1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for Digigram VX222 V2/Mic soundcards
4 *
5 * VX222-specific low-level routines
6 *
7 * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
8 */
9
10#include <linux/delay.h>
11#include <linux/device.h>
12#include <linux/firmware.h>
13#include <linux/mutex.h>
14#include <linux/io.h>
15
16#include <sound/core.h>
17#include <sound/control.h>
18#include <sound/tlv.h>
19#include "vx222.h"
20
21
22static const int vx2_reg_offset[VX_REG_MAX] = {
23	[VX_ICR]    = 0x00,
24	[VX_CVR]    = 0x04,
25	[VX_ISR]    = 0x08,
26	[VX_IVR]    = 0x0c,
27	[VX_RXH]    = 0x14,
28	[VX_RXM]    = 0x18,
29	[VX_RXL]    = 0x1c,
30	[VX_DMA]    = 0x10,
31	[VX_CDSP]   = 0x20,
32	[VX_CFG]    = 0x24,
33	[VX_RUER]   = 0x28,
34	[VX_DATA]   = 0x2c,
35	[VX_STATUS] = 0x30,
36	[VX_LOFREQ] = 0x34,
37	[VX_HIFREQ] = 0x38,
38	[VX_CSUER]  = 0x3c,
39	[VX_SELMIC] = 0x40,
40	[VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
41	[VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
42	[VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
43	[VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
44	[VX_CNTRL]  = 0x50,		// VX_CNTRL_REGISTER_OFFSET
45	[VX_GPIOC]  = 0x54,		// VX_GPIOC (new with PLX9030)
46};
47
48static const int vx2_reg_index[VX_REG_MAX] = {
49	[VX_ICR]	= 1,
50	[VX_CVR]	= 1,
51	[VX_ISR]	= 1,
52	[VX_IVR]	= 1,
53	[VX_RXH]	= 1,
54	[VX_RXM]	= 1,
55	[VX_RXL]	= 1,
56	[VX_DMA]	= 1,
57	[VX_CDSP]	= 1,
58	[VX_CFG]	= 1,
59	[VX_RUER]	= 1,
60	[VX_DATA]	= 1,
61	[VX_STATUS]	= 1,
62	[VX_LOFREQ]	= 1,
63	[VX_HIFREQ]	= 1,
64	[VX_CSUER]	= 1,
65	[VX_SELMIC]	= 1,
66	[VX_COMPOT]	= 1,
67	[VX_SCOMPR]	= 1,
68	[VX_GLIMIT]	= 1,
69	[VX_INTCSR]	= 0,	/* on the PLX */
70	[VX_CNTRL]	= 0,	/* on the PLX */
71	[VX_GPIOC]	= 0,	/* on the PLX */
72};
73
74static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg)
75{
76	struct snd_vx222 *chip = to_vx222(_chip);
77	return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
78}
79
80/**
81 * snd_vx_inb - read a byte from the register
82 * @chip: VX core instance
83 * @offset: register enum
84 */
85static unsigned char vx2_inb(struct vx_core *chip, int offset)
86{
87	return inb(vx2_reg_addr(chip, offset));
88}
89
90/**
91 * snd_vx_outb - write a byte on the register
92 * @chip: VX core instance
93 * @offset: the register offset
94 * @val: the value to write
95 */
96static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
97{
98	outb(val, vx2_reg_addr(chip, offset));
99	/*
100	dev_dbg(chip->card->dev, "outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
101	*/
102}
103
104/**
105 * snd_vx_inl - read a 32bit word from the register
106 * @chip: VX core instance
107 * @offset: register enum
108 */
109static unsigned int vx2_inl(struct vx_core *chip, int offset)
110{
111	return inl(vx2_reg_addr(chip, offset));
112}
113
114/**
115 * snd_vx_outl - write a 32bit word on the register
116 * @chip: VX core instance
117 * @offset: the register enum
118 * @val: the value to write
119 */
120static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
121{
122	/*
123	dev_dbg(chip->card->dev, "outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
124	*/
125	outl(val, vx2_reg_addr(chip, offset));
126}
127
128/*
129 * redefine macros to call directly
130 */
131#undef vx_inb
132#define vx_inb(chip,reg)	vx2_inb((struct vx_core*)(chip), VX_##reg)
133#undef vx_outb
134#define vx_outb(chip,reg,val)	vx2_outb((struct vx_core*)(chip), VX_##reg, val)
135#undef vx_inl
136#define vx_inl(chip,reg)	vx2_inl((struct vx_core*)(chip), VX_##reg)
137#undef vx_outl
138#define vx_outl(chip,reg,val)	vx2_outl((struct vx_core*)(chip), VX_##reg, val)
139
140
141/*
142 * vx_reset_dsp - reset the DSP
143 */
144
145#define XX_DSP_RESET_WAIT_TIME		2	/* ms */
146
147static void vx2_reset_dsp(struct vx_core *_chip)
148{
149	struct snd_vx222 *chip = to_vx222(_chip);
150
151	/* set the reset dsp bit to 0 */
152	vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
153
154	mdelay(XX_DSP_RESET_WAIT_TIME);
155
156	chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
157	/* set the reset dsp bit to 1 */
158	vx_outl(chip, CDSP, chip->regCDSP);
159}
160
161
162static int vx2_test_xilinx(struct vx_core *_chip)
163{
164	struct snd_vx222 *chip = to_vx222(_chip);
165	unsigned int data;
166
167	dev_dbg(_chip->card->dev, "testing xilinx...\n");
168	/* This test uses several write/read sequences on TEST0 and TEST1 bits
169	 * to figure out whever or not the xilinx was correctly loaded
170	 */
171
172	/* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
173	vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
174	vx_inl(chip, ISR);
175	data = vx_inl(chip, STATUS);
176	if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
177		dev_dbg(_chip->card->dev, "bad!\n");
178		return -ENODEV;
179	}
180
181	/* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
182	vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
183	vx_inl(chip, ISR);
184	data = vx_inl(chip, STATUS);
185	if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
186		dev_dbg(_chip->card->dev, "bad! #2\n");
187		return -ENODEV;
188	}
189
190	if (_chip->type == VX_TYPE_BOARD) {
191		/* not implemented on VX_2_BOARDS */
192		/* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
193		vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
194		vx_inl(chip, ISR);
195		data = vx_inl(chip, STATUS);
196		if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
197			dev_dbg(_chip->card->dev, "bad! #3\n");
198			return -ENODEV;
199		}
200
201		/* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
202		vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
203		vx_inl(chip, ISR);
204		data = vx_inl(chip, STATUS);
205		if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
206			dev_dbg(_chip->card->dev, "bad! #4\n");
207			return -ENODEV;
208		}
209	}
210	dev_dbg(_chip->card->dev, "ok, xilinx fine.\n");
211	return 0;
212}
213
214
215/**
216 * vx_setup_pseudo_dma - set up the pseudo dma read/write mode.
