xref: /kernel/linux/linux-5.10/sound/pci/sis7019.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  Driver for SiS7019 Audio Accelerator
4 *
5 *  Copyright (C) 2004-2007, David Dillow
6 *  Written by David Dillow <dave@thedillows.org>
7 *  Inspired by the Trident 4D-WaveDX/NX driver.
8 *
9 *  All rights reserved.
10 */
11
12#include <linux/init.h>
13#include <linux/pci.h>
14#include <linux/time.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/interrupt.h>
18#include <linux/delay.h>
19#include <sound/core.h>
20#include <sound/ac97_codec.h>
21#include <sound/initval.h>
22#include "sis7019.h"
23
24MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
25MODULE_DESCRIPTION("SiS7019");
26MODULE_LICENSE("GPL");
27MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
28
29static int index = SNDRV_DEFAULT_IDX1;	/* Index 0-MAX */
30static char *id = SNDRV_DEFAULT_STR1;	/* ID for this card */
31static bool enable = 1;
32static int codecs = 1;
33
34module_param(index, int, 0444);
35MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
36module_param(id, charp, 0444);
37MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
38module_param(enable, bool, 0444);
39MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
40module_param(codecs, int, 0444);
41MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
42
43static const struct pci_device_id snd_sis7019_ids[] = {
44	{ PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
45	{ 0, }
46};
47
48MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
49
50/* There are three timing modes for the voices.
51 *
52 * For both playback and capture, when the buffer is one or two periods long,
53 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
54 * to let us know when the periods have ended.
55 *
56 * When performing playback with more than two periods per buffer, we set
57 * the "Stop Sample Offset" and tell the hardware to interrupt us when we
58 * reach it. We then update the offset and continue on until we are
59 * interrupted for the next period.
60 *
61 * Capture channels do not have a SSO, so we allocate a playback channel to
62 * use as a timer for the capture periods. We use the SSO on the playback
63 * channel to clock out virtual periods, and adjust the virtual period length
64 * to maintain synchronization. This algorithm came from the Trident driver.
65 *
66 * FIXME: It'd be nice to make use of some of the synth features in the
67 * hardware, but a woeful lack of documentation is a significant roadblock.
68 */
69struct voice {
70	u16 flags;
71#define 	VOICE_IN_USE		1
72#define 	VOICE_CAPTURE		2
73#define 	VOICE_SSO_TIMING	4
74#define 	VOICE_SYNC_TIMING	8
75	u16 sync_cso;
76	u16 period_size;
77	u16 buffer_size;
78	u16 sync_period_size;
79	u16 sync_buffer_size;
80	u32 sso;
81	u32 vperiod;
82	struct snd_pcm_substream *substream;
83	struct voice *timing;
84	void __iomem *ctrl_base;
85	void __iomem *wave_base;
86	void __iomem *sync_base;
87	int num;
88};
89
90/* We need four pages to store our wave parameters during a suspend. If
91 * we're not doing power management, we still need to allocate a page
92 * for the silence buffer.
93 */
94#ifdef CONFIG_PM_SLEEP
95#define SIS_SUSPEND_PAGES	4
96#else
97#define SIS_SUSPEND_PAGES	1
98#endif
99
100struct sis7019 {
101	unsigned long ioport;
102	void __iomem *ioaddr;
103	int irq;
104	int codecs_present;
105
106	struct pci_dev *pci;
107	struct snd_pcm *pcm;
108	struct snd_card *card;
109	struct snd_ac97 *ac97[3];
110
111	/* Protect against more than one thread hitting the AC97
112	 * registers (in a more polite manner than pounding the hardware
113	 * semaphore)
114	 */
115	struct mutex ac97_mutex;
116
117	/* voice_lock protects allocation/freeing of the voice descriptions
118	 */
119	spinlock_t voice_lock;
120
121	struct voice voices[64];
122	struct voice capture_voice;
123
124	/* Allocate pages to store the internal wave state during
125	 * suspends. When we're operating, this can be used as a silence
126	 * buffer for a timing channel.
127	 */
128	void *suspend_state[SIS_SUSPEND_PAGES];
129
130	int silence_users;
131	dma_addr_t silence_dma_addr;
132};
133
134/* These values are also used by the module param 'codecs' to indicate
135 * which codecs should be present.
136 */
137#define SIS_PRIMARY_CODEC_PRESENT	0x0001
138#define SIS_SECONDARY_CODEC_PRESENT	0x0002
139#define SIS_TERTIARY_CODEC_PRESENT	0x0004
140
141/* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
142 * documented range of 8-0xfff8 samples. Given that they are 0-based,
143 * that places our period/buffer range at 9-0xfff9 samples. That makes the
144 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
145 * max samples / min samples gives us the max periods in a buffer.
146 *
147 * We'll add a constraint upon open that limits the period and buffer sample
148 * size to values that are legal for the hardware.
