1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Driver for C-Media CMI8338 and 8738 PCI soundcards. 4 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de> 5 */ 6 7/* Does not work. Warning may block system in capture mode */ 8/* #define USE_VAR48KRATE */ 9 10#include <linux/io.h> 11#include <linux/delay.h> 12#include <linux/interrupt.h> 13#include <linux/init.h> 14#include <linux/pci.h> 15#include <linux/slab.h> 16#include <linux/gameport.h> 17#include <linux/module.h> 18#include <linux/mutex.h> 19#include <sound/core.h> 20#include <sound/info.h> 21#include <sound/control.h> 22#include <sound/pcm.h> 23#include <sound/rawmidi.h> 24#include <sound/mpu401.h> 25#include <sound/opl3.h> 26#include <sound/sb.h> 27#include <sound/asoundef.h> 28#include <sound/initval.h> 29 30MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>"); 31MODULE_DESCRIPTION("C-Media CMI8x38 PCI"); 32MODULE_LICENSE("GPL"); 33MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738}," 34 "{C-Media,CMI8738B}," 35 "{C-Media,CMI8338A}," 36 "{C-Media,CMI8338B}}"); 37 38#if IS_REACHABLE(CONFIG_GAMEPORT) 39#define SUPPORT_JOYSTICK 1 40#endif 41 42static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 43static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 44static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */ 45static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1}; 46static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; 47static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; 48#ifdef SUPPORT_JOYSTICK 49static int joystick_port[SNDRV_CARDS]; 50#endif 51 52module_param_array(index, int, NULL, 0444); 53MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard."); 54module_param_array(id, charp, NULL, 0444); 55MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard."); 56module_param_array(enable, bool, NULL, 0444); 57MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard."); 58module_param_hw_array(mpu_port, long, ioport, NULL, 0444); 59MODULE_PARM_DESC(mpu_port, "MPU-401 port."); 60module_param_hw_array(fm_port, long, ioport, NULL, 0444); 61MODULE_PARM_DESC(fm_port, "FM port."); 62module_param_array(soft_ac3, bool, NULL, 0444); 63MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only)."); 64#ifdef SUPPORT_JOYSTICK 65module_param_hw_array(joystick_port, int, ioport, NULL, 0444); 66MODULE_PARM_DESC(joystick_port, "Joystick port address."); 67#endif 68 69/* 70 * CM8x38 registers definition 71 */ 72 73#define CM_REG_FUNCTRL0 0x00 74#define CM_RST_CH1 0x00080000 75#define CM_RST_CH0 0x00040000 76#define CM_CHEN1 0x00020000 /* ch1: enable */ 77#define CM_CHEN0 0x00010000 /* ch0: enable */ 78#define CM_PAUSE1 0x00000008 /* ch1: pause */ 79#define CM_PAUSE0 0x00000004 /* ch0: pause */ 80#define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */ 81#define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */ 82 83#define CM_REG_FUNCTRL1 0x04 84#define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */ 85#define CM_DSFC_SHIFT 13 86#define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */ 87#define CM_ASFC_SHIFT 10 88#define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */ 89#define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */ 90#define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */ 91#define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */ 92#define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */ 93#define CM_BREQ 0x00000010 /* bus master enabled */ 94#define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */ 95#define CM_UART_EN 0x00000004 /* legacy UART */ 96#define CM_JYSTK_EN 0x00000002 /* legacy joystick */ 97#define CM_ZVPORT 0x00000001 /* ZVPORT */ 98 99#define CM_REG_CHFORMAT 0x08 100 101#define CM_CHB3D5C 0x80000000 /* 5,6 channels */ 102#define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */ 103#define CM_CHB3D 0x20000000 /* 4 channels */ 104 105#define CM_CHIP_MASK1 0x1f000000 106#define CM_CHIP_037 0x01000000 107#define CM_SETLAT48 0x00800000 /* set latency timer 48h */ 108#define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */ 109#define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */ 110#define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */ 111#define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */ 112#define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */ 113/* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */ 114 115#define CM_ADCBITLEN_MASK 0x0000C000 116#define CM_ADCBITLEN_16 0x00000000 117#define CM_ADCBITLEN_15 0x00004000 118#define CM_ADCBITLEN_14 0x00008000 119#define CM_ADCBITLEN_13 0x0000C000 120 121#define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */ 122#define CM_ADCDACLEN_060 0x00000000 123#define CM_ADCDACLEN_066 0x00001000 124#define CM_ADCDACLEN_130 0x00002000 125#define CM_ADCDACLEN_280 0x00003000 126 127#define CM_ADCDLEN_MASK 0x00003000 /* model 039 */ 128#define CM_ADCDLEN_ORIGINAL 0x00000000 129#define CM_ADCDLEN_EXTRA 0x00001000 130#define CM_ADCDLEN_24K 0x00002000 131#define CM_ADCDLEN_WEIGHT 0x00003000 132 133#define CM_CH1_SRATE_176K 0x00000800 134#define CM_CH1_SRATE_96K 0x00000800 /* model 055? */ 135#define CM_CH1_SRATE_88K 0x00000400 136#define CM_CH0_SRATE_176K 0x00000200 137#define CM_CH0_SRATE_96K 0x00000200 /* model 055? */ 138#define CM_CH0_SRATE_88K 0x00000100 139#define CM_CH0_SRATE_128K 0x00000300 140#define CM_CH0_SRATE_MASK 0x00000300 141 142#define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */ 143#define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */ 144#define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */ 145#define CM_SPDLOCKED 0x00000010 146 147#define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */ 148#define CM_CH1FMT_SHIFT 2 149#define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */ 150#define CM_CH0FMT_SHIFT 0 151 152#define CM_REG_INT_HLDCLR 0x0C 153#define CM_CHIP_MASK2 0xff000000 154#define CM_CHIP_8768 0x20000000 155#define CM_CHIP_055 0x08000000 156#define CM_CHIP_039 0x04000000 157#define CM_CHIP_039_6CH 0x01000000 158#define CM_UNKNOWN_INT_EN 0x00080000 /* ? */ 159#define CM_TDMA_INT_EN 0x00040000 160#define CM_CH1_INT_EN 0x00020000 161#define CM_CH0_INT_EN 0x00010000 162 163#define CM_REG_INT_STATUS 0x10 164#define CM_INTR 0x80000000 165#define CM_VCO 0x08000000 /* Voice Control? CMI8738 */ 166#define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */ 167#define CM_UARTINT 0x00010000 168#define CM_LTDMAINT 0x00008000 169#define CM_HTDMAINT 0x00004000 170#define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */ 171#define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */ 172#define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */ 173#define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */ 174#define CM_CH1BUSY 0x00000008 175#define CM_CH0BUSY 0x00000004 176#define CM_CHINT1 0x00000002 177#define CM_CHINT0 0x00000001 178 179#define CM_REG_LEGACY_CTRL 0x14 180#define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */ 181#define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */ 182#define CM_VMPU_330 0x00000000 183#define CM_VMPU_320 0x20000000 184#define CM_VMPU_310 0x40000000 185#define CM_VMPU_300 0x60000000 186#define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */ 187#define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */ 188#define CM_VSBSEL_220 0x00000000 189#define CM_VSBSEL_240 0x04000000 190#define CM_VSBSEL_260 0x08000000 191#define CM_VSBSEL_280 0x0C000000 192#define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */ 193#define CM_FMSEL_388 0x00000000 194#define CM_FMSEL_3C8 0x01000000 195#define CM_FMSEL_3E0 0x02000000 196#define CM_FMSEL_3E8 0x03000000 197#define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */ 198#define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */ 199#define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */ 200#define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */ 201#define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */ 202#define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */ 203#define CM_C_EECS 0x00040000 204#define CM_C_EEDI46 0x00020000 205#define CM_C_EECK46 0x00010000 206#define CM_CHB3D6C 0x00008000 /* 5.1 channels support */ 207#define CM_CENTR2LIN 0x00004000 /* line-in as center out */ 208#define CM_BASE2LIN 0x00002000 /* line-in as bass out */ 209#define CM_EXBASEN 0x00001000 /* external bass input enable */ 210 211#define CM_REG_MISC_CTRL 0x18 212#define CM_PWD 0x80000000 /* power down */ 213#define CM_RESET 0x40000000 214#define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */ 215#define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */ 216#define CM_TXVX 0x08000000 /* model 037? */ 217#define CM_N4SPK3D 0x04000000 /* copy front to rear */ 218#define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */ 219#define CM_SPDIF48K 0x01000000 /* write */ 220#define CM_SPATUS48K 0x01000000 /* read */ 221#define CM_ENDBDAC 0x00800000 /* enable double dac */ 222#define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */ 223#define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */ 224#define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */ 225#define CM_FM_EN 0x00080000 /* enable legacy FM */ 226#define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */ 227#define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */ 228#define CM_VIDWPDSB 0x00010000 /* model 037? */ 229#define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */ 230#define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */ 231#define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */ 232#define CM_VIDWPPRT 0x00002000 /* model 037? */ 233#define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */ 234#define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */ 235#define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */ 236#define CM_ENCENTER 0x00000080 237#define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */ 238#define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */ 239#define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */ 240#define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */ 241#define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */ 242#define CM_UPDDMA_2048 0x00000000 243#define CM_UPDDMA_1024 0x00000004 244#define CM_UPDDMA_512 0x00000008 245#define CM_UPDDMA_256 0x0000000C 246#define CM_TWAIT_MASK 0x00000003 /* model 037 */ 247#define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */ 248#define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */ 249 250#define CM_REG_TDMA_POSITION 0x1C 251#define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */ 252#define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */ 253 254 /* byte */ 255#define CM_REG_MIXER0 0x20 256#define CM_REG_SBVR 0x20 /* write: sb16 version */ 257#define CM_REG_DEV 0x20 /* read: hardware device version */ 258 259#define CM_REG_MIXER21 0x21 260#define CM_UNKNOWN_21_MASK 0x78 /* ? */ 261#define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */ 262#define CM_PROINV 0x02 /* SBPro left/right channel switching */ 263#define CM_X_SB16 0x01 /* SB16 compatible */ 264 265#define CM_REG_SB16_DATA 0x22 266#define CM_REG_SB16_ADDR 