xref: /kernel/linux/linux-5.10/sound/pci/cmipci.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
4 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
5 */
6
7/* Does not work. Warning may block system in capture mode */
8/* #define USE_VAR48KRATE */
9
10#include <linux/io.h>
11#include <linux/delay.h>
12#include <linux/interrupt.h>
13#include <linux/init.h>
14#include <linux/pci.h>
15#include <linux/slab.h>
16#include <linux/gameport.h>
17#include <linux/module.h>
18#include <linux/mutex.h>
19#include <sound/core.h>
20#include <sound/info.h>
21#include <sound/control.h>
22#include <sound/pcm.h>
23#include <sound/rawmidi.h>
24#include <sound/mpu401.h>
25#include <sound/opl3.h>
26#include <sound/sb.h>
27#include <sound/asoundef.h>
28#include <sound/initval.h>
29
30MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
31MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
32MODULE_LICENSE("GPL");
33MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
34		"{C-Media,CMI8738B},"
35		"{C-Media,CMI8338A},"
36		"{C-Media,CMI8338B}}");
37
38#if IS_REACHABLE(CONFIG_GAMEPORT)
39#define SUPPORT_JOYSTICK 1
40#endif
41
42static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
43static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
44static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
45static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
46static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
47static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
48#ifdef SUPPORT_JOYSTICK
49static int joystick_port[SNDRV_CARDS];
50#endif
51
52module_param_array(index, int, NULL, 0444);
53MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
54module_param_array(id, charp, NULL, 0444);
55MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
56module_param_array(enable, bool, NULL, 0444);
57MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
58module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
59MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
60module_param_hw_array(fm_port, long, ioport, NULL, 0444);
61MODULE_PARM_DESC(fm_port, "FM port.");
62module_param_array(soft_ac3, bool, NULL, 0444);
63MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
64#ifdef SUPPORT_JOYSTICK
65module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
66MODULE_PARM_DESC(joystick_port, "Joystick port address.");
67#endif
68
69/*
70 * CM8x38 registers definition
71 */
72
73#define CM_REG_FUNCTRL0		0x00
74#define CM_RST_CH1		0x00080000
75#define CM_RST_CH0		0x00040000
76#define CM_CHEN1		0x00020000	/* ch1: enable */
77#define CM_CHEN0		0x00010000	/* ch0: enable */
78#define CM_PAUSE1		0x00000008	/* ch1: pause */
79#define CM_PAUSE0		0x00000004	/* ch0: pause */
80#define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
81#define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
82
83#define CM_REG_FUNCTRL1		0x04
84#define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
85#define CM_DSFC_SHIFT		13
86#define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
87#define CM_ASFC_SHIFT		10
88#define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
89#define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
90#define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
91#define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
92#define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
93#define CM_BREQ			0x00000010	/* bus master enabled */
94#define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
95#define CM_UART_EN		0x00000004	/* legacy UART */
96#define CM_JYSTK_EN		0x00000002	/* legacy joystick */
97#define CM_ZVPORT		0x00000001	/* ZVPORT */
98
99#define CM_REG_CHFORMAT		0x08
100
101#define CM_CHB3D5C		0x80000000	/* 5,6 channels */
102#define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
103#define CM_CHB3D		0x20000000	/* 4 channels */
104
105#define CM_CHIP_MASK1		0x1f000000
106#define CM_CHIP_037		0x01000000
107#define CM_SETLAT48		0x00800000	/* set latency timer 48h */
108#define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
109#define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
110#define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
111#define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
112#define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
113/* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
114
115#define CM_ADCBITLEN_MASK	0x0000C000
116#define CM_ADCBITLEN_16		0x00000000
117#define CM_ADCBITLEN_15		0x00004000
118#define CM_ADCBITLEN_14		0x00008000
119#define CM_ADCBITLEN_13		0x0000C000
120
121#define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
122#define CM_ADCDACLEN_060	0x00000000
123#define CM_ADCDACLEN_066	0x00001000
124#define CM_ADCDACLEN_130	0x00002000
125#define CM_ADCDACLEN_280	0x00003000
126
127#define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
128#define CM_ADCDLEN_ORIGINAL	0x00000000
129#define CM_ADCDLEN_EXTRA	0x00001000
130#define CM_ADCDLEN_24K		0x00002000
131#define CM_ADCDLEN_WEIGHT	0x00003000
132
133#define CM_CH1_SRATE_176K	0x00000800
134#define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
135#define CM_CH1_SRATE_88K	0x00000400
136#define CM_CH0_SRATE_176K	0x00000200
137#define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
138#define CM_CH0_SRATE_88K	0x00000100
139#define CM_CH0_SRATE_128K	0x00000300
140#define CM_CH0_SRATE_MASK	0x00000300
141
142#define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
143#define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
144#define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
145#define CM_SPDLOCKED		0x00000010
146
147#define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
148#define CM_CH1FMT_SHIFT		2
149#define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
150#define CM_CH0FMT_SHIFT		0
151
152#define CM_REG_INT_HLDCLR	0x0C
153#define CM_CHIP_MASK2		0xff000000
154#define CM_CHIP_8768		0x20000000
155#define CM_CHIP_055		0x08000000
156#define CM_CHIP_039		0x04000000
157#define CM_CHIP_039_6CH		0x01000000
158#define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
159#define CM_TDMA_INT_EN		0x00040000
160#define CM_CH1_INT_EN		0x00020000
161#define CM_CH0_INT_EN		0x00010000
162
163#define CM_REG_INT_STATUS	0x10
164#define CM_INTR			0x80000000
165#define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
166#define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
167#define CM_UARTINT		0x00010000
168#define CM_LTDMAINT		0x00008000
169#define CM_HTDMAINT		0x00004000
170#define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
171#define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
172#define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
173#define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
174#define CM_CH1BUSY		0x00000008
175#define CM_CH0BUSY		0x00000004
176#define CM_CHINT1		0x00000002
177#define CM_CHINT0		0x00000001
178
179#define CM_REG_LEGACY_CTRL	0x14
180#define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
181#define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
182#define CM_VMPU_330		0x00000000
183#define CM_VMPU_320		0x20000000
184#define CM_VMPU_310		0x40000000
185#define CM_VMPU_300		0x60000000
186#define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
187#define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
188#define CM_VSBSEL_220		0x00000000
189#define CM_VSBSEL_240		0x04000000
190#define CM_VSBSEL_260		0x08000000
191#define CM_VSBSEL_280		0x0C000000
192#define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
193#define CM_FMSEL_388		0x00000000
194#define CM_FMSEL_3C8		0x01000000
195#define CM_FMSEL_3E0		0x02000000
196#define CM_FMSEL_3E8		0x03000000
197#define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
198#define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
199#define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
200#define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
201#define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
202#define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
203#define CM_C_EECS		0x00040000
204#define CM_C_EEDI46		0x00020000
205#define CM_C_EECK46		0x00010000
206#define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
207#define CM_CENTR2LIN		0x00004000	/* line-in as center out */
208#define CM_BASE2LIN		0x00002000	/* line-in as bass out */
209#define CM_EXBASEN		0x00001000	/* external bass input enable */
210
211#define CM_REG_MISC_CTRL	0x18
212#define CM_PWD			0x80000000	/* power down */
213#define CM_RESET		0x40000000
214#define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
215#define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
216#define CM_TXVX			0x08000000	/* model 037? */
217#define CM_N4SPK3D		0x04000000	/* copy front to rear */
218#define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
219#define CM_SPDIF48K		0x01000000	/* write */
220#define CM_SPATUS48K		0x01000000	/* read */
221#define CM_ENDBDAC		0x00800000	/* enable double dac */
222#define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
223#define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
224#define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
225#define CM_FM_EN		0x00080000	/* enable legacy FM */
226#define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
227#define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
228#define CM_VIDWPDSB		0x00010000	/* model 037? */
229#define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
230#define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
231#define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
232#define CM_VIDWPPRT		0x00002000	/* model 037? */
233#define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
234#define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
235#define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
236#define CM_ENCENTER		0x00000080
237#define CM_FLINKON		0x00000040	/* force modem link detection on, model 037 */
238#define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
239#define CM_FLINKOFF		0x00000020	/* force modem link detection off, model 037 */
240#define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
241#define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
242#define CM_UPDDMA_2048		0x00000000
243#define CM_UPDDMA_1024		0x00000004
244#define CM_UPDDMA_512		0x00000008
245#define CM_UPDDMA_256		0x0000000C
246#define CM_TWAIT_MASK		0x00000003	/* model 037 */
247#define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
248#define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */
249
250#define CM_REG_TDMA_POSITION	0x1C
251#define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
252#define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */
253
254	/* byte */
255#define CM_REG_MIXER0		0x20
256#define CM_REG_SBVR		0x20		/* write: sb16 version */
257#define CM_REG_DEV		0x20		/* read: hardware device version */
258
259#define CM_REG_MIXER21		0x21
260#define CM_UNKNOWN_21_MASK	0x78		/* ? */
261#define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
262#define CM_PROINV		0x02		/* SBPro left/right channel switching */
263#define CM_X_SB16		0x01		/* SB16 compatible */
264
265#define CM_REG_SB16_DATA	0x22
266#define CM_REG_SB16_ADDR	0x23
267
268#define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
269#define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
270#define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
271#define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
272
273#define CM_REG_MIXER1		0x24
274#define CM_FMMUTE		0x80	/* mute FM */
275#define CM_FMMUTE_SHIFT		7
276#define CM_WSMUTE		0x40	/* mute PCM */
277#define CM_WSMUTE_SHIFT		6
278#define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
279#define CM_REAR2LIN_SHIFT	5
280#define CM_REAR2FRONT		0x10	/* exchange rear/front */
281#define CM_REAR2FRONT_SHIFT	4
282#define CM_WAVEINL		0x08	/* digital wave rec. left chan */
283#define CM_WAVEINL_SHIFT	3
284#define CM_WAVEINR		0x04	/* digical wave rec. right */
285#define CM_WAVEINR_SHIFT	2
286#define CM_X3DEN		0x02	/* 3D surround enable */
287#define CM_X3DEN_SHIFT		1
288#define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
289#define CM_CDPLAY_SHIFT		0
290
291#define CM_REG_MIXER2		0x25
292#define CM_RAUXREN		0x80	/* AUX right capture */
293#define CM_RAUXREN_SHIFT	7
294#define CM_RAUXLEN		0x40	/* AUX left capture */
295#define CM_RAUXLEN_SHIFT	6
296#define CM_VAUXRM		0x20	/* AUX right mute */
297#define CM_VAUXRM_SHIFT		5
298#define CM_VAUXLM		0x10	/* AUX left mute */
299#define CM_VAUXLM_SHIFT		4
300#define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
301#define CM_VADMIC_SHIFT		1
302#define CM_MICGAINZ		0x01	/* mic boost */
303#define CM_MICGAINZ_SHIFT	0
304
305#define CM_REG_AUX_VOL		0x26
306#define CM_VAUXL_MASK		0xf0
307#define CM_VAUXR_MASK		0x0f
308
309#define CM_REG_MISC		0x27
310#define CM_UNKNOWN_27_MASK	0xd8	/* ? */
311#define CM_XGPO1		0x20
312// #define CM_XGPBIO		0x04
313#define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
314#define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
315#define CM_SPDVALID		0x02	/* spdif input valid check */
316#define CM_DMAUTO		0x01	/* SB16 DMA auto detect */
317
318#define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
319/*
320 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
321 * or identical with AC97 codec?