149 */
150static const struct snd_pcm_hardware sis_playback_hw_info = {
151	.info = (SNDRV_PCM_INFO_MMAP |
152		 SNDRV_PCM_INFO_MMAP_VALID |
153		 SNDRV_PCM_INFO_INTERLEAVED |
154		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
155		 SNDRV_PCM_INFO_SYNC_START |
156		 SNDRV_PCM_INFO_RESUME),
157	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
158		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
159	.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
160	.rate_min = 4000,
161	.rate_max = 48000,
162	.channels_min = 1,
163	.channels_max = 2,
164	.buffer_bytes_max = (0xfff9 * 4),
165	.period_bytes_min = 9,
166	.period_bytes_max = (0xfff9 * 4),
167	.periods_min = 1,
168	.periods_max = (0xfff9 / 9),
169};
170
171static const struct snd_pcm_hardware sis_capture_hw_info = {
172	.info = (SNDRV_PCM_INFO_MMAP |
173		 SNDRV_PCM_INFO_MMAP_VALID |
174		 SNDRV_PCM_INFO_INTERLEAVED |
175		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
176		 SNDRV_PCM_INFO_SYNC_START |
177		 SNDRV_PCM_INFO_RESUME),
178	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
179		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
180	.rates = SNDRV_PCM_RATE_48000,
181	.rate_min = 4000,
182	.rate_max = 48000,
183	.channels_min = 1,
184	.channels_max = 2,
185	.buffer_bytes_max = (0xfff9 * 4),
186	.period_bytes_min = 9,
187	.period_bytes_max = (0xfff9 * 4),
188	.periods_min = 1,
189	.periods_max = (0xfff9 / 9),
190};
191
192static void sis_update_sso(struct voice *voice, u16 period)
193{
194	void __iomem *base = voice->ctrl_base;
195
196	voice->sso += period;
197	if (voice->sso >= voice->buffer_size)
198		voice->sso -= voice->buffer_size;
199
200	/* Enforce the documented hardware minimum offset */
201	if (voice->sso < 8)
202		voice->sso = 8;
203
204	/* The SSO is in the upper 16 bits of the register. */
205	writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
206}
207
208static void sis_update_voice(struct voice *voice)
209{
210	if (voice->flags & VOICE_SSO_TIMING) {
211		sis_update_sso(voice, voice->period_size);
212	} else if (voice->flags & VOICE_SYNC_TIMING) {
213		int sync;
214
215		/* If we've not hit the end of the virtual period, update
216		 * our records and keep going.
217		 */
218		if (voice->vperiod > voice->period_size) {
219			voice->vperiod -= voice->period_size;
220			if (voice->vperiod < voice->period_size)
221				sis_update_sso(voice, voice->vperiod);
222			else
223				sis_update_sso(voice, voice->period_size);
224			return;
225		}
226
227		/* Calculate our relative offset between the target and
228		 * the actual CSO value. Since we're operating in a loop,
229		 * if the value is more than half way around, we can
230		 * consider ourselves wrapped.
231		 */
232		sync = voice->sync_cso;
233		sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
234		if (sync > (voice->sync_buffer_size / 2))
235			sync -= voice->sync_buffer_size;
236
237		/* If sync is positive, then we interrupted too early, and
238		 * we'll need to come back in a few samples and try again.
239		 * There's a minimum wait, as it takes some time for the DMA
240		 * engine to startup, etc...
241		 */
242		if (sync > 0) {
243			if (sync < 16)
244				sync = 16;
245			sis_update_sso(voice, sync);
246			return;
247		}
248
249		/* Ok, we interrupted right on time, or (hopefully) just
250		 * a bit late. We'll adjst our next waiting period based
251		 * on how close we got.
252		 *
253		 * We need to stay just behind the actual channel to ensure
254		 * it really is past a period when we get our interrupt --
255		 * otherwise we'll fall into the early code above and have
256		 * a minimum wait time, which makes us quite late here,
257		 * eating into the user's time to refresh the buffer, esp.
258		 * if using small periods.
259		 *
260		 * If we're less than 9 samples behind, we're on target.
261		 * Otherwise, shorten the next vperiod by the amount we've
262		 * been delayed.
263		 */
264		if (sync > -9)
265			voice->vperiod = voice->sync_period_size + 1;
266		else
267			voice->vperiod = voice->sync_period_size + sync + 10;
268
269		if (voice->vperiod < voice->buffer_size) {
270			sis_update_sso(voice, voice->vperiod);
271			voice->vperiod = 0;
272		} else
273			sis_update_sso(voice, voice->period_size);
274
275		sync = voice->sync_cso + voice->sync_period_size;
276		if (sync >= voice->sync_buffer_size)
277			sync -= voice->sync_buffer_size;
278		voice->sync_cso = sync;
279	}
280
281	snd_pcm_period_elapsed(voice->substream);
282}
283
284static void sis_voice_irq(u32 status, struct voice *voice)
285{
286	int bit;
287
288	while (status) {
289		bit = __ffs(status);
290		status >>= bit + 1;
291		voice += bit;
292		sis_update_voice(voice);
293		voice++;
294	}
295}
296
297static irqreturn_t sis_interrupt(int irq, void *dev)
298{
299	struct sis7019 *sis = dev;
300	unsigned long io = sis->ioport;
301	struct voice *voice;
302	u32 intr, status;
303
304	/* We only use the DMA interrupts, and we don't enable any other
305	 * source of interrupts. But, it is possible to see an interrupt
306	 * status that didn't actually interrupt us, so eliminate anything
307	 * we're not expecting to avoid falsely claiming an IRQ, and an
308	 * ensuing endless loop.
309	 */
310	intr = inl(io + SIS_GISR);
311	intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
312		SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
313	if (!intr)
314		return IRQ_NONE;
315
316	do {
317		status = inl(io + SIS_PISR_A);
318		if (status) {
319			sis_voice_irq(status, sis->voices);
320			outl(status, io + SIS_PISR_A);
321		}
322
323		status = inl(io + SIS_PISR_B);
324		if (status) {
325			sis_voice_irq(status, &sis->voices[32]);
326			outl(status, io + SIS_PISR_B);
327		}
328
329		status = inl(io + SIS_RISR);
330		if (status) {
331			voice = &sis->capture_voice;
332			if (!voice->timing)
333				snd_pcm_period_elapsed(voice->substream);
334
335			outl(status, io + SIS_RISR);
336		}
337
338		outl(intr, io + SIS_GISR);
339		intr = inl(io + SIS_GISR);
340		intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
341			SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
342	} while (intr);
343
344	return IRQ_HANDLED;
345}
346
347static u32 sis_rate_to_delta(unsigned int rate)
348{
349	u32 delta;
350
351	/* This was copied from the trident driver, but it seems its gotten
352	 * around a bit... nevertheless, it works well.
