x3 },
69	{ 8, 0x4 },
70	{ 16, 0x5 },
71	{ 32, 0x6 },
72	{ 3, 0x7 },
73	{ 6, 0xa },
74	{ 12, 0xb },
75	{ 24, 0xc },
76	{ 48, 0xd },
77	{ 96, 0xe },
78	{ 5, 0xf },
79};
80
81/* ratio for input clk freq */
82static const struct nau8825_fll_attr fll_ratio[] = {
83	{ 512000, 0x01 },
84	{ 256000, 0x02 },
85	{ 128000, 0x04 },
86	{ 64000, 0x08 },
87	{ 32000, 0x10 },
88	{ 8000, 0x20 },
89	{ 4000, 0x40 },
90};
91
92static const struct nau8825_fll_attr fll_pre_scalar[] = {
93	{ 1, 0x0 },
94	{ 2, 0x1 },
95	{ 4, 0x2 },
96	{ 8, 0x3 },
97};
98
99/* over sampling rate */
100struct nau8825_osr_attr {
101	unsigned int osr;
102	unsigned int clk_src;
103};
104
105static const struct nau8825_osr_attr osr_dac_sel[] = {
106	{ 64, 2 },	/* OSR 64, SRC 1/4 */
107	{ 256, 0 },	/* OSR 256, SRC 1 */
108	{ 128, 1 },	/* OSR 128, SRC 1/2 */
109	{ 0, 0 },
110	{ 32, 3 },	/* OSR 32, SRC 1/8 */
111};
112
113static const struct nau8825_osr_attr osr_adc_sel[] = {
114	{ 32, 3 },	/* OSR 32, SRC 1/8 */
115	{ 64, 2 },	/* OSR 64, SRC 1/4 */
116	{ 128, 1 },	/* OSR 128, SRC 1/2 */
117	{ 256, 0 },	/* OSR 256, SRC 1 */
118};
119
120static const struct reg_default nau8825_reg_defaults[] = {
121	{ NAU8825_REG_ENA_CTRL, 0x00ff },
122	{ NAU8825_REG_IIC_ADDR_SET, 0x0 },
123	{ NAU8825_REG_CLK_DIVIDER, 0x0050 },
124	{ NAU8825_REG_FLL1, 0x0 },
125	{ NAU8825_REG_FLL2, 0x3126 },
126	{ NAU8825_REG_FLL3, 0x0008 },
127	{ NAU8825_REG_FLL4, 0x0010 },
128	{ NAU8825_REG_FLL5, 0x0 },
129	{ NAU8825_REG_FLL6, 0x6000 },
130	{ NAU8825_REG_FLL_VCO_RSV, 0xf13c },
131	{ NAU8825_REG_HSD_CTRL, 0x000c },
132	{ NAU8825_REG_JACK_DET_CTRL, 0x0 },
133	{ NAU8825_REG_INTERRUPT_MASK, 0x0 },
134	{ NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff },
135	{ NAU8825_REG_SAR_CTRL, 0x0015 },
136	{ NAU8825_REG_KEYDET_CTRL, 0x0110 },
137	{ NAU8825_REG_VDET_THRESHOLD_1, 0x0 },
138	{ NAU8825_REG_VDET_THRESHOLD_2, 0x0 },
139	{ NAU8825_REG_VDET_THRESHOLD_3, 0x0 },
140	{ NAU8825_REG_VDET_THRESHOLD_4, 0x0 },
141	{ NAU8825_REG_GPIO34_CTRL, 0x0 },
142	{ NAU8825_REG_GPIO12_CTRL, 0x0 },
143	{ NAU8825_REG_TDM_CTRL, 0x0 },
144	{ NAU8825_REG_I2S_PCM_CTRL1, 0x000b },
145	{ NAU8825_REG_I2S_PCM_CTRL2, 0x8010 },
146	{ NAU8825_REG_LEFT_TIME_SLOT, 0x0 },
147	{ NAU8825_REG_RIGHT_TIME_SLOT, 0x0 },
148	{ NAU8825_REG_BIQ_CTRL, 0x0 },
149	{ NAU8825_REG_BIQ_COF1, 0x0 },
150	{ NAU8825_REG_BIQ_COF2, 0x0 },
151	{ NAU8825_REG_BIQ_COF3, 0x0 },
152	{ NAU8825_REG_BIQ_COF4, 0x0 },
153	{ NAU8825_REG_BIQ_COF5, 0x0 },
154	{ NAU8825_REG_BIQ_COF6, 0x0 },
155	{ NAU8825_REG_BIQ_COF7, 0x0 },
156	{ NAU8825_REG_BIQ_COF8, 0x0 },
157	{ NAU8825_REG_BIQ_COF9, 0x0 },
158	{ NAU8825_REG_BIQ_COF10, 0x0 },
159	{ NAU8825_REG_ADC_RATE, 0x0010 },
160	{ NAU8825_REG_DAC_CTRL1, 0x0001 },
161	{ NAU8825_REG_DAC_CTRL2, 0x0 },
162	{ NAU8825_REG_DAC_DGAIN_CTRL, 0x0 },
163	{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
164	{ NAU8825_REG_MUTE_CTRL, 0x0 },
165	{ NAU8825_REG_HSVOL_CTRL, 0x0 },
166	{ NAU8825_REG_DACL_CTRL, 0x02cf },
167	{ NAU8825_REG_DACR_CTRL, 0x00cf },
168	{ NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 },
169	{ NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 },
170	{ NAU8825_REG_ADC_DRC_SLOPES, 0x25ff },
171	{ NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 },
172	{ NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 },
173	{ NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 },
174	{ NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 },
175	{ NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 },
176	{ NAU8825_REG_IMM_MODE_CTRL, 0x0 },
177	{ NAU8825_REG_CLASSG_CTRL, 0x0 },
178	{ NAU8825_REG_OPT_EFUSE_CTRL, 0x0 },
179	{ NAU8825_REG_MISC_CTRL, 0x0 },
180	{ NAU8825_REG_BIAS_ADJ, 0x0 },
181	{ NAU8825_REG_TRIM_SETTINGS, 0x0 },
182	{ NAU8825_REG_ANALOG_CONTROL_1, 0x0 },
183	{ NAU8825_REG_ANALOG_CONTROL_2, 0x0 },
184	{ NAU8825_REG_ANALOG_ADC_1, 0x0011 },
185	{ NAU8825_REG_ANALOG_ADC_2, 0x0020 },
186	{ NAU8825_REG_RDAC, 0x0008 },
187	{ NAU8825_REG_MIC_BIAS, 0x0006 },
188	{ NAU8825_REG_BOOST, 0x0 },
189	{ NAU8825_REG_FEPGA, 0x0 },
190	{ NAU8825_REG_POWER_UP_CONTROL, 0x0 },
191	{ NAU8825_REG_CHARGE_PUMP, 0x0 },
192};
193
194/* register backup table when cross talk detection */
195static struct reg_default nau8825_xtalk_baktab[] = {
196	{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
197	{ NAU8825_REG_HSVOL_CTRL, 0 },
198	{ NAU8825_REG_DACL_CTRL, 0x00cf },
199	{ NAU8825_REG_DACR_CTRL, 0x02cf },
200};
201
202static const unsigned short logtable[256] = {
203	0x0000, 0x0171, 0x02e0, 0x044e, 0x05ba, 0x0725, 0x088e, 0x09f7,
204	0x0b5d, 0x0cc3, 0x0e27, 0x0f8a, 0x10eb, 0x124b, 0x13aa, 0x1508,
205	0x1664, 0x17bf, 0x1919, 0x1a71, 0x1bc8, 0x1d1e, 0x1e73, 0x1fc6,
206	0x2119, 0x226a, 0x23ba, 0x2508, 0x2656, 0x27a2, 0x28ed, 0x2a37,
207	0x2b80, 0x2cc8, 0x2e0f, 0x2f54, 0x3098, 0x31dc, 0x331e, 0x345f,
208	0x359f, 0x36de, 0x381b, 0x3958, 0x3a94, 0x3bce, 0x3d08, 0x3e41,
209	0x3f78, 0x40af, 0x41e4, 0x4319, 0x444c, 0x457f, 0x46b0, 0x47e1,
210	0x4910, 0x4a3f, 0x4b6c, 0x4c99, 0x4dc5, 0x4eef, 0x5019, 0x5142,
211	0x526a, 0x5391, 0x54b7, 0x55dc, 0x5700, 0x5824, 0x5946, 0x5a68,
212	0x5b89, 0x5ca8, 0x5dc7, 0x5ee5, 0x6003, 0x611f, 0x623a, 0x6355,
213	0x646f, 0x6588, 0x66a0, 0x67b7, 0x68ce, 0x69e4, 0x6af8, 0x6c0c,
214	0x6d20, 0x6e32, 0x6f44, 0x7055, 0x7165, 0x7274, 0x7383, 0x7490,
215	0x759d, 0x76aa, 0x77b5, 0x78c0, 0x79ca, 0x7ad3, 0x7bdb, 0x7ce3,
216	0x7dea, 0x7ef0, 0x7ff6, 0x80fb, 0x81ff, 0x8302, 0x8405, 0x8507,
217	0x8608, 0x8709, 0x8809, 0x8908, 0x8a06, 0x8b04, 0x8c01, 0x8cfe,
218	0x8dfa, 0x8ef5, 0x8fef, 0x90e9, 0x91e2, 0x92db, 0x93d2, 0x94ca,
219	0x95c0, 0x96b6, 0x97ab, 0x98a0, 0x9994, 0x9a87, 0x9b7a, 0x9c6c,
220	0x9d5e, 0x9e4f, 0x9f3f, 0xa02e, 0xa11e, 0xa20c, 0xa2fa, 0xa3e7,
221	0xa4d4, 0xa5c0, 0xa6ab, 0xa796, 0xa881, 0xa96a, 0xaa53, 0xab3c,
222	0xac24, 0xad0c, 0xadf2, 0xaed9, 0xafbe, 0xb0a4, 0xb188, 0xb26c,
223	0xb350, 0xb433, 0xb515, 0xb5f7, 0xb6d9, 0xb7ba, 0xb89a, 0xb97a,
224	0xba59, 0xbb38, 0xbc16, 0xbcf4, 0xbdd1, 0xbead, 0xbf8a, 0xc065,
225	0xc140, 0xc21b, 0xc2f5, 0xc3cf, 0xc4a8, 0xc580, 0xc658, 0xc730,
226	0xc807, 0xc8de, 0xc9b4, 0xca8a, 0xcb5f, 0xcc34, 0xcd08, 0xcddc,
227	0xceaf, 0xcf82, 0xd054, 0xd126, 0xd1f7, 0xd2c8, 0xd399, 0xd469,
228	0xd538, 0xd607, 0xd6d6, 0xd7a4, 0xd872, 0xd93f, 0xda0c, 0xdad9,
229	0xdba5, 0xdc70, 0xdd3b, 0xde06, 0xded0, 0xdf9a, 0xe063, 0xe12c,
230	0xe1f5, 0xe2bd, 0xe385, 0xe44c, 0xe513, 0xe5d9, 0xe69f, 0xe765,
231	0xe82a, 0xe8ef, 0xe9b3, 0xea77, 0xeb3b, 0xebfe, 0xecc1, 0xed83,
232	0xee45, 0xef06, 0xefc8, 0xf088, 0xf149, 0xf209, 0xf2c8, 0xf387,
233	0xf446, 0xf505, 0xf5c3, 0xf680, 0xf73e, 0xf7fb, 0xf8b7, 0xf973,
234	0xfa2f, 0xfaea, 0xfba5, 0xfc60, 0xfd1a, 0xfdd4, 0xfe8e, 0xff47
235};
236
237/**
238 * nau8825_sema_acquire - acquire the semaphore of nau88l25
239 * @nau8825:  component to register the codec private data with
240 * @timeout: how long in jiffies to wait before failure or zero to wait
241 * until release
242 *
243 * Attempts to acquire the semaphore with number of jiffies. If no more
244 * tasks are allowed to acquire the semaphore, calling this function will
245 * put the task to sleep. If the semaphore is not released within the
246 * specified number of jiffies, this function returns.
247 * If the semaphore is not released within the specified number of jiffies,
248 * this function returns -ETIME. If the sleep is interrupted by a signal,
249 * this function will return -EINTR. It returns 0 if the semaphore was
250 * acquired successfully.
251 *
252 * Acquires the semaphore without jiffies. Try to acquire the semaphore
253 * atomically. Returns 0 if the semaphore has been acquired successfully
254 * or 1 if it cannot be acquired.