322 */
323#define CM_REG_EXTERN_CODEC	CM_REG_AC97
324
325/*
326 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
327 */
328#define CM_REG_MPU_PCI		0x40
329
330/*
331 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
332 */
333#define CM_REG_FM_PCI		0x50
334
335/*
336 * access from SB-mixer port
337 */
338#define CM_REG_EXTENT_IND	0xf0
339#define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
340#define CM_VPHONE_SHIFT		5
341#define CM_VPHOM		0x10	/* Phone mute control */
342#define CM_VSPKM		0x08	/* Speaker mute control, default high */
343#define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
344#define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
345#define CM_VADMIC3		0x01	/* Mic record boost */
346
347/*
348 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
349 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
350 * unit (readonly?).
351 */
352#define CM_REG_PLL		0xf8
353
354/*
355 * extended registers
356 */
357#define CM_REG_CH0_FRAME1	0x80	/* write: base address */
358#define CM_REG_CH0_FRAME2	0x84	/* read: current address */
359#define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
360#define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
361
362#define CM_REG_EXT_MISC		0x90
363#define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
364#define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
365#define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
366#define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
367#define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
368#define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
369#define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
370#define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */
371
372/*
373 * size of i/o region
374 */
375#define CM_EXTENT_CODEC	  0x100
376#define CM_EXTENT_MIDI	  0x2
377#define CM_EXTENT_SYNTH	  0x4
378
379
380/*
381 * channels for playback / capture
382 */
383#define CM_CH_PLAY	0
384#define CM_CH_CAPT	1
385
386/*
387 * flags to check device open/close
388 */
389#define CM_OPEN_NONE	0
390#define CM_OPEN_CH_MASK	0x01
391#define CM_OPEN_DAC	0x10
392#define CM_OPEN_ADC	0x20
393#define CM_OPEN_SPDIF	0x40
394#define CM_OPEN_MCHAN	0x80
395#define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
396#define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
397#define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
398#define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
399#define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
400#define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
401
402
403#if CM_CH_PLAY == 1
404#define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
405#define CM_PLAYBACK_SPDF	CM_SPDF_1
406#define CM_CAPTURE_SPDF		CM_SPDF_0
407#else
408#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
409#define CM_PLAYBACK_SPDF	CM_SPDF_0
410#define CM_CAPTURE_SPDF		CM_SPDF_1
411#endif
412
413
414/*
415 * driver data
416 */
417
418struct cmipci_pcm {
419	struct snd_pcm_substream *substream;
420	u8 running;		/* dac/adc running? */
421	u8 fmt;			/* format bits */
422	u8 is_dac;
423	u8 needs_silencing;
424	unsigned int dma_size;	/* in frames */
425	unsigned int shift;
426	unsigned int ch;	/* channel (0/1) */
427	unsigned int offset;	/* physical address of the buffer */
428};
429
430/* mixer elements toggled/resumed during ac3 playback */
431struct cmipci_mixer_auto_switches {
432	const char *name;	/* switch to toggle */
433	int toggle_on;		/* value to change when ac3 mode */
434};
435static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
436	{"PCM Playback Switch", 0},
437	{"IEC958 Output Switch", 1},
438	{"IEC958 Mix Analog", 0},
439	// {"IEC958 Out To DAC", 1}, // no longer used
440	{"IEC958 Loop", 0},
441};
442#define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
443
444struct cmipci {
445	struct snd_card *card;
446
447	struct pci_dev *pci;
448	unsigned int device;	/* device ID */
449	int irq;
450
451	unsigned long iobase;
452	unsigned int ctrl;	/* FUNCTRL0 current value */
453
454	struct snd_pcm *pcm;		/* DAC/ADC PCM */
455	struct snd_pcm *pcm2;	/* 2nd DAC */
456	struct snd_pcm *pcm_spdif;	/* SPDIF */
457
458	int chip_version;
459	int max_channels;
460	unsigned int can_ac3_sw: 1;
461	unsigned int can_ac3_hw: 1;
462	unsigned int can_multi_ch: 1;
463	unsigned int can_96k: 1;	/* samplerate above 48k */
464	unsigned int do_soft_ac3: 1;
465
466	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
467	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
468	int spdif_counter;	/* for software AC3 */
469
470	unsigned int dig_status;
471	unsigned int dig_pcm_status;
472
473	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
474
475	int opened[2];	/* open mode */
476	struct mutex open_mutex;
477
478	unsigned int mixer_insensitive: 1;
479	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
480	int mixer_res_status[CM_SAVED_MIXERS];
481
482	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
483
484	/* external MIDI */
485	struct snd_rawmidi *rmidi;
486
487#ifdef SUPPORT_JOYSTICK
488	struct gameport *gameport;
489#endif
490
491	spinlock_t reg_lock;
492
493#ifdef CONFIG_PM_SLEEP
494	unsigned int saved_regs[0x20];
495	unsigned char saved_mixers[0x20];
496#endif
497};
498
499
500/* read/write operations for dword register */
501static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
502{
503	outl(data, cm->iobase + cmd);
504}
505
506static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
507{
508	return inl(cm->iobase + cmd);
509}
510
511/* read/write operations for word register */
512static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
513{
514	outw(data, cm->iobase + cmd);
515}
516
517static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
518{
519	return inw(cm->iobase + cmd);
520}
521
522/* read/write operations for byte register */
523static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
524{
525	outb(data, cm->iobase + cmd);
526}
527
528static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
529{
530	return inb(cm->iobase + cmd);
531}
532
533/* bit operations for dword register */
534static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
535{
536	unsigned int val, oval;
537	val = oval = inl(cm->iobase + cmd);
538	val |= flag;
539	if (val == oval)
540		return 0;
541	outl(val, cm->iobase + cmd);
542	return 1;
543}
544
545static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
546{
547	unsigned int val, oval;
548	val = oval = inl(cm->iobase + cmd);
549	val &= ~flag;
550	if (val == oval)
551		return 0;
552	outl(val, cm->iobase + cmd);
553	return 1;
554}
555
556/* bit operations for byte register */
557static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
558{
559	unsigned char val, oval;
560	val = oval = inb(cm->iobase + cmd);
561	val |= flag;
562	if (val == oval)
563		return 0;
564	outb(val, cm->iobase + cmd);
565	return 1;
566}
567
568static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
569{
570	unsigned char val, oval;
571	val = oval = inb(cm->iobase + cmd);
572	val &= ~flag;
573	if (val == oval)
574		return 0;
575	outb(val, cm->iobase + cmd);
576	return 1;
577}
578
579
580/*
581 * PCM interface
582 */
583
584/*
585 * calculate frequency
586 */
587
588static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
589
590static unsigned int snd_cmipci_rate_freq(unsigned int rate)
591{
592	unsigned int i;
593
594	for (i = 0; i < ARRAY_SIZE(rates); i++) {
595		if (rates[i] == rate)
596			return i;
597	}
598	snd_BUG();
599	return 0;
600}
601
602#ifdef USE_VAR48KRATE
603/*
604 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
605 * does it this way .. maybe not.  Never get any information from C-Media about
606 * that <werner@suse.de>.
607 */
608static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
609{
610	unsigned int delta, tolerance;
611	int xm, xn, xr;
612
613	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
614		rate <<= 1;
615	*n = -1;
616	if (*r > 0xff)
617		goto out;
618	tolerance = rate*CM_TOLERANCE_RATE;
619
620	for (xn = (1+2); xn < (0x1f+2); xn++) {
621		for (xm = (1+2); xm < (0xff+2); xm++) {
622			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
623
624			if (xr < rate)
625				delta = rate - xr;
626			else
627				delta = xr - rate;
628
629			/*
630			 * If we found one, remember this,
631			 * and try to find a closer one
632			 */
633			if (delta < tolerance) {
634				tolerance = delta;
635				*m = xm - 2;
636				*n = xn - 2;
637			}
638		}
639	}
640out:
641	return (*n > -1);
642}
643
644/*
645 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
646 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
647 * at the register CM_REG_FUNCTRL1 (0x04).
648 * Problem: other ways are also possible (any information about that?)
649 */
650static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
651{
652	unsigned int reg = CM_REG_PLL + slot;
653	/*
654	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
655	 * for DSFC/ASFC (000 up to 111).
656	 */
657
658	/* FIXME: Init (Do we've to set an other register first before programming?) */
659
660	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
661	snd_cmipci_write_b(cm, reg, rate>>8);
662	snd_cmipci_write_b(cm, reg, rate&0xff);
663
664	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
665}
666#endif /* USE_VAR48KRATE */
667
668static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
669					  struct snd_pcm_hw_params *hw_params)
670{
671	struct cmipci *cm = snd_pcm_substream_chip(substream);
672	if (params_channels(hw_params) > 2) {
673		mutex_lock(&cm->open_mutex);
674		if (cm->opened[CM_CH_PLAY]) {
675			mutex_unlock(&cm->open_mutex);
676			return -EBUSY;
677		}
678		/* reserve the channel A */
679		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
680		mutex_unlock(&cm->open_mutex);
681	}
682	return 0;
683}
684
685static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
686{
687	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
688	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
689	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
690	udelay(10);
691}
692
693
694/*
695 */
696
697static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
698static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
699	.count = 3,
700	.list = hw_channels,
701	.mask = 0,
702};
703static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
704	.count = 4,
705	.list = hw_channels,
706	.mask = 0,
707};
708static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
709	.count = 5,
710	.list = hw_channels,
711	.mask = 0,
712};
713
714static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
715{
716	if (channels > 2) {
717		if (!cm->can_multi_ch || !rec->ch)
718			return -EINVAL;
719		if (rec->fmt != 0x03) /* stereo 16bit only */
720			return -EINVAL;
721	}
722
723	if (cm->can_multi_ch) {
724		spin_lock_irq(&cm->reg_lock);
725		if (channels > 2) {
726			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
727			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
728		} else {
729			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
730			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
731		}
732		if (channels == 8)
733			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
734		else
735			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
736		if (channels == 6) {
737			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
738			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
739		} else {
740			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
741			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
742		}
743		if (channels == 4)
744			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
745		else
746			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
747		spin_unlock_irq(&cm->reg_lock);
748	}
749	return 0;
750}
751
752
753/*
754 * prepare playback/capture channel
755 * channel to be used must have been set in rec->ch.