353	 *
354	 * We special case 44100 and 8000 since rounding with the equation
355	 * does not give us an accurate enough value. For 11025 and 22050
356	 * the equation gives us the best answer. All other frequencies will
357	 * also use the equation. JDW
358	 */
359	if (rate == 44100)
360		delta = 0xeb3;
361	else if (rate == 8000)
362		delta = 0x2ab;
363	else if (rate == 48000)
364		delta = 0x1000;
365	else
366		delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
367	return delta;
368}
369
370static void __sis_map_silence(struct sis7019 *sis)
371{
372	/* Helper function: must hold sis->voice_lock on entry */
373	if (!sis->silence_users)
374		sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
375						sis->suspend_state[0],
376						4096, DMA_TO_DEVICE);
377	sis->silence_users++;
378}
379
380static void __sis_unmap_silence(struct sis7019 *sis)
381{
382	/* Helper function: must hold sis->voice_lock on entry */
383	sis->silence_users--;
384	if (!sis->silence_users)
385		dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
386					DMA_TO_DEVICE);
387}
388
389static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
390{
391	unsigned long flags;
392
393	spin_lock_irqsave(&sis->voice_lock, flags);
394	if (voice->timing) {
395		__sis_unmap_silence(sis);
396		voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
397						VOICE_SYNC_TIMING);
398		voice->timing = NULL;
399	}
400	voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
401	spin_unlock_irqrestore(&sis->voice_lock, flags);
402}
403
404static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
405{
406	/* Must hold the voice_lock on entry */
407	struct voice *voice;
408	int i;
409
410	for (i = 0; i < 64; i++) {
411		voice = &sis->voices[i];
412		if (voice->flags & VOICE_IN_USE)
413			continue;
414		voice->flags |= VOICE_IN_USE;
415		goto found_one;
416	}
417	voice = NULL;
418
419found_one:
420	return voice;
421}
422
423static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
424{
425	struct voice *voice;
426	unsigned long flags;
427
428	spin_lock_irqsave(&sis->voice_lock, flags);
429	voice = __sis_alloc_playback_voice(sis);
430	spin_unlock_irqrestore(&sis->voice_lock, flags);
431
432	return voice;
433}
434
435static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
436					struct snd_pcm_hw_params *hw_params)
437{
438	struct sis7019 *sis = snd_pcm_substream_chip(substream);
439	struct snd_pcm_runtime *runtime = substream->runtime;
440	struct voice *voice = runtime->private_data;
441	unsigned int period_size, buffer_size;
442	unsigned long flags;
443	int needed;
444
445	/* If there are one or two periods per buffer, we don't need a
446	 * timing voice, as we can use the capture channel's interrupts
447	 * to clock out the periods.
448	 */
449	period_size = params_period_size(hw_params);
450	buffer_size = params_buffer_size(hw_params);
451	needed = (period_size != buffer_size &&
452			period_size != (buffer_size / 2));
453
454	if (needed && !voice->timing) {
455		spin_lock_irqsave(&sis->voice_lock, flags);
456		voice->timing = __sis_alloc_playback_voice(sis);
457		if (voice->timing)
458			__sis_map_silence(sis);
459		spin_unlock_irqrestore(&sis->voice_lock, flags);
460		if (!voice->timing)
461			return -ENOMEM;
462		voice->timing->substream = substream;
463	} else if (!needed && voice->timing) {
464		sis_free_voice(sis, voice);
465		voice->timing = NULL;
466	}
467
468	return 0;
469}
470
471static int sis_playback_open(struct snd_pcm_substream *substream)
472{
473	struct sis7019 *sis = snd_pcm_substream_chip(substream);
474	struct snd_pcm_runtime *runtime = substream->runtime;
475	struct voice *voice;
476
477	voice = sis_alloc_playback_voice(sis);
478	if (!voice)
479		return -EAGAIN;
480
481	voice->substream = substream;
482	runtime->private_data = voice;
483	runtime->hw = sis_playback_hw_info;
484	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
485						9, 0xfff9);
486	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
487						9, 0xfff9);
488	snd_pcm_set_sync(substream);
489	return 0;
490}
491
492static int sis_substream_close(struct snd_pcm_substream *substream)
493{
494	struct sis7019 *sis = snd_pcm_substream_chip(substream);
495	struct snd_pcm_runtime *runtime = substream->runtime;
496	struct voice *voice = runtime->private_data;
497
498	sis_free_voice(sis, voice);
499	return 0;
500}
501
502static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
503{
504	struct snd_pcm_runtime *runtime = substream->runtime;
505	struct voice *voice = runtime->private_data;
506	void __iomem *ctrl_base = voice->ctrl_base;
507	void __iomem *wave_base = voice->wave_base;
508	u32 format, dma_addr, control, sso_eso, delta, reg;
509	u16 leo;
510
511	/* We rely on the PCM core to ensure that the parameters for this
512	 * substream do not change on us while we're programming the HW.