255 */
256static int nau8825_sema_acquire(struct nau8825 *nau8825, long timeout)
257{
258	int ret;
259
260	if (timeout) {
261		ret = down_timeout(&nau8825->xtalk_sem, timeout);
262		if (ret < 0)
263			dev_warn(nau8825->dev, "Acquire semaphore timeout\n");
264	} else {
265		ret = down_trylock(&nau8825->xtalk_sem);
266		if (ret)
267			dev_warn(nau8825->dev, "Acquire semaphore fail\n");
268	}
269
270	return ret;
271}
272
273/**
274 * nau8825_sema_release - release the semaphore of nau88l25
275 * @nau8825:  component to register the codec private data with
276 *
277 * Release the semaphore which may be called from any context and
278 * even by tasks which have never called down().
279 */
280static inline void nau8825_sema_release(struct nau8825 *nau8825)
281{
282	up(&nau8825->xtalk_sem);
283}
284
285/**
286 * nau8825_sema_reset - reset the semaphore for nau88l25
287 * @nau8825:  component to register the codec private data with
288 *
289 * Reset the counter of the semaphore. Call this function to restart
290 * a new round task management.
291 */
292static inline void nau8825_sema_reset(struct nau8825 *nau8825)
293{
294	nau8825->xtalk_sem.count = 1;
295}
296
297/**
298 * Ramp up the headphone volume change gradually to target level.
299 *
300 * @nau8825:  component to register the codec private data with
301 * @vol_from: the volume to start up
302 * @vol_to: the target volume
303 * @step: the volume span to move on
304 *
305 * The headphone volume is from 0dB to minimum -54dB and -1dB per step.
306 * If the volume changes sharp, there is a pop noise heard in headphone. We
307 * provide the function to ramp up the volume up or down by delaying 10ms
308 * per step.
309 */
310static void nau8825_hpvol_ramp(struct nau8825 *nau8825,
311	unsigned int vol_from, unsigned int vol_to, unsigned int step)
312{
313	unsigned int value, volume, ramp_up, from, to;
314
315	if (vol_from == vol_to || step == 0) {
316		return;
317	} else if (vol_from < vol_to) {
318		ramp_up = true;
319		from = vol_from;
320		to = vol_to;
321	} else {
322		ramp_up = false;
323		from = vol_to;
324		to = vol_from;
325	}
326	/* only handle volume from 0dB to minimum -54dB */
327	if (to > NAU8825_HP_VOL_MIN)
328		to = NAU8825_HP_VOL_MIN;
329
330	for (volume = from; volume < to; volume += step) {
331		if (ramp_up)
332			value = volume;
333		else
334			value = to - volume + from;
335		regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
336			NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
337			(value << NAU8825_HPL_VOL_SFT) | value);
338		usleep_range(10000, 10500);
339	}
340	if (ramp_up)
341		value = to;
342	else
343		value = from;
344	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
345		NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
346		(value << NAU8825_HPL_VOL_SFT) | value);
347}
348
349/**
350 * Computes log10 of a value; the result is round off to 3 decimal. This func-
351 * tion takes reference to dvb-math. The source code locates as the following.
352 * Linux/drivers/media/dvb-core/dvb_math.c
353 * @value:  input for log10
354 *
355 * return log10(value) * 1000
356 */
357static u32 nau8825_intlog10_dec3(u32 value)
358{
359	u32 msb, logentry, significand, interpolation, log10val;
360	u64 log2val;
361
362	/* first detect the msb (count begins at 0) */
363	msb = fls(value) - 1;
364	/**
365	 *      now we use a logtable after the following method:
366	 *
367	 *      log2(2^x * y) * 2^24 = x * 2^24 + log2(y) * 2^24
368	 *      where x = msb and therefore 1 <= y < 2
369	 *      first y is determined by shifting the value left
370	 *      so that msb is bit 31
371	 *              0x00231f56 -> 0x8C7D5800
372	 *      the result is y * 2^31 -> "significand"
373	 *      then the highest 9 bits are used for a table lookup
374	 *      the highest bit is discarded because it's always set
375	 *      the highest nine bits in our example are 100011000
376	 *      so we would use the entry 0x18
377	 */
378	significand = value << (31 - msb);
379	logentry = (significand >> 23) & 0xff;
380	/**
381	 *      last step we do is interpolation because of the
382	 *      limitations of the log table the error is that part of
383	 *      the significand which isn't used for lookup then we
384	 *      compute the ratio between the error and the next table entry
385	 *      and interpolate it between the log table entry used and the
386	 *      next one the biggest error possible is 0x7fffff
387	 *      (in our example it's 0x7D5800)
388	 *      needed value for next table entry is 0x800000
389	 *      so the interpolation is
390	 *      (error / 0x800000) * (logtable_next - logtable_current)
391	 *      in the implementation the division is moved to the end for
392	 *      better accuracy there is also an overflow correction if
393	 *      logtable_next is 256
394	 */
395	interpolation = ((significand & 0x7fffff) *
396		((logtable[(logentry + 1) & 0xff] -
397		logtable[logentry]) & 0xffff)) >> 15;
398
399	log2val = ((msb << 24) + (logtable[logentry] << 8) + interpolation);
400	/**
401	 *      log10(x) = log2(x) * log10(2)
402	 */
403	log10val = (log2val * LOG10_MAGIC) >> 31;
404	/**
405	 *      the result is round off to 3 decimal
406	 */
407	return log10val / ((1 << 24) / 1000);
408}
409
410/**
411 * computes cross talk suppression sidetone gain.
412 *
413 * @sig_org: orignal signal level
414 * @sig_cros: cross talk signal level
415 *
416 * The orignal and cross talk signal vlues need to be characterized.
417 * Once these values have been characterized, this sidetone value
418 * can be converted to decibel with the equation below.
419 * sidetone = 20 * log (original signal level / crosstalk signal level)
420 *
421 * return cross talk sidetone gain
422 */
423static u32 nau8825_xtalk_sidetone(u32 sig_org, u32 sig_cros)
424{
425	u32 gain, sidetone;
426
427	if (WARN_ON(sig_org == 0 || sig_cros == 0))
428		return 0;
429
430	sig_org = nau8825_intlog10_dec3(sig_org);
431	sig_cros = nau8825_intlog10_dec3(sig_cros);
432	if (sig_org >= sig_cros)
433		gain = (sig_org - sig_cros) * 20 + GAIN_AUGMENT;
434	else
435		gain = (sig_cros - sig_org) * 20 + GAIN_AUGMENT;
436	sidetone = SIDETONE_BASE - gain * 2;
437	sidetone /= 1000;
438
439	return sidetone;
440}
441
442static int nau8825_xtalk_baktab_index_by_reg(unsigned int reg)
443{
444	int index;
445
446	for (index = 0; index < ARRAY_SIZE(nau8825_xtalk_baktab); index++)
447		if (nau8825_xtalk_baktab[index].reg == reg)
448			return index;
449	return -EINVAL;
450}
451
452static void nau8825_xtalk_backup(struct nau8825 *nau8825)
453{
454	int i;
455
456	if (nau8825->xtalk_baktab_initialized)
457		return;
458
459	/* Backup some register values to backup table */
460	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++)
461		regmap_read(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
462				&nau8825_xtalk_baktab[i].def);
463
464	nau8825->xtalk_baktab_initialized = true;
465}
466
467static void nau8825_xtalk_restore(struct nau8825 *nau8825, bool cause_cancel)
468{
469	int i, volume;
470
471	if (!nau8825->xtalk_baktab_initialized)
472		return;
473
474	/* Restore register values from backup table; When the driver restores
475	 * the headphone volume in XTALK_DONE state, it needs recover to
476	 * original level gradually with 3dB per step for less pop noise.
477	 * Otherwise, the restore should do ASAP.
478	 */
479	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) {
480		if (!cause_cancel && nau8825_xtalk_baktab[i].reg ==
481			NAU8825_REG_HSVOL_CTRL) {
482			/* Ramping up the volume change to reduce pop noise */
483			volume = nau8825_xtalk_baktab[i].def &
484				NAU8825_HPR_VOL_MASK;
485			nau8825_hpvol_ramp(nau8825, 0, volume, 3);
486			continue;
487		}
488		regmap_write(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
489				nau8825_xtalk_baktab[i].def);
490	}
491
492	nau8825->xtalk_baktab_initialized = false;
493}
494
495static void nau8825_xtalk_prepare_dac(struct nau8825 *nau8825)
496{
497	/* Enable power of DAC path */
498	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
499		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
500		NAU8825_ENABLE_ADC | NAU8825_ENABLE_ADC_CLK |
501		NAU8825_ENABLE_DAC_CLK, NAU8825_ENABLE_DACR |
502		NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC |
503		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK);
504	/* Prevent startup click by letting charge pump to ramp up and
505	 * change bump enable
506	 */
507	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
508		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN,
509		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN);
510	/* Enable clock sync of DAC and DAC clock */
511	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
512		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN |
513		NAU8825_RDAC_FS_BCLK_ENB,
514		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN);
515	/* Power up output driver with 2 stage */
516	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
517		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
518		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L,
519		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
520		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L);
521	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
522		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L,
523		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L);
524	/* HP outputs not shouted to ground  */
525	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
526		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 0);
527	/* Enable HP boost driver */
528	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
529		NAU8825_HP_BOOST_DIS, NAU8825_HP_BOOST_DIS);
530	/* Enable class G compare path to supply 1.8V or 0.9V. */
531	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLASSG_CTRL,
532		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN,
533		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN);
534}
535
536static void nau8825_xtalk_prepare_adc(struct nau8825 *nau8825)
537{
538	/* Power up left ADC and raise 5dB than Vmid for Vref  */
539	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
540		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK,
541		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_VMID_PLUS_0_5DB);
542}
543
544static void nau8825_xtalk_clock(struct nau8825 *nau8825)
545{
546	/* Recover FLL default value */
547	regmap_write(nau8825->regmap, NAU8825_REG_FLL1, 0x0);
548	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, 0x3126);
549	regmap_write(nau8825->regmap, NAU8825_REG_FLL3, 0x0008);
550	regmap_write(nau8825->regmap, NAU8825_REG_FLL4, 0x0010);
551	regmap_write(nau8825->regmap, NAU8825_REG_FLL5, 0x0);
552	regmap_write(nau8825->regmap, NAU8825_REG_FLL6, 0x6000);
553	/* Enable internal VCO clock for detection signal generated */
554	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
555		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
556	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN,
557		NAU8825_DCO_EN);
558	/* Given specific clock frequency of internal clock to
559	 * generate signal.
560	 */
561	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
562		NAU8825_CLK_MCLK_SRC_MASK, 0xf);
563	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
564		NAU8825_FLL_RATIO_MASK, 0x10);
565}
566
567static void nau8825_xtalk_prepare(struct nau8825 *nau8825)
568{
569	int volume, index;
570
571	/* Backup those registers changed by cross talk detection */
572	nau8825_xtalk_backup(nau8825);
573	/* Config IIS as master to output signal by codec */
574	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
575		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
576		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_MASTER |
577		(0x2 << NAU8825_I2S_LRC_DIV_SFT) | 0x1);
578	/* Ramp up headphone volume to 0dB to get better performance and
579	 * avoid pop noise in headphone.
580	 */
581	index = nau8825_xtalk_baktab_index_by_reg(NAU8825_REG_HSVOL_CTRL);
582	if (index != -EINVAL) {
583		volume = nau8825_xtalk_baktab[index].def &
584				NAU8825_HPR_VOL_MASK;
585		nau8825_hpvol_ramp(nau8825, volume, 0, 3);
586	}
587	nau8825_xtalk_clock(nau8825);
588	nau8825_xtalk_prepare_dac(nau8825);
589	nau8825_xtalk_prepare_adc(nau8825);
590	/* Config channel path and digital gain */
591	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
592		NAU8825_DACL_CH_SEL_MASK | NAU8825_DACL_CH_VOL_MASK,
593		NAU8825_DACL_CH_SEL_L | 0xab);
594	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
595		NAU8825_DACR_CH_SEL_MASK | NAU8825_DACR_CH_VOL_MASK,
596		NAU8825_DACR_CH_SEL_R | 0xab);
597	/* Config cross talk parameters and generate the 23Hz sine wave with
598	 * 1/16 full scale of signal level for impedance measurement.