756 */
757static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
758				 struct snd_pcm_substream *substream)
759{
760	unsigned int reg, freq, freq_ext, val;
761	unsigned int period_size;
762	struct snd_pcm_runtime *runtime = substream->runtime;
763
764	rec->fmt = 0;
765	rec->shift = 0;
766	if (snd_pcm_format_width(runtime->format) >= 16) {
767		rec->fmt |= 0x02;
768		if (snd_pcm_format_width(runtime->format) > 16)
769			rec->shift++; /* 24/32bit */
770	}
771	if (runtime->channels > 1)
772		rec->fmt |= 0x01;
773	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
774		dev_dbg(cm->card->dev, "cannot set dac channels\n");
775		return -EINVAL;
776	}
777
778	rec->offset = runtime->dma_addr;
779	/* buffer and period sizes in frame */
780	rec->dma_size = runtime->buffer_size << rec->shift;
781	period_size = runtime->period_size << rec->shift;
782	if (runtime->channels > 2) {
783		/* multi-channels */
784		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
785		period_size = (period_size * runtime->channels) / 2;
786	}
787
788	spin_lock_irq(&cm->reg_lock);
789
790	/* set buffer address */
791	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
792	snd_cmipci_write(cm, reg, rec->offset);
793	/* program sample counts */
794	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
795	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
796	snd_cmipci_write_w(cm, reg + 2, period_size - 1);
797
798	/* set adc/dac flag */
799	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
800	if (rec->is_dac)
801		cm->ctrl &= ~val;
802	else
803		cm->ctrl |= val;
804	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
805	/* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
806
807	/* set sample rate */
808	freq = 0;
809	freq_ext = 0;
810	if (runtime->rate > 48000)
811		switch (runtime->rate) {
812		case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
813		case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
814		case 128000: freq_ext = CM_CH0_SRATE_128K; break;
815		default:     snd_BUG(); break;
816		}
817	else
818		freq = snd_cmipci_rate_freq(runtime->rate);
819	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
820	if (rec->ch) {
821		val &= ~CM_DSFC_MASK;
822		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
823	} else {
824		val &= ~CM_ASFC_MASK;
825		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
826	}
827	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
828	dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
829
830	/* set format */
831	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
832	if (rec->ch) {
833		val &= ~CM_CH1FMT_MASK;
834		val |= rec->fmt << CM_CH1FMT_SHIFT;
835	} else {
836		val &= ~CM_CH0FMT_MASK;
837		val |= rec->fmt << CM_CH0FMT_SHIFT;
838	}
839	if (cm->can_96k) {
840		val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
841		val |= freq_ext << (rec->ch * 2);
842	}
843	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
844	dev_dbg(cm->card->dev, "chformat = %08x\n", val);
845
846	if (!rec->is_dac && cm->chip_version) {
847		if (runtime->rate > 44100)
848			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
849		else
850			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
851	}
852
853	rec->running = 0;
854	spin_unlock_irq(&cm->reg_lock);
855
856	return 0;
857}
858
859/*
860 * PCM trigger/stop
861 */
862static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
863				  int cmd)
864{
865	unsigned int inthld, chen, reset, pause;
866	int result = 0;
867
868	inthld = CM_CH0_INT_EN << rec->ch;
869	chen = CM_CHEN0 << rec->ch;
870	reset = CM_RST_CH0 << rec->ch;
871	pause = CM_PAUSE0 << rec->ch;
872
873	spin_lock(&cm->reg_lock);
874	switch (cmd) {
875	case SNDRV_PCM_TRIGGER_START:
876		rec->running = 1;
877		/* set interrupt */
878		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
879		cm->ctrl |= chen;
880		/* enable channel */
881		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
882		dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
883		break;
884	case SNDRV_PCM_TRIGGER_STOP:
885		rec->running = 0;
886		/* disable interrupt */
887		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
888		/* reset */
889		cm->ctrl &= ~chen;
890		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
891		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
892		rec->needs_silencing = rec->is_dac;
893		break;
894	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
895	case SNDRV_PCM_TRIGGER_SUSPEND:
896		cm->ctrl |= pause;
897		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
898		break;
899	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
900	case SNDRV_PCM_TRIGGER_RESUME:
901		cm->ctrl &= ~pause;
902		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
903		break;
904	default:
905		result = -EINVAL;
906		break;
907	}
908	spin_unlock(&cm->reg_lock);
909	return result;
910}
911
912/*
913 * return the current pointer
914 */
915static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
916						struct snd_pcm_substream *substream)
917{
918	size_t ptr;
919	unsigned int reg, rem, tries;
920
921	if (!rec->running)
922		return 0;
923#if 1 // this seems better..
924	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
925	for (tries = 0; tries < 3; tries++) {
926		rem = snd_cmipci_read_w(cm, reg);
927		if (rem < rec->dma_size)
928			goto ok;
929	}
930	dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
931	return SNDRV_PCM_POS_XRUN;
932ok:
933	ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
934#else
935	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
936	ptr = snd_cmipci_read(cm, reg) - rec->offset;
937	ptr = bytes_to_frames(substream->runtime, ptr);
938#endif
939	if (substream->runtime->channels > 2)
940		ptr = (ptr * 2) / substream->runtime->channels;
941	return ptr;
942}
943
944/*
945 * playback
946 */
947
948static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
949				       int cmd)
950{
951	struct cmipci *cm = snd_pcm_substream_chip(substream);
952	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
953}
954
955static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
956{
957	struct cmipci *cm = snd_pcm_substream_chip(substream);
958	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
959}
960
961
962
963/*
964 * capture
965 */
966
967static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
968				     int cmd)
969{
970	struct cmipci *cm = snd_pcm_substream_chip(substream);
971	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
972}
973
974static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
975{
976	struct cmipci *cm = snd_pcm_substream_chip(substream);
977	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
978}
979
980
981/*
982 * hw preparation for spdif
983 */
984
985static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
986					 struct snd_ctl_elem_info *uinfo)
987{
988	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
989	uinfo->count = 1;
990	return 0;
991}
992
993static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
994					struct snd_ctl_elem_value *ucontrol)
995{
996	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
997	int i;
998
999	spin_lock_irq(&chip->reg_lock);
1000	for (i = 0; i < 4; i++)
1001		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1002	spin_unlock_irq(&chip->reg_lock);
1003	return 0;
1004}
1005
1006static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1007					 struct snd_ctl_elem_value *ucontrol)
1008{
1009	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1010	int i, change;
1011	unsigned int val;
1012
1013	val = 0;
1014	spin_lock_irq(&chip->reg_lock);
1015	for (i = 0; i < 4; i++)
1016		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1017	change = val != chip->dig_status;
1018	chip->dig_status = val;
1019	spin_unlock_irq(&chip->reg_lock);
1020	return change;
1021}
1022
1023static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1024{
1025	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1026	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1027	.info =		snd_cmipci_spdif_default_info,
1028	.get =		snd_cmipci_spdif_default_get,
1029	.put =		snd_cmipci_spdif_default_put
1030};
1031
1032static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1033				      struct snd_ctl_elem_info *uinfo)
1034{
1035	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1036	uinfo->count = 1;
1037	return 0;
1038}
1039
1040static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1041				     struct snd_ctl_elem_value *ucontrol)
1042{
1043	ucontrol->value.iec958.status[0] = 0xff;
1044	ucontrol->value.iec958.status[1] = 0xff;
1045	ucontrol->value.iec958.status[2] = 0xff;
1046	ucontrol->value.iec958.status[3] = 0xff;
1047	return 0;
1048}
1049
1050static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1051{
1052	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1053	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1054	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1055	.info =		snd_cmipci_spdif_mask_info,
1056	.get =		snd_cmipci_spdif_mask_get,
1057};
1058
1059static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1060					struct snd_ctl_elem_info *uinfo)
1061{
1062	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1063	uinfo->count = 1;
1064	return 0;
1065}
1066
1067static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1068				       struct snd_ctl_elem_value *ucontrol)
1069{
1070	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1071	int i;
1072
1073	spin_lock_irq(&chip->reg_lock);
1074	for (i = 0; i < 4; i++)
1075		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1076	spin_unlock_irq(&chip->reg_lock);
1077	return 0;
1078}
1079
1080static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1081				       struct snd_ctl_elem_value *ucontrol)
1082{
1083	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1084	int i, change;
1085	unsigned int val;
1086
1087	val = 0;
1088	spin_lock_irq(&chip->reg_lock);
1089	for (i = 0; i < 4; i++)
1090		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1091	change = val != chip->dig_pcm_status;
1092	chip->dig_pcm_status = val;
1093	spin_unlock_irq(&chip->reg_lock);
1094	return change;
1095}
1096
1097static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1098{
1099	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1100	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1101	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1102	.info =		snd_cmipci_spdif_stream_info,
1103	.get =		snd_cmipci_spdif_stream_get,
1104	.put =		snd_cmipci_spdif_stream_put
1105};
1106
1107/*
1108 */
1109
1110/* save mixer setting and mute for AC3 playback */
1111static int save_mixer_state(struct cmipci *cm)
1112{
1113	if (! cm->mixer_insensitive) {
1114		struct snd_ctl_elem_value *val;
1115		unsigned int i;
1116
1117		val = kmalloc(sizeof(*val), GFP_KERNEL);
1118		if (!val)
1119			return -ENOMEM;
1120		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1121			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1122			if (ctl) {
1123				int event;
1124				memset(val, 0, sizeof(*val));
1125				ctl->get(ctl, val);
1126				cm->mixer_res_status[i] = val->value.integer.value[0];
1127				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1128				event = SNDRV_CTL_EVENT_MASK_INFO;
1129				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1130					ctl->put(ctl, val); /* toggle */
1131					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1132				}
1133				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1134				snd_ctl_notify(cm->card, event, &ctl->id);
1135			}
1136		}
1137		kfree(val);
1138		cm->mixer_insensitive = 1;
1139	}
1140	return 0;
1141}
1142
1143
1144/* restore the previously saved mixer status */
1145static void restore_mixer_state(struct cmipci *cm)
1146{
1147	if (cm->mixer_insensitive) {
1148		struct snd_ctl_elem_value *val;
1149		unsigned int i;
1150
1151		val = kmalloc(sizeof(*val), GFP_KERNEL);
1152		if (!val)
1153			return;
1154		cm->mixer_insensitive = 0; /* at first clear this;
1155					      otherwise the changes will be ignored */
1156		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1157			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1158			if (ctl) {
1159				int event;
1160
1161				memset(val, 0, sizeof(*val));
1162				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1163				ctl->get(ctl, val);
1164				event = SNDRV_CTL_EVENT_MASK_INFO;
1165				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1166					val->value.integer.value[0] = cm->mixer_res_status[i];
1167					ctl->put(ctl, val);
1168					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1169				}
1170				snd_ctl_notify(cm->card, event, &ctl->id);
1171			}
1172		}
1173		kfree(val);
1174	}
1175}
1176
1177/* spinlock held! */
1178static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1179{
1180	if (do_ac3) {
1181		/* AC3EN for 037 */
1182		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1183		/* AC3EN for 039 */
1184		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1185
1186		if (cm->can_ac3_hw) {
1187			/* SPD24SEL for 037, 0x02 */
1188			/* SPD24SEL for 039, 0x20, but cannot be set */
1189			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1190			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1191		} else { /* can_ac3_sw */
1192			/* SPD32SEL for 037 & 039, 0x20 */
1193			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1194			/* set 176K sample rate to fix 033 HW bug */
1195			if (cm->chip_version == 33) {
1196				if (rate >= 48000) {
1197					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1198				} else {
1199					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1200				}
1201			}
1202		}
1203
1204	} else {
1205		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1206		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1207
1208		if (cm->can_ac3_hw) {
1209			/* chip model >= 37 */
1210			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1211				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1212				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1213			} else {
1214				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1215				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1216			}
1217		} else {
1218			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1219			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1220			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1221		}
1222	}
1223}
1224
1225static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1226{
1227	int rate, err;
1228
1229	rate = subs->runtime->rate;
1230
1231	if (up && do_ac3)
1232		if ((err = save_mixer_state(cm)) < 0)
1233			return err;
1234
1235	spin_lock_irq(&cm->reg_lock);
1236	cm->spdif_playback_avail = up;
1237	if (up) {
1238		/* they are controlled via "IEC958 Output Switch" */
1239		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1240		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1241		if (cm->spdif_playback_enabled)
1242			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1243		setup_ac3(cm, subs, do_ac3, rate);
1244
1245		if (rate == 48000 || rate == 96000)
1246			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1247		else
1248			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1249		if (rate > 48000)
1250			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1251		else
1252			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1253	} else {
1254		/* they are controlled via "IEC958 Output Switch" */
1255		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1256		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1257		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1258		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1259		setup_ac3(cm, subs, 0, 0);
1260	}
1261	spin_unlock_irq(&cm->reg_lock);
1262	return 0;
1263}
1264
1265
1266/*
1267 * preparation
1268 */
1269
1270/* playback - enable spdif only on the certain condition */
1271static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1272{
1273	struct cmipci *cm = snd_pcm_substream_chip(substream);
1274	int rate = substream->runtime->rate;
1275	int err, do_spdif, do_ac3 = 0;
1276
1277	do_spdif = (rate >= 44100 && rate <= 96000 &&
1278		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1279		    substream->runtime->channels == 2);
1280	if (do_spdif && cm->can_ac3_hw)
1281		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1282	if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1283		return err;
1284	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1285}
1286
1287/* playback  (via device #2) - enable spdif always */
1288static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1289{
1290	struct cmipci *cm = snd_pcm_substream_chip(substream);
1291	int err, do_ac3;
1292
1293	if (cm->can_ac3_hw)
1294		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1295	else
1296		do_ac3 = 1; /* doesn't matter */
1297	if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1298		return err;
1299	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1300}
1301
1302/*
1303 * Apparently, the samples last played on channel A stay in some buffer, even
1304 * after the channel is reset, and get added to the data for the rear DACs when
1305 * playing a multichannel stream on channel B.  This is likely to generate
1306 * wraparounds and thus distortions.