513	 */
514	format = 0;
515	if (snd_pcm_format_width(runtime->format) == 8)
516		format |= SIS_PLAY_DMA_FORMAT_8BIT;
517	if (!snd_pcm_format_signed(runtime->format))
518		format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
519	if (runtime->channels == 1)
520		format |= SIS_PLAY_DMA_FORMAT_MONO;
521
522	/* The baseline setup is for a single period per buffer, and
523	 * we add bells and whistles as needed from there.
524	 */
525	dma_addr = runtime->dma_addr;
526	leo = runtime->buffer_size - 1;
527	control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
528	sso_eso = leo;
529
530	if (runtime->period_size == (runtime->buffer_size / 2)) {
531		control |= SIS_PLAY_DMA_INTR_AT_MLP;
532	} else if (runtime->period_size != runtime->buffer_size) {
533		voice->flags |= VOICE_SSO_TIMING;
534		voice->sso = runtime->period_size - 1;
535		voice->period_size = runtime->period_size;
536		voice->buffer_size = runtime->buffer_size;
537
538		control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
539		control |= SIS_PLAY_DMA_INTR_AT_SSO;
540		sso_eso |= (runtime->period_size - 1) << 16;
541	}
542
543	delta = sis_rate_to_delta(runtime->rate);
544
545	/* Ok, we're ready to go, set up the channel.
546	 */
547	writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
548	writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
549	writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
550	writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
551
552	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
553		writel(0, wave_base + reg);
554
555	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
556	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
557	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
558			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
559			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
560			wave_base + SIS_WAVE_CHANNEL_CONTROL);
561
562	/* Force PCI writes to post. */
563	readl(ctrl_base);
564
565	return 0;
566}
567
568static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
569{
570	struct sis7019 *sis = snd_pcm_substream_chip(substream);
571	unsigned long io = sis->ioport;
572	struct snd_pcm_substream *s;
573	struct voice *voice;
574	void *chip;
575	int starting;
576	u32 record = 0;
577	u32 play[2] = { 0, 0 };
578
579	/* No locks needed, as the PCM core will hold the locks on the
580	 * substreams, and the HW will only start/stop the indicated voices
581	 * without changing the state of the others.
582	 */
583	switch (cmd) {
584	case SNDRV_PCM_TRIGGER_START:
585	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
586	case SNDRV_PCM_TRIGGER_RESUME:
587		starting = 1;
588		break;
589	case SNDRV_PCM_TRIGGER_STOP:
590	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
591	case SNDRV_PCM_TRIGGER_SUSPEND:
592		starting = 0;
593		break;
594	default:
595		return -EINVAL;
596	}
597
598	snd_pcm_group_for_each_entry(s, substream) {
599		/* Make sure it is for us... */
600		chip = snd_pcm_substream_chip(s);
601		if (chip != sis)
602			continue;
603
604		voice = s->runtime->private_data;
605		if (voice->flags & VOICE_CAPTURE) {
606			record |= 1 << voice->num;
607			voice = voice->timing;
608		}
609
610		/* voice could be NULL if this a recording stream, and it
611		 * doesn't have an external timing channel.
612		 */
613		if (voice)
614			play[voice->num / 32] |= 1 << (voice->num & 0x1f);
615
616		snd_pcm_trigger_done(s, substream);
617	}
618
619	if (starting) {
620		if (record)
621			outl(record, io + SIS_RECORD_START_REG);
622		if (play[0])
623			outl(play[0], io + SIS_PLAY_START_A_REG);
624		if (play[1])
625			outl(play[1], io + SIS_PLAY_START_B_REG);
626	} else {
627		if (record)
628			outl(record, io + SIS_RECORD_STOP_REG);
629		if (play[0])
630			outl(play[0], io + SIS_PLAY_STOP_A_REG);
631		if (play[1])
632			outl(play[1], io + SIS_PLAY_STOP_B_REG);
633	}
634	return 0;
635}
636
637static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
638{
639	struct snd_pcm_runtime *runtime = substream->runtime;
640	struct voice *voice = runtime->private_data;
641	u32 cso;
642
643	cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
644	cso &= 0xffff;
645	return cso;
646}
647
648static int sis_capture_open(struct snd_pcm_substream *substream)
649{
650	struct sis7019 *sis = snd_pcm_substream_chip(substream);
651	struct snd_pcm_runtime *runtime = substream->runtime;
652	struct voice *voice = &sis->capture_voice;
653	unsigned long flags;
654
655	/* FIXME: The driver only supports recording from one channel
656	 * at the moment, but it could support more.
657	 */
658	spin_lock_irqsave(&sis->voice_lock, flags);
659	if (voice->flags & VOICE_IN_USE)
660		voice = NULL;
661	else
662		voice->flags |= VOICE_IN_USE;
663	spin_unlock_irqrestore(&sis->voice_lock, flags);
664
665	if (!voice)
666		return -EAGAIN;
667
668	voice->substream = substream;
669	runtime->private_data = voice;
670	runtime->hw = sis_capture_hw_info;
671	runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
672	snd_pcm_limit_hw_rates(runtime);
673	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
674						9, 0xfff9);
675	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
676						9, 0xfff9);
677	snd_pcm_set_sync(substream);
678	return 0;
679}
680
681static int sis_capture_hw_params(struct snd_pcm_substream *substream,
682					struct snd_pcm_hw_params *hw_params)
683{
684	struct sis7019 *sis = snd_pcm_substream_chip(substream);
685	int rc;
686
687	rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
688						params_rate(hw_params));
689	if (rc)
690		goto out;
691
692	rc = sis_alloc_timing_voice(substream, hw_params);
693
694out:
695	return rc;
696}
697
698static void sis_prepare_timing_voice(struct voice *voice,
699					struct snd_pcm_substream *substream)
700{
701	struct sis7019 *sis = snd_pcm_substream_chip(substream);
702	struct snd_pcm_runtime *runtime = substream->runtime;
703	struct voice *timing = voice->timing;
704	void __iomem *play_base = timing->ctrl_base;
705	void __iomem *wave_base = timing->wave_base;
706	u16 buffer_size, period_size;
707	u32 format, control, sso_eso, delta;
708	u32 vperiod, sso, reg;
709
710	/* Set our initial buffer and period as large as we can given a
711	 * single page of silence.