599	 */
600	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
601		NAU8825_IMM_THD_MASK | NAU8825_IMM_GEN_VOL_MASK |
602		NAU8825_IMM_CYC_MASK | NAU8825_IMM_DAC_SRC_MASK,
603		(0x9 << NAU8825_IMM_THD_SFT) | NAU8825_IMM_GEN_VOL_1_16th |
604		NAU8825_IMM_CYC_8192 | NAU8825_IMM_DAC_SRC_SIN);
605	/* RMS intrruption enable */
606	regmap_update_bits(nau8825->regmap,
607		NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_RMS_EN, 0);
608	/* Power up left and right DAC */
609	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
610		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 0);
611}
612
613static void nau8825_xtalk_clean_dac(struct nau8825 *nau8825)
614{
615	/* Disable HP boost driver */
616	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
617		NAU8825_HP_BOOST_DIS, 0);
618	/* HP outputs shouted to ground  */
619	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
620		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
621		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
622	/* Power down left and right DAC */
623	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
624		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
625		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
626	/* Enable the TESTDAC and  disable L/R HP impedance */
627	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
628		NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP |
629		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
630	/* Power down output driver with 2 stage */
631	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
632		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 0);
633	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
634		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
635		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 0);
636	/* Disable clock sync of DAC and DAC clock */
637	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
638		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN, 0);
639	/* Disable charge pump ramp up function and change bump */
640	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
641		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 0);
642	/* Disable power of DAC path */
643	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
644		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
645		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK, 0);
646	if (!nau8825->irq)
647		regmap_update_bits(nau8825->regmap,
648			NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
649}
650
651static void nau8825_xtalk_clean_adc(struct nau8825 *nau8825)
652{
653	/* Power down left ADC and restore voltage to Vmid */
654	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
655		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 0);
656}
657
658static void nau8825_xtalk_clean(struct nau8825 *nau8825, bool cause_cancel)
659{
660	/* Enable internal VCO needed for interruptions */
661	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
662	nau8825_xtalk_clean_dac(nau8825);
663	nau8825_xtalk_clean_adc(nau8825);
664	/* Clear cross talk parameters and disable */
665	regmap_write(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 0);
666	/* RMS intrruption disable */
667	regmap_update_bits(nau8825->regmap, NAU8825_REG_INTERRUPT_MASK,
668		NAU8825_IRQ_RMS_EN, NAU8825_IRQ_RMS_EN);
669	/* Recover default value for IIS */
670	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
671		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
672		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_SLAVE);
673	/* Restore value of specific register for cross talk */
674	nau8825_xtalk_restore(nau8825, cause_cancel);
675}
676
677static void nau8825_xtalk_imm_start(struct nau8825 *nau8825, int vol)
678{
679	/* Apply ADC volume for better cross talk performance */
680	regmap_update_bits(nau8825->regmap, NAU8825_REG_ADC_DGAIN_CTRL,
681				NAU8825_ADC_DIG_VOL_MASK, vol);
682	/* Disables JKTIP(HPL) DAC channel for right to left measurement.
683	 * Do it before sending signal in order to erase pop noise.
684	 */
685	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
686		NAU8825_BIAS_TESTDACR_EN | NAU8825_BIAS_TESTDACL_EN,
687		NAU8825_BIAS_TESTDACL_EN);
688	switch (nau8825->xtalk_state) {
689	case NAU8825_XTALK_HPR_R2L:
690		/* Enable right headphone impedance */
691		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
692			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
693			NAU8825_BIAS_HPR_IMP);
694		break;
695	case NAU8825_XTALK_HPL_R2L:
696		/* Enable left headphone impedance */
697		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
698			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
699			NAU8825_BIAS_HPL_IMP);
700		break;
701	default:
702		break;
703	}
704	msleep(100);
705	/* Impedance measurement mode enable */
706	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
707				NAU8825_IMM_EN, NAU8825_IMM_EN);
708}
709
710static void nau8825_xtalk_imm_stop(struct nau8825 *nau8825)
711{
712	/* Impedance measurement mode disable */
713	regmap_update_bits(nau8825->regmap,
714		NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_EN, 0);
715}
716
717/* The cross talk measurement function can reduce cross talk across the
718 * JKTIP(HPL) and JKR1(HPR) outputs which measures the cross talk signal
719 * level to determine what cross talk reduction gain is. This system works by
720 * sending a 23Hz -24dBV sine wave into the headset output DAC and through
721 * the PGA. The output of the PGA is then connected to an internal current
722 * sense which measures the attenuated 23Hz signal and passing the output to
723 * an ADC which converts the measurement to a binary code. With two separated
724 * measurement, one for JKR1(HPR) and the other JKTIP(HPL), measurement data
725 * can be separated read in IMM_RMS_L for HSR and HSL after each measurement.
726 * Thus, the measurement function has four states to complete whole sequence.
727 * 1. Prepare state : Prepare the resource for detection and transfer to HPR
728 *     IMM stat to make JKR1(HPR) impedance measure.
729 * 2. HPR IMM state : Read out orignal signal level of JKR1(HPR) and transfer
730 *     to HPL IMM state to make JKTIP(HPL) impedance measure.
731 * 3. HPL IMM state : Read out cross talk signal level of JKTIP(HPL) and
732 *     transfer to IMM state to determine suppression sidetone gain.
733 * 4. IMM state : Computes cross talk suppression sidetone gain with orignal
734 *     and cross talk signal level. Apply this gain and then restore codec
735 *     configuration. Then transfer to Done state for ending.
736 */
737static void nau8825_xtalk_measure(struct nau8825 *nau8825)
738{
739	u32 sidetone;
740
741	switch (nau8825->xtalk_state) {
742	case NAU8825_XTALK_PREPARE:
743		/* In prepare state, set up clock, intrruption, DAC path, ADC
744		 * path and cross talk detection parameters for preparation.
745		 */
746		nau8825_xtalk_prepare(nau8825);
747		msleep(280);
748		/* Trigger right headphone impedance detection */
749		nau8825->xtalk_state = NAU8825_XTALK_HPR_R2L;
750		nau8825_xtalk_imm_start(nau8825, 0x00d2);
751		break;
752	case NAU8825_XTALK_HPR_R2L:
753		/* In right headphone IMM state, read out right headphone
754		 * impedance measure result, and then start up left side.
755		 */
756		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
757			&nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
758		dev_dbg(nau8825->dev, "HPR_R2L imm: %x\n",
759			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
760		/* Disable then re-enable IMM mode to update */
761		nau8825_xtalk_imm_stop(nau8825);
762		/* Trigger left headphone impedance detection */
763		nau8825->xtalk_state = NAU8825_XTALK_HPL_R2L;
764		nau8825_xtalk_imm_start(nau8825, 0x00ff);
765		break;
766	case NAU8825_XTALK_HPL_R2L:
767		/* In left headphone IMM state, read out left headphone
768		 * impedance measure result, and delay some time to wait
769		 * detection sine wave output finish. Then, we can calculate
770		 * the cross talk suppresstion side tone according to the L/R
771		 * headphone imedance.
772		 */
773		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
774			&nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
775		dev_dbg(nau8825->dev, "HPL_R2L imm: %x\n",
776			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
777		nau8825_xtalk_imm_stop(nau8825);
778		msleep(150);
779		nau8825->xtalk_state = NAU8825_XTALK_IMM;
780		break;
781	case NAU8825_XTALK_IMM:
782		/* In impedance measure state, the orignal and cross talk
783		 * signal level vlues are ready. The side tone gain is deter-
784		 * mined with these signal level. After all, restore codec
785		 * configuration.
786		 */
787		sidetone = nau8825_xtalk_sidetone(
788			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L],
789			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
790		dev_dbg(nau8825->dev, "cross talk sidetone: %x\n", sidetone);
791		regmap_write(nau8825->regmap, NAU8825_REG_DAC_DGAIN_CTRL,
792					(sidetone << 8) | sidetone);
793		nau8825_xtalk_clean(nau8825, false);
794		nau8825->xtalk_state = NAU8825_XTALK_DONE;
795		break;
796	default:
797		break;
798	}
799}
800
801static void nau8825_xtalk_work(struct work_struct *work)
802{
803	struct nau8825 *nau8825 = container_of(
804		work, struct nau8825, xtalk_work);
805
806	nau8825_xtalk_measure(nau8825);
807	/* To determine the cross talk side tone gain when reach
808	 * the impedance measure state.
809	 */
810	if (nau8825->xtalk_state == NAU8825_XTALK_IMM)
811		nau8825_xtalk_measure(nau8825);
812
813	/* Delay jack report until cross talk detection process
814	 * completed. It can avoid application to do playback
815	 * preparation before cross talk detection is still working.
816	 * Meanwhile, the protection of the cross talk detection
817	 * is released.
818	 */
819	if (nau8825->xtalk_state == NAU8825_XTALK_DONE) {
820		snd_soc_jack_report(nau8825->jack, nau8825->xtalk_event,
821				nau8825->xtalk_event_mask);
822		nau8825_sema_release(nau8825);
823		nau8825->xtalk_protect = false;
824	}
825}
826
827static void nau8825_xtalk_cancel(struct nau8825 *nau8825)
828{
829	/* If the crosstalk is eanbled and the process is on going,
830	 * the driver forces to cancel the crosstalk task and
831	 * restores the configuration to original status.