217 * @chip: VX core instance
218 * @do_write: 0 = read, 1 = set up for DMA write
219 */
220static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
221{
222	/* Interrupt mode and HREQ pin enabled for host transmit data transfers
223	 * (in case of the use of the pseudo-dma facility).
224	 */
225	vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
226
227	/* Reset the pseudo-dma register (in case of the use of the
228	 * pseudo-dma facility).
229	 */
230	vx_outl(chip, RESET_DMA, 0);
231}
232
233/*
234 * vx_release_pseudo_dma - disable the pseudo-DMA mode
235 */
236static inline void vx2_release_pseudo_dma(struct vx_core *chip)
237{
238	/* HREQ pin disabled. */
239	vx_outl(chip, ICR, 0);
240}
241
242
243
244/* pseudo-dma write */
245static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
246			  struct vx_pipe *pipe, int count)
247{
248	unsigned long port = vx2_reg_addr(chip, VX_DMA);
249	int offset = pipe->hw_ptr;
250	u32 *addr = (u32 *)(runtime->dma_area + offset);
251
252	if (snd_BUG_ON(count % 4))
253		return;
254
255	vx2_setup_pseudo_dma(chip, 1);
256
257	/* Transfer using pseudo-dma.
258	 */
259	if (offset + count >= pipe->buffer_bytes) {
260		int length = pipe->buffer_bytes - offset;
261		count -= length;
262		length >>= 2; /* in 32bit words */
263		/* Transfer using pseudo-dma. */
264		for (; length > 0; length--) {
265			outl(*addr, port);
266			addr++;
267		}
268		addr = (u32 *)runtime->dma_area;
269		pipe->hw_ptr = 0;
270	}
271	pipe->hw_ptr += count;
272	count >>= 2; /* in 32bit words */
273	/* Transfer using pseudo-dma. */
274	for (; count > 0; count--) {
275		outl(*addr, port);
276		addr++;
277	}
278
279	vx2_release_pseudo_dma(chip);
280}
281
282
283/* pseudo dma read */
284static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
285			 struct vx_pipe *pipe, int count)
286{
287	int offset = pipe->hw_ptr;
288	u32 *addr = (u32 *)(runtime->dma_area + offset);
289	unsigned long port = vx2_reg_addr(chip, VX_DMA);
290
291	if (snd_BUG_ON(count % 4))
292		return;
293
294	vx2_setup_pseudo_dma(chip, 0);
295	/* Transfer using pseudo-dma.
296	 */
297	if (offset + count >= pipe->buffer_bytes) {
298		int length = pipe->buffer_bytes - offset;
299		count -= length;
300		length >>= 2; /* in 32bit words */
301		/* Transfer using pseudo-dma. */
302		for (; length > 0; length--)
303			*addr++ = inl(port);
304		addr = (u32 *)runtime->dma_area;
305		pipe->hw_ptr = 0;
306	}
307	pipe->hw_ptr += count;
308	count >>= 2; /* in 32bit words */
309	/* Transfer using pseudo-dma. */
310	for (; count > 0; count--)
311		*addr++ = inl(port);
312
313	vx2_release_pseudo_dma(chip);
314}
315
316#define VX_XILINX_RESET_MASK        0x40000000
317#define VX_USERBIT0_MASK            0x00000004
318#define VX_USERBIT1_MASK            0x00000020
319#define VX_CNTRL_REGISTER_VALUE     0x00172012
320
321/*
322 * transfer counts bits to PLX
323 */
324static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
325{
326	unsigned int i;
327
328	for (i = 0; i < counts; i++) {
329		unsigned int val;
330
331		/* set the clock bit to 0. */
332		val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
333		vx2_outl(chip, port, val);
334		vx2_inl(chip, port);
335		udelay(1);
336
337		if (data & (1 << i))
338			val |= VX_USERBIT1_MASK;
339		else
340			val &= ~VX_USERBIT1_MASK;
341		vx2_outl(chip, port, val);
342		vx2_inl(chip, port);
343
344		/* set the clock bit to 1. */
345		val |= VX_USERBIT0_MASK;
346		vx2_outl(chip, port, val);
347		vx2_inl(chip, port);
348		udelay(1);
349	}
350	return 0;
351}
352
353/*
354 * load the xilinx image
355 */
356static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
357{
358	unsigned int i;
359	unsigned int port;
360	const unsigned char *image;
361
362	/* XILINX reset (wait at least 1 millisecond between reset on and off). */
363	vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
364	vx_inl(chip, CNTRL);
365	msleep(10);
366	vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
367	vx_inl(chip, CNTRL);
368	msleep(10);
369
370	if (chip->type == VX_TYPE_BOARD)
371		port = VX_CNTRL;
372	else
373		port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
374
375	image = xilinx->data;
376	for (i = 0; i < xilinx->size; i++, image++) {
377		if (put_xilinx_data(chip, port, 8, *image) < 0)
378			return -EINVAL;
379		/* don't take too much time in this loop... */
380		cond_resched();
381	}
382	put_xilinx_data(chip, port, 4, 0xff); /* end signature */
383
384	msleep(200);
385