1307 * To avoid this, we play at least one zero sample after the actual stream has
1308 * stopped.
1309 */
1310static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1311{
1312	struct snd_pcm_runtime *runtime = rec->substream->runtime;
1313	unsigned int reg, val;
1314
1315	if (rec->needs_silencing && runtime && runtime->dma_area) {
1316		/* set up a small silence buffer */
1317		memset(runtime->dma_area, 0, PAGE_SIZE);
1318		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1319		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1320		snd_cmipci_write(cm, reg, val);
1321
1322		/* configure for 16 bits, 2 channels, 8 kHz */
1323		if (runtime->channels > 2)
1324			set_dac_channels(cm, rec, 2);
1325		spin_lock_irq(&cm->reg_lock);
1326		val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1327		val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1328		val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1329		snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1330		val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1331		val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1332		val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1333		if (cm->can_96k)
1334			val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1335		snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1336
1337		/* start stream (we don't need interrupts) */
1338		cm->ctrl |= CM_CHEN0 << rec->ch;
1339		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1340		spin_unlock_irq(&cm->reg_lock);
1341
1342		msleep(1);
1343
1344		/* stop and reset stream */
1345		spin_lock_irq(&cm->reg_lock);
1346		cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1347		val = CM_RST_CH0 << rec->ch;
1348		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1349		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1350		spin_unlock_irq(&cm->reg_lock);
1351
1352		rec->needs_silencing = 0;
1353	}
1354}
1355
1356static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1357{
1358	struct cmipci *cm = snd_pcm_substream_chip(substream);
1359	setup_spdif_playback(cm, substream, 0, 0);
1360	restore_mixer_state(cm);
1361	snd_cmipci_silence_hack(cm, &cm->channel[0]);
1362	return 0;
1363}
1364
1365static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1366{
1367	struct cmipci *cm = snd_pcm_substream_chip(substream);
1368	snd_cmipci_silence_hack(cm, &cm->channel[1]);
1369	return 0;
1370}
1371
1372/* capture */
1373static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1374{
1375	struct cmipci *cm = snd_pcm_substream_chip(substream);
1376	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1377}
1378
1379/* capture with spdif (via device #2) */
1380static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1381{
1382	struct cmipci *cm = snd_pcm_substream_chip(substream);
1383
1384	spin_lock_irq(&cm->reg_lock);
1385	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1386	if (cm->can_96k) {
1387		if (substream->runtime->rate > 48000)
1388			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1389		else
1390			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1391	}
1392	if (snd_pcm_format_width(substream->runtime->format) > 16)
1393		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1394	else
1395		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1396
1397	spin_unlock_irq(&cm->reg_lock);
1398
1399	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1400}
1401
1402static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1403{
1404	struct cmipci *cm = snd_pcm_substream_chip(subs);
1405
1406	spin_lock_irq(&cm->reg_lock);
1407	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1408	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1409	spin_unlock_irq(&cm->reg_lock);
1410
1411	return 0;
1412}
1413
1414
1415/*
1416 * interrupt handler
1417 */
1418static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1419{
1420	struct cmipci *cm = dev_id;
1421	unsigned int status, mask = 0;
1422
1423	/* fastpath out, to ease interrupt sharing */
1424	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1425	if (!(status & CM_INTR))
1426		return IRQ_NONE;
1427
1428	/* acknowledge interrupt */
1429	spin_lock(&cm->reg_lock);
1430	if (status & CM_CHINT0)
1431		mask |= CM_CH0_INT_EN;
1432	if (status & CM_CHINT1)
1433		mask |= CM_CH1_INT_EN;
1434	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1435	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1436	spin_unlock(&cm->reg_lock);
1437
1438	if (cm->rmidi && (status & CM_UARTINT))
1439		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1440
1441	if (cm->pcm) {
1442		if ((status & CM_CHINT0) && cm->channel[0].running)
1443			snd_pcm_period_elapsed(cm->channel[0].substream);
1444		if ((status & CM_CHINT1) && cm->channel[1].running)
1445			snd_pcm_period_elapsed(cm->channel[1].substream);
1446	}
1447	return IRQ_HANDLED;
1448}
1449
1450/*
1451 * h/w infos
1452 */
1453
1454/* playback on channel A */
1455static const struct snd_pcm_hardware snd_cmipci_playback =
1456{
1457	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1458				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1459				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1460	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1461	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1462	.rate_min =		5512,
1463	.rate_max =		48000,
1464	.channels_min =		1,
1465	.channels_max =		2,
1466	.buffer_bytes_max =	(128*1024),
1467	.period_bytes_min =	64,
1468	.period_bytes_max =	(128*1024),
1469	.periods_min =		2,
1470	.periods_max =		1024,
1471	.fifo_size =		0,
1472};
1473
1474/* capture on channel B */
1475static const struct snd_pcm_hardware snd_cmipci_capture =
1476{
1477	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1478				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1479				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1480	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1481	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1482	.rate_min =		5512,
1483	.rate_max =		48000,
1484	.channels_min =		1,
1485	.channels_max =		2,
1486	.buffer_bytes_max =	(128*1024),
1487	.period_bytes_min =	64,
1488	.period_bytes_max =	(128*1024),
1489	.periods_min =		2,
1490	.periods_max =		1024,
1491	.fifo_size =		0,
1492};
1493
1494/* playback on channel B - stereo 16bit only? */
1495static const struct snd_pcm_hardware snd_cmipci_playback2 =
1496{
1497	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1498				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1499				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1500	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1501	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1502	.rate_min =		5512,
1503	.rate_max =		48000,
1504	.channels_min =		2,
1505	.channels_max =		2,
1506	.buffer_bytes_max =	(128*1024),
1507	.period_bytes_min =	64,
1508	.period_bytes_max =	(128*1024),
1509	.periods_min =		2,
1510	.periods_max =		1024,
1511	.fifo_size =		0,
1512};
1513
1514/* spdif playback on channel A */
1515static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1516{
1517	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1518				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1519				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1520	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1521	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1522	.rate_min =		44100,
1523	.rate_max =		48000,
1524	.channels_min =		2,
1525	.channels_max =		2,
1526	.buffer_bytes_max =	(128*1024),
1527	.period_bytes_min =	64,
1528	.period_bytes_max =	(128*1024),
1529	.periods_min =		2,
1530	.periods_max =		1024,
1531	.fifo_size =		0,
1532};
1533
1534/* spdif playback on channel A (32bit, IEC958 subframes) */
1535static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1536{
1537	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1538				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1539				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1540	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1541	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1542	.rate_min =		44100,
1543	.rate_max =		48000,
1544	.channels_min =		2,
1545	.channels_max =		2,
1546	.buffer_bytes_max =	(128*1024),
1547	.period_bytes_min =	64,
1548	.period_bytes_max =	(128*1024),
1549	.periods_min =		2,
1550	.periods_max =		1024,
1551	.fifo_size =		0,
1552};
1553
1554/* spdif capture on channel B */
1555static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1556{
1557	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1558				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1559				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1560	.formats =	        SNDRV_PCM_FMTBIT_S16_LE |
1561				SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1562	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1563	.rate_min =		44100,
1564	.rate_max =		48000,
1565	.channels_min =		2,
1566	.channels_max =		2,
1567	.buffer_bytes_max =	(128*1024),
1568	.period_bytes_min =	64,
1569	.period_bytes_max =	(128*1024),
1570	.periods_min =		2,
1571	.periods_max =		1024,
1572	.fifo_size =		0,
1573};
1574
1575static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1576			32000, 44100, 48000, 88200, 96000, 128000 };
1577static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1578		.count = ARRAY_SIZE(rate_constraints),
1579		.list = rate_constraints,
1580		.mask = 0,
1581};
1582
1583/*
1584 * check device open/close
1585 */
1586static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1587{
1588	int ch = mode & CM_OPEN_CH_MASK;
1589
1590	/* FIXME: a file should wait until the device becomes free
1591	 * when it's opened on blocking mode.  however, since the current
1592	 * pcm framework doesn't pass file pointer before actually opened,
1593	 * we can't know whether blocking mode or not in open callback..