0x23 267 268#define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */ 269#define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */ 270#define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */ 271#define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */ 272 273#define CM_REG_MIXER1 0x24 274#define CM_FMMUTE 0x80 /* mute FM */ 275#define CM_FMMUTE_SHIFT 7 276#define CM_WSMUTE 0x40 /* mute PCM */ 277#define CM_WSMUTE_SHIFT 6 278#define CM_REAR2LIN 0x20 /* lin-in -> rear line out */ 279#define CM_REAR2LIN_SHIFT 5 280#define CM_REAR2FRONT 0x10 /* exchange rear/front */ 281#define CM_REAR2FRONT_SHIFT 4 282#define CM_WAVEINL 0x08 /* digital wave rec. left chan */ 283#define CM_WAVEINL_SHIFT 3 284#define CM_WAVEINR 0x04 /* digical wave rec. right */ 285#define CM_WAVEINR_SHIFT 2 286#define CM_X3DEN 0x02 /* 3D surround enable */ 287#define CM_X3DEN_SHIFT 1 288#define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */ 289#define CM_CDPLAY_SHIFT 0 290 291#define CM_REG_MIXER2 0x25 292#define CM_RAUXREN 0x80 /* AUX right capture */ 293#define CM_RAUXREN_SHIFT 7 294#define CM_RAUXLEN 0x40 /* AUX left capture */ 295#define CM_RAUXLEN_SHIFT 6 296#define CM_VAUXRM 0x20 /* AUX right mute */ 297#define CM_VAUXRM_SHIFT 5 298#define CM_VAUXLM 0x10 /* AUX left mute */ 299#define CM_VAUXLM_SHIFT 4 300#define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */ 301#define CM_VADMIC_SHIFT 1 302#define CM_MICGAINZ 0x01 /* mic boost */ 303#define CM_MICGAINZ_SHIFT 0 304 305#define CM_REG_AUX_VOL 0x26 306#define CM_VAUXL_MASK 0xf0 307#define CM_VAUXR_MASK 0x0f 308 309#define CM_REG_MISC 0x27 310#define CM_UNKNOWN_27_MASK 0xd8 /* ? */ 311#define CM_XGPO1 0x20 312// #define CM_XGPBIO 0x04 313#define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */ 314#define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */ 315#define CM_SPDVALID 0x02 /* spdif input valid check */ 316#define CM_DMAUTO 0x01 /* SB16 DMA auto detect */ 317 318#define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */ 319/* 320 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738 321 * or identical with AC97 codec? 322 */ 323#define CM_REG_EXTERN_CODEC CM_REG_AC97 324 325/* 326 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6) 327 */ 328#define CM_REG_MPU_PCI 0x40 329 330/* 331 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6) 332 */ 333#define CM_REG_FM_PCI 0x50 334 335/* 336 * access from SB-mixer port 337 */ 338#define CM_REG_EXTENT_IND 0xf0 339#define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */ 340#define CM_VPHONE_SHIFT 5 341#define CM_VPHOM 0x10 /* Phone mute control */ 342#define CM_VSPKM 0x08 /* Speaker mute control, default high */ 343#define CM_RLOOPREN 0x04 /* Rec. R-channel enable */ 344#define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */ 345#define CM_VADMIC3 0x01 /* Mic record boost */ 346 347/* 348 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738): 349 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL 350 * unit (readonly?). 351 */ 352#define CM_REG_PLL 0xf8 353 354/* 355 * extended registers 356 */ 357#define CM_REG_CH0_FRAME1 0x80 /* write: base address */ 358#define CM_REG_CH0_FRAME2 0x84 /* read: current address */ 359#define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */ 360#define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */ 361 362#define CM_REG_EXT_MISC 0x90 363#define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */ 364#define CM_CHB3D8C 0x00200000 /* 7.1 channels support */ 365#define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */ 366#define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */ 367#define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */ 368#define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */ 369#define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */ 370#define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */ 371 372/* 373 * size of i/o region 374 */ 375#define CM_EXTENT_CODEC 0x100 376#define CM_EXTENT_MIDI 0x2 377#define CM_EXTENT_SYNTH 0x4 378 379 380/* 381 * channels for playback / capture 382 */ 383#define CM_CH_PLAY 0 384#define CM_CH_CAPT 1 385 386/* 387 * flags to check device open/close 388 */ 389#define CM_OPEN_NONE 0 390#define CM_OPEN_CH_MASK 0x01 391#define CM_OPEN_DAC 0x10 392#define CM_OPEN_ADC 0x20 393#define CM_OPEN_SPDIF 0x40 394#define CM_OPEN_MCHAN 0x80 395#define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC) 396#define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC) 397#define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN) 398#define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC) 399#define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF) 400#define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF) 401 402 403#if CM_CH_PLAY == 1 404#define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K 405#define CM_PLAYBACK_SPDF CM_SPDF_1 406#define CM_CAPTURE_SPDF CM_SPDF_0 407#else 408#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K 409#define CM_PLAYBACK_SPDF CM_SPDF_0 410#define CM_CAPTURE_SPDF CM_SPDF_1 411#endif 412 413 414/* 415 * driver data 416 */ 417 418struct cmipci_pcm { 419 struct snd_pcm_substream *substream; 420 u8 running; /* dac/adc running? */ 421 u8 fmt; /* format bits */ 422 u8 is_dac; 423 u8 needs_silencing; 424 unsigned int dma_size; /* in frames */ 425 unsigned int shift; 426 unsigned int ch; /* channel (0/1) */ 427 unsigned int offset; /* physical address of the buffer */ 428}; 429 430/* mixer elements toggled/resumed during ac3 playback */ 431struct cmipci_mixer_auto_switches { 432 const char *name; /* switch to toggle */ 433 int toggle_on; /* value to change when ac3 mode */ 434}; 435static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = { 436 {"PCM Playback Switch", 0}, 437 {"IEC958 Output Switch", 1}, 438 {"IEC958 Mix Analog", 0}, 439 // {"IEC958 Out To DAC", 1}, // no longer used 440 {"IEC958 Loop", 0}, 441}; 442#define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer) 443 444struct cmipci { 445 struct snd_card *card; 446 447 struct pci_dev *pci; 448 unsigned int device; /* device ID */ 449 int irq; 450 451 unsigned long iobase; 452 unsigned int ctrl; /* FUNCTRL0 current value */ 453 454 struct snd_pcm *pcm; /* DAC/ADC PCM */ 455 struct snd_pcm *pcm2; /* 2nd DAC */ 456 struct snd_pcm *pcm_spdif; /* SPDIF */ 457 458 int chip_version; 459 int max_channels; 460 unsigned int can_ac3_sw: 1; 461 unsigned int can_ac3_hw: 1; 462 unsigned int can_multi_ch: 1; 463 unsigned int can_96k: 1; /* samplerate above 48k */ 464 unsigned int do_soft_ac3: 1; 465 466 unsigned int spdif_playback_avail: 1; /* spdif ready? */ 467 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */ 468 int spdif_counter; /* for software AC3 */ 469 470 unsigned int dig_status; 471 unsigned int dig_pcm_status; 472 473 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */ 474 475 int opened[2]; /* open mode */ 476 struct mutex open_mutex; 477 478 unsigned int mixer_insensitive: 1; 479 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS]; 480 int mixer_res_status[CM_SAVED_MIXERS]; 481 482 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */ 483 484 /* external MIDI */ 485 struct snd_rawmidi *rmidi; 486 487#ifdef SUPPORT_JOYSTICK 488 struct gameport *gameport; 489#endif 490 491 spinlock_t reg_lock; 492 493#ifdef CONFIG_PM_SLEEP 494 unsigned int saved_regs[0x20]; 495 unsigned char saved_mixers[0x20]; 496#endif 497}; 498 499 500/* read/write operations for dword register */ 501static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data) 502{ 503 outl(data, cm->iobase + cmd); 504} 505 506static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd) 507{ 508 return inl(cm->iobase + cmd); 509} 510 511/* read/write operations for word register */ 512static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data) 513{ 514 outw(data, cm->iobase + cmd); 515} 516 517static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd) 518{ 519 return inw(cm->iobase + cmd); 520} 521 522/* read/write operations for byte register */ 523static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data) 524{ 525 outb(data, cm->iobase + cmd); 526} 527 528static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd) 529{ 530 return inb(cm->iobase + cmd); 531} 532 533/* bit operations for dword register */ 534static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) 535{ 536 unsigned int val, oval; 537 val = oval = inl(cm->iobase + cmd); 538 val |= flag; 539 if (val == oval) 540 return 0; 541 outl(val, cm->iobase + cmd); 542 return 1; 543} 544 545static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) 546{ 547 unsigned int val, oval; 548 val = oval = inl(cm->iobase + cmd); 549 val &= ~flag; 550 if (val == oval) 551 return 0; 552 outl(val, cm->iobase + cmd); 553 return 1; 554} 555 556/* bit operations for byte register */ 557static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) 558{ 559 unsigned char val, oval; 560 val = oval = inb(cm->iobase + cmd); 561 val |= flag; 562 if (val == oval) 563 return 0; 564 outb(val, cm->iobase + cmd); 565 return 1; 566} 567 568static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) 569{ 570 unsigned char val, oval; 571 val = oval = inb(cm->iobase + cmd); 572 val &= ~flag; 573 if (val == oval) 574 return 0; 575 outb(val, cm->iobase + cmd); 576 return 1; 577} 578 579 580/* 581 * PCM interface 582 */ 583 584/* 585 * calculate frequency 586 */ 587 588static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 }; 589 590static unsigned int snd_cmipci_rate_freq(unsigned int rate) 591{ 592 unsigned int i; 593 594 for (i = 0; i < ARRAY_SIZE(rates); i++) { 595 if (rates[i] == rate) 596 return i; 597 } 598 snd_BUG(); 599 return 0; 600} 601 602#ifdef USE_VAR48KRATE 603/* 604 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???) 605 * does it this way .. maybe not. Never get any information from C-Media about 606 * that <werner@suse.de>. 607 */ 608static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n) 609{ 610 unsigned int delta, tolerance; 611 int xm, xn, xr; 612 613 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5)) 614 rate <<= 1; 615 *n = -1; 616 if (*r > 0xff) 617 goto out; 618 tolerance = rate*CM_TOLERANCE_RATE; 619 620 for (xn = (1+2); xn < (0x1f+2); xn++) { 621 for (xm = (1+2); xm < (0xff+2); xm++) { 622 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn; 623 624 if (xr < rate) 625 delta = rate - xr; 626 else 627 delta = xr - rate; 628 629 /* 630 * If we found one, remember this, 631 * and try to find a closer one 632 */ 633 if (delta < tolerance) { 634 tolerance = delta; 635 *m = xm - 2; 636 *n = xn - 2; 637 } 638 } 639 } 640out: 641 return (*n > -1); 642} 643 644/* 645 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff 646 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen 647 * at the register CM_REG_FUNCTRL1 (0x04). 648 * Problem: other ways are also possible (any information about that?) 649 */ 650static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot) 651{ 652 unsigned int reg = CM_REG_PLL + slot; 653 /* 654 * Guess that this programs at reg. 0x04 the pos 15:13/12:10 655 * for DSFC/ASFC (000 up to 111). 