386	/* test after loading (is buggy with VX222) */
387	if (chip->type != VX_TYPE_BOARD) {
388		/* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
389		i = vx_inl(chip, GPIOC);
390		if (i & 0x0100)
391			return 0;
392		dev_err(chip->card->dev,
393			"xilinx test failed after load, GPIOC=0x%x\n", i);
394		return -EINVAL;
395	}
396
397	return 0;
398}
399
400
401/*
402 * load the boot/dsp images
403 */
404static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp)
405{
406	int err;
407
408	switch (index) {
409	case 1:
410		/* xilinx image */
411		if ((err = vx2_load_xilinx_binary(vx, dsp)) < 0)
412			return err;
413		if ((err = vx2_test_xilinx(vx)) < 0)
414			return err;
415		return 0;
416	case 2:
417		/* DSP boot */
418		return snd_vx_dsp_boot(vx, dsp);
419	case 3:
420		/* DSP image */
421		return snd_vx_dsp_load(vx, dsp);
422	default:
423		snd_BUG();
424		return -EINVAL;
425	}
426}
427
428
429/*
430 * vx_test_and_ack - test and acknowledge interrupt
431 *
432 * called from irq hander, too
433 *
434 * spinlock held!
435 */
436static int vx2_test_and_ack(struct vx_core *chip)
437{
438	/* not booted yet? */
439	if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
440		return -ENXIO;
441
442	if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
443		return -EIO;
444
445	/* ok, interrupts generated, now ack it */
446	/* set ACQUIT bit up and down */
447	vx_outl(chip, STATUS, 0);
448	/* useless read just to spend some time and maintain
449	 * the ACQUIT signal up for a while ( a bus cycle )
450	 */
451	vx_inl(chip, STATUS);
452	/* ack */
453	vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
454	/* useless read just to spend some time and maintain
455	 * the ACQUIT signal up for a while ( a bus cycle ) */
456	vx_inl(chip, STATUS);
457	/* clear */
458	vx_outl(chip, STATUS, 0);
459
460	return 0;
461}
462
463
464/*
465 * vx_validate_irq - enable/disable IRQ
466 */
467static void vx2_validate_irq(struct vx_core *_chip, int enable)
468{
469	struct snd_vx222 *chip = to_vx222(_chip);
470
471	/* Set the interrupt enable bit to 1 in CDSP register */
472	if (enable) {
473		/* Set the PCI interrupt enable bit to 1.*/
474		vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
475		chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
476	} else {
477		/* Set the PCI interrupt enable bit to 0. */
478		vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
479		chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
480	}
481	vx_outl(chip, CDSP, chip->regCDSP);
482}
483
484
485/*
486 * write an AKM codec data (24bit)
487 */
488static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
489{
490	unsigned int i;
491
492	vx_inl(chip, HIFREQ);
493
494	/* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
495	for (i = 0; i < 24; i++, data <<= 1)
496		vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
497	/* Terminate access to codec registers */
498	vx_inl(chip, RUER);
499}
500
501
502#define AKM_CODEC_POWER_CONTROL_CMD 0xA007
503#define AKM_CODEC_RESET_ON_CMD      0xA100
504#define AKM_CODEC_RESET_OFF_CMD     0xA103
505#define AKM_CODEC_CLOCK_FORMAT_CMD  0xA240
506#define AKM_CODEC_MUTE_CMD          0xA38D
507#define AKM_CODEC_UNMUTE_CMD        0xA30D
508#define AKM_CODEC_LEFT_LEVEL_CMD    0xA400
509#define AKM_CODEC_RIGHT_LEVEL_CMD   0xA500
510
511static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
512    0x7f,       // [000] =  +0.000 dB  ->  AKM(0x7f) =  +0.000 dB  error(+0.000 dB)
513    0x7d,       // [001] =  -0.500 dB  ->  AKM(0x7d) =  -0.572 dB  error(-0.072 dB)
514    0x7c,       // [002] =  -1.000 dB  ->  AKM(0x7c) =  -0.873 dB  error(+0.127 dB)
515    0x7a,       // [003] =  -1.500 dB  ->  AKM(0x7a) =  -1.508 dB  error(-0.008 dB)
516    0x79,       // [004] =  -2.000 dB  ->  AKM(0x79) =  -1.844 dB  error(+0.156 dB)
517    0x77,       // [005] =  -2.500 dB  ->  AKM(0x77) =  -2.557 dB  error(-0.057 dB)
518    0x76,       // [006] =  -3.000 dB  ->  AKM(0x76) =  -2.937 dB  error(+0.063 dB)
519    0x75,       // [007] =  -3.500 dB  ->  AKM(0x75) =  -3.334 dB  error(+0.166 dB)
520    0x73,       // [008] =  -4.000 dB  ->  AKM(0x73) =  -4.188 dB  error(-0.188 dB)
521    0x72,       // [009] =  -4.500 dB  ->  AKM(0x72) =  -4.648 dB  error(-0.148 dB)
522    0x71,       // [010] =  -5.000 dB  ->  AKM(0x71) =  -5.134 dB  error(-0.134 dB)
523    0x70,       // [011] =  -5.500 dB  ->  AKM(0x70) =  -5.649 dB  error(-0.149 dB)
524    0x6f,       // [012] =  -6.000 dB  ->  AKM(0x6f) =  -6.056 dB  error(-0.056 dB)