1594	 */
1595	mutex_lock(&cm->open_mutex);
1596	if (cm->opened[ch]) {
1597		mutex_unlock(&cm->open_mutex);
1598		return -EBUSY;
1599	}
1600	cm->opened[ch] = mode;
1601	cm->channel[ch].substream = subs;
1602	if (! (mode & CM_OPEN_DAC)) {
1603		/* disable dual DAC mode */
1604		cm->channel[ch].is_dac = 0;
1605		spin_lock_irq(&cm->reg_lock);
1606		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1607		spin_unlock_irq(&cm->reg_lock);
1608	}
1609	mutex_unlock(&cm->open_mutex);
1610	return 0;
1611}
1612
1613static void close_device_check(struct cmipci *cm, int mode)
1614{
1615	int ch = mode & CM_OPEN_CH_MASK;
1616
1617	mutex_lock(&cm->open_mutex);
1618	if (cm->opened[ch] == mode) {
1619		if (cm->channel[ch].substream) {
1620			snd_cmipci_ch_reset(cm, ch);
1621			cm->channel[ch].running = 0;
1622			cm->channel[ch].substream = NULL;
1623		}
1624		cm->opened[ch] = 0;
1625		if (! cm->channel[ch].is_dac) {
1626			/* enable dual DAC mode again */
1627			cm->channel[ch].is_dac = 1;
1628			spin_lock_irq(&cm->reg_lock);
1629			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1630			spin_unlock_irq(&cm->reg_lock);
1631		}
1632	}
1633	mutex_unlock(&cm->open_mutex);
1634}
1635
1636/*
1637 */
1638
1639static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1640{
1641	struct cmipci *cm = snd_pcm_substream_chip(substream);
1642	struct snd_pcm_runtime *runtime = substream->runtime;
1643	int err;
1644
1645	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1646		return err;
1647	runtime->hw = snd_cmipci_playback;
1648	if (cm->chip_version == 68) {
1649		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1650				     SNDRV_PCM_RATE_96000;
1651		runtime->hw.rate_max = 96000;
1652	} else if (cm->chip_version == 55) {
1653		err = snd_pcm_hw_constraint_list(runtime, 0,
1654			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1655		if (err < 0)
1656			return err;
1657		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1658		runtime->hw.rate_max = 128000;
1659	}
1660	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1661	cm->dig_pcm_status = cm->dig_status;
1662	return 0;
1663}
1664
1665static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1666{
1667	struct cmipci *cm = snd_pcm_substream_chip(substream);
1668	struct snd_pcm_runtime *runtime = substream->runtime;
1669	int err;
1670
1671	if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1672		return err;
1673	runtime->hw = snd_cmipci_capture;
1674	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1675		runtime->hw.rate_min = 41000;
1676		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1677	} else if (cm->chip_version == 55) {
1678		err = snd_pcm_hw_constraint_list(runtime, 0,
1679			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1680		if (err < 0)
1681			return err;
1682		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1683		runtime->hw.rate_max = 128000;
1684	}
1685	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1686	return 0;
1687}
1688
1689static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1690{
1691	struct cmipci *cm = snd_pcm_substream_chip(substream);
1692	struct snd_pcm_runtime *runtime = substream->runtime;
1693	int err;
1694
1695	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1696		return err;
1697	runtime->hw = snd_cmipci_playback2;
1698	mutex_lock(&cm->open_mutex);
1699	if (! cm->opened[CM_CH_PLAY]) {
1700		if (cm->can_multi_ch) {
1701			runtime->hw.channels_max = cm->max_channels;
1702			if (cm->max_channels == 4)
1703				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1704			else if (cm->max_channels == 6)
1705				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1706			else if (cm->max_channels == 8)
1707				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1708		}
1709	}
1710	mutex_unlock(&cm->open_mutex);
1711	if (cm->chip_version == 68) {
1712		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1713				     SNDRV_PCM_RATE_96000;
1714		runtime->hw.rate_max = 96000;
1715	} else if (cm->chip_version == 55) {
1716		err = snd_pcm_hw_constraint_list(runtime, 0,
1717			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1718		if (err < 0)
1719			return err;
1720		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1721		runtime->hw.rate_max = 128000;
1722	}
1723	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1724	return 0;
1725}
1726
1727static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1728{
1729	struct cmipci *cm = snd_pcm_substream_chip(substream);
1730	struct snd_pcm_runtime *runtime = substream->runtime;
1731	int err;
1732
1733	if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1734		return err;
1735	if (cm->can_ac3_hw) {
1736		runtime->hw = snd_cmipci_playback_spdif;
1737		if (cm->chip_version >= 37) {
1738			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1739			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1740		}
1741		if (cm->can_96k) {
1742			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1743					     SNDRV_PCM_RATE_96000;
1744			runtime->hw.rate_max = 96000;
1745		}
1746	} else {
1747		runtime->hw = snd_cmipci_playback_iec958_subframe;
1748	}
1749	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1750	cm->dig_pcm_status = cm->dig_status;
1751	return 0;
1752}
1753
1754static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1755{
1756	struct cmipci *cm = snd_pcm_substream_chip(substream);
1757	struct snd_pcm_runtime *runtime = substream->runtime;
1758	int err;
1759
1760	if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1761		return err;
1762	runtime->hw = snd_cmipci_capture_spdif;
1763	if (cm->can_96k && !(cm->chip_version == 68)) {
1764		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1765				     SNDRV_PCM_RATE_96000;
1766		runtime->hw.rate_max = 96000;
1767	}
1768	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1769	return 0;
1770}
1771
1772
1773/*
1774 */
1775
1776static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1777{
1778	struct cmipci *cm = snd_pcm_substream_chip(substream);
1779	close_device_check(cm, CM_OPEN_PLAYBACK);
1780	return 0;
1781}
1782
1783static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1784{
1785	struct cmipci *cm = snd_pcm_substream_chip(substream);
1786	close_device_check(cm, CM_OPEN_CAPTURE);
1787	return 0;
1788}
1789
1790static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1791{
1792	struct cmipci *cm = snd_pcm_substream_chip(substream);
1793	close_device_check(cm, CM_OPEN_PLAYBACK2);
1794	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1795	return 0;
1796}
1797
1798static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1799{
1800	struct cmipci *cm = snd_pcm_substream_chip(substream);
1801	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1802	return 0;
1803}
1804
1805static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1806{
1807	struct cmipci *cm = snd_pcm_substream_chip(substream);
1808	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1809	return 0;
1810}
1811
1812
1813/*
1814 */
1815
1816static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1817	.open =		snd_cmipci_playback_open,
1818	.close =	snd_cmipci_playback_close,
1819	.hw_free =	snd_cmipci_playback_hw_free,
1820	.prepare =	snd_cmipci_playback_prepare,
1821	.trigger =	snd_cmipci_playback_trigger,
1822	.pointer =	snd_cmipci_playback_pointer,
1823};
1824
1825static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1826	.open =		snd_cmipci_capture_open,
1827	.close =	snd_cmipci_capture_close,
1828	.prepare =	snd_cmipci_capture_prepare,
1829	.trigger =	snd_cmipci_capture_trigger,
1830	.pointer =	snd_cmipci_capture_pointer,
1831};
1832
1833static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1834	.open =		snd_cmipci_playback2_open,
1835	.close =	snd_cmipci_playback2_close,
1836	.hw_params =	snd_cmipci_playback2_hw_params,
1837	.hw_free =	snd_cmipci_playback2_hw_free,
1838	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1839	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1840	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1841};
1842
1843static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1844	.open =		snd_cmipci_playback_spdif_open,
1845	.close =	snd_cmipci_playback_spdif_close,
1846	.hw_free =	snd_cmipci_playback_hw_free,
1847	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1848	.trigger =	snd_cmipci_playback_trigger,
1849	.pointer =	snd_cmipci_playback_pointer,
1850};
1851
1852static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1853	.open =		snd_cmipci_capture_spdif_open,
1854	.close =	snd_cmipci_capture_spdif_close,
1855	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1856	.prepare =	snd_cmipci_capture_spdif_prepare,
1857	.trigger =	snd_cmipci_capture_trigger,
1858	.pointer =	snd_cmipci_capture_pointer,
1859};
1860
1861
1862/*
1863 */
1864
1865static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1866{
1867	struct snd_pcm *pcm;
1868	int err;
1869
1870	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1871	if (err < 0)
1872		return err;
1873
1874	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1875	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1876
1877	pcm->private_data = cm;
1878	pcm->info_flags = 0;
1879	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1880	cm->pcm = pcm;
1881
1882	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1883				       &cm->pci->dev, 64*1024, 128*1024);
1884
1885	return 0;
1886}
1887
1888static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1889{
1890	struct snd_pcm *pcm;
1891	int err;
1892
1893	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1894	if (err < 0)
1895		return err;
1896
1897	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1898
1899	pcm->private_data = cm;
1900	pcm->info_flags = 0;
1901	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1902	cm->pcm2 = pcm;
1903
1904	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1905				       &cm->pci->dev, 64*1024, 128*1024);
1906
1907	return 0;
1908}
1909
1910static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1911{
1912	struct snd_pcm *pcm;
1913	int err;
1914
1915	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1916	if (err < 0)
1917		return err;
1918
1919	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1920	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1921
1922	pcm->private_data = cm;
1923	pcm->info_flags = 0;
1924	strcpy(pcm->name, "C-Media PCI IEC958");
1925	cm->pcm_spdif = pcm;
1926
1927	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1928				       &cm->pci->dev, 64*1024, 128*1024);
1929
1930	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1931				     snd_pcm_alt_chmaps, cm->max_channels, 0,
1932				     NULL);
1933	if (err < 0)
1934		return err;
1935
1936	return 0;
1937}
1938
1939/*
1940 * mixer interface:
1941 * - CM8338/8738 has a compatible mixer interface with SB16, but
1942 *   lack of some elements like tone control, i/o gain and AGC.