656 */ 657 658 /* FIXME: Init (Do we've to set an other register first before programming?) */ 659 660 /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */ 661 snd_cmipci_write_b(cm, reg, rate>>8); 662 snd_cmipci_write_b(cm, reg, rate&0xff); 663 664 /* FIXME: Setup (Do we've to set an other register first to enable this?) */ 665} 666#endif /* USE_VAR48KRATE */ 667 668static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream, 669 struct snd_pcm_hw_params *hw_params) 670{ 671 struct cmipci *cm = snd_pcm_substream_chip(substream); 672 if (params_channels(hw_params) > 2) { 673 mutex_lock(&cm->open_mutex); 674 if (cm->opened[CM_CH_PLAY]) { 675 mutex_unlock(&cm->open_mutex); 676 return -EBUSY; 677 } 678 /* reserve the channel A */ 679 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI; 680 mutex_unlock(&cm->open_mutex); 681 } 682 return 0; 683} 684 685static void snd_cmipci_ch_reset(struct cmipci *cm, int ch) 686{ 687 int reset = CM_RST_CH0 << (cm->channel[ch].ch); 688 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); 689 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); 690 udelay(10); 691} 692 693 694/* 695 */ 696 697static const unsigned int hw_channels[] = {1, 2, 4, 6, 8}; 698static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = { 699 .count = 3, 700 .list = hw_channels, 701 .mask = 0, 702}; 703static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = { 704 .count = 4, 705 .list = hw_channels, 706 .mask = 0, 707}; 708static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = { 709 .count = 5, 710 .list = hw_channels, 711 .mask = 0, 712}; 713 714static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels) 715{ 716 if (channels > 2) { 717 if (!cm->can_multi_ch || !rec->ch) 718 return -EINVAL; 719 if (rec->fmt != 0x03) /* stereo 16bit only */ 720 return -EINVAL; 721 } 722 723 if (cm->can_multi_ch) { 724 spin_lock_irq(&cm->reg_lock); 725 if (channels > 2) { 726 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); 727 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 728 } else { 729 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); 730 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 731 } 732 if (channels == 8) 733 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); 734 else 735 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); 736 if (channels == 6) { 737 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); 738 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); 739 } else { 740 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); 741 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); 742 } 743 if (channels == 4) 744 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); 745 else 746 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); 747 spin_unlock_irq(&cm->reg_lock); 748 } 749 return 0; 750} 751 752 753/* 754 * prepare playback/capture channel 755 * channel to be used must have been set in rec->ch. 756 */ 757static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec, 758 struct snd_pcm_substream *substream) 759{ 760 unsigned int reg, freq, freq_ext, val; 761 unsigned int period_size; 762 struct snd_pcm_runtime *runtime = substream->runtime; 763 764 rec->fmt = 0; 765 rec->shift = 0; 766 if (snd_pcm_format_width(runtime->format) >= 16) { 767 rec->fmt |= 0x02; 768 if (snd_pcm_format_width(runtime->format) > 16) 769 rec->shift++; /* 24/32bit */ 770 } 771 if (runtime->channels > 1) 772 rec->fmt |= 0x01; 773 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) { 774 dev_dbg(cm->card->dev, "cannot set dac channels\n"); 775 return -EINVAL; 776 } 777 778 rec->offset = runtime->dma_addr; 779 /* buffer and period sizes in frame */ 780 rec->dma_size = runtime->buffer_size << rec->shift; 781 period_size = runtime->period_size << rec->shift; 782 if (runtime->channels > 2) { 783 /* multi-channels */ 784 rec->dma_size = (rec->dma_size * runtime->channels) / 2; 785 period_size = (period_size * runtime->channels) / 2; 786 } 787 788 spin_lock_irq(&cm->reg_lock); 789 790 /* set buffer address */ 791 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; 792 snd_cmipci_write(cm, reg, rec->offset); 793 /* program sample counts */ 794 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 795 snd_cmipci_write_w(cm, reg, rec->dma_size - 1); 796 snd_cmipci_write_w(cm, reg + 2, period_size - 1); 797 798 /* set adc/dac flag */ 799 val = rec->ch ? CM_CHADC1 : CM_CHADC0; 800 if (rec->is_dac) 801 cm->ctrl &= ~val; 802 else 803 cm->ctrl |= val; 804 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 805 /* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */ 806 807 /* set sample rate */ 808 freq = 0; 809 freq_ext = 0; 810 if (runtime->rate > 48000) 811 switch (runtime->rate) { 812 case 88200: freq_ext = CM_CH0_SRATE_88K; break; 813 case 96000: freq_ext = CM_CH0_SRATE_96K; break; 814 case 128000: freq_ext = CM_CH0_SRATE_128K; break; 815 default: snd_BUG(); break; 816 } 817 else 818 freq = snd_cmipci_rate_freq(runtime->rate); 819 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); 820 if (rec->ch) { 821 val &= ~CM_DSFC_MASK; 822 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK; 823 } else { 824 val &= ~CM_ASFC_MASK; 825 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK; 826 } 827 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); 828 dev_dbg(cm->card->dev, "functrl1 = %08x\n", val); 829 830 /* set format */ 831 val = snd_cmipci_read(cm, CM_REG_CHFORMAT); 832 if (rec->ch) { 833 val &= ~CM_CH1FMT_MASK; 834 val |= rec->fmt << CM_CH1FMT_SHIFT; 835 } else { 836 val &= ~CM_CH0FMT_MASK; 837 val |= rec->fmt << CM_CH0FMT_SHIFT; 838 } 839 if (cm->can_96k) { 840 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2)); 841 val |= freq_ext << (rec->ch * 2); 842 } 843 snd_cmipci_write(cm, CM_REG_CHFORMAT, val); 844 dev_dbg(cm->card->dev, "chformat = %08x\n", val); 845 846 if (!rec->is_dac && cm->chip_version) { 847 if (runtime->rate > 44100) 848 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K); 849 else 850 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K); 851 } 852 853 rec->running = 0; 854 spin_unlock_irq(&cm->reg_lock); 855 856 return 0; 857} 858 859/* 860 * PCM trigger/stop 861 */ 862static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec, 863 int cmd) 864{ 865 unsigned int inthld, chen, reset, pause; 866 int result = 0; 867 868 inthld = CM_CH0_INT_EN << rec->ch; 869 chen = CM_CHEN0 << rec->ch; 870 reset = CM_RST_CH0 << rec->ch; 871 pause = CM_PAUSE0 << rec->ch; 872 873 spin_lock(&cm->reg_lock); 874 switch (cmd) { 875 case SNDRV_PCM_TRIGGER_START: 876 rec->running = 1; 877 /* set interrupt */ 878 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld); 879 cm->ctrl |= chen; 880 /* enable channel */ 881 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 882 dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); 883 break; 884 case SNDRV_PCM_TRIGGER_STOP: 885 rec->running = 0; 886 /* disable interrupt */ 887 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld); 888 /* reset */ 889 cm->ctrl &= ~chen; 890 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); 891 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); 892 rec->needs_silencing = rec->is_dac; 893 break; 894 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 895 case SNDRV_PCM_TRIGGER_SUSPEND: 896 cm->ctrl |= pause; 897 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 898 break; 899 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 900 case SNDRV_PCM_TRIGGER_RESUME: 901 cm->ctrl &= ~pause; 902 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 903 break; 904 default: 905 result = -EINVAL; 906 break; 907 } 908 spin_unlock(&cm->reg_lock); 909 return result; 910} 911 912/* 913 * return the current pointer 914 */ 915static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec, 916 struct snd_pcm_substream *substream) 917{ 918 size_t ptr; 919 unsigned int reg, rem, tries; 920 921 if (!rec->running) 922 return 0; 923#if 1 // this seems better.. 924 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 925 for (tries = 0; tries < 3; tries++) { 926 rem = snd_cmipci_read_w(cm, reg); 927 if (rem < rec->dma_size) 928 goto ok; 929 } 930 dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem); 931 return SNDRV_PCM_POS_XRUN; 932ok: 933 ptr = (rec->dma_size - (rem + 1)) >> rec->shift; 934#else 935 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; 936 ptr = snd_cmipci_read(cm, reg) - rec->offset; 937 ptr = bytes_to_frames(substream->runtime, ptr); 938#endif 939 if (substream->runtime->channels > 2) 940 ptr = (ptr * 2) / substream->runtime->channels; 941 return ptr; 942} 943 944/* 945 * playback 946 */ 947 948static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream, 949 int cmd) 950{ 951 struct cmipci *cm = snd_pcm_substream_chip(substream); 952 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd); 953} 954 955static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream) 956{ 957 struct cmipci *cm = snd_pcm_substream_chip(substream); 958 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream); 959} 960 961 962 963/* 964 * capture 965 */ 966 967static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream, 968 int cmd) 969{ 970 struct cmipci *cm = snd_pcm_substream_chip(substream); 971 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd); 972} 973 974static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream) 975{ 976 struct cmipci *cm = snd_pcm_substream_chip(substream); 977 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream); 978} 979 980 981/* 982 * hw preparation for spdif 983 */ 984 985static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol, 986 struct snd_ctl_elem_info *uinfo) 987{ 988 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 989 uinfo->count = 1; 990 return 0; 991} 992 993static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol, 994 struct snd_ctl_elem_value *ucontrol) 995{ 996 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 997 int i; 998 999 spin_lock_irq(&chip->reg_lock); 1000 for (i = 0; i < 4; i++) 1001 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff; 1002 spin_unlock_irq(&chip->reg_lock); 1003 return 0; 1004} 1005 1006static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol, 1007 struct snd_ctl_elem_value *ucontrol) 1008{ 1009 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1010 int i, change; 1011 unsigned int val; 1012 1013 val = 0; 1014 spin_lock_irq(&chip->reg_lock); 1015 for (i = 0; i < 4; i++) 1016 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); 1017 change = val != chip->dig_status; 1018 chip->dig_status = val; 1019 spin_unlock_irq(&chip->reg_lock); 1020 return change; 1021} 1022 1023static const struct snd_kcontrol_new snd_cmipci_spdif_default = 1024{ 1025 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1026 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 1027 .info = snd_cmipci_spdif_default_info, 1028 .get = snd_cmipci_spdif_default_get, 1029 .put = snd_cmipci_spdif_default_put 1030}; 1031 1032static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol, 1033 struct snd_ctl_elem_info *uinfo) 1034{ 1035 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1036 uinfo->count = 1; 1037 return 0; 1038} 1039 1040static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol, 1041 struct