712	 */
713	buffer_size = 4096 / runtime->channels;
714	buffer_size /= snd_pcm_format_size(runtime->format, 1);
715	period_size = buffer_size;
716
717	/* Initially, we want to interrupt just a bit behind the end of
718	 * the period we're clocking out. 12 samples seems to give a good
719	 * delay.
720	 *
721	 * We want to spread our interrupts throughout the virtual period,
722	 * so that we don't end up with two interrupts back to back at the
723	 * end -- this helps minimize the effects of any jitter. Adjust our
724	 * clocking period size so that the last period is at least a fourth
725	 * of a full period.
726	 *
727	 * This is all moot if we don't need to use virtual periods.
728	 */
729	vperiod = runtime->period_size + 12;
730	if (vperiod > period_size) {
731		u16 tail = vperiod % period_size;
732		u16 quarter_period = period_size / 4;
733
734		if (tail && tail < quarter_period) {
735			u16 loops = vperiod / period_size;
736
737			tail = quarter_period - tail;
738			tail += loops - 1;
739			tail /= loops;
740			period_size -= tail;
741		}
742
743		sso = period_size - 1;
744	} else {
745		/* The initial period will fit inside the buffer, so we
746		 * don't need to use virtual periods -- disable them.
747		 */
748		period_size = runtime->period_size;
749		sso = vperiod - 1;
750		vperiod = 0;
751	}
752
753	/* The interrupt handler implements the timing synchronization, so
754	 * setup its state.
755	 */
756	timing->flags |= VOICE_SYNC_TIMING;
757	timing->sync_base = voice->ctrl_base;
758	timing->sync_cso = runtime->period_size;
759	timing->sync_period_size = runtime->period_size;
760	timing->sync_buffer_size = runtime->buffer_size;
761	timing->period_size = period_size;
762	timing->buffer_size = buffer_size;
763	timing->sso = sso;
764	timing->vperiod = vperiod;
765
766	/* Using unsigned samples with the all-zero silence buffer
767	 * forces the output to the lower rail, killing playback.
768	 * So ignore unsigned vs signed -- it doesn't change the timing.
769	 */
770	format = 0;
771	if (snd_pcm_format_width(runtime->format) == 8)
772		format = SIS_CAPTURE_DMA_FORMAT_8BIT;
773	if (runtime->channels == 1)
774		format |= SIS_CAPTURE_DMA_FORMAT_MONO;
775
776	control = timing->buffer_size - 1;
777	control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
778	sso_eso = timing->buffer_size - 1;
779	sso_eso |= timing->sso << 16;
780
781	delta = sis_rate_to_delta(runtime->rate);
782
783	/* We've done the math, now configure the channel.
784	 */
785	writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
786	writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
787	writel(control, play_base + SIS_PLAY_DMA_CONTROL);
788	writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
789
790	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
791		writel(0, wave_base + reg);
792
793	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
794	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
795	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
796			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
797			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
798			wave_base + SIS_WAVE_CHANNEL_CONTROL);
799}
800
801static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
802{
803	struct snd_pcm_runtime *runtime = substream->runtime;
804	struct voice *voice = runtime->private_data;
805	void __iomem *rec_base = voice->ctrl_base;
806	u32 format, dma_addr, control;
807	u16 leo;
808
809	/* We rely on the PCM core to ensure that the parameters for this
810	 * substream do not change on us while we're programming the HW.
811	 */
812	format = 0;
813	if (snd_pcm_format_width(runtime->format) == 8)
814		format = SIS_CAPTURE_DMA_FORMAT_8BIT;
815	if (!snd_pcm_format_signed(runtime->format))
816		format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
817	if (runtime->channels == 1)
818		format |= SIS_CAPTURE_DMA_FORMAT_MONO;
819
820	dma_addr = runtime->dma_addr;
821	leo = runtime->buffer_size - 1;
822	control = leo | SIS_CAPTURE_DMA_LOOP;
823
824	/* If we've got more than two periods per buffer, then we have
825	 * use a timing voice to clock out the periods. Otherwise, we can
826	 * use the capture channel's interrupts.
827	 */
828	if (voice->timing) {
829		sis_prepare_timing_voice(voice, substream);
830	} else {
831		control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
832		if (runtime->period_size != runtime->buffer_size)
833			control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
834	}
835
836	writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
837	writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
838	writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
839
840	/* Force the writes to post. */
841	readl(rec_base);
842
843	return 0;
844}
845
846static const struct snd_pcm_ops sis_playback_ops = {
847	.open = sis_playback_open,
848	.close = sis_substream_close,
849	.prepare = sis_pcm_playback_prepare,
850	.trigger = sis_pcm_trigger,
851	.pointer = sis_pcm_pointer,
852};
853
854static const struct snd_pcm_ops sis_capture_ops = {
855	.open = sis_capture_open,
856	.close = sis_substream_close,
857	.hw_params = sis_capture_hw_params,
858	.prepare = sis_pcm_capture_prepare,
859	.trigger = sis_pcm_trigger,
860	.pointer = sis_pcm_pointer,
861};
862
863static int sis_pcm_create(struct sis7019 *sis)
864{
865	struct snd_pcm *pcm;
866	int rc;
867
868	/* We have 64 voices, and the driver currently records from
869	 * only one channel, though that could change in the future.