1943 * - Access to native registers:
1944 *   - A 3D switch
1945 *   - Output mute switches
1946 */
1947
1948static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1949{
1950	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1951	outb(data, s->iobase + CM_REG_SB16_DATA);
1952}
1953
1954static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1955{
1956	unsigned char v;
1957
1958	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1959	v = inb(s->iobase + CM_REG_SB16_DATA);
1960	return v;
1961}
1962
1963/*
1964 * general mixer element
1965 */
1966struct cmipci_sb_reg {
1967	unsigned int left_reg, right_reg;
1968	unsigned int left_shift, right_shift;
1969	unsigned int mask;
1970	unsigned int invert: 1;
1971	unsigned int stereo: 1;
1972};
1973
1974#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1975 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1976
1977#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1978{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1979  .info = snd_cmipci_info_volume, \
1980  .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1981  .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1982}
1983
1984#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1985#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1986#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1987#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1988
1989static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1990{
1991	r->left_reg = val & 0xff;
1992	r->right_reg = (val >> 8) & 0xff;
1993	r->left_shift = (val >> 16) & 0x07;
1994	r->right_shift = (val >> 19) & 0x07;
1995	r->invert = (val >> 22) & 1;
1996	r->stereo = (val >> 23) & 1;
1997	r->mask = (val >> 24) & 0xff;
1998}
1999
2000static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2001				  struct snd_ctl_elem_info *uinfo)
2002{
2003	struct cmipci_sb_reg reg;
2004
2005	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2006	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2007	uinfo->count = reg.stereo + 1;
2008	uinfo->value.integer.min = 0;
2009	uinfo->value.integer.max = reg.mask;
2010	return 0;
2011}
2012
2013static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2014				 struct snd_ctl_elem_value *ucontrol)
2015{
2016	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2017	struct cmipci_sb_reg reg;
2018	int val;
2019
2020	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2021	spin_lock_irq(&cm->reg_lock);
2022	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2023	if (reg.invert)
2024		val = reg.mask - val;
2025	ucontrol->value.integer.value[0] = val;
2026	if (reg.stereo) {
2027		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2028		if (reg.invert)
2029			val = reg.mask - val;
2030		ucontrol->value.integer.value[1] = val;
2031	}
2032	spin_unlock_irq(&cm->reg_lock);
2033	return 0;
2034}
2035
2036static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2037				 struct snd_ctl_elem_value *ucontrol)
2038{
2039	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2040	struct cmipci_sb_reg reg;
2041	int change;
2042	int left, right, oleft, oright;
2043
2044	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2045	left = ucontrol->value.integer.value[0] & reg.mask;
2046	if (reg.invert)
2047		left = reg.mask - left;
2048	left <<= reg.left_shift;
2049	if (reg.stereo) {
2050		right = ucontrol->value.integer.value[1] & reg.mask;
2051		if (reg.invert)
2052			right = reg.mask - right;
2053		right <<= reg.right_shift;
2054	} else
2055		right = 0;
2056	spin_lock_irq(&cm->reg_lock);
2057	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2058	left |= oleft & ~(reg.mask << reg.left_shift);
2059	change = left != oleft;
2060	if (reg.stereo) {
2061		if (reg.left_reg != reg.right_reg) {
2062			snd_cmipci_mixer_write(cm, reg.left_reg, left);
2063			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2064		} else
2065			oright = left;
2066		right |= oright & ~(reg.mask << reg.right_shift);
2067		change |= right != oright;
2068		snd_cmipci_mixer_write(cm, reg.right_reg, right);
2069	} else
2070		snd_cmipci_mixer_write(cm, reg.left_reg, left);
2071	spin_unlock_irq(&cm->reg_lock);
2072	return change;
2073}
2074
2075/*
2076 * input route (left,right) -> (left,right)
2077 */
2078#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2079{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2080  .info = snd_cmipci_info_input_sw, \
2081  .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2082  .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2083}
2084
2085static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2086				    struct snd_ctl_elem_info *uinfo)
2087{
2088	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2089	uinfo->count = 4;
2090	uinfo->value.integer.min = 0;
2091	uinfo->value.integer.max = 1;
2092	return 0;
2093}
2094
2095static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2096				   struct snd_ctl_elem_value *ucontrol)
2097{
2098	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2099	struct cmipci_sb_reg reg;
2100	int val1, val2;
2101
2102	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2103	spin_lock_irq(&cm->reg_lock);
2104	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2105	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2106	spin_unlock_irq(&cm->reg_lock);
2107	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2108	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2109	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2110	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2111	return 0;
2112}
2113
2114static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2115				   struct snd_ctl_elem_value *ucontrol)
2116{
2117	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2118	struct cmipci_sb_reg reg;
2119	int change;
2120	int val1, val2, oval1, oval2;
2121
2122	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2123	spin_lock_irq(&cm->reg_lock);
2124	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2125	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2126	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2127	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2128	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2129	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2130	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2131	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2132	change = val1 != oval1 || val2 != oval2;
2133	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2134	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2135	spin_unlock_irq(&cm->reg_lock);
2136	return change;
2137}
2138
2139/*
2140 * native mixer switches/volumes
2141 */
2142
2143#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2144{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2145  .info = snd_cmipci_info_native_mixer, \
2146  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2147  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2148}
2149
2150#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2151{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2152  .info = snd_cmipci_info_native_mixer, \
2153  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2154  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2155}
2156
2157#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2158{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2159  .info = snd_cmipci_info_native_mixer, \
2160  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2161  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2162}
2163
2164#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2165{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2166  .info = snd_cmipci_info_native_mixer, \
2167  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2168  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2169}
2170
2171static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2172					struct snd_ctl_elem_info *uinfo)
2173{
2174	struct cmipci_sb_reg reg;
2175
2176	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2177	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2178	uinfo->count = reg.stereo + 1;
2179	uinfo->value.integer.min = 0;
2180	uinfo->value.integer.max = reg.mask;
2181	return 0;
2182
2183}
2184
2185static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2186				       struct snd_ctl_elem_value *ucontrol)
2187{
2188	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2189	struct cmipci_sb_reg reg;
2190	unsigned char oreg, val;
2191
2192	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2193	spin_lock_irq(&cm->reg_lock);
2194	oreg = inb(cm->iobase + reg.left_reg);
2195	val = (oreg >> reg.left_shift) & reg.mask;
2196	if (reg.invert)
2197		val = reg.mask - val;
2198	ucontrol->value.integer.value[0] = val;
2199	if (reg.stereo) {
2200		val = (oreg >> reg.right_shift) & reg.mask;
2201		if (reg.invert)
2202			val = reg.mask - val;
2203		ucontrol->value.integer.value[1] = val;
2204	}
2205	spin_unlock_irq(&cm->reg_lock);
2206	return 0;
2207}
2208
2209static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2210				       struct snd_ctl_elem_value *ucontrol)
2211{
2212	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2213	struct cmipci_sb_reg reg;
2214	unsigned char oreg, nreg, val;
2215
2216	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2217	spin_lock_irq(&cm->reg_lock);
2218	oreg = inb(cm->iobase + reg.left_reg);
2219	val = ucontrol->value.integer.value[0] & reg.mask;
2220	if (reg.invert)
2221		val = reg.mask - val;
2222	nreg = oreg & ~(reg.mask << reg.left_shift);
2223	nreg |= (val << reg.left_shift);
2224	if (reg.stereo) {
2225		val = ucontrol->value.integer.value[1] & reg.mask;
2226		if (reg.invert)
2227			val = reg.mask - val;
2228		nreg &= ~(reg.mask << reg.right_shift);
2229		nreg |= (val << reg.right_shift);
2230	}
2231	outb(nreg, cm->iobase + reg.left_reg);
2232	spin_unlock_irq(&cm->reg_lock);
2233	return (nreg != oreg);
2234}
2235
2236/*
2237 * special case - check mixer sensitivity
2238 */
2239static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2240						 struct snd_ctl_elem_value *ucontrol)
2241{
2242	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2243	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2244}
2245
2246static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2247						 struct snd_ctl_elem_value *ucontrol)
2248{
2249	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2250	if (cm->mixer_insensitive) {
2251		/* ignored */
2252		return 0;
2253	}
2254	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2255}
2256
2257
2258static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
2259	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2260	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2261	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2262	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2263	{ /* switch with sensitivity */
2264		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2265		.name = "PCM Playback Switch",
2266		.info = snd_cmipci_info_native_mixer,
2267		.get = snd_cmipci_get_native_mixer_sensitive,
2268		.put = snd_cmipci_put_native_mixer_sensitive,
2269		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2270	},
2271	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2272	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2273	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2274	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2275	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2276	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2277	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2278	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2279	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2280	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2281	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2282	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2283	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2284	CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2285	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2286	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2287	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2288	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2289	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2290	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2291	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2292	CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2293	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2294};
2295
2296/*
2297 * other switches
2298 */
2299
2300struct cmipci_switch_args {
2301	int reg;		/* register index */
2302	unsigned int mask;	/* mask bits */
2303	unsigned int mask_on;	/* mask bits to turn on */
2304	unsigned int is_byte: 1;		/* byte access? */
2305	unsigned int ac3_sensitive: 1;	/* access forbidden during
2306					 * non-audio operation?
2307					 */
2308};
2309
2310#define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info
2311
2312static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2313				   struct snd_ctl_elem_value *ucontrol,
2314				   struct cmipci_switch_args *args)
2315{
2316	unsigned int val;
2317	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2318
2319	spin_lock_irq(&cm->reg_lock);
2320	if (args->ac3_sensitive && cm->mixer_insensitive) {
2321		ucontrol->value.integer.value[0] = 0;
2322		spin_unlock_irq(&cm->reg_lock);
2323		return 0;
2324	}
2325	if (args->is_byte)
2326		val = inb(cm->iobase + args->reg);
2327	else
2328		val = snd_cmipci_read(cm, args->reg);
2329	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2330	spin_unlock_irq(&cm->reg_lock);
2331	return 0;
2332}
2333
2334static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2335				  struct snd_ctl_elem_value *ucontrol)
2336{
2337	struct cmipci_switch_args *args;
2338	args = (struct cmipci_switch_args *)kcontrol->private_value;
2339	if (snd_BUG_ON(!args))
2340		return -EINVAL;
2341	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2342}
2343
2344static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2345				   struct snd_ctl_elem_value *ucontrol,
2346				   struct cmipci_switch_args *args)
2347{
2348	unsigned int val;
2349	int change;
2350	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2351
2352	spin_lock_irq(&cm->reg_lock);
2353	if (args->ac3_sensitive && cm->mixer_insensitive) {
2354		/* ignored */
2355		spin_unlock_irq(&cm->reg_lock);
2356		return 0;
2357	}
2358	if (args->is_byte)
2359		val = inb(cm->iobase + args->reg);
2360	else
2361		val = snd_cmipci_read(cm, args->reg);
2362	change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2363			args->mask_on : (args->mask & ~args->mask_on));
2364	if (change) {
2365		val &= ~args->mask;
2366		if (ucontrol->value.integer.value[0])
2367			val |= args->mask_on;
2368		else
2369			val |= (args->mask & ~args->mask_on);
2370		if (args->is_byte)
2371			outb((unsigned char)val, cm->iobase + args->reg);
2372		else
2373			snd_cmipci_write(cm, args->reg, val);
2374	}
2375	spin_unlock_irq(&cm->reg_lock);
2376	return change;
2377}
2378
2379static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2380				  struct snd_ctl_elem_value *ucontrol)
2381{
2382	struct cmipci_switch_args *args;
2383	args = (struct cmipci_switch_args *)kcontrol->private_value;
2384	if (snd_BUG_ON(!args))
2385		return -EINVAL;
2386	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2387}
2388
2389#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2390static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2391  .reg = xreg, \
2392  .mask = xmask, \
2393  .mask_on = xmask_on, \
2394  .is_byte = xis_byte, \
2395  .ac3_sensitive = xac3, \
2396}
2397
2398#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2399	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2400
2401#if 0 /* these will be controlled in pcm device */
2402DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2403DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2404#endif
2405DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2406DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2407DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2408DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2409DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2410DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2411DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2412DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2413// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2414DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2415DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2416/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2417DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2418DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2419#if CM_CH_PLAY == 1
2420DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2421#else
2422DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2423#endif
2424DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2425// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2426// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2427// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2428DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2429
2430#define DEFINE_SWITCH(sname, stype, sarg) \
2431{ .name = sname, \
2432  .iface = stype, \
2433  .info = snd_cmipci_uswitch_info, \
2434  .get = snd_cmipci_uswitch_get, \
2435  .put = snd_cmipci_uswitch_put, \
2436  .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2437}
2438
2439#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2440#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2441
2442
2443/*
2444 * callbacks for spdif output switch
2445 * needs toggle two registers..