525    0x6d,       // [013] =  -6.500 dB  ->  AKM(0x6d) =  -6.631 dB  error(-0.131 dB)
526    0x6c,       // [014] =  -7.000 dB  ->  AKM(0x6c) =  -6.933 dB  error(+0.067 dB)
527    0x6a,       // [015] =  -7.500 dB  ->  AKM(0x6a) =  -7.571 dB  error(-0.071 dB)
528    0x69,       // [016] =  -8.000 dB  ->  AKM(0x69) =  -7.909 dB  error(+0.091 dB)
529    0x67,       // [017] =  -8.500 dB  ->  AKM(0x67) =  -8.626 dB  error(-0.126 dB)
530    0x66,       // [018] =  -9.000 dB  ->  AKM(0x66) =  -9.008 dB  error(-0.008 dB)
531    0x65,       // [019] =  -9.500 dB  ->  AKM(0x65) =  -9.407 dB  error(+0.093 dB)
532    0x64,       // [020] = -10.000 dB  ->  AKM(0x64) =  -9.826 dB  error(+0.174 dB)
533    0x62,       // [021] = -10.500 dB  ->  AKM(0x62) = -10.730 dB  error(-0.230 dB)
534    0x61,       // [022] = -11.000 dB  ->  AKM(0x61) = -11.219 dB  error(-0.219 dB)
535    0x60,       // [023] = -11.500 dB  ->  AKM(0x60) = -11.738 dB  error(-0.238 dB)
536    0x5f,       // [024] = -12.000 dB  ->  AKM(0x5f) = -12.149 dB  error(-0.149 dB)
537    0x5e,       // [025] = -12.500 dB  ->  AKM(0x5e) = -12.434 dB  error(+0.066 dB)
538    0x5c,       // [026] = -13.000 dB  ->  AKM(0x5c) = -13.033 dB  error(-0.033 dB)
539    0x5b,       // [027] = -13.500 dB  ->  AKM(0x5b) = -13.350 dB  error(+0.150 dB)
540    0x59,       // [028] = -14.000 dB  ->  AKM(0x59) = -14.018 dB  error(-0.018 dB)
541    0x58,       // [029] = -14.500 dB  ->  AKM(0x58) = -14.373 dB  error(+0.127 dB)
542    0x56,       // [030] = -15.000 dB  ->  AKM(0x56) = -15.130 dB  error(-0.130 dB)
543    0x55,       // [031] = -15.500 dB  ->  AKM(0x55) = -15.534 dB  error(-0.034 dB)
544    0x54,       // [032] = -16.000 dB  ->  AKM(0x54) = -15.958 dB  error(+0.042 dB)
545    0x53,       // [033] = -16.500 dB  ->  AKM(0x53) = -16.404 dB  error(+0.096 dB)
546    0x52,       // [034] = -17.000 dB  ->  AKM(0x52) = -16.874 dB  error(+0.126 dB)
547    0x51,       // [035] = -17.500 dB  ->  AKM(0x51) = -17.371 dB  error(+0.129 dB)
548    0x50,       // [036] = -18.000 dB  ->  AKM(0x50) = -17.898 dB  error(+0.102 dB)
549    0x4e,       // [037] = -18.500 dB  ->  AKM(0x4e) = -18.605 dB  error(-0.105 dB)
550    0x4d,       // [038] = -19.000 dB  ->  AKM(0x4d) = -18.905 dB  error(+0.095 dB)
551    0x4b,       // [039] = -19.500 dB  ->  AKM(0x4b) = -19.538 dB  error(-0.038 dB)
552    0x4a,       // [040] = -20.000 dB  ->  AKM(0x4a) = -19.872 dB  error(+0.128 dB)
553    0x48,       // [041] = -20.500 dB  ->  AKM(0x48) = -20.583 dB  error(-0.083 dB)
554    0x47,       // [042] = -21.000 dB  ->  AKM(0x47) = -20.961 dB  error(+0.039 dB)
555    0x46,       // [043] = -21.500 dB  ->  AKM(0x46) = -21.356 dB  error(+0.144 dB)
556    0x44,       // [044] = -22.000 dB  ->  AKM(0x44) = -22.206 dB  error(-0.206 dB)
557    0x43,       // [045] = -22.500 dB  ->  AKM(0x43) = -22.664 dB  error(-0.164 dB)
558    0x42,       // [046] = -23.000 dB  ->  AKM(0x42) = -23.147 dB  error(-0.147 dB)
559    0x41,       // [047] = -23.500 dB  ->  AKM(0x41) = -23.659 dB  error(-0.159 dB)
560    0x40,       // [048] = -24.000 dB  ->  AKM(0x40) = -24.203 dB  error(-0.203 dB)
561    0x3f,       // [049] = -24.500 dB  ->  AKM(0x3f) = -24.635 dB  error(-0.135 dB)
562    0x3e,       // [050] = -25.000 dB  ->  AKM(0x3e) = -24.935 dB  error(+0.065 dB)
563    0x3c,       // [051] = -25.500 dB  ->  AKM(0x3c) = -25.569 dB  error(-0.069 dB)
564    0x3b,       // [052] = -26.000 dB  ->  AKM(0x3b) = -25.904 dB  error(+0.096 dB)
565    0x39,       // [053] = -26.500 dB  ->  AKM(0x39) = -26.615 dB  error(-0.115 dB)
566    0x38,       // [054] = -27.000 dB  ->  AKM(0x38) = -26.994 dB  error(+0.006 dB)
567    0x37,       // [055] = -27.500 dB  ->  AKM(0x37) = -27.390 dB  error(+0.110 dB)
568    0x36,       // [056] = -28.000 dB  ->  AKM(0x36) = -27.804 dB  error(+0.196 dB)
569    0x34,       // [057] = -28.500 dB  ->  AKM(0x34) = -28.699 dB  error(-0.199 dB)
570    0x33,       // [058] = -29.000 dB  ->  AKM(0x33) = -29.183 dB  error(-0.183 dB)
571    0x32,       // [059] = -29.500 dB  ->  AKM(0x32) = -29.696 dB  error(-0.196 dB)
572    0x31,       // [060] = -30.000 dB  ->  AKM(0x31) = -30.241 dB  error(-0.241 dB)
573    0x31,       // [061] = -30.500 dB  ->  AKM(0x31) = -30.241 dB  error(+0.259 dB)
574    0x30,       // [062] = -31.000 dB  ->  AKM(0x30) = -30.823 dB  error(+0.177 dB)
575    0x2e,       // [063] = -31.500 dB  ->  AKM(0x2e) = -31.610 dB  error(-0.110 dB)