snd_ctl_elem_value *ucontrol) 1042{ 1043 ucontrol->value.iec958.status[0] = 0xff; 1044 ucontrol->value.iec958.status[1] = 0xff; 1045 ucontrol->value.iec958.status[2] = 0xff; 1046 ucontrol->value.iec958.status[3] = 0xff; 1047 return 0; 1048} 1049 1050static const struct snd_kcontrol_new snd_cmipci_spdif_mask = 1051{ 1052 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1053 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1054 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 1055 .info = snd_cmipci_spdif_mask_info, 1056 .get = snd_cmipci_spdif_mask_get, 1057}; 1058 1059static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol, 1060 struct snd_ctl_elem_info *uinfo) 1061{ 1062 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1063 uinfo->count = 1; 1064 return 0; 1065} 1066 1067static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol, 1068 struct snd_ctl_elem_value *ucontrol) 1069{ 1070 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1071 int i; 1072 1073 spin_lock_irq(&chip->reg_lock); 1074 for (i = 0; i < 4; i++) 1075 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff; 1076 spin_unlock_irq(&chip->reg_lock); 1077 return 0; 1078} 1079 1080static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol, 1081 struct snd_ctl_elem_value *ucontrol) 1082{ 1083 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1084 int i, change; 1085 unsigned int val; 1086 1087 val = 0; 1088 spin_lock_irq(&chip->reg_lock); 1089 for (i = 0; i < 4; i++) 1090 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); 1091 change = val != chip->dig_pcm_status; 1092 chip->dig_pcm_status = val; 1093 spin_unlock_irq(&chip->reg_lock); 1094 return change; 1095} 1096 1097static const struct snd_kcontrol_new snd_cmipci_spdif_stream = 1098{ 1099 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1100 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1101 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 1102 .info = snd_cmipci_spdif_stream_info, 1103 .get = snd_cmipci_spdif_stream_get, 1104 .put = snd_cmipci_spdif_stream_put 1105}; 1106 1107/* 1108 */ 1109 1110/* save mixer setting and mute for AC3 playback */ 1111static int save_mixer_state(struct cmipci *cm) 1112{ 1113 if (! cm->mixer_insensitive) { 1114 struct snd_ctl_elem_value *val; 1115 unsigned int i; 1116 1117 val = kmalloc(sizeof(*val), GFP_KERNEL); 1118 if (!val) 1119 return -ENOMEM; 1120 for (i = 0; i < CM_SAVED_MIXERS; i++) { 1121 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; 1122 if (ctl) { 1123 int event; 1124 memset(val, 0, sizeof(*val)); 1125 ctl->get(ctl, val); 1126 cm->mixer_res_status[i] = val->value.integer.value[0]; 1127 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on; 1128 event = SNDRV_CTL_EVENT_MASK_INFO; 1129 if (cm->mixer_res_status[i] != val->value.integer.value[0]) { 1130 ctl->put(ctl, val); /* toggle */ 1131 event |= SNDRV_CTL_EVENT_MASK_VALUE; 1132 } 1133 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1134 snd_ctl_notify(cm->card, event, &ctl->id); 1135 } 1136 } 1137 kfree(val); 1138 cm->mixer_insensitive = 1; 1139 } 1140 return 0; 1141} 1142 1143 1144/* restore the previously saved mixer status */ 1145static void restore_mixer_state(struct cmipci *cm) 1146{ 1147 if (cm->mixer_insensitive) { 1148 struct snd_ctl_elem_value *val; 1149 unsigned int i; 1150 1151 val = kmalloc(sizeof(*val), GFP_KERNEL); 1152 if (!val) 1153 return; 1154 cm->mixer_insensitive = 0; /* at first clear this; 1155 otherwise the changes will be ignored */ 1156 for (i = 0; i < CM_SAVED_MIXERS; i++) { 1157 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; 1158 if (ctl) { 1159 int event; 1160 1161 memset(val, 0, sizeof(*val)); 1162 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1163 ctl->get(ctl, val); 1164 event = SNDRV_CTL_EVENT_MASK_INFO; 1165 if (val->value.integer.value[0] != cm->mixer_res_status[i]) { 1166 val->value.integer.value[0] = cm->mixer_res_status[i]; 1167 ctl->put(ctl, val); 1168 event |= SNDRV_CTL_EVENT_MASK_VALUE; 1169 } 1170 snd_ctl_notify(cm->card, event, &ctl->id); 1171 } 1172 } 1173 kfree(val); 1174 } 1175} 1176 1177/* spinlock held! */ 1178static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate) 1179{ 1180 if (do_ac3) { 1181 /* AC3EN for 037 */ 1182 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); 1183 /* AC3EN for 039 */ 1184 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); 1185 1186 if (cm->can_ac3_hw) { 1187 /* SPD24SEL for 037, 0x02 */ 1188 /* SPD24SEL for 039, 0x20, but cannot be set */ 1189 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1190 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1191 } else { /* can_ac3_sw */ 1192 /* SPD32SEL for 037 & 039, 0x20 */ 1193 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1194 /* set 176K sample rate to fix 033 HW bug */ 1195 if (cm->chip_version == 33) { 1196 if (rate >= 48000) { 1197 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1198 } else { 1199 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1200 } 1201 } 1202 } 1203 1204 } else { 1205 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); 1206 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); 1207 1208 if (cm->can_ac3_hw) { 1209 /* chip model >= 37 */ 1210 if (snd_pcm_format_width(subs->runtime->format) > 16) { 1211 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1212 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1213 } else { 1214 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1215 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1216 } 1217 } else { 1218 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1219 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1220 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1221 } 1222 } 1223} 1224 1225static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3) 1226{ 1227 int rate, err; 1228 1229 rate = subs->runtime->rate; 1230 1231 if (up && do_ac3) 1232 if ((err = save_mixer_state(cm)) < 0) 1233 return err; 1234 1235 spin_lock_irq(&cm->reg_lock); 1236 cm->spdif_playback_avail = up; 1237 if (up) { 1238 /* they are controlled via "IEC958 Output Switch" */ 1239 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ 1240 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ 1241 if (cm->spdif_playback_enabled) 1242 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 1243 setup_ac3(cm, subs, do_ac3, rate); 1244 1245 if (rate == 48000 || rate == 96000) 1246 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); 1247 else 1248 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); 1249 if (rate > 48000) 1250 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1251 else 1252 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1253 } else { 1254 /* they are controlled via "IEC958 Output Switch" */ 1255 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ 1256 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ 1257 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1258 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 1259 setup_ac3(cm, subs, 0, 0); 1260 } 1261 spin_unlock_irq(&cm->reg_lock); 1262 return 0; 1263} 1264 1265 1266/* 1267 * preparation 1268 */ 1269 1270/* playback - enable spdif only on the certain condition */ 1271static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream) 1272{ 1273 struct cmipci *cm = snd_pcm_substream_chip(substream); 1274 int rate = substream->runtime->rate; 1275 int err, do_spdif, do_ac3 = 0; 1276 1277 do_spdif = (rate >= 44100 && rate <= 96000 && 1278 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE && 1279 substream->runtime->channels == 2); 1280 if (do_spdif && cm->can_ac3_hw) 1281 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; 1282 if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0) 1283 return err; 1284 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); 1285} 1286 1287/* playback (via device #2) - enable spdif always */ 1288static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream) 1289{ 1290 struct cmipci *cm = snd_pcm_substream_chip(substream); 1291 int err, do_ac3; 1292 1293 if (cm->can_ac3_hw) 1294 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; 1295 else 1296 do_ac3 = 1; /* doesn't matter */ 1297 if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0) 1298 return err; 1299 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); 1300} 1301 1302/* 1303 * Apparently, the samples last played on channel A stay in some buffer, even 1304 * after the channel is reset, and get added to the data for the rear DACs when 1305 * playing a multichannel stream on channel B. This is likely to generate 1306 * wraparounds and thus distortions. 1307 * To avoid this, we play at least one zero sample after the actual stream has 1308 * stopped. 1309 */ 1310static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec) 1311{ 1312 struct snd_pcm_runtime *runtime = rec->substream->runtime; 1313 unsigned int reg, val; 1314 1315 if (rec->needs_silencing && runtime && runtime->dma_area) { 1316 /* set up a small silence buffer */ 1317 memset(runtime->dma_area, 0, PAGE_SIZE); 1318 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 1319 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16); 1320 snd_cmipci_write(cm, reg, val); 1321 1322 /* configure for 16 bits, 2 channels, 8 kHz */ 1323 if (runtime->channels > 2) 1324 set_dac_channels(cm, rec, 2); 1325 spin_lock_irq(&cm->reg_lock); 1326 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); 1327 val &= ~(CM_ASFC_MASK << (rec->ch * 3)); 1328 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3); 1329 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); 1330 val = snd_cmipci_read(cm, CM_REG_CHFORMAT); 1331 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2)); 1332 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2); 1333 if (cm->can_96k) 1334 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2)); 1335 snd_cmipci_write(cm, CM_REG_CHFORMAT, val); 1336 1337 /* start stream (we don't need interrupts) */ 1338 cm->ctrl |= CM_CHEN0 << rec->ch; 1339 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 1340 spin_unlock_irq(&cm->reg_lock); 1341 1342 msleep(1); 1343 1344 /* stop and reset stream */ 1345 spin_lock_irq(&cm->reg_lock); 1346 cm->ctrl &= ~(CM_CHEN0 << rec->ch); 1347 val = CM_RST_CH0 << rec->ch; 1348 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val); 1349 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val); 1350 spin_unlock_irq(&cm->reg_lock); 1351 1352 rec->needs_silencing = 0; 1353 } 1354} 1355 1356static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream) 1357{ 1358 struct cmipci *cm = snd_pcm_substream_chip(substream); 1359 setup_spdif_playback(cm, substream, 0, 0); 1360 restore_mixer_state(cm); 1361 snd_cmipci_silence_hack(cm, &cm->channel[0]); 1362 return 0; 1363} 1364 1365static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream) 1366{ 1367 struct cmipci *cm = snd_pcm_substream_chip(substream); 1368 snd_cmipci_silence_hack(cm, &cm->channel[1]); 1369 return 0; 1370} 1371 1372/* capture */ 1373static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream) 1374{ 1375 struct cmipci *cm = snd_pcm_substream_chip(substream); 1376 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); 1377} 1378 1379/* capture with spdif (via device #2) */ 1380static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream) 1381{ 1382 struct cmipci *cm = snd_pcm_substream_chip(substream); 1383 1384 spin_lock_irq(&cm->reg_lock); 1385 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); 1386 if (cm->can_96k) { 1387 if (substream->runtime->rate > 48000) 1388 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1389 else 1390 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1391 } 1392 if (snd_pcm_format_width(substream->runtime->format) > 16) 1393 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1394 else 1395 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1396 1397 spin_unlock_irq(&cm->reg_lock); 1398 1399 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); 1400} 1401 1402static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs) 1403{ 1404 struct cmipci *cm = snd_pcm_substream_chip(subs); 1405 1406 spin_lock_irq(&cm->reg_lock); 1407 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); 1408 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1409 spin_unlock_irq(&cm->reg_lock); 1410 1411 return 0; 1412} 1413 1414 1415/* 1416 * interrupt handler 1417 */ 1418static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id) 1419{ 1420 struct cmipci *cm = dev_id; 1421 unsigned int status, mask = 0; 1422 1423 /* fastpath out, to ease interrupt sharing */ 1424 status = snd_cmipci_read(cm, CM_REG_INT_STATUS); 1425 if (!