2446 */
2447static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2448					struct snd_ctl_elem_value *ucontrol)
2449{
2450	int changed;
2451	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2452	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2453	return changed;
2454}
2455
2456static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2457					struct snd_ctl_elem_value *ucontrol)
2458{
2459	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2460	int changed;
2461	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2462	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2463	if (changed) {
2464		if (ucontrol->value.integer.value[0]) {
2465			if (chip->spdif_playback_avail)
2466				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2467		} else {
2468			if (chip->spdif_playback_avail)
2469				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2470		}
2471	}
2472	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2473	return changed;
2474}
2475
2476
2477static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2478					struct snd_ctl_elem_info *uinfo)
2479{
2480	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2481	static const char *const texts[3] = {
2482		"Line-In", "Rear Output", "Bass Output"
2483	};
2484
2485	return snd_ctl_enum_info(uinfo, 1,
2486				 cm->chip_version >= 39 ? 3 : 2, texts);
2487}
2488
2489static inline unsigned int get_line_in_mode(struct cmipci *cm)
2490{
2491	unsigned int val;
2492	if (cm->chip_version >= 39) {
2493		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2494		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2495			return 2;
2496	}
2497	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2498	if (val & CM_REAR2LIN)
2499		return 1;
2500	return 0;
2501}
2502
2503static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2504				       struct snd_ctl_elem_value *ucontrol)
2505{
2506	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2507
2508	spin_lock_irq(&cm->reg_lock);
2509	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2510	spin_unlock_irq(&cm->reg_lock);
2511	return 0;
2512}
2513
2514static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2515				       struct snd_ctl_elem_value *ucontrol)
2516{
2517	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2518	int change;
2519
2520	spin_lock_irq(&cm->reg_lock);
2521	if (ucontrol->value.enumerated.item[0] == 2)
2522		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2523	else
2524		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2525	if (ucontrol->value.enumerated.item[0] == 1)
2526		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2527	else
2528		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2529	spin_unlock_irq(&cm->reg_lock);
2530	return change;
2531}
2532
2533static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2534				       struct snd_ctl_elem_info *uinfo)
2535{
2536	static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2537
2538	return snd_ctl_enum_info(uinfo, 1, 2, texts);
2539}
2540
2541static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2542				      struct snd_ctl_elem_value *ucontrol)
2543{
2544	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2545	/* same bit as spdi_phase */
2546	spin_lock_irq(&cm->reg_lock);
2547	ucontrol->value.enumerated.item[0] =
2548		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2549	spin_unlock_irq(&cm->reg_lock);
2550	return 0;
2551}
2552
2553static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2554				      struct snd_ctl_elem_value *ucontrol)
2555{
2556	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2557	int change;
2558
2559	spin_lock_irq(&cm->reg_lock);
2560	if (ucontrol->value.enumerated.item[0])
2561		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2562	else
2563		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2564	spin_unlock_irq(&cm->reg_lock);
2565	return change;
2566}
2567
2568/* both for CM8338/8738 */
2569static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2570	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2571	{
2572		.name = "Line-In Mode",
2573		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2574		.info = snd_cmipci_line_in_mode_info,
2575		.get = snd_cmipci_line_in_mode_get,
2576		.put = snd_cmipci_line_in_mode_put,
2577	},
2578};
2579
2580/* for non-multichannel chips */
2581static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2582DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2583
2584/* only for CM8738 */
2585static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2586#if 0 /* controlled in pcm device */
2587	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2588	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2589	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2590#endif
2591	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2592	{ .name = "IEC958 Output Switch",
2593	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2594	  .info = snd_cmipci_uswitch_info,
2595	  .get = snd_cmipci_spdout_enable_get,
2596	  .put = snd_cmipci_spdout_enable_put,
2597	},
2598	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2599	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2600	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2601//	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2602	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2603	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2604};
2605
2606/* only for model 033/037 */
2607static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2608	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2609	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2610	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2611};
2612
2613/* only for model 039 or later */
2614static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2615	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2616	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2617	{
2618		.name = "Mic-In Mode",
2619		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2620		.info = snd_cmipci_mic_in_mode_info,
2621		.get = snd_cmipci_mic_in_mode_get,
2622		.put = snd_cmipci_mic_in_mode_put,
2623	}
2624};
2625
2626/* card control switches */
2627static const struct snd_kcontrol_new snd_cmipci_modem_switch =
2628DEFINE_CARD_SWITCH("Modem", modem);
2629
2630
2631static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2632{
2633	struct snd_card *card;
2634	const struct snd_kcontrol_new *sw;
2635	struct snd_kcontrol *kctl;
2636	unsigned int idx;
2637	int err;
2638
2639	if (snd_BUG_ON(!cm || !cm->card))
2640		return -EINVAL;
2641
2642	card = cm->card;
2643
2644	strcpy(card->mixername, "CMedia PCI");
2645
2646	spin_lock_irq(&cm->reg_lock);
2647	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2648	spin_unlock_irq(&cm->reg_lock);
2649
2650	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2651		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2652			if (!strcmp(snd_cmipci_mixers[idx].name,
2653				"PCM Playback Volume"))
2654				continue;
2655		}
2656		if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2657			return err;
2658	}
2659
2660	/* mixer switches */
2661	sw = snd_cmipci_mixer_switches;
2662	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2663		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2664		if (err < 0)
2665			return err;
2666	}
2667	if (! cm->can_multi_ch) {
2668		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2669		if (err < 0)
2670			return err;
2671	}
2672	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2673	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2674		sw = snd_cmipci_8738_mixer_switches;
2675		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2676			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2677			if (err < 0)
2678				return err;
2679		}
2680		if (cm->can_ac3_hw) {
2681			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2682				return err;
2683			kctl->id.device = pcm_spdif_device;
2684			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2685				return err;
2686			kctl->id.device = pcm_spdif_device;
2687			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2688				return err;
2689			kctl->id.device = pcm_spdif_device;
2690		}
2691		if (cm->chip_version <= 37) {
2692			sw = snd_cmipci_old_mixer_switches;
2693			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2694				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2695				if (err < 0)
2696					return err;
2697			}
2698		}
2699	}
2700	if (cm->chip_version >= 39) {
2701		sw = snd_cmipci_extra_mixer_switches;
2702		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2703			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2704			if (err < 0)
2705				return err;
2706		}
2707	}
2708
2709	/* card switches */
2710	/*
2711	 * newer chips don't have the register bits to force modem link
2712	 * detection; the bit that was FLINKON now mutes CH1
2713	 */
2714	if (cm->chip_version < 39) {
2715		err = snd_ctl_add(cm->card,
2716				  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2717		if (err < 0)
2718			return err;
2719	}
2720
2721	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2722		struct snd_ctl_elem_id elem_id;
2723		struct snd_kcontrol *ctl;
2724		memset(&elem_id, 0, sizeof(elem_id));
2725		elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2726		strcpy(elem_id.name, cm_saved_mixer[idx].name);
2727		ctl = snd_ctl_find_id(cm->card, &elem_id);
2728		if (ctl)
2729			cm->mixer_res_ctl[idx] = ctl;
2730	}
2731
2732	return 0;
2733}
2734
2735
2736/*
2737 * proc interface
2738 */
2739
2740static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2741				 struct snd_info_buffer *buffer)
2742{
2743	struct cmipci *cm = entry->private_data;
2744	int i, v;
2745
2746	snd_iprintf(buffer, "%s\n", cm->card->longname);
2747	for (i = 0; i < 0x94; i++) {
2748		if (i == 0x28)
2749			i = 0x90;
2750		v = inb(cm->iobase + i);
2751		if (i % 4 == 0)
2752			snd_iprintf(buffer, "\n%02x:", i);
2753		snd_iprintf(buffer, " %02x", v);
2754	}
2755	snd_iprintf(buffer, "\n");
2756}
2757
2758static void snd_cmipci_proc_init(struct cmipci *cm)
2759{
2760	snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2761}
2762
2763static const struct pci_device_id snd_cmipci_ids[] = {
2764	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2765	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2766	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2767	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2768	{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2769	{0,},
2770};
2771
2772
2773/*
2774 * check chip version and capabilities
2775 * driver name is modified according to the chip model
2776 */
2777static void query_chip(struct cmipci *cm)
2778{
2779	unsigned int detect;
2780
2781	/* check reg 0Ch, bit 24-31 */
2782	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2783	if (! detect) {
2784		/* check reg 08h, bit 24-28 */
2785		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2786		switch (detect) {
2787		case 0:
2788			cm->chip_version = 33;
2789			if (cm->do_soft_ac3)
2790				cm->can_ac3_sw = 1;
2791			else
2792				cm->can_ac3_hw = 1;
2793			break;
2794		case CM_CHIP_037:
2795			cm->chip_version = 37;
2796			cm->can_ac3_hw = 1;
2797			break;
2798		default:
2799			cm->chip_version = 39;
2800			cm->can_ac3_hw = 1;
2801			break;
2802		}
2803		cm->max_channels = 2;
2804	} else {
2805		if (detect & CM_CHIP_039) {
2806			cm->chip_version = 39;
2807			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2808				cm->max_channels = 6;
2809			else
2810				cm->max_channels = 4;
2811		} else if (detect & CM_CHIP_8768) {
2812			cm->chip_version = 68;
2813			cm->max_channels = 8;
2814			cm->can_96k = 1;
2815		} else {
2816			cm->chip_version = 55;
2817			cm->max_channels = 6;
2818			cm->can_96k = 1;
2819		}
2820		cm->can_ac3_hw = 1;
2821		cm->can_multi_ch = 1;
2822	}
2823}
2824
2825#ifdef SUPPORT_JOYSTICK
2826static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2827{
2828	static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2829	struct gameport *gp;
2830	struct resource *r = NULL;
2831	int i, io_port = 0;
2832
2833	if (joystick_port[dev] == 0)
2834		return -ENODEV;
2835
2836	if (joystick_port[dev] == 1) { /* auto-detect */
2837		for (i = 0; ports[i]; i++) {
2838			io_port = ports[i];
2839			r = request_region(io_port, 1, "CMIPCI gameport");
2840			if (r)
2841				break;
2842		}
2843	} else {
2844		io_port = joystick_port[dev];
2845		r = request_region(io_port, 1, "CMIPCI gameport");
2846	}
2847
2848	if (!r) {
2849		dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2850		return -EBUSY;
2851	}
2852
2853	cm->gameport = gp = gameport_allocate_port();
2854	if (!gp) {
2855		dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2856		release_and_free_resource(r);
2857		return -ENOMEM;
2858	}
2859	gameport_set_name(gp, "C-Media Gameport");
2860	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2861	gameport_set_dev_parent(gp, &cm->pci->dev);
2862	gp->io = io_port;
2863	gameport_set_port_data(gp, r);
2864
2865	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2866
2867	gameport_register_port(cm->gameport);
2868
2869	return 0;
2870}
2871
2872static void snd_cmipci_free_gameport(struct cmipci *cm)
2873{
2874	if (cm->gameport) {
2875		struct resource *r = gameport_get_port_data(cm->gameport);
2876
2877		gameport_unregister_port(cm->gameport);
2878		cm->gameport = NULL;
2879
2880		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2881		release_and_free_resource(r);
2882	}
2883}
2884#else
2885static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2886static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2887#endif
2888
2889static int snd_cmipci_free(struct cmipci *cm)
2890{
2891	if (cm->irq >= 0) {