576    0x2d,       // [064] = -32.000 dB  ->  AKM(0x2d) = -31.945 dB  error(+0.055 dB)
577    0x2b,       // [065] = -32.500 dB  ->  AKM(0x2b) = -32.659 dB  error(-0.159 dB)
578    0x2a,       // [066] = -33.000 dB  ->  AKM(0x2a) = -33.038 dB  error(-0.038 dB)
579    0x29,       // [067] = -33.500 dB  ->  AKM(0x29) = -33.435 dB  error(+0.065 dB)
580    0x28,       // [068] = -34.000 dB  ->  AKM(0x28) = -33.852 dB  error(+0.148 dB)
581    0x27,       // [069] = -34.500 dB  ->  AKM(0x27) = -34.289 dB  error(+0.211 dB)
582    0x25,       // [070] = -35.000 dB  ->  AKM(0x25) = -35.235 dB  error(-0.235 dB)
583    0x24,       // [071] = -35.500 dB  ->  AKM(0x24) = -35.750 dB  error(-0.250 dB)
584    0x24,       // [072] = -36.000 dB  ->  AKM(0x24) = -35.750 dB  error(+0.250 dB)
585    0x23,       // [073] = -36.500 dB  ->  AKM(0x23) = -36.297 dB  error(+0.203 dB)
586    0x22,       // [074] = -37.000 dB  ->  AKM(0x22) = -36.881 dB  error(+0.119 dB)
587    0x21,       // [075] = -37.500 dB  ->  AKM(0x21) = -37.508 dB  error(-0.008 dB)
588    0x20,       // [076] = -38.000 dB  ->  AKM(0x20) = -38.183 dB  error(-0.183 dB)
589    0x1f,       // [077] = -38.500 dB  ->  AKM(0x1f) = -38.726 dB  error(-0.226 dB)
590    0x1e,       // [078] = -39.000 dB  ->  AKM(0x1e) = -39.108 dB  error(-0.108 dB)
591    0x1d,       // [079] = -39.500 dB  ->  AKM(0x1d) = -39.507 dB  error(-0.007 dB)
592    0x1c,       // [080] = -40.000 dB  ->  AKM(0x1c) = -39.926 dB  error(+0.074 dB)
593    0x1b,       // [081] = -40.500 dB  ->  AKM(0x1b) = -40.366 dB  error(+0.134 dB)
594    0x1a,       // [082] = -41.000 dB  ->  AKM(0x1a) = -40.829 dB  error(+0.171 dB)
595    0x19,       // [083] = -41.500 dB  ->  AKM(0x19) = -41.318 dB  error(+0.182 dB)
596    0x18,       // [084] = -42.000 dB  ->  AKM(0x18) = -41.837 dB  error(+0.163 dB)
597    0x17,       // [085] = -42.500 dB  ->  AKM(0x17) = -42.389 dB  error(+0.111 dB)
598    0x16,       // [086] = -43.000 dB  ->  AKM(0x16) = -42.978 dB  error(+0.022 dB)
599    0x15,       // [087] = -43.500 dB  ->  AKM(0x15) = -43.610 dB  error(-0.110 dB)
600    0x14,       // [088] = -44.000 dB  ->  AKM(0x14) = -44.291 dB  error(-0.291 dB)
601    0x14,       // [089] = -44.500 dB  ->  AKM(0x14) = -44.291 dB  error(+0.209 dB)
602    0x13,       // [090] = -45.000 dB  ->  AKM(0x13) = -45.031 dB  error(-0.031 dB)
603    0x12,       // [091] = -45.500 dB  ->  AKM(0x12) = -45.840 dB  error(-0.340 dB)
604    0x12,       // [092] = -46.000 dB  ->  AKM(0x12) = -45.840 dB  error(+0.160 dB)
605    0x11,       // [093] = -46.500 dB  ->  AKM(0x11) = -46.731 dB  error(-0.231 dB)
606    0x11,       // [094] = -47.000 dB  ->  AKM(0x11) = -46.731 dB  error(+0.269 dB)
607    0x10,       // [095] = -47.500 dB  ->  AKM(0x10) = -47.725 dB  error(-0.225 dB)
608    0x10,       // [096] = -48.000 dB  ->  AKM(0x10) = -47.725 dB  error(+0.275 dB)
609    0x0f,       // [097] = -48.500 dB  ->  AKM(0x0f) = -48.553 dB  error(-0.053 dB)
610    0x0e,       // [098] = -49.000 dB  ->  AKM(0x0e) = -49.152 dB  error(-0.152 dB)
611    0x0d,       // [099] = -49.500 dB  ->  AKM(0x0d) = -49.796 dB  error(-0.296 dB)
612    0x0d,       // [100] = -50.000 dB  ->  AKM(0x0d) = -49.796 dB  error(+0.204 dB)
613    0x0c,       // [101] = -50.500 dB  ->  AKM(0x0c) = -50.491 dB  error(+0.009 dB)
614    0x0b,       // [102] = -51.000 dB  ->  AKM(0x0b) = -51.247 dB  error(-0.247 dB)
615    0x0b,       // [103] = -51.500 dB  ->  AKM(0x0b) = -51.247 dB  error(+0.253 dB)
616    0x0a,       // [104] = -52.000 dB  ->  AKM(0x0a) = -52.075 dB  error(-0.075 dB)
617    0x0a,       // [105] = -52.500 dB  ->  AKM(0x0a) = -52.075 dB  error(+0.425 dB)
618    0x09,       // [106] = -53.000 dB  ->  AKM(0x09) = -52.990 dB  error(+0.010 dB)
619    0x09,       // [107] = -53.500 dB  ->  AKM(0x09) = -52.990 dB  error(+0.510 dB)
620    0x08,       // [108] = -54.000 dB  ->  AKM(0x08) = -54.013 dB  error(-0.013 dB)
621    0x08,       // [109] = -54.500 dB  ->  AKM(0x08) = -54.013 dB  error(+0.487 dB)
622    0x07,       // [110] = -55.000 dB  ->  AKM(0x07) = -55.173 dB  error(-0.173 dB)
623    0x07,       // [111] = -55.500 dB  ->  AKM(0x07) = -55.173 dB  error(+0.327 dB)
624    0x06,       // [112] = -56.000 dB  ->  AKM(0x06) = -56.512 dB  error(-0.512 dB)
625    0x06,       // [113] = -56.500 dB  ->  AKM(0x06) = -56.512 dB  error(-0.012 dB)
626    0x06,       // [114] = -57.000 dB  ->  AKM(0x06) = -56.512 dB  error(+0.488 dB)