832	 */
833	if (nau8825->xtalk_enable && nau8825->xtalk_state !=
834		NAU8825_XTALK_DONE) {
835		cancel_work_sync(&nau8825->xtalk_work);
836		nau8825_xtalk_clean(nau8825, true);
837	}
838	/* Reset parameters for cross talk suppression function */
839	nau8825_sema_reset(nau8825);
840	nau8825->xtalk_state = NAU8825_XTALK_DONE;
841	nau8825->xtalk_protect = false;
842}
843
844static bool nau8825_readable_reg(struct device *dev, unsigned int reg)
845{
846	switch (reg) {
847	case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV:
848	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
849	case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL:
850	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
851	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
852	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
853	case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R:
854	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
855	case NAU8825_REG_MISC_CTRL:
856	case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS:
857	case NAU8825_REG_BIAS_ADJ:
858	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
859	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
860	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
861	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS:
862		return true;
863	default:
864		return false;
865	}
866
867}
868
869static bool nau8825_writeable_reg(struct device *dev, unsigned int reg)
870{
871	switch (reg) {
872	case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV:
873	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
874	case NAU8825_REG_INTERRUPT_MASK:
875	case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL:
876	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
877	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
878	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
879	case NAU8825_REG_IMM_MODE_CTRL:
880	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
881	case NAU8825_REG_MISC_CTRL:
882	case NAU8825_REG_BIAS_ADJ:
883	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
884	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
885	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
886	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP:
887		return true;
888	default:
889		return false;
890	}
891}
892
893static bool nau8825_volatile_reg(struct device *dev, unsigned int reg)
894{
895	switch (reg) {
896	case NAU8825_REG_RESET:
897	case NAU8825_REG_IRQ_STATUS:
898	case NAU8825_REG_INT_CLR_KEY_STATUS:
899	case NAU8825_REG_IMM_RMS_L:
900	case NAU8825_REG_IMM_RMS_R:
901	case NAU8825_REG_I2C_DEVICE_ID:
902	case NAU8825_REG_SARDOUT_RAM_STATUS:
903	case NAU8825_REG_CHARGE_PUMP_INPUT_READ:
904	case NAU8825_REG_GENERAL_STATUS:
905	case NAU8825_REG_BIQ_CTRL ... NAU8825_REG_BIQ_COF10:
906		return true;
907	default:
908		return false;
909	}
910}
911
912static int nau8825_adc_event(struct snd_soc_dapm_widget *w,
913		struct snd_kcontrol *kcontrol, int event)
914{
915	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
916	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
917
918	switch (event) {
919	case SND_SOC_DAPM_POST_PMU:
920		msleep(125);
921		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
922			NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
923		break;
924	case SND_SOC_DAPM_POST_PMD:
925		if (!nau8825->irq)
926			regmap_update_bits(nau8825->regmap,
927				NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
928		break;
929	default:
930		return -EINVAL;
931	}
932
933	return 0;
934}
935
936static int nau8825_pump_event(struct snd_soc_dapm_widget *w,
937	struct snd_kcontrol *kcontrol, int event)
938{
939	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
940	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
941
942	switch (event) {
943	case SND_SOC_DAPM_POST_PMU:
944		/* Prevent startup click by letting charge pump to ramp up */
945		msleep(10);
946		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
947			NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW);
948		break;
949	case SND_SOC_DAPM_PRE_PMD:
950		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
951			NAU8825_JAMNODCLOW, 0);
952		break;
953	default:
954		return -EINVAL;
955	}
956
957	return 0;
958}
959
960static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w,
961	struct snd_kcontrol *kcontrol, int event)
962{
963	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
964	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
965
966	switch (event) {
967	case SND_SOC_DAPM_PRE_PMU:
968		/* Disables the TESTDAC to let DAC signal pass through. */
969		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
970			NAU8825_BIAS_TESTDAC_EN, 0);
971		break;
972	case SND_SOC_DAPM_POST_PMD:
973		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
974			NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
975		break;
976	default:
977		return -EINVAL;
978	}
979
980	return 0;
981}
982
983static int nau8825_biq_coeff_get(struct snd_kcontrol *kcontrol,
984				     struct snd_ctl_elem_value *ucontrol)
985{
986	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
987	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
988
989	if (!component->regmap)
990		return -EINVAL;
991
992	regmap_raw_read(component->regmap, NAU8825_REG_BIQ_COF1,
993		ucontrol->value.bytes.data, params->max);
994	return 0;
995}
996
997static int nau8825_biq_coeff_put(struct snd_kcontrol *kcontrol,
998				     struct snd_ctl_elem_value *ucontrol)
999{
1000	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
1001	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
1002	void *data;
1003
1004	if (!component->regmap)
1005		return -EINVAL;
1006
1007	data = kmemdup(ucontrol->value.bytes.data,
1008		params->max, GFP_KERNEL | GFP_DMA);
1009	if (!data)
1010		return -ENOMEM;
1011
1012	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1013		NAU8825_BIQ_WRT_EN, 0);
1014	regmap_raw_write(component->regmap, NAU8825_REG_BIQ_COF1,
1015		data, params->max);
1016	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1017		NAU8825_BIQ_WRT_EN, NAU8825_BIQ_WRT_EN);
1018
1019	kfree(data);
1020	return 0;
1021}
1022
1023static const char * const nau8825_biq_path[] = {
1024	"ADC", "DAC"
1025};
1026
1027static const struct soc_enum nau8825_biq_path_enum =
1028	SOC_ENUM_SINGLE(NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_PATH_SFT,
1029		ARRAY_SIZE(nau8825_biq_path), nau8825_biq_path);
1030
1031static const char * const nau8825_adc_decimation[] = {
1032	"32", "64", "128", "256"
1033};
1034
1035static const struct soc_enum nau8825_adc_decimation_enum =
1036	SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT,
1037		ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation);
1038
1039static const char * const nau8825_dac_oversampl[] = {
1040	"64", "256", "128", "", "32"
1041};
1042
1043static const struct soc_enum nau8825_dac_oversampl_enum =
1044	SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT,
1045		ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl);
1046
1047static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400);
1048static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0);
1049static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0);
1050static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600);
1051static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400);
1052
1053static const struct snd_kcontrol_new nau8825_controls[] = {
1054	SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1055		0, 0xff, 0, adc_vol_tlv),
1056	SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1057		12, 8, 0x0f, 0, sidetone_vol_tlv),
1058	SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL,
1059		6, 0, 0x3f, 1, dac_vol_tlv),
1060	SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL,
1061		8, 37, 0, fepga_gain_tlv),
1062	SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL,
1063		0, 8, 0xff, 0, crosstalk_vol_tlv),
1064
1065	SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum),
1066	SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum),
1067	/* programmable biquad filter */
1068	SOC_ENUM("BIQ Path Select", nau8825_biq_path_enum),
1069	SND_SOC_BYTES_EXT("BIQ Coefficients", 20,
1070		  nau8825_biq_coeff_get, nau8825_biq_coeff_put),
1071};
1072
1073/* DAC Mux 0x33[9] and 0x34[9] */
1074static const char * const nau8825_dac_src[] = {
1075	"DACL", "DACR",
1076};
1077
1078static SOC_ENUM_SINGLE_DECL(
1079	nau8825_dacl_enum, NAU8825_REG_DACL_CTRL,
1080	NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src);
1081
1082static SOC_ENUM_SINGLE_DECL(
1083	nau8825_dacr_enum, NAU8825_REG_DACR_CTRL,
1084	NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src);
1085
1086static const struct snd_kcontrol_new nau8825_dacl_mux =
1087	SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum);
1088
1089static const struct snd_kcontrol_new nau8825_dacr_mux =
1090	SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum);
1091
1092
1093static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = {
1094	SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2,
1095		15, 1),
1096
1097	SND_SOC_DAPM_INPUT("MIC"),
1098	SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0),
1099
1100	SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0,
1101		NULL, 0),
1102
1103	SND_SOC_DAPM_ADC_E("ADC", NULL, SND_SOC_NOPM, 0, 0,
1104		nau8825_adc_event, SND_SOC_DAPM_POST_PMU |
1105		SND_SOC_DAPM_POST_PMD),
1106	SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0),
1107	SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL,
1108		0),
1109
1110	/* ADC for button press detection. A dapm supply widget is used to
1111	 * prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON
1112	 * during suspend.
1113	 */
1114	SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL,
1115		NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0),
1116
1117	SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0),
1118	SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0),
1119	SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0),
1120	SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0),
1121
1122	SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL,
1123		NAU8825_ENABLE_DACR_SFT, 0),
1124	SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL,
1125		NAU8825_ENABLE_DACL_SFT, 0),
1126	SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0),
1127
1128	SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux),
1129	SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux),
1130
1131	SND_SOC_DAPM_PGA_S("HP amp L", 0,
1132		NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0),
1133	SND_SOC_DAPM_PGA_S("HP amp R", 0,
1134		NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0),
1135
1136	SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0,
1137		nau8825_pump_event, SND_SOC_DAPM_POST_PMU |
1138		SND_SOC_DAPM_PRE_PMD),
1139
1140	SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4,
1141		NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0),
1142	SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4,
1143		NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0),
1144	SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5,
1145		NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0),
1146	SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5,
1147		NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0),
1148	SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6,
1149		NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0),
1150	SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6,
1151		NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0),
1152
1153	SND_SOC_DAPM_PGA_S("Output DACL", 7,
1154		NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event,
1155		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1156	SND_SOC_DAPM_PGA_S("Output DACR", 7,
1157		NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event,
1158		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1159
1160	/* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */
1161	SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8,
1162		NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0),
1163	SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8,
1164		NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0),
1165
1166	/* High current HPOL/R boost driver */
1167	SND_SOC_DAPM_PGA_S("HP Boost Driver", 9,
1168		NAU8825_REG_BOOST, 9, 1, NULL, 0),
1169
1170	/* Class G operation control*/
1171	SND_SOC_DAPM_PGA_S("Class G", 10,
1172		NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0),
1173
1174	SND_SOC_DAPM_OUTPUT("HPOL"),
1175	SND_SOC_DAPM_OUTPUT("HPOR"),
1176};
1177
1178static const struct snd_soc_dapm_route nau8825_dapm_routes[] = {
1179	{"Frontend PGA", NULL, "MIC"},
1180	{"ADC", NULL, "Frontend PGA"},
1181	{"ADC", NULL, "ADC Clock"},
1182	{"ADC", NULL, "ADC Power"},
1183	{"AIFTX", NULL, "ADC"},
1184
1185	{"DDACL", NULL, "Playback"},
1186	{"DDACR", NULL, "Playback"},
1187	{"DDACL", NULL, "DDAC Clock"},
1188	{"DDACR", NULL, "DDAC Clock"},
1189	{"DACL Mux", "DACL", "DDACL"},
1190	{"DACL Mux", "DACR", "DDACR"},
1191	{"DACR Mux", "DACL", "DDACL"},
1192	{"DACR Mux", "DACR", "DDACR"},
1193	{"HP amp L", NULL, "DACL Mux"},
1194	{"HP amp R", NULL, "DACR Mux"},
1195	{"Charge Pump", NULL, "HP amp L"},
1196	{"Charge Pump", NULL, "HP amp R"},
1197	{"ADACL", NULL, "Charge Pump"},
1198	{"ADACR", NULL, "Charge Pump"},
1199	{"ADACL Clock", NULL, "ADACL"},
1200	{"ADACR Clock", NULL, "ADACR"},
1201	{"Output Driver L Stage 1", NULL, "ADACL Clock"},
1202	{"Output Driver R Stage 1", NULL, "ADACR Clock"},
1203	{"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"},
1204	{"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"},
1205	{"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"},
1206	{"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"},
1207	{"Output DACL", NULL, "Output Driver L Stage 3"},
1208	{"Output DACR", NULL, "Output Driver R Stage 3"},
1209	{"HPOL Pulldown", NULL, "Output DACL"},
1210	{"HPOR Pulldown", NULL, "Output DACR"},
1211	{"HP Boost Driver", NULL, "HPOL Pulldown"},
1212	{"HP Boost Driver", NULL, "HPOR Pulldown"},
1213	{"Class G", NULL, "HP Boost Driver"},
1214	{"HPOL", NULL, "Class G"},
1215	{"HPOR", NULL, "Class G"},
1216};
1217
1218static int nau8825_clock_check(struct nau8825 *nau8825,
1219	int stream, int rate, int osr)
1220{
1221	int osrate;
1222
1223	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
1224		if (osr >= ARRAY_SIZE(osr_dac_sel))
1225			return -EINVAL;
1226		osrate = osr_dac_sel[osr].osr;
1227	} else {
1228		if (osr >= ARRAY_SIZE(osr_adc_sel))
1229			return -EINVAL;
1230		osrate = osr_adc_sel[osr].osr;
1231	}
1232
1233	if (!osrate || rate * osr > CLK_DA_AD_MAX) {
1234		dev_err(nau8825->dev, "exceed the maximum frequency of CLK_ADC or CLK_DAC\n");
1235		return -EINVAL;
1236	}
1237
1238	return 0;
1239}
1240
1241static int nau8825_hw_params(struct snd_pcm_substream *substream,
1242				struct snd_pcm_hw_params *params,
1243				struct snd_soc_dai *dai)
1244{
1245	struct snd_soc_component *component = dai->component;
1246	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1247	unsigned int val_len = 0, osr, ctrl_val, bclk_fs, bclk_div;
1248
1249	nau8825_sema_acquire(nau8825, 3 * HZ);
1250
1251	/* CLK_DAC or CLK_ADC = OSR * FS
1252	 * DAC or ADC clock frequency is defined as Over Sampling Rate (OSR)
1253	 * multiplied by the audio sample rate (Fs). Note that the OSR and Fs
1254	 * values must be selected such that the maximum frequency is less
1255	 * than 6.144 MHz.