870	 */
871	rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
872	if (rc)
873		return rc;
874
875	pcm->private_data = sis;
876	strcpy(pcm->name, "SiS7019");
877	sis->pcm = pcm;
878
879	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
880	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
881
882	/* Try to preallocate some memory, but it's not the end of the
883	 * world if this fails.
884	 */
885	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
886				       &sis->pci->dev, 64*1024, 128*1024);
887
888	return 0;
889}
890
891static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
892{
893	unsigned long io = sis->ioport;
894	unsigned short val = 0xffff;
895	u16 status;
896	u16 rdy;
897	int count;
898	static const u16 codec_ready[3] = {
899		SIS_AC97_STATUS_CODEC_READY,
900		SIS_AC97_STATUS_CODEC2_READY,
901		SIS_AC97_STATUS_CODEC3_READY,
902	};
903
904	rdy = codec_ready[codec];
905
906
907	/* Get the AC97 semaphore -- software first, so we don't spin
908	 * pounding out IO reads on the hardware semaphore...
909	 */
910	mutex_lock(&sis->ac97_mutex);
911
912	count = 0xffff;
913	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
914		udelay(1);
915
916	if (!count)
917		goto timeout;
918
919	/* ... and wait for any outstanding commands to complete ...
920	 */
921	count = 0xffff;
922	do {
923		status = inw(io + SIS_AC97_STATUS);
924		if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
925			break;
926
927		udelay(1);
928	} while (--count);
929
930	if (!count)
931		goto timeout_sema;
932
933	/* ... before sending our command and waiting for it to finish ...
934	 */
935	outl(cmd, io + SIS_AC97_CMD);
936	udelay(10);
937
938	count = 0xffff;
939	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
940		udelay(1);
941
942	/* ... and reading the results (if any).
943	 */
944	val = inl(io + SIS_AC97_CMD) >> 16;
945
946timeout_sema:
947	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
948timeout:
949	mutex_unlock(&sis->ac97_mutex);
950
951	if (!count) {
952		dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
953					codec, cmd);
954	}
955
956	return val;
957}
958
959static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
960				unsigned short val)
961{
962	static const u32 cmd[3] = {
963		SIS_AC97_CMD_CODEC_WRITE,
964		SIS_AC97_CMD_CODEC2_WRITE,
965		SIS_AC97_CMD_CODEC3_WRITE,
966	};
967	sis_ac97_rw(ac97->private_data, ac97->num,
968			(val << 16) | (reg << 8) | cmd[ac97->num]);
969}
970
971static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
972{
973	static const u32 cmd[3] = {
974		SIS_AC97_CMD_CODEC_READ,
975		SIS_AC97_CMD_CODEC2_READ,
976		SIS_AC97_CMD_CODEC3_READ,
977	};
978	return sis_ac97_rw(ac97->private_data, ac97->num,
979					(reg << 8) | cmd[ac97->num]);
980}
981
982static int sis_mixer_create(struct sis7019 *sis)
983{
984	struct snd_ac97_bus *bus;
985	struct snd_ac97_template ac97;
986	static const struct snd_ac97_bus_ops ops = {
987		.write = sis_ac97_write,
988		.read = sis_ac97_read,
989	};
990	int rc;
991
992	memset(&ac97, 0, sizeof(ac97));
993	ac97.private_data = sis;
994
995	rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
996	if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
997		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
998	ac97.num = 1;
999	if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1000		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1001	ac97.num = 2;
1002	if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1003		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1004
1005	/* If we return an error here, then snd_card_free() should
1006	 * free up any ac97 codecs that got created, as well as the bus.
1007	 */
1008	return rc;
1009}
1010
1011static void sis_free_suspend(struct sis7019 *sis)
1012{
1013	int i;
1014
1015	for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1016		kfree(sis->suspend_state[i]);
1017}
1018
1019static int sis_chip_free(struct sis7019 *sis)
1020{
1021	/* Reset the chip, and disable all interrputs.
1022	 */
1023	outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1024	udelay(25);
1025	outl(0, sis->ioport + SIS_GCR);
1026	outl(0, sis->ioport + SIS_GIER);
1027
1028	/* Now, free everything we allocated.
1029	 */
1030	if (sis->irq >= 0)
1031		free_irq(sis->irq, sis);
1032
1033	iounmap(sis->ioaddr);
1034	pci_release_regions(sis->pci);
1035	pci_disable_device(sis->pci);
1036	sis_free_suspend(sis);
1037	return 0;
1038}
1039
1040static int sis_dev_free(struct snd_device *dev)
1041{
1042	struct sis7019 *sis = dev->device_data;
1043	return sis_chip_free(sis);
1044}
1045
1046static int sis_chip_init(struct sis7019 *sis)
1047{
1048	unsigned long io = sis->ioport;
1049	void __iomem *ioaddr = sis->ioaddr;
1050	unsigned long timeout;
1051	u16 status;
1052	int count;
1053	int i;
1054
1055	/* Reset the audio controller
1056	 */
1057	outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1058	udelay(25);
1059	outl(0, io + SIS_GCR);
1060
1061	/* Get the AC-link semaphore, and reset the codecs
1062	 */
1063	count = 0xffff;
1064	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1065		udelay(1);
1066
1067	if (!count)
1068		return -EIO;
1069
1070	outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1071	udelay(250);
1072
1073	count = 0xffff;
1074	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1075		udelay(1);
1076
1077	/* Command complete, we can let go of the semaphore now.