627    0x05,       // [115] = -57.500 dB  ->  AKM(0x05) = -58.095 dB  error(-0.595 dB)
628    0x05,       // [116] = -58.000 dB  ->  AKM(0x05) = -58.095 dB  error(-0.095 dB)
629    0x05,       // [117] = -58.500 dB  ->  AKM(0x05) = -58.095 dB  error(+0.405 dB)
630    0x05,       // [118] = -59.000 dB  ->  AKM(0x05) = -58.095 dB  error(+0.905 dB)
631    0x04,       // [119] = -59.500 dB  ->  AKM(0x04) = -60.034 dB  error(-0.534 dB)
632    0x04,       // [120] = -60.000 dB  ->  AKM(0x04) = -60.034 dB  error(-0.034 dB)
633    0x04,       // [121] = -60.500 dB  ->  AKM(0x04) = -60.034 dB  error(+0.466 dB)
634    0x04,       // [122] = -61.000 dB  ->  AKM(0x04) = -60.034 dB  error(+0.966 dB)
635    0x03,       // [123] = -61.500 dB  ->  AKM(0x03) = -62.532 dB  error(-1.032 dB)
636    0x03,       // [124] = -62.000 dB  ->  AKM(0x03) = -62.532 dB  error(-0.532 dB)
637    0x03,       // [125] = -62.500 dB  ->  AKM(0x03) = -62.532 dB  error(-0.032 dB)
638    0x03,       // [126] = -63.000 dB  ->  AKM(0x03) = -62.532 dB  error(+0.468 dB)
639    0x03,       // [127] = -63.500 dB  ->  AKM(0x03) = -62.532 dB  error(+0.968 dB)
640    0x03,       // [128] = -64.000 dB  ->  AKM(0x03) = -62.532 dB  error(+1.468 dB)
641    0x02,       // [129] = -64.500 dB  ->  AKM(0x02) = -66.054 dB  error(-1.554 dB)
642    0x02,       // [130] = -65.000 dB  ->  AKM(0x02) = -66.054 dB  error(-1.054 dB)
643    0x02,       // [131] = -65.500 dB  ->  AKM(0x02) = -66.054 dB  error(-0.554 dB)
644    0x02,       // [132] = -66.000 dB  ->  AKM(0x02) = -66.054 dB  error(-0.054 dB)
645    0x02,       // [133] = -66.500 dB  ->  AKM(0x02) = -66.054 dB  error(+0.446 dB)
646    0x02,       // [134] = -67.000 dB  ->  AKM(0x02) = -66.054 dB  error(+0.946 dB)
647    0x02,       // [135] = -67.500 dB  ->  AKM(0x02) = -66.054 dB  error(+1.446 dB)
648    0x02,       // [136] = -68.000 dB  ->  AKM(0x02) = -66.054 dB  error(+1.946 dB)
649    0x02,       // [137] = -68.500 dB  ->  AKM(0x02) = -66.054 dB  error(+2.446 dB)
650    0x02,       // [138] = -69.000 dB  ->  AKM(0x02) = -66.054 dB  error(+2.946 dB)
651    0x01,       // [139] = -69.500 dB  ->  AKM(0x01) = -72.075 dB  error(-2.575 dB)
652    0x01,       // [140] = -70.000 dB  ->  AKM(0x01) = -72.075 dB  error(-2.075 dB)
653    0x01,       // [141] = -70.500 dB  ->  AKM(0x01) = -72.075 dB  error(-1.575 dB)
654    0x01,       // [142] = -71.000 dB  ->  AKM(0x01) = -72.075 dB  error(-1.075 dB)
655    0x01,       // [143] = -71.500 dB  ->  AKM(0x01) = -72.075 dB  error(-0.575 dB)
656    0x01,       // [144] = -72.000 dB  ->  AKM(0x01) = -72.075 dB  error(-0.075 dB)
657    0x01,       // [145] = -72.500 dB  ->  AKM(0x01) = -72.075 dB  error(+0.425 dB)
658    0x01,       // [146] = -73.000 dB  ->  AKM(0x01) = -72.075 dB  error(+0.925 dB)
659    0x00};      // [147] = -73.500 dB  ->  AKM(0x00) =  mute       error(+infini)
660
661/*
662 * pseudo-codec write entry
663 */
664static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
665{
666	unsigned int val;
667
668	if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
669		vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
670		return;
671	}
672
673	/* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
674	   a look up table, as there is no linear matching between the driver codec values
675	   and the real dBu value
676	*/
677	if (snd_BUG_ON(data >= sizeof(vx2_akm_gains_lut)))
678		return;
679
680	switch (reg) {
681	case XX_CODEC_LEVEL_LEFT_REGISTER:
682		val = AKM_CODEC_LEFT_LEVEL_CMD;
683		break;
684	case XX_CODEC_LEVEL_RIGHT_REGISTER:
685		val = AKM_CODEC_RIGHT_LEVEL_CMD;
686		break;
687	default:
688		snd_BUG();
689		return;
690	}
691	val |= vx2_akm_gains_lut[data];
692
693	vx2_write_codec_reg(chip, val);
694}
695
696
697/*
698 * write codec bit for old VX222 board
699 */
700static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
701{
702	int i;
703
704	/* activate access to codec registers */
705	vx_inl(chip, HIFREQ);
706
707	for (i = 0; i < 24; i++, data <<= 1)
708		vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
709
710	/* Terminate access to codec registers */
711	vx_inl(chip, RUER);
712}
713
714
715/*
716 * reset codec bit
717 */
718static void vx2_reset_codec(struct vx_core *_chip)
719{
720	struct snd_vx222 *chip = to_vx222(_chip);
721
722	/* Set the reset CODEC bit to 0. */
723	vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
724	vx_inl(chip, CDSP);
725	msleep(10);
726	/* Set the reset CODEC bit to 1. */