1256	 */
1257	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1258		regmap_read(nau8825->regmap, NAU8825_REG_DAC_CTRL1, &osr);
1259		osr &= NAU8825_DAC_OVERSAMPLE_MASK;
1260		if (nau8825_clock_check(nau8825, substream->stream,
1261			params_rate(params), osr)) {
1262			nau8825_sema_release(nau8825);
1263			return -EINVAL;
1264		}
1265		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1266			NAU8825_CLK_DAC_SRC_MASK,
1267			osr_dac_sel[osr].clk_src << NAU8825_CLK_DAC_SRC_SFT);
1268	} else {
1269		regmap_read(nau8825->regmap, NAU8825_REG_ADC_RATE, &osr);
1270		osr &= NAU8825_ADC_SYNC_DOWN_MASK;
1271		if (nau8825_clock_check(nau8825, substream->stream,
1272			params_rate(params), osr)) {
1273			nau8825_sema_release(nau8825);
1274			return -EINVAL;
1275		}
1276		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1277			NAU8825_CLK_ADC_SRC_MASK,
1278			osr_adc_sel[osr].clk_src << NAU8825_CLK_ADC_SRC_SFT);
1279	}
1280
1281	/* make BCLK and LRC divde configuration if the codec as master. */
1282	regmap_read(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, &ctrl_val);
1283	if (ctrl_val & NAU8825_I2S_MS_MASTER) {
1284		/* get the bclk and fs ratio */
1285		bclk_fs = snd_soc_params_to_bclk(params) / params_rate(params);
1286		if (bclk_fs <= 32)
1287			bclk_div = 2;
1288		else if (bclk_fs <= 64)
1289			bclk_div = 1;
1290		else if (bclk_fs <= 128)
1291			bclk_div = 0;
1292		else {
1293			nau8825_sema_release(nau8825);
1294			return -EINVAL;
1295		}
1296		regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1297			NAU8825_I2S_LRC_DIV_MASK | NAU8825_I2S_BLK_DIV_MASK,
1298			((bclk_div + 1) << NAU8825_I2S_LRC_DIV_SFT) | bclk_div);
1299	}
1300
1301	switch (params_width(params)) {
1302	case 16:
1303		val_len |= NAU8825_I2S_DL_16;
1304		break;
1305	case 20:
1306		val_len |= NAU8825_I2S_DL_20;
1307		break;
1308	case 24:
1309		val_len |= NAU8825_I2S_DL_24;
1310		break;
1311	case 32:
1312		val_len |= NAU8825_I2S_DL_32;
1313		break;
1314	default:
1315		nau8825_sema_release(nau8825);
1316		return -EINVAL;
1317	}
1318
1319	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1320		NAU8825_I2S_DL_MASK, val_len);
1321
1322	/* Release the semaphore. */
1323	nau8825_sema_release(nau8825);
1324
1325	return 0;
1326}
1327
1328static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
1329{
1330	struct snd_soc_component *component = codec_dai->component;
1331	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1332	unsigned int ctrl1_val = 0, ctrl2_val = 0;
1333
1334	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1335	case SND_SOC_DAIFMT_CBM_CFM:
1336		ctrl2_val |= NAU8825_I2S_MS_MASTER;
1337		break;
1338	case SND_SOC_DAIFMT_CBS_CFS:
1339		break;
1340	default:
1341		return -EINVAL;
1342	}
1343
1344	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1345	case SND_SOC_DAIFMT_NB_NF:
1346		break;
1347	case SND_SOC_DAIFMT_IB_NF:
1348		ctrl1_val |= NAU8825_I2S_BP_INV;
1349		break;
1350	default:
1351		return -EINVAL;
1352	}
1353
1354	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1355	case SND_SOC_DAIFMT_I2S:
1356		ctrl1_val |= NAU8825_I2S_DF_I2S;
1357		break;
1358	case SND_SOC_DAIFMT_LEFT_J:
1359		ctrl1_val |= NAU8825_I2S_DF_LEFT;
1360		break;
1361	case SND_SOC_DAIFMT_RIGHT_J:
1362		ctrl1_val |= NAU8825_I2S_DF_RIGTH;
1363		break;
1364	case SND_SOC_DAIFMT_DSP_A:
1365		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1366		break;
1367	case SND_SOC_DAIFMT_DSP_B:
1368		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1369		ctrl1_val |= NAU8825_I2S_PCMB_EN;
1370		break;
1371	default:
1372		return -EINVAL;
1373	}
1374
1375	nau8825_sema_acquire(nau8825, 3 * HZ);
1376
1377	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1378		NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK |
1379		NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK,
1380		ctrl1_val);
1381	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1382		NAU8825_I2S_MS_MASK, ctrl2_val);
1383
1384	/* Release the semaphore. */
1385	nau8825_sema_release(nau8825);
1386
1387	return 0;
1388}
1389
1390static const struct snd_soc_dai_ops nau8825_dai_ops = {
1391	.hw_params	= nau8825_hw_params,
1392	.set_fmt	= nau8825_set_dai_fmt,
1393};
1394
1395#define NAU8825_RATES	SNDRV_PCM_RATE_8000_192000
1396#define NAU8825_FORMATS	(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
1397			 | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
1398
1399static struct snd_soc_dai_driver nau8825_dai = {
1400	.name = "nau8825-hifi",
1401	.playback = {
1402		.stream_name	 = "Playback",
1403		.channels_min	 = 1,
1404		.channels_max	 = 2,
1405		.rates		 = NAU8825_RATES,
1406		.formats	 = NAU8825_FORMATS,
1407	},
1408	.capture = {
1409		.stream_name	 = "Capture",
1410		.channels_min	 = 1,
1411		.channels_max	 = 1,
1412		.rates		 = NAU8825_RATES,
1413		.formats	 = NAU8825_FORMATS,
1414	},
1415	.ops = &nau8825_dai_ops,
1416};
1417
1418/**
1419 * nau8825_enable_jack_detect - Specify a jack for event reporting
1420 *
1421 * @component:  component to register the jack with
1422 * @jack: jack to use to report headset and button events on
1423 *
1424 * After this function has been called the headset insert/remove and button
1425 * events will be routed to the given jack.  Jack can be null to stop
1426 * reporting.
1427 */
1428int nau8825_enable_jack_detect(struct snd_soc_component *component,
1429				struct snd_soc_jack *jack)
1430{
1431	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1432	struct regmap *regmap = nau8825->regmap;
1433
1434	nau8825->jack = jack;
1435
1436	/* Ground HP Outputs[1:0], needed for headset auto detection
1437	 * Enable Automatic Mic/Gnd switching reading on insert interrupt[6]
1438	 */
1439	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1440		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
1441		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
1442
1443	return 0;
1444}
1445EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect);
1446
1447
1448static bool nau8825_is_jack_inserted(struct regmap *regmap)
1449{
1450	bool active_high, is_high;
1451	int status, jkdet;
1452
1453	regmap_read(regmap, NAU8825_REG_JACK_DET_CTRL, &jkdet);
1454	active_high = jkdet & NAU8825_JACK_POLARITY;
1455	regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status);
1456	is_high = status & NAU8825_GPIO2JD1;
1457	/* return jack connection status according to jack insertion logic
1458	 * active high or active low.
1459	 */
1460	return active_high == is_high;
1461}
1462
1463static void nau8825_restart_jack_detection(struct regmap *regmap)
1464{
1465	/* this will restart the entire jack detection process including MIC/GND
1466	 * switching and create interrupts. We have to go from 0 to 1 and back
1467	 * to 0 to restart.
1468	 */
1469	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1470		NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART);
1471	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1472		NAU8825_JACK_DET_RESTART, 0);
1473}
1474
1475static void nau8825_int_status_clear_all(struct regmap *regmap)
1476{
1477	int active_irq, clear_irq, i;
1478
1479	/* Reset the intrruption status from rightmost bit if the corres-
1480	 * ponding irq event occurs.
1481	 */
1482	regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq);
1483	for (i = 0; i < NAU8825_REG_DATA_LEN; i++) {
1484		clear_irq = (0x1 << i);
1485		if (active_irq & clear_irq)
1486			regmap_write(regmap,
1487				NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1488	}
1489}
1490
1491static void nau8825_eject_jack(struct nau8825 *nau8825)
1492{
1493	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1494	struct regmap *regmap = nau8825->regmap;
1495
1496	/* Force to cancel the cross talk detection process */
1497	nau8825_xtalk_cancel(nau8825);
1498
1499	snd_soc_dapm_disable_pin(dapm, "SAR");
1500	snd_soc_dapm_disable_pin(dapm, "MICBIAS");
1501	/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
1502	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1503		NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
1504	/* ground HPL/HPR, MICGRND1/2 */
1505	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf);
1506
1507	snd_soc_dapm_sync(dapm);
1508
1509	/* Clear all interruption status */
1510	nau8825_int_status_clear_all(regmap);
1511
1512	/* Enable the insertion interruption, disable the ejection inter-
1513	 * ruption, and then bypass de-bounce circuit.
1514	 */
1515	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
1516		NAU8825_IRQ_EJECT_DIS | NAU8825_IRQ_INSERT_DIS,
1517		NAU8825_IRQ_EJECT_DIS);
1518	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1519		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1520		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_INSERT_EN,
1521		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1522		NAU8825_IRQ_HEADSET_COMPLETE_EN);
1523	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1524		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
1525
1526	/* Disable ADC needed for interruptions at audo mode */
1527	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1528		NAU8825_ENABLE_ADC, 0);
1529
1530	/* Close clock for jack type detection at manual mode */
1531	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
1532}
1533
1534/* Enable audo mode interruptions with internal clock. */
1535static void nau8825_setup_auto_irq(struct nau8825 *nau8825)
1536{
1537	struct regmap *regmap = nau8825->regmap;
1538
1539	/* Enable headset jack type detection complete interruption and
1540	 * jack ejection interruption.
1541	 */
1542	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1543		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0);
1544
1545	/* Enable internal VCO needed for interruptions */
1546	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
1547
1548	/* Enable ADC needed for interruptions */
1549	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1550		NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
1551
1552	/* Chip needs one FSCLK cycle in order to generate interruptions,
1553	 * as we cannot guarantee one will be provided by the system. Turning
1554	 * master mode on then off enables us to generate that FSCLK cycle
1555	 * with a minimum of contention on the clock bus.
1556	 */
1557	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1558		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER);
1559	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1560		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE);
1561
1562	/* Not bypass de-bounce circuit */
1563	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1564		NAU8825_JACK_DET_DB_BYPASS, 0);
1565
1566	/* Unmask all interruptions */
1567	regmap_write(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0);
1568
1569	/* Restart the jack detection process at auto mode */
1570	nau8825_restart_jack_detection(regmap);
1571}
1572
1573static int nau8825_button_decode(int value)
1574{
1575	int buttons = 0;
1576
1577	/* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */
1578	if (value & BIT(0))
1579		buttons |= SND_JACK_BTN_0;
1580	if (value & BIT(1))
1581		buttons |= SND_JACK_BTN_1;
1582	if (value & BIT(2))
1583		buttons |= SND_JACK_BTN_2;
1584	if (value & BIT(3))
1585		buttons |= SND_JACK_BTN_3;
1586	if (value & BIT(4))
1587		buttons |= SND_JACK_BTN_4;
1588	if (value & BIT(5))
1589		buttons |= SND_JACK_BTN_5;
1590
1591	return buttons;
1592}
1593
1594static int nau8825_jack_insert(struct nau8825 *nau8825)
1595{
1596	struct regmap *regmap = nau8825->regmap;
1597	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1598	int jack_status_reg, mic_detected;
1599	int type = 0;
1600
1601	regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg);
1602	mic_detected = (jack_status_reg >> 10) & 3;
1603	/* The JKSLV and JKR2 all detected in high impedance headset */
1604	if (mic_detected == 0x3)
1605		nau8825->high_imped = true;
1606	else
1607		nau8825->high_imped = false;
1608
1609	switch (mic_detected) {
1610	case 0:
1611		/* no mic */
1612		type = SND_JACK_HEADPHONE;
1613		break;
1614	case 1:
1615		dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n");
1616		type = SND_JACK_HEADSET;
1617
1618		/* Unground MICGND1 */
1619		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1620			1 << 2);
1621		/* Attach 2kOhm Resistor from MICBIAS to MICGND1 */
1622		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1623			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1624			NAU8825_MICBIAS_JKR2);
1625		/* Attach SARADC to MICGND1 */
1626		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1627			NAU8825_SAR_INPUT_MASK,
1628			NAU8825_SAR_INPUT_JKR2);
1629
1630		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1631		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1632		snd_soc_dapm_sync(dapm);
1633		break;
1634	case 2:
1635		dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n");
1636		type = SND_JACK_HEADSET;
1637
1638		/* Unground MICGND2 */
1639		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1640			2 << 2);
1641		/* Attach 2kOhm Resistor from MICBIAS to MICGND2 */
1642		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1643			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1644			NAU8825_MICBIAS_JKSLV);
1645		/* Attach SARADC to MICGND2 */
1646		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1647			NAU8825_SAR_INPUT_MASK,
1648			NAU8825_SAR_INPUT_JKSLV);
1649
1650		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1651		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1652		snd_soc_dapm_sync(dapm);
1653		break;
1654	case 3:
1655		/* detect error case */
1656		dev_err(nau8825->dev, "detection error; disable mic function\n");
1657		type = SND_JACK_HEADPHONE;
1658		break;
1659	}
1660
1661	/* Leaving HPOL/R grounded after jack insert by default. They will be
1662	 * ungrounded as part of the widget power up sequence at the beginning
1663	 * of playback to reduce pop.
1664	 */
1665	return type;
1666}
1667
1668#define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \
1669		SND_JACK_BTN_2 | SND_JACK_BTN_3)
1670
1671static irqreturn_t nau8825_interrupt(int irq, void *data)
1672{
1673	struct nau8825 *nau8825 = (struct nau8825 *)data;
1674	struct regmap *regmap = nau8825->regmap;
1675	int active_irq, clear_irq = 0, event = 0, event_mask = 0;
1676
1677	if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) {
1678		dev_err(nau8825->dev, "failed to read irq status\n");
1679		return IRQ_NONE;
1680	}
1681
1682	if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) ==
1683		NAU8825_JACK_EJECTION_DETECTED) {
1684
1685		nau8825_eject_jack(nau8825);
1686		event_mask |= SND_JACK_HEADSET;
1687		clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK;
1688	} else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) {
1689		int key_status;
1690
1691		regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS,
1692			&key_status);
1693
1694		/* upper 8 bits of the register are for short pressed keys,
1695		 * lower 8 bits - for long pressed buttons
1696		 */
1697		nau8825->button_pressed = nau8825_button_decode(
1698			key_status >> 8);
1699
1700		event |= nau8825->button_pressed;
1701		event_mask |= NAU8825_BUTTONS;
1702		clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ;
1703	} else if (active_irq & NAU8825_KEY_RELEASE_IRQ) {
1704		event_mask = NAU8825_BUTTONS;
1705		clear_irq = NAU8825_KEY_RELEASE_IRQ;
1706	} else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) {
1707		if (nau8825_is_jack_inserted(regmap)) {
1708			event |= nau8825_jack_insert(nau8825);
1709			if (nau8825->xtalk_enable && !nau8825->high_imped) {
1710				/* Apply the cross talk suppression in the
1711				 * headset without high impedance.