2892		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2893		snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2894		snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2895		snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2896		snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2897		snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2898		snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2899
2900		/* reset mixer */
2901		snd_cmipci_mixer_write(cm, 0, 0);
2902
2903		free_irq(cm->irq, cm);
2904	}
2905
2906	snd_cmipci_free_gameport(cm);
2907	pci_release_regions(cm->pci);
2908	pci_disable_device(cm->pci);
2909	kfree(cm);
2910	return 0;
2911}
2912
2913static int snd_cmipci_dev_free(struct snd_device *device)
2914{
2915	struct cmipci *cm = device->device_data;
2916	return snd_cmipci_free(cm);
2917}
2918
2919static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2920{
2921	long iosynth;
2922	unsigned int val;
2923	struct snd_opl3 *opl3;
2924	int err;
2925
2926	if (!fm_port)
2927		goto disable_fm;
2928
2929	if (cm->chip_version >= 39) {
2930		/* first try FM regs in PCI port range */
2931		iosynth = cm->iobase + CM_REG_FM_PCI;
2932		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2933				      OPL3_HW_OPL3, 1, &opl3);
2934	} else {
2935		err = -EIO;
2936	}
2937	if (err < 0) {
2938		/* then try legacy ports */
2939		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2940		iosynth = fm_port;
2941		switch (iosynth) {
2942		case 0x3E8: val |= CM_FMSEL_3E8; break;
2943		case 0x3E0: val |= CM_FMSEL_3E0; break;
2944		case 0x3C8: val |= CM_FMSEL_3C8; break;
2945		case 0x388: val |= CM_FMSEL_388; break;
2946		default:
2947			goto disable_fm;
2948		}
2949		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2950		/* enable FM */
2951		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2952
2953		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2954				    OPL3_HW_OPL3, 0, &opl3) < 0) {
2955			dev_err(cm->card->dev,
2956				"no OPL device at %#lx, skipping...\n",
2957				iosynth);
2958			goto disable_fm;
2959		}
2960	}
2961	if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2962		dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2963		return err;
2964	}
2965	return 0;
2966
2967 disable_fm:
2968	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2969	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2970	return 0;
2971}
2972
2973static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2974			     int dev, struct cmipci **rcmipci)
2975{
2976	struct cmipci *cm;
2977	int err;
2978	static const struct snd_device_ops ops = {
2979		.dev_free =	snd_cmipci_dev_free,
2980	};
2981	unsigned int val;
2982	long iomidi = 0;
2983	int integrated_midi = 0;
2984	char modelstr[16];
2985	int pcm_index, pcm_spdif_index;
2986	static const struct pci_device_id intel_82437vx[] = {
2987		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2988		{ },
2989	};
2990
2991	*rcmipci = NULL;
2992
2993	if ((err = pci_enable_device(pci)) < 0)
2994		return err;
2995
2996	cm = kzalloc(sizeof(*cm), GFP_KERNEL);
2997	if (cm == NULL) {
2998		pci_disable_device(pci);
2999		return -ENOMEM;
3000	}
3001
3002	spin_lock_init(&cm->reg_lock);
3003	mutex_init(&cm->open_mutex);
3004	cm->device = pci->device;
3005	cm->card = card;
3006	cm->pci = pci;
3007	cm->irq = -1;
3008	cm->channel[0].ch = 0;
3009	cm->channel[1].ch = 1;
3010	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3011
3012	if ((err = pci_request_regions(pci, card->driver)) < 0) {
3013		kfree(cm);
3014		pci_disable_device(pci);
3015		return err;
3016	}
3017	cm->iobase = pci_resource_start(pci, 0);
3018
3019	if (request_irq(pci->irq, snd_cmipci_interrupt,
3020			IRQF_SHARED, KBUILD_MODNAME, cm)) {
3021		dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3022		snd_cmipci_free(cm);
3023		return -EBUSY;
3024	}
3025	cm->irq = pci->irq;
3026	card->sync_irq = cm->irq;
3027
3028	pci_set_master(cm->pci);
3029
3030	/*
3031	 * check chip version, max channels and capabilities
3032	 */
3033
3034	cm->chip_version = 0;
3035	cm->max_channels = 2;
3036	cm->do_soft_ac3 = soft_ac3[dev];
3037
3038	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3039	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3040		query_chip(cm);
3041	/* added -MCx suffix for chip supporting multi-channels */
3042	if (cm->can_multi_ch)
3043		sprintf(cm->card->driver + strlen(cm->card->driver),
3044			"-MC%d", cm->max_channels);
3045	else if (cm->can_ac3_sw)
3046		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3047
3048	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3049	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3050
3051#if CM_CH_PLAY == 1
3052	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
3053#else
3054	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
3055#endif
3056
3057	/* initialize codec registers */
3058	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3059	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3060	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
3061	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3062	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3063	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
3064	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3065
3066	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3067	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3068#if CM_CH_PLAY == 1
3069	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3070#else
3071	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3072#endif
3073	if (cm->chip_version) {
3074		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3075		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3076	}
3077	/* Set Bus Master Request */
3078	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3079
3080	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3081	switch (pci->device) {
3082	case PCI_DEVICE_ID_CMEDIA_CM8738:
3083	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3084		if (!pci_dev_present(intel_82437vx))
3085			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3086		break;
3087	default:
3088		break;
3089	}
3090
3091	if (cm->chip_version < 68) {
3092		val = pci->device < 0x110 ? 8338 : 8738;
3093	} else {
3094		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3095		case 0:
3096			val = 8769;
3097			break;
3098		case 2:
3099			val = 8762;
3100			break;
3101		default:
3102			switch ((pci->subsystem_vendor << 16) |
3103				pci->subsystem_device) {
3104			case 0x13f69761:
3105			case 0x584d3741:
3106			case 0x584d3751:
3107			case 0x584d3761:
3108			case 0x584d3771:
3109			case 0x72848384:
3110				val = 8770;
3111				break;
3112			default:
3113				val = 8768;
3114				break;
3115			}
3116		}
3117	}
3118	sprintf(card->shortname, "C-Media CMI%d", val);
3119	if (cm->chip_version < 68)
3120		sprintf(modelstr, " (model %d)", cm->chip_version);
3121	else
3122		modelstr[0] = '\0';
3123	sprintf(card->longname, "%s%s at %#lx, irq %i",
3124		card->shortname, modelstr, cm->iobase, cm->irq);
3125
3126	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3127		snd_cmipci_free(cm);
3128		return err;
3129	}
3130
3131	if (cm->chip_version >= 39) {
3132		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3133		if (val != 0x00 && val != 0xff) {
3134			if (mpu_port[dev])
3135				iomidi = cm->iobase + CM_REG_MPU_PCI;
3136			integrated_midi = 1;
3137		}
3138	}
3139	if (!integrated_midi) {
3140		val = 0;
3141		iomidi = mpu_port[dev];
3142		switch (iomidi) {
3143		case 0x320: val = CM_VMPU_320; break;
3144		case 0x310: val = CM_VMPU_310; break;
3145		case 0x300: val = CM_VMPU_300; break;
3146		case 0x330: val = CM_VMPU_330; break;
3147		default:
3148			    iomidi = 0; break;
3149		}
3150		if (iomidi > 0) {
3151			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3152			/* enable UART */
3153			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3154			if (inb(iomidi + 1) == 0xff) {
3155				dev_err(cm->card->dev,
3156					"cannot enable MPU-401 port at %#lx\n",
3157					iomidi);
3158				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3159						     CM_UART_EN);
3160				iomidi = 0;
3161			}
3162		}
3163	}
3164
3165	if (cm->chip_version < 68) {
3166		err = snd_cmipci_create_fm(cm, fm_port[dev]);
3167		if (err < 0)
3168			return err;
3169	}
3170
3171	/* reset mixer */
3172	snd_cmipci_mixer_write(cm, 0, 0);
3173
3174	snd_cmipci_proc_init(cm);
3175
3176	/* create pcm devices */
3177	pcm_index = pcm_spdif_index = 0;
3178	if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3179		return err;
3180	pcm_index++;
3181	if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3182		return err;
3183	pcm_index++;
3184	if (cm->can_ac3_hw || cm->can_ac3_sw) {
3185		pcm_spdif_index = pcm_index;
3186		if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3187			return err;
3188	}
3189
3190	/* create mixer interface & switches */
3191	if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3192		return err;
3193
3194	if (iomidi > 0) {
3195		if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3196					       iomidi,
3197					       (integrated_midi ?
3198						MPU401_INFO_INTEGRATED : 0) |
3199					       MPU401_INFO_IRQ_HOOK,
3200					       -1, &cm->rmidi)) < 0) {
3201			dev_err(cm->card->dev,
3202				"no UART401 device at 0x%lx\n", iomidi);
3203		}
3204	}
3205
3206#ifdef USE_VAR48KRATE
3207	for (val = 0; val < ARRAY_SIZE(rates); val++)
3208		snd_cmipci_set_pll(cm, rates[val], val);
3209
3210	/*
3211	 * (Re-)Enable external switch spdo_48k
3212	 */
3213	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3214#endif /* USE_VAR48KRATE */
3215
3216	if (snd_cmipci_create_gameport(cm, dev) < 0)
3217		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3218
3219	*rcmipci = cm;
3220	return 0;
3221}
3222
3223/*
3224 */
3225
3226MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3227
3228static int snd_cmipci_probe(struct pci_dev *pci,
3229			    const struct pci_device_id *pci_id)
3230{
3231	static int dev;
3232	struct snd_card *card;
3233	struct cmipci *cm;
3234	int err;
3235
3236	if (dev >= SNDRV_CARDS)
3237		return -ENODEV;
3238	if (! enable[dev]) {
3239		dev++;
3240		return -ENOENT;
3241	}
3242
3243	err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3244			   0, &card);
3245	if (err < 0)
3246		return err;
3247
3248	switch (pci->device) {
3249	case PCI_DEVICE_ID_CMEDIA_CM8738:
3250	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3251		strcpy(card->driver, "CMI8738");
3252		break;
3253	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3254	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3255		strcpy(card->driver, "CMI8338");
3256		break;
3257	default:
3258		strcpy(card->driver, "CMIPCI");
3259		break;
3260	}
3261
3262	err = snd_cmipci_create(card, pci, dev, &cm);
3263	if (err < 0)
3264		goto free_card;
3265
3266	card->private_data = cm;
3267
3268	err = snd_card_register(card);
3269	if (err < 0)
3270		goto free_card;
3271
3272	pci_set_drvdata(pci, card);
3273	dev++;
3274	return 0;
3275
3276free_card:
3277	snd_card_free(card);
3278	return err;
3279}
3280
3281static void snd_cmipci_remove(struct pci_dev *pci)
3282{
3283	snd_card_free(pci_get_drvdata(pci));
3284}
3285
3286
3287#ifdef CONFIG_PM_SLEEP
3288/*
3289 * power management
3290 */
3291static const unsigned char saved_regs[] = {
3292	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3293	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_AUX_VOL, CM_REG_PLL,
3294	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3295	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3296	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3297};
3298
3299static const unsigned char saved_mixers[] = {
3300	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3301	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3302	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3303	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3304	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3305	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3306	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3307	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3308};
3309
3310static int snd_cmipci_suspend(struct device *dev)
3311{
3312	struct snd_card *card = dev_get_drvdata(dev);
3313	struct cmipci *cm = card->private_data;
3314	int i;
3315
3316	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3317
3318	/* save registers */
3319	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3320		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3321	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3322		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3323
3324	/* disable ints */
3325	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3326	return 0;
3327}
3328
3329static int snd_cmipci_resume(struct device *dev)
3330{
3331	struct snd_card *card = dev_get_drvdata(dev);
3332	struct cmipci *cm = card->private_data;
3333	int i;
3334
3335	/* reset / initialize to a sane state */
3336	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3337	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3338	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3339	snd_cmipci_mixer_write(cm, 0, 0);
3340
3341	/* restore registers */
3342	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3343		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3344	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3345		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3346
3347	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3348	return 0;
3349}
3350
3351static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3352#define SND_CMIPCI_PM_OPS	&snd_cmipci_pm
3353#else
3354#define SND_CMIPCI_PM_OPS	NULL
3355#endif /* CONFIG_PM_SLEEP */
3356
3357static struct pci_driver cmipci_driver = {
3358	.name = KBUILD_MODNAME,
3359	.id_table = snd_cmipci_ids,
3360	.probe = snd_cmipci_probe,
3361	.remove = snd_cmipci_remove,
3362	.driver = {
3363		.pm = SND_CMIPCI_PM_OPS,
3364	},
3365};
3366
3367module_pci_driver(cmipci_driver);
3368