(status & CM_INTR)) 1426 return IRQ_NONE; 1427 1428 /* acknowledge interrupt */ 1429 spin_lock(&cm->reg_lock); 1430 if (status & CM_CHINT0) 1431 mask |= CM_CH0_INT_EN; 1432 if (status & CM_CHINT1) 1433 mask |= CM_CH1_INT_EN; 1434 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask); 1435 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask); 1436 spin_unlock(&cm->reg_lock); 1437 1438 if (cm->rmidi && (status & CM_UARTINT)) 1439 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data); 1440 1441 if (cm->pcm) { 1442 if ((status & CM_CHINT0) && cm->channel[0].running) 1443 snd_pcm_period_elapsed(cm->channel[0].substream); 1444 if ((status & CM_CHINT1) && cm->channel[1].running) 1445 snd_pcm_period_elapsed(cm->channel[1].substream); 1446 } 1447 return IRQ_HANDLED; 1448} 1449 1450/* 1451 * h/w infos 1452 */ 1453 1454/* playback on channel A */ 1455static const struct snd_pcm_hardware snd_cmipci_playback = 1456{ 1457 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1458 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1459 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1460 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1461 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1462 .rate_min = 5512, 1463 .rate_max = 48000, 1464 .channels_min = 1, 1465 .channels_max = 2, 1466 .buffer_bytes_max = (128*1024), 1467 .period_bytes_min = 64, 1468 .period_bytes_max = (128*1024), 1469 .periods_min = 2, 1470 .periods_max = 1024, 1471 .fifo_size = 0, 1472}; 1473 1474/* capture on channel B */ 1475static const struct snd_pcm_hardware snd_cmipci_capture = 1476{ 1477 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1478 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1479 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1480 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1481 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1482 .rate_min = 5512, 1483 .rate_max = 48000, 1484 .channels_min = 1, 1485 .channels_max = 2, 1486 .buffer_bytes_max = (128*1024), 1487 .period_bytes_min = 64, 1488 .period_bytes_max = (128*1024), 1489 .periods_min = 2, 1490 .periods_max = 1024, 1491 .fifo_size = 0, 1492}; 1493 1494/* playback on channel B - stereo 16bit only? */ 1495static const struct snd_pcm_hardware snd_cmipci_playback2 = 1496{ 1497 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1498 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1499 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1500 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1501 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1502 .rate_min = 5512, 1503 .rate_max = 48000, 1504 .channels_min = 2, 1505 .channels_max = 2, 1506 .buffer_bytes_max = (128*1024), 1507 .period_bytes_min = 64, 1508 .period_bytes_max = (128*1024), 1509 .periods_min = 2, 1510 .periods_max = 1024, 1511 .fifo_size = 0, 1512}; 1513 1514/* spdif playback on channel A */ 1515static const struct snd_pcm_hardware snd_cmipci_playback_spdif = 1516{ 1517 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1518 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1519 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1520 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1521 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1522 .rate_min = 44100, 1523 .rate_max = 48000, 1524 .channels_min = 2, 1525 .channels_max = 2, 1526 .buffer_bytes_max = (128*1024), 1527 .period_bytes_min = 64, 1528 .period_bytes_max = (128*1024), 1529 .periods_min = 2, 1530 .periods_max = 1024, 1531 .fifo_size = 0, 1532}; 1533 1534/* spdif playback on channel A (32bit, IEC958 subframes) */ 1535static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe = 1536{ 1537 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1538 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1539 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1540 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 1541 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1542 .rate_min = 44100, 1543 .rate_max = 48000, 1544 .channels_min = 2, 1545 .channels_max = 2, 1546 .buffer_bytes_max = (128*1024), 1547 .period_bytes_min = 64, 1548 .period_bytes_max = (128*1024), 1549 .periods_min = 2, 1550 .periods_max = 1024, 1551 .fifo_size = 0, 1552}; 1553 1554/* spdif capture on channel B */ 1555static const struct snd_pcm_hardware snd_cmipci_capture_spdif = 1556{ 1557 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1558 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1559 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1560 .formats = SNDRV_PCM_FMTBIT_S16_LE | 1561 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 1562 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1563 .rate_min = 44100, 1564 .rate_max = 48000, 1565 .channels_min = 2, 1566 .channels_max = 2, 1567 .buffer_bytes_max = (128*1024), 1568 .period_bytes_min = 64, 1569 .period_bytes_max = (128*1024), 1570 .periods_min = 2, 1571 .periods_max = 1024, 1572 .fifo_size = 0, 1573}; 1574 1575static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050, 1576 32000, 44100, 48000, 88200, 96000, 128000 }; 1577static const struct snd_pcm_hw_constraint_list hw_constraints_rates = { 1578 .count = ARRAY_SIZE(rate_constraints), 1579 .list = rate_constraints, 1580 .mask = 0, 1581}; 1582 1583/* 1584 * check device open/close 1585 */ 1586static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs) 1587{ 1588 int ch = mode & CM_OPEN_CH_MASK; 1589 1590 /* FIXME: a file should wait until the device becomes free 1591 * when it's opened on blocking mode. however, since the current 1592 * pcm framework doesn't pass file pointer before actually opened, 1593 * we can't know whether blocking mode or not in open callback.. 1594 */ 1595 mutex_lock(&cm->open_mutex); 1596 if (cm->opened[ch]) { 1597 mutex_unlock(&cm->open_mutex); 1598 return -EBUSY; 1599 } 1600 cm->opened[ch] = mode; 1601 cm->channel[ch].substream = subs; 1602 if (! (mode & CM_OPEN_DAC)) { 1603 /* disable dual DAC mode */ 1604 cm->channel[ch].is_dac = 0; 1605 spin_lock_irq(&cm->reg_lock); 1606 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); 1607 spin_unlock_irq(&cm->reg_lock); 1608 } 1609 mutex_unlock(&cm->open_mutex); 1610 return 0; 1611} 1612 1613static void close_device_check(struct cmipci *cm, int mode) 1614{ 1615 int ch = mode & CM_OPEN_CH_MASK; 1616 1617 mutex_lock(&cm->open_mutex); 1618 if (cm->opened[ch] == mode) { 1619 if (cm->channel[ch].substream) { 1620 snd_cmipci_ch_reset(cm, ch); 1621 cm->channel[ch].running = 0; 1622 cm->channel[ch].substream = NULL; 1623 } 1624 cm->opened[ch] = 0; 1625 if (! cm->channel[ch].is_dac) { 1626 /* enable dual DAC mode again */ 1627 cm->channel[ch].is_dac = 1; 1628 spin_lock_irq(&cm->reg_lock); 1629 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); 1630 spin_unlock_irq(&cm->reg_lock); 1631 } 1632 } 1633 mutex_unlock(&cm->open_mutex); 1634} 1635 1636/* 1637 */ 1638 1639static int snd_cmipci_playback_open(struct snd_pcm_substream *substream) 1640{ 1641 struct cmipci *cm = snd_pcm_substream_chip(substream); 1642 struct snd_pcm_runtime *runtime = substream->runtime; 1643 int err; 1644 1645 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0) 1646 return err; 1647 runtime->hw = snd_cmipci_playback; 1648 if (cm->chip_version == 68) { 1649 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1650 SNDRV_PCM_RATE_96000; 1651 runtime->hw.rate_max = 96000; 1652 } else if (cm->chip_version == 55) { 1653 err = snd_pcm_hw_constraint_list(runtime, 0, 1654 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); 1655 if (err < 0) 1656 return err; 1657 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 1658 runtime->hw.rate_max = 128000; 1659 } 1660 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1661 cm->dig_pcm_status = cm->dig_status; 1662 return 0; 1663} 1664 1665static int snd_cmipci_capture_open(struct snd_pcm_substream *substream) 1666{ 1667 struct cmipci *cm = snd_pcm_substream_chip(substream); 1668 struct snd_pcm_runtime *runtime = substream->runtime; 1669 int err; 1670 1671 if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0) 1672 return err; 1673 runtime->hw = snd_cmipci_capture; 1674 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording 1675 runtime->hw.rate_min = 41000; 1676 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000; 1677 } else if (cm->chip_version == 55) { 1678 err = snd_pcm_hw_constraint_list(runtime, 0, 1679 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); 1680 if (err < 0) 1681 return err; 1682 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 1683 runtime->hw.rate_max = 128000; 1684 } 1685 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1686 return 0; 1687} 1688 1689static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream) 1690{ 1691 struct cmipci *cm = snd_pcm_substream_chip(substream); 1692 struct snd_pcm_runtime *runtime = substream->runtime; 1693 int err; 1694 1695 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */ 1696 return err; 1697 runtime->hw = snd_cmipci_playback2; 1698 mutex_lock(&cm->open_mutex); 1699 if (! cm->opened[CM_CH_PLAY]) { 1700 if (cm->can_multi_ch) { 1701 runtime->hw.channels_max = cm->max_channels; 1702 if (cm->max_channels == 4) 1703 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4); 1704 else if (cm->max_channels == 6) 1705 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6); 1706 else if (cm->max_channels == 8) 1707 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8); 1708 } 1709 } 1710 mutex_unlock(&cm->open_mutex); 1711 if (cm->chip_version == 68) { 1712 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1713 SNDRV_PCM_RATE_96000; 1714 runtime->hw.rate_max = 96000; 1715 } else if (cm->chip_version == 55) { 1716 err = snd_pcm_hw_constraint_list(runtime, 0, 1717 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); 1718 if (err < 0) 1719 return err; 1720 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 1721 runtime->hw.rate_max = 128000; 1722 } 1723 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1724 return 0; 1725} 1726 1727static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream) 1728{ 1729 struct cmipci *cm = snd_pcm_substream_chip(substream); 1730 struct snd_pcm_runtime *runtime = substream->runtime; 1731 int err; 1732 1733 if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */ 1734 return err; 1735 if (cm->can_ac3_hw) { 1736 runtime->hw = snd_cmipci_playback_spdif; 1737 if (cm->chip_version >= 37) { 1738 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE; 1739 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 1740 } 1741 if (cm->can_96k) { 1742 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1743 SNDRV_PCM_RATE_96000; 1744 runtime->hw.rate_max = 96000; 1745 } 1746 } else { 1747 runtime->hw = snd_cmipci_playback_iec958_subframe; 1748 } 1749 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); 1750 cm->dig_pcm_status = cm->dig_status; 1751 return 0; 1752} 1753 1754static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream) 1755{ 1756 struct cmipci *cm = snd_pcm_substream_chip(substream); 1757 struct snd_pcm_runtime *runtime = substream->runtime; 1758 int err; 1759 1760 if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */ 1761 return err; 1762 runtime->hw = snd_cmipci_capture_spdif; 1763 if (cm->can_96k && !