1712				 */
1713				if (!nau8825->xtalk_protect) {
1714					/* Raise protection for cross talk de-
1715					 * tection if no protection before.
1716					 * The driver has to cancel the pro-
1717					 * cess and restore changes if process
1718					 * is ongoing when ejection.
1719					 */
1720					int ret;
1721					nau8825->xtalk_protect = true;
1722					ret = nau8825_sema_acquire(nau8825, 0);
1723					if (ret)
1724						nau8825->xtalk_protect = false;
1725				}
1726				/* Startup cross talk detection process */
1727				if (nau8825->xtalk_protect) {
1728					nau8825->xtalk_state =
1729						NAU8825_XTALK_PREPARE;
1730					schedule_work(&nau8825->xtalk_work);
1731				}
1732			} else {
1733				/* The cross talk suppression shouldn't apply
1734				 * in the headset with high impedance. Thus,
1735				 * relieve the protection raised before.
1736				 */
1737				if (nau8825->xtalk_protect) {
1738					nau8825_sema_release(nau8825);
1739					nau8825->xtalk_protect = false;
1740				}
1741			}
1742		} else {
1743			dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n");
1744			nau8825_eject_jack(nau8825);
1745		}
1746
1747		event_mask |= SND_JACK_HEADSET;
1748		clear_irq = NAU8825_HEADSET_COMPLETION_IRQ;
1749		/* Record the interruption report event for driver to report
1750		 * the event later. The jack report will delay until cross
1751		 * talk detection process is done.
1752		 */
1753		if (nau8825->xtalk_state == NAU8825_XTALK_PREPARE) {
1754			nau8825->xtalk_event = event;
1755			nau8825->xtalk_event_mask = event_mask;
1756		}
1757	} else if (active_irq & NAU8825_IMPEDANCE_MEAS_IRQ) {
1758		/* crosstalk detection enable and process on going */
1759		if (nau8825->xtalk_enable && nau8825->xtalk_protect)
1760			schedule_work(&nau8825->xtalk_work);
1761		clear_irq = NAU8825_IMPEDANCE_MEAS_IRQ;
1762	} else if ((active_irq & NAU8825_JACK_INSERTION_IRQ_MASK) ==
1763		NAU8825_JACK_INSERTION_DETECTED) {
1764		/* One more step to check GPIO status directly. Thus, the
1765		 * driver can confirm the real insertion interruption because
1766		 * the intrruption at manual mode has bypassed debounce
1767		 * circuit which can get rid of unstable status.
1768		 */
1769		if (nau8825_is_jack_inserted(regmap)) {
1770			/* Turn off insertion interruption at manual mode */
1771			regmap_update_bits(regmap,
1772				NAU8825_REG_INTERRUPT_DIS_CTRL,
1773				NAU8825_IRQ_INSERT_DIS,
1774				NAU8825_IRQ_INSERT_DIS);
1775			regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1776				NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_INSERT_EN);
1777			/* Enable interruption for jack type detection at audo
1778			 * mode which can detect microphone and jack type.
1779			 */
1780			nau8825_setup_auto_irq(nau8825);
1781		}
1782	}
1783
1784	if (!clear_irq)
1785		clear_irq = active_irq;
1786	/* clears the rightmost interruption */
1787	regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1788
1789	/* Delay jack report until cross talk detection is done. It can avoid
1790	 * application to do playback preparation when cross talk detection
1791	 * process is still working. Otherwise, the resource like clock and
1792	 * power will be issued by them at the same time and conflict happens.
1793	 */
1794	if (event_mask && nau8825->xtalk_state == NAU8825_XTALK_DONE)
1795		snd_soc_jack_report(nau8825->jack, event, event_mask);
1796
1797	return IRQ_HANDLED;
1798}
1799
1800static void nau8825_setup_buttons(struct nau8825 *nau8825)
1801{
1802	struct regmap *regmap = nau8825->regmap;
1803
1804	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1805		NAU8825_SAR_TRACKING_GAIN_MASK,
1806		nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT);
1807	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1808		NAU8825_SAR_COMPARE_TIME_MASK,
1809		nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT);
1810	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1811		NAU8825_SAR_SAMPLING_TIME_MASK,
1812		nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT);
1813
1814	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1815		NAU8825_KEYDET_LEVELS_NR_MASK,
1816		(nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT);
1817	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1818		NAU8825_KEYDET_HYSTERESIS_MASK,
1819		nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT);
1820	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1821		NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK,
1822		nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT);
1823
1824	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1,
1825		(nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]);
1826	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2,
1827		(nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]);
1828	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3,
1829		(nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]);
1830	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4,
1831		(nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]);
1832
1833	/* Enable short press and release interruptions */
1834	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1835		NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN,
1836		0);
1837}
1838
1839static void nau8825_init_regs(struct nau8825 *nau8825)
1840{
1841	struct regmap *regmap = nau8825->regmap;
1842
1843	/* Latch IIC LSB value */
1844	regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001);
1845	/* Enable Bias/Vmid */
1846	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1847		NAU8825_BIAS_VMID, NAU8825_BIAS_VMID);
1848	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
1849		NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN);
1850
1851	/* VMID Tieoff */
1852	regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ,
1853		NAU8825_BIAS_VMID_SEL_MASK,
1854		nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT);
1855	/* Disable Boost Driver, Automatic Short circuit protection enable */
1856	regmap_update_bits(regmap, NAU8825_REG_BOOST,
1857		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1858		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN,
1859		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1860		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN);
1861
1862	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1863		NAU8825_JKDET_OUTPUT_EN,
1864		nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN);
1865	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1866		NAU8825_JKDET_PULL_EN,
1867		nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN);
1868	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1869		NAU8825_JKDET_PULL_UP,
1870		nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0);
1871	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1872		NAU8825_JACK_POLARITY,
1873		/* jkdet_polarity - 1  is for active-low */
1874		nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY);
1875
1876	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1877		NAU8825_JACK_INSERT_DEBOUNCE_MASK,
1878		nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT);
1879	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1880		NAU8825_JACK_EJECT_DEBOUNCE_MASK,
1881		nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT);
1882
1883	/* Pull up IRQ pin */
1884	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1885		NAU8825_IRQ_PIN_PULLUP | NAU8825_IRQ_PIN_PULL_EN,
1886		NAU8825_IRQ_PIN_PULLUP | NAU8825_IRQ_PIN_PULL_EN);
1887	/* Mask unneeded IRQs: 1 - disable, 0 - enable */
1888	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff);
1889
1890	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1891		NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage);
1892
1893	if (nau8825->sar_threshold_num)
1894		nau8825_setup_buttons(nau8825);
1895
1896	/* Default oversampling/decimations settings are unusable
1897	 * (audible hiss). Set it to something better.
1898	 */
1899	regmap_update_bits(regmap, NAU8825_REG_ADC_RATE,
1900		NAU8825_ADC_SYNC_DOWN_MASK | NAU8825_ADC_SINC4_EN,
1901		NAU8825_ADC_SYNC_DOWN_64);
1902	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1903		NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_64);
1904	/* Disable DACR/L power */
1905	regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP,
1906		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
1907		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
1908	/* Enable TESTDAC. This sets the analog DAC inputs to a '0' input
1909	 * signal to avoid any glitches due to power up transients in both
1910	 * the analog and digital DAC circuit.
1911	 */
1912	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1913		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
1914	/* CICCLP off */
1915	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1916		NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF);
1917
1918	/* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */
1919	regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2,
1920		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1921		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB,
1922		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1923		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB);
1924	/* Class G timer 64ms */
1925	regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL,
1926		NAU8825_CLASSG_TIMER_MASK,
1927		0x20 << NAU8825_CLASSG_TIMER_SFT);
1928	/* DAC clock delay 2ns, VREF */
1929	regmap_update_bits(regmap, NAU8825_REG_RDAC,
1930		NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK,
1931		(0x2 << NAU8825_RDAC_CLK_DELAY_SFT) |
1932		(0x3 << NAU8825_RDAC_VREF_SFT));
1933	/* Config L/R channel */
1934	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
1935		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_L);
1936	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
1937		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_R);
1938	/* Disable short Frame Sync detection logic */
1939	regmap_update_bits(regmap, NAU8825_REG_LEFT_TIME_SLOT,
1940		NAU8825_DIS_FS_SHORT_DET, NAU8825_DIS_FS_SHORT_DET);
1941}
1942
1943static const struct regmap_config nau8825_regmap_config = {
1944	.val_bits = NAU8825_REG_DATA_LEN,
1945	.reg_bits = NAU8825_REG_ADDR_LEN,
1946
1947	.max_register = NAU8825_REG_MAX,
1948	.readable_reg = nau8825_readable_reg,
1949	.writeable_reg = nau8825_writeable_reg,
1950	.volatile_reg = nau8825_volatile_reg,
1951
1952	.cache_type = REGCACHE_RBTREE,
1953	.reg_defaults = nau8825_reg_defaults,
1954	.num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults),
1955};
1956
1957static int nau8825_component_probe(struct snd_soc_component *component)
1958{
1959	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1960	struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
1961
1962	nau8825->dapm = dapm;
1963
1964	return 0;
1965}
1966
1967static void nau8825_component_remove(struct snd_soc_component *component)
1968{
1969	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1970
1971	/* Cancel and reset cross tak suppresstion detection funciton */
1972	nau8825_xtalk_cancel(nau8825);
1973}
1974
1975/**
1976 * nau8825_calc_fll_param - Calculate FLL parameters.
1977 * @fll_in: external clock provided to codec.
1978 * @fs: sampling rate.
1979 * @fll_param: Pointer to structure of FLL parameters.
1980 *
1981 * Calculate FLL parameters to configure codec.
1982 *
1983 * Returns 0 for success or negative error code.
1984 */
1985static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs,
1986		struct nau8825_fll *fll_param)
1987{
1988	u64 fvco, fvco_max;
1989	unsigned int fref, i, fvco_sel;
1990
1991	/* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing
1992	 * freq_in by 1, 2, 4, or 8 using FLL pre-scalar.
1993	 * FREF = freq_in / NAU8825_FLL_REF_DIV_MASK
1994	 */
1995	for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) {
1996		fref = fll_in / fll_pre_scalar[i].param;
1997		if (fref <= NAU_FREF_MAX)
1998			break;
1999	}
2000	if (i == ARRAY_SIZE(fll_pre_scalar))
2001		return -EINVAL;
2002	fll_param->clk_ref_div = fll_pre_scalar[i].val;
2003
2004	/* Choose the FLL ratio based on FREF */
2005	for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) {
2006		if (fref >= fll_ratio[i].param)
2007			break;
2008	}
2009	if (i == ARRAY_SIZE(fll_ratio))
2010		return -EINVAL;
2011	fll_param->ratio = fll_ratio[i].val;
2012
2013	/* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs.
2014	 * FDCO must be within the 90MHz - 124MHz or the FFL cannot be
2015	 * guaranteed across the full range of operation.
2016	 * FDCO = freq_out * 2 * mclk_src_scaling
2017	 */
2018	fvco_max = 0;
2019	fvco_sel = ARRAY_SIZE(mclk_src_scaling);
2020	for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) {
2021		fvco = 256ULL * fs * 2 * mclk_src_scaling[i].param;
2022		if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX &&
2023			fvco_max < fvco) {
2024			fvco_max = fvco;
2025			fvco_sel = i;
2026		}
2027	}
2028	if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel)
2029		return -EINVAL;
2030	fll_param->mclk_src = mclk_src_scaling[fvco_sel].val;
2031
2032	/* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional
2033	 * input based on FDCO, FREF and FLL ratio.