727	chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
728	vx_outl(chip, CDSP, chip->regCDSP);
729	vx_inl(chip, CDSP);
730	if (_chip->type == VX_TYPE_BOARD) {
731		msleep(1);
732		return;
733	}
734
735	msleep(5);  /* additionnel wait time for AKM's */
736
737	vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
738
739	vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
740	vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
741	vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
742
743	if (_chip->type == VX_TYPE_MIC) {
744		/* set up the micro input selector */
745		chip->regSELMIC =  MICRO_SELECT_INPUT_NORM |
746			MICRO_SELECT_PREAMPLI_G_0 |
747			MICRO_SELECT_NOISE_T_52DB;
748
749		/* reset phantom power supply */
750		chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
751
752		vx_outl(_chip, SELMIC, chip->regSELMIC);
753	}
754}
755
756
757/*
758 * change the audio source
759 */
760static void vx2_change_audio_source(struct vx_core *_chip, int src)
761{
762	struct snd_vx222 *chip = to_vx222(_chip);
763
764	switch (src) {
765	case VX_AUDIO_SRC_DIGITAL:
766		chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
767		break;
768	default:
769		chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
770		break;
771	}
772	vx_outl(chip, CFG, chip->regCFG);
773}
774
775
776/*
777 * set the clock source
778 */
779static void vx2_set_clock_source(struct vx_core *_chip, int source)
780{
781	struct snd_vx222 *chip = to_vx222(_chip);
782
783	if (source == INTERNAL_QUARTZ)
784		chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
785	else
786		chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
787	vx_outl(chip, CFG, chip->regCFG);
788}
789
790/*
791 * reset the board
792 */
793static void vx2_reset_board(struct vx_core *_chip, int cold_reset)
794{
795	struct snd_vx222 *chip = to_vx222(_chip);
796
797	/* initialize the register values */
798	chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
799	chip->regCFG = 0;
800}
801
802
803
804/*
805 * input level controls for VX222 Mic
806 */
807
808/* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
809 * 318 = 210 + 36 + 36 + 36   (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
810 * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
811 */
812#define V2_MICRO_LEVEL_RANGE        (318 - 255)
813
814static void vx2_set_input_level(struct snd_vx222 *chip)
815{
816	int i, miclevel, preamp;
817	unsigned int data;
818
819	miclevel = chip->mic_level;
820	miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
821	preamp = 0;
822        while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
823		preamp++;	/* raise pre ampli + 18dB */
824		miclevel -= (18 * 2);   /* lower level 18 dB (*2 because of 0.5 dB steps !) */
825        }
826	if (snd_BUG_ON(preamp >= 4))
827		return;
828
829	/* set pre-amp level */
830	chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
831	chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
832	vx_outl(chip, SELMIC, chip->regSELMIC);
833
834	data = (unsigned int)miclevel << 16 |
835		(unsigned int)chip->input_level[1] << 8 |
836		(unsigned int)chip->input_level[0];
837	vx_inl(chip, DATA); /* Activate input level programming */
838
839	/* We have to send 32 bits (4 x 8 bits) */
840	for (i = 0; i < 32; i++, data <<= 1)
841		vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
842
843	vx_inl(chip, RUER); /* Terminate input level programming */
844}
845
846
847#define MIC_LEVEL_MAX	0xff
848
849static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0);
850
851/*
852 * controls API for input levels
853 */
854
855/* input levels */
856static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
857{
858	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
859	uinfo->count = 2;
860	uinfo->value.integer.min = 0;
861	uinfo->value.integer.max = MIC_LEVEL_MAX;
862	return 0;
863}
864
865static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
866{
867	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
868	struct snd_vx222 *chip = to_vx222(_chip);
869	mutex_lock(&_chip->mixer_mutex);
870	ucontrol->value.integer.value[0] = chip->input_level[0];
871	ucontrol->value.integer.value[1] = chip->input_level[1];
872	mutex_unlock(&_chip->mixer_mutex);
873	return 0;
874}
875
876static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
877{
878	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
879	struct snd_vx222 *chip = to_vx222(_chip);
880	if (ucontrol->value.integer.value[0] < 0 ||