1078	 */
1079	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1080	if (!count)
1081		return -EIO;
1082
1083	/* Now that we've finished the reset, find out what's attached.
1084	 * There are some codec/board combinations that take an extremely
1085	 * long time to come up. 350+ ms has been observed in the field,
1086	 * so we'll give them up to 500ms.
1087	 */
1088	sis->codecs_present = 0;
1089	timeout = msecs_to_jiffies(500) + jiffies;
1090	while (time_before_eq(jiffies, timeout)) {
1091		status = inl(io + SIS_AC97_STATUS);
1092		if (status & SIS_AC97_STATUS_CODEC_READY)
1093			sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1094		if (status & SIS_AC97_STATUS_CODEC2_READY)
1095			sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1096		if (status & SIS_AC97_STATUS_CODEC3_READY)
1097			sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1098
1099		if (sis->codecs_present == codecs)
1100			break;
1101
1102		msleep(1);
1103	}
1104
1105	/* All done, check for errors.
1106	 */
1107	if (!sis->codecs_present) {
1108		dev_err(&sis->pci->dev, "could not find any codecs\n");
1109		return -EIO;
1110	}
1111
1112	if (sis->codecs_present != codecs) {
1113		dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1114					 sis->codecs_present, codecs);
1115	}
1116
1117	/* Let the hardware know that the audio driver is alive,
1118	 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1119	 * record channels. We're going to want to use Variable Rate Audio
1120	 * for recording, to avoid needlessly resampling from 48kHZ.
1121	 */
1122	outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1123	outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1124		SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1125		SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1126		SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1127
1128	/* All AC97 PCM slots should be sourced from sub-mixer 0.
1129	 */
1130	outl(0, io + SIS_AC97_PSR);
1131
1132	/* There is only one valid DMA setup for a PCI environment.
1133	 */
1134	outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1135
1136	/* Reset the synchronization groups for all of the channels
1137	 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1138	 * we'll need to change how we handle these. Until then, we just
1139	 * assign sub-mixer 0 to all playback channels, and avoid any
1140	 * attenuation on the audio.
1141	 */
1142	outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1143	outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1144	outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1145	outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1146	outl(0, io + SIS_MIXER_SYNC_GROUP);
1147
1148	for (i = 0; i < 64; i++) {
1149		writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1150		writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1151				SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1152	}
1153
1154	/* Don't attenuate any audio set for the wave amplifier.
1155	 *
1156	 * FIXME: Maximum attenuation is set for the music amp, which will
1157	 * need to change if we start using the synth engine.
1158	 */
1159	outl(0xffff0000, io + SIS_WEVCR);
1160
1161	/* Ensure that the wave engine is in normal operating mode.
1162	 */
1163	outl(0, io + SIS_WECCR);
1164
1165	/* Go ahead and enable the DMA interrupts. They won't go live
1166	 * until we start a channel.
1167	 */
1168	outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1169		SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1170
1171	return 0;
1172}
1173
1174#ifdef CONFIG_PM_SLEEP
1175static int sis_suspend(struct device *dev)
1176{
1177	struct snd_card *card = dev_get_drvdata(dev);
1178	struct sis7019 *sis = card->private_data;
1179	void __iomem *ioaddr = sis->ioaddr;
1180	int i;
1181
1182	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1183	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1184		snd_ac97_suspend(sis->ac97[0]);
1185	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1186		snd_ac97_suspend(sis->ac97[1]);
1187	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1188		snd_ac97_suspend(sis->ac97[2]);
1189
1190	/* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1191	 */
1192	if (sis->irq >= 0) {
1193		free_irq(sis->irq, sis);
1194		sis->irq = -1;
1195	}
1196
1197	/* Save the internal state away
1198	 */
1199	for (i = 0; i < 4; i++) {
1200		memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1201		ioaddr += 4096;
1202	}
1203
1204	return 0;
1205}
1206
1207static int sis_resume(struct device *dev)
1208{
1209	struct pci_dev *pci = to_pci_dev(dev);
1210	struct snd_card *card = dev_get_drvdata(dev);
1211	struct sis7019 *sis = card->private_data;
1212	void __iomem *ioaddr = sis->ioaddr;
1213	int i;
1214
1215	if (sis_chip_init(sis)) {
1216		dev_err(&pci->dev, "unable to re-init controller\n");
1217		goto error;
1218	}
1219
1220	if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1221			KBUILD_MODNAME, sis)) {
1222		dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1223		goto error;
1224	}
1225
1226	/* Restore saved state, then clear out the page we use for the
1227	 * silence buffer.
1228	 */
1229	for (i = 0; i < 4; i++) {
1230		memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1231		ioaddr += 4096;
1232	}
1233
1234	memset(sis->suspend_state[0], 0, 4096);
1235
1236	sis->irq = pci->irq;
1237
1238	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1239		snd_ac97_resume(sis->ac97[0]);
1240	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1241		snd_ac97_resume(sis->ac97[1]);
1242	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1243		snd_ac97_resume(sis->ac97[2]);
1244
1245	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1246	return 0;
1247
1248error:
1249	snd_card_disconnect(card);
1250	return -EIO;
1251}
1252
1253static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1254#define SIS_PM_OPS	&sis_pm
1255#else
1256#define SIS_PM_OPS	NULL
1257#endif /* CONFIG_PM_SLEEP */
1258
1259static int sis_alloc_suspend(struct sis7019 *sis)
1260{
1261	int i;
1262
1263	/* We need 16K to store the internal wave engine state during a
1264	 * suspend, but we don't need it to be contiguous, so play nice
1265	 * with the memory system. We'll also use this area for a silence
1266	 * buffer.