(cm->chip_version == 68)) { 1764 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1765 SNDRV_PCM_RATE_96000; 1766 runtime->hw.rate_max = 96000; 1767 } 1768 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); 1769 return 0; 1770} 1771 1772 1773/* 1774 */ 1775 1776static int snd_cmipci_playback_close(struct snd_pcm_substream *substream) 1777{ 1778 struct cmipci *cm = snd_pcm_substream_chip(substream); 1779 close_device_check(cm, CM_OPEN_PLAYBACK); 1780 return 0; 1781} 1782 1783static int snd_cmipci_capture_close(struct snd_pcm_substream *substream) 1784{ 1785 struct cmipci *cm = snd_pcm_substream_chip(substream); 1786 close_device_check(cm, CM_OPEN_CAPTURE); 1787 return 0; 1788} 1789 1790static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream) 1791{ 1792 struct cmipci *cm = snd_pcm_substream_chip(substream); 1793 close_device_check(cm, CM_OPEN_PLAYBACK2); 1794 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI); 1795 return 0; 1796} 1797 1798static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream) 1799{ 1800 struct cmipci *cm = snd_pcm_substream_chip(substream); 1801 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK); 1802 return 0; 1803} 1804 1805static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream) 1806{ 1807 struct cmipci *cm = snd_pcm_substream_chip(substream); 1808 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE); 1809 return 0; 1810} 1811 1812 1813/* 1814 */ 1815 1816static const struct snd_pcm_ops snd_cmipci_playback_ops = { 1817 .open = snd_cmipci_playback_open, 1818 .close = snd_cmipci_playback_close, 1819 .hw_free = snd_cmipci_playback_hw_free, 1820 .prepare = snd_cmipci_playback_prepare, 1821 .trigger = snd_cmipci_playback_trigger, 1822 .pointer = snd_cmipci_playback_pointer, 1823}; 1824 1825static const struct snd_pcm_ops snd_cmipci_capture_ops = { 1826 .open = snd_cmipci_capture_open, 1827 .close = snd_cmipci_capture_close, 1828 .prepare = snd_cmipci_capture_prepare, 1829 .trigger = snd_cmipci_capture_trigger, 1830 .pointer = snd_cmipci_capture_pointer, 1831}; 1832 1833static const struct snd_pcm_ops snd_cmipci_playback2_ops = { 1834 .open = snd_cmipci_playback2_open, 1835 .close = snd_cmipci_playback2_close, 1836 .hw_params = snd_cmipci_playback2_hw_params, 1837 .hw_free = snd_cmipci_playback2_hw_free, 1838 .prepare = snd_cmipci_capture_prepare, /* channel B */ 1839 .trigger = snd_cmipci_capture_trigger, /* channel B */ 1840 .pointer = snd_cmipci_capture_pointer, /* channel B */ 1841}; 1842 1843static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = { 1844 .open = snd_cmipci_playback_spdif_open, 1845 .close = snd_cmipci_playback_spdif_close, 1846 .hw_free = snd_cmipci_playback_hw_free, 1847 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */ 1848 .trigger = snd_cmipci_playback_trigger, 1849 .pointer = snd_cmipci_playback_pointer, 1850}; 1851 1852static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = { 1853 .open = snd_cmipci_capture_spdif_open, 1854 .close = snd_cmipci_capture_spdif_close, 1855 .hw_free = snd_cmipci_capture_spdif_hw_free, 1856 .prepare = snd_cmipci_capture_spdif_prepare, 1857 .trigger = snd_cmipci_capture_trigger, 1858 .pointer = snd_cmipci_capture_pointer, 1859}; 1860 1861 1862/* 1863 */ 1864 1865static int snd_cmipci_pcm_new(struct cmipci *cm, int device) 1866{ 1867 struct snd_pcm *pcm; 1868 int err; 1869 1870 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); 1871 if (err < 0) 1872 return err; 1873 1874 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops); 1875 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops); 1876 1877 pcm->private_data = cm; 1878 pcm->info_flags = 0; 1879 strcpy(pcm->name, "C-Media PCI DAC/ADC"); 1880 cm->pcm = pcm; 1881 1882 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1883 &cm->pci->dev, 64*1024, 128*1024); 1884 1885 return 0; 1886} 1887 1888static int snd_cmipci_pcm2_new(struct cmipci *cm, int device) 1889{ 1890 struct snd_pcm *pcm; 1891 int err; 1892 1893 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm); 1894 if (err < 0) 1895 return err; 1896 1897 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops); 1898 1899 pcm->private_data = cm; 1900 pcm->info_flags = 0; 1901 strcpy(pcm->name, "C-Media PCI 2nd DAC"); 1902 cm->pcm2 = pcm; 1903 1904 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1905 &cm->pci->dev, 64*1024, 128*1024); 1906 1907 return 0; 1908} 1909 1910static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device) 1911{ 1912 struct snd_pcm *pcm; 1913 int err; 1914 1915 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); 1916 if (err < 0) 1917 return err; 1918 1919 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops); 1920 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops); 1921 1922 pcm->private_data = cm; 1923 pcm->info_flags = 0; 1924 strcpy(pcm->name, "C-Media PCI IEC958"); 1925 cm->pcm_spdif = pcm; 1926 1927 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1928 &cm->pci->dev, 64*1024, 128*1024); 1929 1930 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, 1931 snd_pcm_alt_chmaps, cm->max_channels, 0, 1932 NULL); 1933 if (err < 0) 1934 return err; 1935 1936 return 0; 1937} 1938 1939/* 1940 * mixer interface: 1941 * - CM8338/8738 has a compatible mixer interface with SB16, but 1942 * lack of some elements like tone control, i/o gain and AGC. 1943 * - Access to native registers: 1944 * - A 3D switch 1945 * - Output mute switches 1946 */ 1947 1948static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data) 1949{ 1950 outb(idx, s->iobase + CM_REG_SB16_ADDR); 1951 outb(data, s->iobase + CM_REG_SB16_DATA); 1952} 1953 1954static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx) 1955{ 1956 unsigned char v; 1957 1958 outb(idx, s->iobase + CM_REG_SB16_ADDR); 1959 v = inb(s->iobase + CM_REG_SB16_DATA); 1960 return v; 1961} 1962 1963/* 1964 * general mixer element 1965 */ 1966struct cmipci_sb_reg { 1967 unsigned int left_reg, right_reg; 1968 unsigned int left_shift, right_shift; 1969 unsigned int mask; 1970 unsigned int invert: 1; 1971 unsigned int stereo: 1; 1972}; 1973 1974#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \ 1975 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23)) 1976 1977#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \ 1978{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 1979 .info = snd_cmipci_info_volume, \ 1980 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \ 1981 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \ 1982} 1983 1984#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1) 1985#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0) 1986#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1) 1987#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0) 1988 1989static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val) 1990{ 1991 r->left_reg = val & 0xff; 1992 r->right_reg = (val >> 8) & 0xff; 1993 r->left_shift = (val >> 16) & 0x07; 1994 r->right_shift = (val >> 19) & 0x07; 1995 r->invert = (val >> 22) & 1; 1996 r->stereo = (val >> 23) & 1; 1997 r->mask = (val >> 24) & 0xff; 1998} 1999 2000static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol, 2001 struct snd_ctl_elem_info *uinfo) 2002{ 2003 struct cmipci_sb_reg reg; 2004 2005 cmipci_sb_reg_decode(®, kcontrol->private_value); 2006 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 2007 uinfo->count = reg.stereo + 1; 2008 uinfo->value.integer.min = 0; 2009 uinfo->value.integer.max = reg.mask; 2010 return 0; 2011} 2012 2013static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol, 2014 struct snd_ctl_elem_value *ucontrol) 2015{ 2016 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2017 struct cmipci_sb_reg reg; 2018 int val; 2019 2020 cmipci_sb_reg_decode(®, kcontrol->private_value); 2021 spin_lock_irq(&cm->reg_lock); 2022 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask; 2023 if (reg.invert) 2024 val = reg.mask - val; 2025 ucontrol->value.integer.value[0] = val; 2026 if (reg.stereo) { 2027 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask; 2028 if (reg.invert) 2029 val = reg.mask - val; 2030 ucontrol->value.integer.value[1] = val; 2031 } 2032 spin_unlock_irq(&cm->reg_lock); 2033 return 0; 2034} 2035 2036static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol, 2037 struct snd_ctl_elem_value *ucontrol) 2038{ 2039 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2040 struct cmipci_sb_reg reg; 2041 int change; 2042 int left, right, oleft, oright; 2043 2044 cmipci_sb_reg_decode(®, kcontrol->private_value); 2045 left = ucontrol->value.integer.value[0] & reg.mask; 2046 if (reg.invert) 2047 left = reg.mask - left; 2048 left <<= reg.left_shift; 2049 if (reg.stereo) { 2050 right = ucontrol->value.integer.value[1] & reg.mask; 2051 if (reg.invert) 2052 right = reg.mask - right; 2053 right <<= reg.right_shift; 2054 } else 2055 right = 0; 2056 spin_lock_irq(&cm->reg_lock); 2057 oleft = snd_cmipci_mixer_read(cm, reg.left_reg); 2058 left |= oleft & ~(reg.mask << reg.left_shift); 2059 change = left != oleft; 2060 if (reg.stereo) { 2061 if (reg.left_reg != reg.right_reg) { 2062 snd_cmipci_mixer_write(cm, reg.left_reg, left); 2063 oright = snd_cmipci_mixer_read(cm, reg.right_reg); 2064 } else 2065 oright = left; 2066 right |= oright & ~(reg.mask << reg.right_shift); 2067 change |= right != oright; 2068 snd_cmipci_mixer_write(cm, reg.right_reg, right); 2069 } else 2070 snd_cmipci_mixer_write(cm, reg.left_reg, left); 2071 spin_unlock_irq(&cm->reg_lock); 2072 return change; 2073} 2074 2075/* 2076 * input route (left,right) -> (left,right) 2077 */ 2078#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \ 2079{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2080 .info = snd_cmipci_info_input_sw, \ 2081 