881	    ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
882		return -EINVAL;
883	if (ucontrol->value.integer.value[1] < 0 ||
884	    ucontrol->value.integer.value[1] > MIC_LEVEL_MAX)
885		return -EINVAL;
886	mutex_lock(&_chip->mixer_mutex);
887	if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
888	    chip->input_level[1] != ucontrol->value.integer.value[1]) {
889		chip->input_level[0] = ucontrol->value.integer.value[0];
890		chip->input_level[1] = ucontrol->value.integer.value[1];
891		vx2_set_input_level(chip);
892		mutex_unlock(&_chip->mixer_mutex);
893		return 1;
894	}
895	mutex_unlock(&_chip->mixer_mutex);
896	return 0;
897}
898
899/* mic level */
900static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
901{
902	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
903	uinfo->count = 1;
904	uinfo->value.integer.min = 0;
905	uinfo->value.integer.max = MIC_LEVEL_MAX;
906	return 0;
907}
908
909static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
910{
911	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
912	struct snd_vx222 *chip = to_vx222(_chip);
913	ucontrol->value.integer.value[0] = chip->mic_level;
914	return 0;
915}
916
917static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
918{
919	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
920	struct snd_vx222 *chip = to_vx222(_chip);
921	if (ucontrol->value.integer.value[0] < 0 ||
922	    ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
923		return -EINVAL;
924	mutex_lock(&_chip->mixer_mutex);
925	if (chip->mic_level != ucontrol->value.integer.value[0]) {
926		chip->mic_level = ucontrol->value.integer.value[0];
927		vx2_set_input_level(chip);
928		mutex_unlock(&_chip->mixer_mutex);
929		return 1;
930	}
931	mutex_unlock(&_chip->mixer_mutex);
932	return 0;
933}
934
935static const struct snd_kcontrol_new vx_control_input_level = {
936	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
937	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
938			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
939	.name =		"Capture Volume",
940	.info =		vx_input_level_info,
941	.get =		vx_input_level_get,
942	.put =		vx_input_level_put,
943	.tlv = { .p = db_scale_mic },
944};
945
946static const struct snd_kcontrol_new vx_control_mic_level = {
947	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
948	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
949			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
950	.name =		"Mic Capture Volume",
951	.info =		vx_mic_level_info,
952	.get =		vx_mic_level_get,
953	.put =		vx_mic_level_put,
954	.tlv = { .p = db_scale_mic },
955};
956
957/*
958 * FIXME: compressor/limiter implementation is missing yet...
959 */
960
961static int vx2_add_mic_controls(struct vx_core *_chip)
962{
963	struct snd_vx222 *chip = to_vx222(_chip);
964	int err;
965
966	if (_chip->type != VX_TYPE_MIC)
967		return 0;
968
969	/* mute input levels */
970	chip->input_level[0] = chip->input_level[1] = 0;
971	chip->mic_level = 0;
972	vx2_set_input_level(chip);
973
974	/* controls */
975	if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip))) < 0)
976		return err;
977	if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip))) < 0)
978		return err;
979
980	return 0;
981}
982
983
984/*
985 * callbacks
986 */
987const struct snd_vx_ops vx222_ops = {
988	.in8 = vx2_inb,
989	.in32 = vx2_inl,
990	.out8 = vx2_outb,
991	.out32 = vx2_outl,
992	.test_and_ack = vx2_test_and_ack,
993	.validate_irq = vx2_validate_irq,
994	.akm_write = vx2_write_akm,
995	.reset_codec = vx2_reset_codec,
996	.change_audio_source = vx2_change_audio_source,
997	.set_clock_source = vx2_set_clock_source,
998	.load_dsp = vx2_load_dsp,
999	.reset_dsp = vx2_reset_dsp,
1000	.reset_board = vx2_reset_board,
1001	.dma_write = vx2_dma_write,
1002	.dma_read = vx2_dma_read,
1003	.add_controls = vx2_add_mic_controls,
1004};
1005
1006/* for old VX222 board */
1007const struct snd_vx_ops vx222_old_ops = {
1008	.in8 = vx2_inb,
1009	.in32 = vx2_inl,
1010	.out8 = vx2_outb,
1011	.out32 = vx2_outl,
1012	.test_and_ack = vx2_test_and_ack,
1013	.validate_irq = vx2_validate_irq,
1014	.write_codec = vx2_old_write_codec_bit,
1015	.reset_codec = vx2_reset_codec,
1016	.change_audio_source = vx2_change_audio_source,
1017	.set_clock_source = vx2_set_clock_source,
1018	.load_dsp = vx2_load_dsp,
1019	.reset_dsp = vx2_reset_dsp,
1020	.reset_board = vx2_reset_board,
1021	.dma_write = vx2_dma_write,
1022	.dma_read = vx2_dma_read,
1023};
1024
1025