2034	 */
2035	fvco = div_u64(fvco_max << 16, fref * fll_param->ratio);
2036	fll_param->fll_int = (fvco >> 16) & 0x3FF;
2037	fll_param->fll_frac = fvco & 0xFFFF;
2038	return 0;
2039}
2040
2041static void nau8825_fll_apply(struct nau8825 *nau8825,
2042		struct nau8825_fll *fll_param)
2043{
2044	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2045		NAU8825_CLK_SRC_MASK | NAU8825_CLK_MCLK_SRC_MASK,
2046		NAU8825_CLK_SRC_MCLK | fll_param->mclk_src);
2047	/* Make DSP operate at high speed for better performance. */
2048	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
2049		NAU8825_FLL_RATIO_MASK | NAU8825_ICTRL_LATCH_MASK,
2050		fll_param->ratio | (0x6 << NAU8825_ICTRL_LATCH_SFT));
2051	/* FLL 16-bit fractional input */
2052	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac);
2053	/* FLL 10-bit integer input */
2054	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3,
2055			NAU8825_FLL_INTEGER_MASK, fll_param->fll_int);
2056	/* FLL pre-scaler */
2057	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4,
2058			NAU8825_FLL_REF_DIV_MASK,
2059			fll_param->clk_ref_div << NAU8825_FLL_REF_DIV_SFT);
2060	/* select divided VCO input */
2061	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2062		NAU8825_FLL_CLK_SW_MASK, NAU8825_FLL_CLK_SW_REF);
2063	/* Disable free-running mode */
2064	regmap_update_bits(nau8825->regmap,
2065		NAU8825_REG_FLL6, NAU8825_DCO_EN, 0);
2066	if (fll_param->fll_frac) {
2067		/* set FLL loop filter enable and cutoff frequency at 500Khz */
2068		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2069			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2070			NAU8825_FLL_FTR_SW_MASK,
2071			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2072			NAU8825_FLL_FTR_SW_FILTER);
2073		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2074			NAU8825_SDM_EN | NAU8825_CUTOFF500,
2075			NAU8825_SDM_EN | NAU8825_CUTOFF500);
2076	} else {
2077		/* disable FLL loop filter and cutoff frequency */
2078		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2079			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2080			NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_FTR_SW_ACCU);
2081		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2082			NAU8825_SDM_EN | NAU8825_CUTOFF500, 0);
2083	}
2084}
2085
2086/* freq_out must be 256*Fs in order to achieve the best performance */
2087static int nau8825_set_pll(struct snd_soc_component *component, int pll_id, int source,
2088		unsigned int freq_in, unsigned int freq_out)
2089{
2090	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2091	struct nau8825_fll fll_param;
2092	int ret, fs;
2093
2094	fs = freq_out / 256;
2095	ret = nau8825_calc_fll_param(freq_in, fs, &fll_param);
2096	if (ret < 0) {
2097		dev_err(component->dev, "Unsupported input clock %d\n", freq_in);
2098		return ret;
2099	}
2100	dev_dbg(component->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n",
2101		fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac,
2102		fll_param.fll_int, fll_param.clk_ref_div);
2103
2104	nau8825_fll_apply(nau8825, &fll_param);
2105	mdelay(2);
2106	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2107			NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2108	return 0;
2109}
2110
2111static int nau8825_mclk_prepare(struct nau8825 *nau8825, unsigned int freq)
2112{
2113	int ret = 0;
2114
2115	nau8825->mclk = devm_clk_get(nau8825->dev, "mclk");
2116	if (IS_ERR(nau8825->mclk)) {
2117		dev_info(nau8825->dev, "No 'mclk' clock found, assume MCLK is managed externally");
2118		return 0;
2119	}
2120
2121	if (!nau8825->mclk_freq) {
2122		ret = clk_prepare_enable(nau8825->mclk);
2123		if (ret) {
2124			dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
2125			return ret;
2126		}
2127	}
2128
2129	if (nau8825->mclk_freq != freq) {
2130		freq = clk_round_rate(nau8825->mclk, freq);
2131		ret = clk_set_rate(nau8825->mclk, freq);
2132		if (ret) {
2133			dev_err(nau8825->dev, "Unable to set mclk rate\n");
2134			return ret;
2135		}
2136		nau8825->mclk_freq = freq;
2137	}
2138
2139	return 0;
2140}
2141
2142static void nau8825_configure_mclk_as_sysclk(struct regmap *regmap)
2143{
2144	regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2145		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK);
2146	regmap_update_bits(regmap, NAU8825_REG_FLL6,
2147		NAU8825_DCO_EN, 0);
2148	/* Make DSP operate as default setting for power saving. */
2149	regmap_update_bits(regmap, NAU8825_REG_FLL1,
2150		NAU8825_ICTRL_LATCH_MASK, 0);
2151}
2152
2153static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id,
2154	unsigned int freq)
2155{
2156	struct regmap *regmap = nau8825->regmap;
2157	int ret;
2158
2159	switch (clk_id) {
2160	case NAU8825_CLK_DIS:
2161		/* Clock provided externally and disable internal VCO clock */
2162		nau8825_configure_mclk_as_sysclk(regmap);
2163		if (nau8825->mclk_freq) {
2164			clk_disable_unprepare(nau8825->mclk);
2165			nau8825->mclk_freq = 0;
2166		}
2167
2168		break;
2169	case NAU8825_CLK_MCLK:
2170		/* Acquire the semaphore to synchronize the playback and
2171		 * interrupt handler. In order to avoid the playback inter-
2172		 * fered by cross talk process, the driver make the playback
2173		 * preparation halted until cross talk process finish.
2174		 */
2175		nau8825_sema_acquire(nau8825, 3 * HZ);
2176		nau8825_configure_mclk_as_sysclk(regmap);
2177		/* MCLK not changed by clock tree */
2178		regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2179			NAU8825_CLK_MCLK_SRC_MASK, 0);
2180		/* Release the semaphore. */
2181		nau8825_sema_release(nau8825);
2182
2183		ret = nau8825_mclk_prepare(nau8825, freq);
2184		if (ret)
2185			return ret;
2186
2187		break;
2188	case NAU8825_CLK_INTERNAL:
2189		if (nau8825_is_jack_inserted(nau8825->regmap)) {
2190			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2191				NAU8825_DCO_EN, NAU8825_DCO_EN);
2192			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2193				NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2194			/* Decrease the VCO frequency and make DSP operate
2195			 * as default setting for power saving.
2196			 */
2197			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2198				NAU8825_CLK_MCLK_SRC_MASK, 0xf);
2199			regmap_update_bits(regmap, NAU8825_REG_FLL1,
2200				NAU8825_ICTRL_LATCH_MASK |
2201				NAU8825_FLL_RATIO_MASK, 0x10);
2202			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2203				NAU8825_SDM_EN, NAU8825_SDM_EN);
2204		} else {
2205			/* The clock turns off intentionally for power saving
2206			 * when no headset connected.
2207			 */
2208			nau8825_configure_mclk_as_sysclk(regmap);
2209			dev_warn(nau8825->dev, "Disable clock for power saving when no headset connected\n");
2210		}
2211		if (nau8825->mclk_freq) {
2212			clk_disable_unprepare(nau8825->mclk);
2213			nau8825->mclk_freq = 0;
2214		}
2215
2216		break;
2217	case NAU8825_CLK_FLL_MCLK:
2218		/* Acquire the semaphore to synchronize the playback and
2219		 * interrupt handler. In order to avoid the playback inter-
2220		 * fered by cross talk process, the driver make the playback
2221		 * preparation halted until cross talk process finish.
2222		 */
2223		nau8825_sema_acquire(nau8825, 3 * HZ);
2224		/* Higher FLL reference input frequency can only set lower
2225		 * gain error, such as 0000 for input reference from MCLK
2226		 * 12.288Mhz.
2227		 */
2228		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2229			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2230			NAU8825_FLL_CLK_SRC_MCLK | 0);
2231		/* Release the semaphore. */
2232		nau8825_sema_release(nau8825);
2233
2234		ret = nau8825_mclk_prepare(nau8825, freq);
2235		if (ret)
2236			return ret;
2237
2238		break;
2239	case NAU8825_CLK_FLL_BLK:
2240		/* Acquire the semaphore to synchronize the playback and
2241		 * interrupt handler. In order to avoid the playback inter-
2242		 * fered by cross talk process, the driver make the playback
2243		 * preparation halted until cross talk process finish.
2244		 */
2245		nau8825_sema_acquire(nau8825, 3 * HZ);
2246		/* If FLL reference input is from low frequency source,
2247		 * higher error gain can apply such as 0xf which has
2248		 * the most sensitive gain error correction threshold,
2249		 * Therefore, FLL has the most accurate DCO to
2250		 * target frequency.
2251		 */
2252		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2253			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2254			NAU8825_FLL_CLK_SRC_BLK |
2255			(0xf << NAU8825_GAIN_ERR_SFT));
2256		/* Release the semaphore. */
2257		nau8825_sema_release(nau8825);
2258
2259		if (nau8825->mclk_freq) {
2260			clk_disable_unprepare(nau8825->mclk);
2261			nau8825->mclk_freq = 0;
2262		}
2263
2264		break;
2265	case NAU8825_CLK_FLL_FS:
2266		/* Acquire the semaphore to synchronize the playback and
2267		 * interrupt handler. In order to avoid the playback inter-
2268		 * fered by cross talk process, the driver make the playback
2269		 * preparation halted until cross talk process finish.
2270		 */
2271		nau8825_sema_acquire(nau8825, 3 * HZ);
2272		/* If FLL reference input is from low frequency source,
2273		 * higher error gain can apply such as 0xf which has
2274		 * the most sensitive gain error correction threshold,
2275		 * Therefore, FLL has the most accurate DCO to
2276		 * target frequency.
2277		 */
2278		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2279			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2280			NAU8825_FLL_CLK_SRC_FS |
2281			(0xf << NAU8825_GAIN_ERR_SFT));
2282		/* Release the semaphore. */
2283		nau8825_sema_release(nau8825);
2284
2285		if (nau8825->mclk_freq) {
2286			clk_disable_unprepare(nau8825->mclk);
2287			nau8825->mclk_freq = 0;
2288		}
2289
2290		break;
2291	default:
2292		dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id);
2293		return -EINVAL;
2294	}
2295
2296	dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq,
2297		clk_id);
2298	return 0;
2299}
2300
2301static int nau8825_set_sysclk(struct snd_soc_component *component, int clk_id,
2302	int source, unsigned int freq, int dir)
2303{
2304	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2305
2306	return nau8825_configure_sysclk(nau8825, clk_id, freq);
2307}
2308
2309static int nau8825_resume_setup(struct nau8825 *nau8825)
2310{
2311	struct regmap *regmap = nau8825->regmap;
2312
2313	/* Close clock when jack type detection at manual mode */
2314	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
2315
2316	/* Clear all interruption status */
2317	nau8825_int_status_clear_all(regmap);
2318
2319	/* Enable both insertion and ejection interruptions, and then
2320	 * bypass de-bounce circuit.
2321	 */
2322	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
2323		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN |
2324		NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_INSERT_EN,
2325		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN);
2326	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
2327		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
2328	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
2329		NAU8825_IRQ_INSERT_DIS | NAU8825_IRQ_EJECT_DIS, 0);
2330
2331	return 0;
2332}
2333
2334static int nau8825_set_bias_level(struct snd_soc_component *component,
2335				   enum snd_soc_bias_level level)
2336{
2337	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2338	int ret;
2339
2340	switch (level) {
2341	case SND_SOC_BIAS_ON:
2342		break;
2343
2344	case SND_SOC_BIAS_PREPARE:
2345		break;
2346
2347	case SND_SOC_BIAS_STANDBY:
2348		if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
2349			if (nau8825->mclk_freq) {
2350				ret = clk_prepare_enable(nau8825->mclk);
2351				if (ret) {
2352					dev_err(nau8825->dev, "Unable to prepare component mclk\n");
2353					return ret;
2354				}
2355			}
2356			/* Setup codec configuration after resume */
2357			nau8825_resume_setup(nau8825);
2358		}
2359		break;
2360
2361	case SND_SOC_BIAS_OFF:
2362		/* Reset the configuration of jack type for detection */
2363		/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
2364		regmap_update_bits(nau8825->regmap, NAU8825_REG_MIC_BIAS,
2365			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
2366		/* ground HPL/HPR, MICGRND1/2 */
2367		regmap_update_bits(nau8825->regmap,
2368			NAU8825_REG_HSD_CTRL, 0xf, 0xf);
2369		/* Cancel and reset cross talk detection funciton */
2370		nau8825_xtalk_cancel(nau8825);
2371		/* Turn off all interruptions before system shutdown. Keep the
2372		 * interruption quiet before resume setup completes.