1267	 */
1268	for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1269		sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1270		if (!sis->suspend_state[i])
1271			return -ENOMEM;
1272	}
1273	memset(sis->suspend_state[0], 0, 4096);
1274
1275	return 0;
1276}
1277
1278static int sis_chip_create(struct snd_card *card,
1279			   struct pci_dev *pci)
1280{
1281	struct sis7019 *sis = card->private_data;
1282	struct voice *voice;
1283	static const struct snd_device_ops ops = {
1284		.dev_free = sis_dev_free,
1285	};
1286	int rc;
1287	int i;
1288
1289	rc = pci_enable_device(pci);
1290	if (rc)
1291		goto error_out;
1292
1293	rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
1294	if (rc < 0) {
1295		dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1296		goto error_out_enabled;
1297	}
1298
1299	memset(sis, 0, sizeof(*sis));
1300	mutex_init(&sis->ac97_mutex);
1301	spin_lock_init(&sis->voice_lock);
1302	sis->card = card;
1303	sis->pci = pci;
1304	sis->irq = -1;
1305	sis->ioport = pci_resource_start(pci, 0);
1306
1307	rc = pci_request_regions(pci, "SiS7019");
1308	if (rc) {
1309		dev_err(&pci->dev, "unable request regions\n");
1310		goto error_out_enabled;
1311	}
1312
1313	rc = -EIO;
1314	sis->ioaddr = ioremap(pci_resource_start(pci, 1), 0x4000);
1315	if (!sis->ioaddr) {
1316		dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1317		goto error_out_cleanup;
1318	}
1319
1320	rc = sis_alloc_suspend(sis);
1321	if (rc < 0) {
1322		dev_err(&pci->dev, "unable to allocate state storage\n");
1323		goto error_out_cleanup;
1324	}
1325
1326	rc = sis_chip_init(sis);
1327	if (rc)
1328		goto error_out_cleanup;
1329
1330	rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1331			 sis);
1332	if (rc) {
1333		dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1334		goto error_out_cleanup;
1335	}
1336
1337	sis->irq = pci->irq;
1338	card->sync_irq = sis->irq;
1339	pci_set_master(pci);
1340
1341	for (i = 0; i < 64; i++) {
1342		voice = &sis->voices[i];
1343		voice->num = i;
1344		voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1345		voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1346	}
1347
1348	voice = &sis->capture_voice;
1349	voice->flags = VOICE_CAPTURE;
1350	voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1351	voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1352
1353	rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1354	if (rc)
1355		goto error_out_cleanup;
1356
1357	return 0;
1358
1359error_out_cleanup:
1360	sis_chip_free(sis);
1361
1362error_out_enabled:
1363	pci_disable_device(pci);
1364
1365error_out:
1366	return rc;
1367}
1368
1369static int snd_sis7019_probe(struct pci_dev *pci,
1370			     const struct pci_device_id *pci_id)
1371{
1372	struct snd_card *card;
1373	struct sis7019 *sis;
1374	int rc;
1375
1376	rc = -ENOENT;
1377	if (!enable)
1378		goto error_out;
1379
1380	/* The user can specify which codecs should be present so that we
1381	 * can wait for them to show up if they are slow to recover from
1382	 * the AC97 cold reset. We default to a single codec, the primary.
1383	 *
1384	 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1385	 */
1386	codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1387		  SIS_TERTIARY_CODEC_PRESENT;
1388	if (!codecs)
1389		codecs = SIS_PRIMARY_CODEC_PRESENT;
1390
1391	rc = snd_card_new(&pci->dev, index, id, THIS_MODULE,
1392			  sizeof(*sis), &card);
1393	if (rc < 0)
1394		goto error_out;
1395
1396	strcpy(card->driver, "SiS7019");
1397	strcpy(card->shortname, "SiS7019");
1398	rc = sis_chip_create(card, pci);
1399	if (rc)
1400		goto card_error_out;
1401
1402	sis = card->private_data;
1403
1404	rc = sis_mixer_create(sis);
1405	if (rc)
1406		goto card_error_out;
1407
1408	rc = sis_pcm_create(sis);
1409	if (rc)
1410		goto card_error_out;
1411
1412	snprintf(card->longname, sizeof(card->longname),
1413			"%s Audio Accelerator with %s at 0x%lx, irq %d",
1414			card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1415			sis->ioport, sis->irq);
1416
1417	rc = snd_card_register(card);
1418	if (rc)
1419		goto card_error_out;
1420
1421	pci_set_drvdata(pci, card);
1422	return 0;
1423
1424card_error_out:
1425	snd_card_free(card);
1426
1427error_out:
1428	return rc;
1429}
1430
1431static void snd_sis7019_remove(struct pci_dev *pci)
1432{
1433	snd_card_free(pci_get_drvdata(pci));
1434}
1435
1436static struct pci_driver sis7019_driver = {
1437	.name = KBUILD_MODNAME,
1438	.id_table = snd_sis7019_ids,
1439	.probe = snd_sis7019_probe,
1440	.remove = snd_sis7019_remove,
1441	.driver = {
1442		.pm = SIS_PM_OPS,
1443	},
1444};
1445
1446module_pci_driver(sis7019_driver);
1447