2373		 */
2374		regmap_write(nau8825->regmap,
2375			NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff);
2376		/* Disable ADC needed for interruptions at audo mode */
2377		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
2378			NAU8825_ENABLE_ADC, 0);
2379		if (nau8825->mclk_freq)
2380			clk_disable_unprepare(nau8825->mclk);
2381		break;
2382	}
2383	return 0;
2384}
2385
2386static int __maybe_unused nau8825_suspend(struct snd_soc_component *component)
2387{
2388	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2389
2390	disable_irq(nau8825->irq);
2391	snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF);
2392	/* Power down codec power; don't suppoet button wakeup */
2393	snd_soc_dapm_disable_pin(nau8825->dapm, "SAR");
2394	snd_soc_dapm_disable_pin(nau8825->dapm, "MICBIAS");
2395	snd_soc_dapm_sync(nau8825->dapm);
2396	regcache_cache_only(nau8825->regmap, true);
2397	regcache_mark_dirty(nau8825->regmap);
2398
2399	return 0;
2400}
2401
2402static int __maybe_unused nau8825_resume(struct snd_soc_component *component)
2403{
2404	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2405	int ret;
2406
2407	regcache_cache_only(nau8825->regmap, false);
2408	regcache_sync(nau8825->regmap);
2409	nau8825->xtalk_protect = true;
2410	ret = nau8825_sema_acquire(nau8825, 0);
2411	if (ret)
2412		nau8825->xtalk_protect = false;
2413	enable_irq(nau8825->irq);
2414
2415	return 0;
2416}
2417
2418static const struct snd_soc_component_driver nau8825_component_driver = {
2419	.probe			= nau8825_component_probe,
2420	.remove			= nau8825_component_remove,
2421	.set_sysclk		= nau8825_set_sysclk,
2422	.set_pll		= nau8825_set_pll,
2423	.set_bias_level		= nau8825_set_bias_level,
2424	.suspend		= nau8825_suspend,
2425	.resume			= nau8825_resume,
2426	.controls		= nau8825_controls,
2427	.num_controls		= ARRAY_SIZE(nau8825_controls),
2428	.dapm_widgets		= nau8825_dapm_widgets,
2429	.num_dapm_widgets	= ARRAY_SIZE(nau8825_dapm_widgets),
2430	.dapm_routes		= nau8825_dapm_routes,
2431	.num_dapm_routes	= ARRAY_SIZE(nau8825_dapm_routes),
2432	.suspend_bias_off	= 1,
2433	.idle_bias_on		= 1,
2434	.use_pmdown_time	= 1,
2435	.endianness		= 1,
2436	.non_legacy_dai_naming	= 1,
2437};
2438
2439static void nau8825_reset_chip(struct regmap *regmap)
2440{
2441	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2442	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2443}
2444
2445static void nau8825_print_device_properties(struct nau8825 *nau8825)
2446{
2447	int i;
2448	struct device *dev = nau8825->dev;
2449
2450	dev_dbg(dev, "jkdet-enable:         %d\n", nau8825->jkdet_enable);
2451	dev_dbg(dev, "jkdet-pull-enable:    %d\n", nau8825->jkdet_pull_enable);
2452	dev_dbg(dev, "jkdet-pull-up:        %d\n", nau8825->jkdet_pull_up);
2453	dev_dbg(dev, "jkdet-polarity:       %d\n", nau8825->jkdet_polarity);
2454	dev_dbg(dev, "micbias-voltage:      %d\n", nau8825->micbias_voltage);
2455	dev_dbg(dev, "vref-impedance:       %d\n", nau8825->vref_impedance);
2456
2457	dev_dbg(dev, "sar-threshold-num:    %d\n", nau8825->sar_threshold_num);
2458	for (i = 0; i < nau8825->sar_threshold_num; i++)
2459		dev_dbg(dev, "sar-threshold[%d]=%d\n", i,
2460				nau8825->sar_threshold[i]);
2461
2462	dev_dbg(dev, "sar-hysteresis:       %d\n", nau8825->sar_hysteresis);
2463	dev_dbg(dev, "sar-voltage:          %d\n", nau8825->sar_voltage);
2464	dev_dbg(dev, "sar-compare-time:     %d\n", nau8825->sar_compare_time);
2465	dev_dbg(dev, "sar-sampling-time:    %d\n", nau8825->sar_sampling_time);
2466	dev_dbg(dev, "short-key-debounce:   %d\n", nau8825->key_debounce);
2467	dev_dbg(dev, "jack-insert-debounce: %d\n",
2468			nau8825->jack_insert_debounce);
2469	dev_dbg(dev, "jack-eject-debounce:  %d\n",
2470			nau8825->jack_eject_debounce);
2471	dev_dbg(dev, "crosstalk-enable:     %d\n",
2472			nau8825->xtalk_enable);
2473}
2474
2475static int nau8825_read_device_properties(struct device *dev,
2476	struct nau8825 *nau8825) {
2477	int ret;
2478
2479	nau8825->jkdet_enable = device_property_read_bool(dev,
2480		"nuvoton,jkdet-enable");
2481	nau8825->jkdet_pull_enable = device_property_read_bool(dev,
2482		"nuvoton,jkdet-pull-enable");
2483	nau8825->jkdet_pull_up = device_property_read_bool(dev,
2484		"nuvoton,jkdet-pull-up");
2485	ret = device_property_read_u32(dev, "nuvoton,jkdet-polarity",
2486		&nau8825->jkdet_polarity);
2487	if (ret)
2488		nau8825->jkdet_polarity = 1;
2489	ret = device_property_read_u32(dev, "nuvoton,micbias-voltage",
2490		&nau8825->micbias_voltage);
2491	if (ret)
2492		nau8825->micbias_voltage = 6;
2493	ret = device_property_read_u32(dev, "nuvoton,vref-impedance",
2494		&nau8825->vref_impedance);
2495	if (ret)
2496		nau8825->vref_impedance = 2;
2497	ret = device_property_read_u32(dev, "nuvoton,sar-threshold-num",
2498		&nau8825->sar_threshold_num);
2499	if (ret)
2500		nau8825->sar_threshold_num = 4;
2501	ret = device_property_read_u32_array(dev, "nuvoton,sar-threshold",
2502		nau8825->sar_threshold, nau8825->sar_threshold_num);
2503	if (ret) {
2504		nau8825->sar_threshold[0] = 0x08;
2505		nau8825->sar_threshold[1] = 0x12;
2506		nau8825->sar_threshold[2] = 0x26;
2507		nau8825->sar_threshold[3] = 0x73;
2508	}
2509	ret = device_property_read_u32(dev, "nuvoton,sar-hysteresis",
2510		&nau8825->sar_hysteresis);
2511	if (ret)
2512		nau8825->sar_hysteresis = 0;
2513	ret = device_property_read_u32(dev, "nuvoton,sar-voltage",
2514		&nau8825->sar_voltage);
2515	if (ret)
2516		nau8825->sar_voltage = 6;
2517	ret = device_property_read_u32(dev, "nuvoton,sar-compare-time",
2518		&nau8825->sar_compare_time);
2519	if (ret)
2520		nau8825->sar_compare_time = 1;
2521	ret = device_property_read_u32(dev, "nuvoton,sar-sampling-time",
2522		&nau8825->sar_sampling_time);
2523	if (ret)
2524		nau8825->sar_sampling_time = 1;
2525	ret = device_property_read_u32(dev, "nuvoton,short-key-debounce",
2526		&nau8825->key_debounce);
2527	if (ret)
2528		nau8825->key_debounce = 3;
2529	ret = device_property_read_u32(dev, "nuvoton,jack-insert-debounce",
2530		&nau8825->jack_insert_debounce);
2531	if (ret)
2532		nau8825->jack_insert_debounce = 7;
2533	ret = device_property_read_u32(dev, "nuvoton,jack-eject-debounce",
2534		&nau8825->jack_eject_debounce);
2535	if (ret)
2536		nau8825->jack_eject_debounce = 0;
2537	nau8825->xtalk_enable = device_property_read_bool(dev,
2538		"nuvoton,crosstalk-enable");
2539
2540	nau8825->mclk = devm_clk_get(dev, "mclk");
2541	if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) {
2542		return -EPROBE_DEFER;
2543	} else if (PTR_ERR(nau8825->mclk) == -ENOENT) {
2544		/* The MCLK is managed externally or not used at all */
2545		nau8825->mclk = NULL;
2546		dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally");
2547	} else if (IS_ERR(nau8825->mclk)) {
2548		return -EINVAL;
2549	}
2550
2551	return 0;
2552}
2553
2554static int nau8825_setup_irq(struct nau8825 *nau8825)
2555{
2556	int ret;
2557
2558	ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL,
2559		nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT,
2560		"nau8825", nau8825);
2561
2562	if (ret) {
2563		dev_err(nau8825->dev, "Cannot request irq %d (%d)\n",
2564			nau8825->irq, ret);
2565		return ret;
2566	}
2567
2568	return 0;
2569}
2570
2571static int nau8825_i2c_probe(struct i2c_client *i2c,
2572	const struct i2c_device_id *id)
2573{
2574	struct device *dev = &i2c->dev;
2575	struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev);
2576	int ret, value;
2577
2578	if (!nau8825) {
2579		nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL);
2580		if (!nau8825)
2581			return -ENOMEM;
2582		ret = nau8825_read_device_properties(dev, nau8825);
2583		if (ret)
2584			return ret;
2585	}
2586
2587	i2c_set_clientdata(i2c, nau8825);
2588
2589	nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config);
2590	if (IS_ERR(nau8825->regmap))
2591		return PTR_ERR(nau8825->regmap);
2592	nau8825->dev = dev;
2593	nau8825->irq = i2c->irq;
2594	/* Initiate parameters, semaphore and work queue which are needed in
2595	 * cross talk suppression measurment function.
2596	 */
2597	nau8825->xtalk_state = NAU8825_XTALK_DONE;
2598	nau8825->xtalk_protect = false;
2599	nau8825->xtalk_baktab_initialized = false;
2600	sema_init(&nau8825->xtalk_sem, 1);
2601	INIT_WORK(&nau8825->xtalk_work, nau8825_xtalk_work);
2602
2603	nau8825_print_device_properties(nau8825);
2604
2605	nau8825_reset_chip(nau8825->regmap);
2606	ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value);
2607	if (ret < 0) {
2608		dev_err(dev, "Failed to read device id from the NAU8825: %d\n",
2609			ret);
2610		return ret;
2611	}
2612	if ((value & NAU8825_SOFTWARE_ID_MASK) !=
2613			NAU8825_SOFTWARE_ID_NAU8825) {
2614		dev_err(dev, "Not a NAU8825 chip\n");
2615		return -ENODEV;
2616	}
2617
2618	nau8825_init_regs(nau8825);
2619
2620	if (i2c->irq)
2621		nau8825_setup_irq(nau8825);
2622
2623	return devm_snd_soc_register_component(&i2c->dev,
2624		&nau8825_component_driver,
2625		&nau8825_dai, 1);
2626}
2627
2628static int nau8825_i2c_remove(struct i2c_client *client)
2629{
2630	return 0;
2631}
2632
2633static const struct i2c_device_id nau8825_i2c_ids[] = {
2634	{ "nau8825", 0 },
2635	{ }
2636};
2637MODULE_DEVICE_TABLE(i2c, nau8825_i2c_ids);
2638
2639#ifdef CONFIG_OF
2640static const struct of_device_id nau8825_of_ids[] = {
2641	{ .compatible = "nuvoton,nau8825", },
2642	{}
2643};
2644MODULE_DEVICE_TABLE(of, nau8825_of_ids);
2645#endif
2646
2647#ifdef CONFIG_ACPI
2648static const struct acpi_device_id nau8825_acpi_match[] = {
2649	{ "10508825", 0 },
2650	{},
2651};
2652MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match);
2653#endif
2654
2655static struct i2c_driver nau8825_driver = {
2656	.driver = {
2657		.name = "nau8825",
2658		.of_match_table = of_match_ptr(nau8825_of_ids),
2659		.acpi_match_table = ACPI_PTR(nau8825_acpi_match),
2660	},
2661	.probe = nau8825_i2c_probe,
2662	.remove = nau8825_i2c_remove,
2663	.id_table = nau8825_i2c_ids,
2664};
2665module_i2c_driver(nau8825_driver);
2666
2667MODULE_DESCRIPTION("ASoC nau8825 driver");
2668MODULE_AUTHOR("Anatol Pomozov <anatol@chromium.org>");
2669MODULE_LICENSE("GPL");
2670