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \ 2082 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \ 2083} 2084 2085static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol, 2086 struct snd_ctl_elem_info *uinfo) 2087{ 2088 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2089 uinfo->count = 4; 2090 uinfo->value.integer.min = 0; 2091 uinfo->value.integer.max = 1; 2092 return 0; 2093} 2094 2095static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol, 2096 struct snd_ctl_elem_value *ucontrol) 2097{ 2098 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2099 struct cmipci_sb_reg reg; 2100 int val1, val2; 2101 2102 cmipci_sb_reg_decode(®, kcontrol->private_value); 2103 spin_lock_irq(&cm->reg_lock); 2104 val1 = snd_cmipci_mixer_read(cm, reg.left_reg); 2105 val2 = snd_cmipci_mixer_read(cm, reg.right_reg); 2106 spin_unlock_irq(&cm->reg_lock); 2107 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1; 2108 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1; 2109 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1; 2110 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1; 2111 return 0; 2112} 2113 2114static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol, 2115 struct snd_ctl_elem_value *ucontrol) 2116{ 2117 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2118 struct cmipci_sb_reg reg; 2119 int change; 2120 int val1, val2, oval1, oval2; 2121 2122 cmipci_sb_reg_decode(®, kcontrol->private_value); 2123 spin_lock_irq(&cm->reg_lock); 2124 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg); 2125 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg); 2126 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); 2127 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); 2128 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift; 2129 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift; 2130 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift; 2131 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift; 2132 change = val1 != oval1 || val2 != oval2; 2133 snd_cmipci_mixer_write(cm, reg.left_reg, val1); 2134 snd_cmipci_mixer_write(cm, reg.right_reg, val2); 2135 spin_unlock_irq(&cm->reg_lock); 2136 return change; 2137} 2138 2139/* 2140 * native mixer switches/volumes 2141 */ 2142 2143#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \ 2144{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2145 .info = snd_cmipci_info_native_mixer, \ 2146 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2147 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \ 2148} 2149 2150#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \ 2151{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2152 .info = snd_cmipci_info_native_mixer, \ 2153 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2154 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \ 2155} 2156 2157#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \ 2158{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2159 .info = snd_cmipci_info_native_mixer, \ 2160 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2161 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \ 2162} 2163 2164#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \ 2165{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2166 .info = snd_cmipci_info_native_mixer, \ 2167 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2168 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \ 2169} 2170 2171static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol, 2172 struct snd_ctl_elem_info *uinfo) 2173{ 2174 struct cmipci_sb_reg reg; 2175 2176 cmipci_sb_reg_decode(®, kcontrol->private_value); 2177 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 2178 uinfo->count = reg.stereo + 1; 2179 uinfo->value.integer.min = 0; 2180 uinfo->value.integer.max = reg.mask; 2181 return 0; 2182 2183} 2184 2185static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol, 2186 struct snd_ctl_elem_value *ucontrol) 2187{ 2188 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2189 struct cmipci_sb_reg reg; 2190 unsigned char oreg, val; 2191 2192 cmipci_sb_reg_decode(®, kcontrol->private_value); 2193 spin_lock_irq(&cm->reg_lock); 2194 oreg = inb(cm->iobase + reg.left_reg); 2195 val = (oreg >> reg.left_shift) & reg.mask; 2196 if (reg.invert) 2197 val = reg.mask - val; 2198 ucontrol->value.integer.value[0] = val; 2199 if (reg.stereo) { 2200 val = (oreg >> reg.right_shift) & reg.mask; 2201 if (reg.invert) 2202 val = reg.mask - val; 2203 ucontrol->value.integer.value[1] = val; 2204 } 2205 spin_unlock_irq(&cm->reg_lock); 2206 return 0; 2207} 2208 2209static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol, 2210 struct snd_ctl_elem_value *ucontrol) 2211{ 2212 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2213 struct cmipci_sb_reg reg; 2214 unsigned char oreg, nreg, val; 2215 2216 cmipci_sb_reg_decode(®, kcontrol->private_value); 2217 spin_lock_irq(&cm->reg_lock); 2218 oreg = inb(cm->iobase + reg.left_reg); 2219 val = ucontrol->value.integer.value[0] & reg.mask; 2220 if (reg.invert) 2221 val = reg.mask - val; 2222 nreg = oreg & ~(reg.mask << reg.left_shift); 2223 nreg |= (val << reg.left_shift); 2224 if (reg.stereo) { 2225 val = ucontrol->value.integer.value[1] & reg.mask; 2226 if (reg.invert) 2227 val = reg.mask - val; 2228 nreg &= ~(reg.mask << reg.right_shift); 2229 nreg |= (val << reg.right_shift); 2230 } 2231 outb(nreg, cm->iobase + reg.left_reg); 2232 spin_unlock_irq(&cm->reg_lock); 2233 return (nreg != oreg); 2234} 2235 2236/* 2237 * special case - check mixer sensitivity 2238 */ 2239static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol, 2240 struct snd_ctl_elem_value *ucontrol) 2241{ 2242 //struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2243 return snd_cmipci_get_native_mixer(kcontrol, ucontrol); 2244} 2245 2246static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol, 2247 struct snd_ctl_elem_value *ucontrol) 2248{ 2249 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2250 if (cm->mixer_insensitive) { 2251 /* ignored */ 2252 return 0; 2253 } 2254 return snd_cmipci_put_native_mixer(kcontrol, ucontrol); 2255} 2256 2257 2258static const struct snd_kcontrol_new snd_cmipci_mixers[] = { 2259 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31), 2260 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0), 2261 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31), 2262 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1), 2263 { /* switch with sensitivity */ 2264 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2265 .name = "PCM Playback Switch", 2266 .info = snd_cmipci_info_native_mixer, 2267 .get = snd_cmipci_get_native_mixer_sensitive, 2268 .put = snd_cmipci_put_native_mixer_sensitive, 2269 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0), 2270 }, 2271 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0), 2272 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31), 2273 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1), 2274 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5), 2275 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31), 2276 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1), 2277 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1), 2278 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31), 2279 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3), 2280 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3), 2281 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31), 2282 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0), 2283 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0), 2284 CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3), 2285 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15), 2286 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0), 2287 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0), 2288 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1), 2289 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7), 2290 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7), 2291 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0), 2292 CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0), 2293 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0), 2294}; 2295 2296/* 2297 * other switches 2298 */ 2299 2300struct cmipci_switch_args { 2301 int reg; /* register index */ 2302 unsigned int mask; /* mask bits */ 2303 unsigned int mask_on; /* mask bits to turn on */ 2304 unsigned int is_byte: 1; /* byte access? */ 2305 unsigned int ac3_sensitive: 1; /* access forbidden during 2306 * non-audio operation? 2307 */ 2308}; 2309 2310#define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info 2311 2312static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, 2313 struct snd_ctl_elem_value *ucontrol, 2314 struct cmipci_switch_args *args) 2315{ 2316 unsigned int val; 2317 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2318 2319 spin_lock_irq(&cm->reg_lock); 2320 if (args->ac3_sensitive && cm->mixer_insensitive) { 2321 ucontrol->value.integer.value[0] = 0; 2322 spin_unlock_irq(&cm->reg_lock); 2323 return 0; 2324 } 2325 if (args->is_byte) 2326 val = inb(cm->iobase + args->reg); 2327 else 2328 val = snd_cmipci_read(cm, args->reg); 2329 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0; 2330 spin_unlock_irq(&cm->reg_lock); 2331 return 0; 2332} 2333 2334static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, 2335 struct snd_ctl_elem_value *ucontrol) 2336{ 2337 struct cmipci_switch_args *args; 2338 args = (struct cmipci_switch_args *)kcontrol->private_value; 2339 if (snd_BUG_ON(!args)) 2340 return -EINVAL; 2341 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args); 2342} 2343 2344static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, 2345 struct snd_ctl_elem_value *ucontrol, 2346 struct cmipci_switch_args *args) 2347{ 2348 unsigned int val; 2349 int change; 2350 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2351 2352 spin_lock_irq(&cm->reg_lock); 2353 if (args->ac3_sensitive && cm->mixer_insensitive) { 2354 /* ignored */ 2355 spin_unlock_irq(&cm->reg_lock); 2356 return 0; 2357 } 2358 if (args->is_byte) 2359 val = inb(cm->iobase + args->reg); 2360 else 2361 val = snd_cmipci_read(cm, args->reg); 2362 change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 2363 args->mask_on : (args->mask & ~args->mask_on)); 2364 if (change) { 2365 val &= ~args->mask; 2366 if (ucontrol->value.integer.value[0]) 2367 val |= args->mask_on; 2368 else 2369 val |= (args->mask & ~args->mask_on); 2370 if (args->is_byte) 2371 outb((unsigned char)val, cm->iobase + args->reg); 2372 else 2373 snd_cmipci_write(cm, args->reg, val); 2374 } 2375 spin_unlock_irq(&cm->reg_lock); 2376 return change; 2377} 2378 2379static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, 2380 struct snd_ctl_elem_value *ucontrol) 2381{ 2382 struct cmipci_switch_args *args; 2383 args = (struct cmipci_switch_args *)kcontrol->private_value; 2384 if (snd_BUG_ON(!args)) 2385 return -EINVAL; 2386 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args); 2387} 2388 2389#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \ 2390static struct cmipci_switch_args cmipci_switch_arg_##sname = { \ 2391 .reg = xreg, \ 2392 .mask = xmask, \ 2393 .mask_on = xmask_on, \ 2394 .is_byte = xis_byte, \ 2395 .ac3_sensitive = xac3, \ 2396} 2397 2398#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \ 2399 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3) 2400 2401#if 0 /* these will be controlled in pcm device */ 2402DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0); 2403DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0); 2404#endif 2405DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0); 2406DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0); 2407DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0); 2408DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1); 2409DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0); 2410DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0); 2411DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1); 2412DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */ 2413// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1); 2414DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1); 2415DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0); 2416/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */ 2417DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0); 2418DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0); 2419#if CM_CH_PLAY == 1 2420DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */ 2421#else 2422DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0); 2423#endif 2424DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0); 2425// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0); 2426// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0); 2427// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */ 2428DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0); 2429 2430#define DEFINE_SWITCH(sname, stype, sarg) \ 2431{ .name = sname, \ 2432 .iface = stype, \ 2433 .info = snd_cmipci_uswitch_info, \ 2434 .get = snd_cmipci_uswitch_get, \ 2435 .put = snd_cmipci_uswitch_put, \ 2436 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\ 2437} 2438 2439#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg) 2440#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg) 2441 2442 2443/* 2444 * callbacks for spdif output switch 2445 * needs toggle two registers.. 2446 */ 2447static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol, 2448 struct snd_ctl_elem_value *ucontrol) 2449{ 2450 int changed; 2451 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); 2452 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); 2453 return changed; 2454} 2455 2456static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol, 2457 struct snd_ctl_elem_value *ucontrol) 2458{ 2459 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 2460 int changed; 2461 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); 2462 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); 2463 if (changed) { 2464 if (ucontrol->value.integer.value[0]) { 2465 if (chip->spdif_playback_avail) 2466 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 2467 } else { 2468 if (chip->spdif_playback_avail) 2469 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 2470 } 2471 } 2472 chip->spdif_playback_enabled = ucontrol->value.integer.value[0]; 2473 return changed; 2474} 2475 2476 2477static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol, 2478 struct snd_ctl_elem_info *uinfo) 2479{ 2480 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2481 static const char *const texts[3] = { 2482 "Line-In", "Rear Output", "Bass Output" 2483 }; 2484 2485 return snd_ctl_enum_info(uinfo, 1, 2486 cm->chip_version >= 39 ? 3 : 2, texts); 2487} 2488 2489static inline unsigned int get_line_in_mode(struct cmipci *cm) 2490{ 2491 unsigned int val; 2492 if (cm->chip_version >= 39) { 2493 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL); 2494 if (val & (CM_CENTR2LIN | CM_BASE2LIN)) 2495 return 2; 2496 } 2497 val = snd_cmipci_read_b(cm, CM_REG_MIXER1); 2498 if (val & CM_REAR2LIN) 2499 return 1; 2500 return 0; 2501} 2502 2503static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol, 2504 struct snd_ctl_elem_value *ucontrol) 2505{ 2506 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2507 2508 spin_lock_irq(&cm->reg_lock); 2509 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm); 2510 spin_unlock_irq(&cm->reg_lock); 2511 return 0; 2512} 2513 2514static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol, 2515 struct snd_ctl_elem_value *ucontrol) 2516{ 2517 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2518 int change; 2519 2520 spin_lock_irq(&cm->reg_lock); 2521 if (ucontrol->value.enumerated.item[0] == 2) 2522 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); 2523 else 2524 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); 2525 if (ucontrol->value.enumerated.item[0] == 1) 2526 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); 2527 else 2528 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); 2529 spin_unlock_irq(&cm->reg_lock); 2530 return change; 2531} 2532 2533static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol, 2534 struct snd_ctl_elem_info *uinfo) 2535{ 2536 static const char *const texts[2] = { "Mic-In", "Center/LFE Output" }; 2537 2538 return snd_ctl_enum_info(uinfo, 1, 2, texts); 2539} 2540 2541static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol, 2542 struct snd_ctl_elem_value *ucontrol) 2543{ 2544 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2545 /* same bit as spdi_phase */ 2546 spin_lock_irq(&cm->reg_lock); 2547 ucontrol->value.enumerated.item[0] = 2548 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0; 2549 spin_unlock_irq(&cm->reg_lock); 2550 return 0; 2551} 2552 2553static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol, 2554 struct snd_ctl_elem_value *ucontrol) 2555{ 2556 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2557 int change; 2558 2559 spin_lock_irq(&cm->reg_lock); 2560 if (ucontrol->value.enumerated.item[0]) 2561 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); 2562 else 2563 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); 2564 spin_unlock_irq(&cm->reg_lock); 2565 return change; 2566} 2567 2568/* both for CM8338/8738 */ 2569static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = { 2570 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch), 2571 { 2572 .name = "Line-In Mode", 2573 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2574 .info = snd_cmipci_line_in_mode_info, 2575 .get = snd_cmipci_line_in_mode_get, 2576 .put = snd_cmipci_line_in_mode_put, 2577 }, 2578}; 2579 2580/* for non-multichannel chips */ 2581static const struct snd_kcontrol_new snd_cmipci_nomulti_switch = 2582DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac); 2583 2584/* only for CM8738 */ 2585static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = { 2586#if 0 /* controlled in pcm device */ 2587 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in), 2588 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out), 2589 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac), 2590#endif 2591 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable), 2592 { .name = "IEC958 Output Switch", 2593 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2594 .info = snd_cmipci_uswitch_info, 2595 .get = snd_cmipci_spdout_enable_get, 2596 .put = snd_cmipci_spdout_enable_put, 2597 }, 2598 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid), 2599 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright), 2600 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v), 2601// DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k), 2602 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop), 2603 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor), 2604}; 2605 2606/* only for model 033/037 */ 2607static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = { 2608 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out), 2609 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase), 2610 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1), 2611}; 2612 2613/* only for model 039 or later */ 2614static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = { 2615 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2), 2616 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2), 2617 { 2618 .name = "Mic-In Mode", 2619 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2620 .info = snd_cmipci_mic_in_mode_info, 2621 .get = snd_cmipci_mic_in_mode_get, 2622 .put = snd_cmipci_mic_in_mode_put, 2623 } 2624}; 2625 2626/* card control switches */ 2627static const struct snd_kcontrol_new snd_cmipci_modem_switch = 2628DEFINE_CARD_SWITCH("Modem", modem); 2629 2630 2631static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device) 2632{ 2633 struct snd_card *card; 2634 const struct snd_kcontrol_new *sw; 2635 struct snd_kcontrol *kctl; 2636 unsigned int idx; 2637 int err; 2638 2639 if (snd_BUG_ON(!cm || !cm->card)) 2640 return -EINVAL; 2641 2642 card = cm->card; 2643 2644 strcpy(card->mixername, "CMedia PCI"); 2645 2646 spin_lock_irq(&cm->reg_lock); 2647 snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */ 2648 spin_unlock_irq(&cm->reg_lock); 2649 2650 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) { 2651 if (cm->chip_version == 68) { // 8768 has no PCM volume 2652 if (!strcmp(snd_cmipci_mixers[idx].name, 2653 "PCM Playback Volume")) 2654 continue; 2655 } 2656 if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0) 2657 return err; 2658 } 2659 2660 /* mixer switches */ 2661 sw = snd_cmipci_mixer_switches; 2662 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) { 2663 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2664 if (err < 0) 2665 return err; 2666 } 2667 if (! cm->can_multi_ch) { 2668 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm)); 2669 if (err < 0) 2670 return err; 2671 } 2672 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 || 2673 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) { 2674 sw = snd_cmipci_8738_mixer_switches; 2675 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) { 2676 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2677 if (err < 0) 2678 return err; 2679 } 2680 if (cm->can_ac3_hw) { 2681 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0) 2682 return err; 2683 kctl->id.device = pcm_spdif_device; 2684 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0) 2685 return err; 2686 kctl->id.device = pcm_spdif_device; 2687 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0) 2688 return err; 2689 kctl->id.device = pcm_spdif_device; 2690 } 2691 if (cm->chip_version <= 37) { 2692 sw = snd_cmipci_old_mixer_switches; 2693 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) { 2694 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2695 if (err < 0) 2696 return err; 2697 } 2698 } 2699 } 2700 if (cm->chip_version >= 39) { 2701 sw = snd_cmipci_extra_mixer_switches; 2702 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) { 2703 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2704 if (err < 0) 2705 return err; 2706 } 2707 } 2708 2709 /* card switches */ 2710 /* 2711 * newer chips don't have the register bits to force modem link 2712 * detection; the bit that was FLINKON now mutes CH1 2713 */ 2714 if (cm->chip_version < 39) { 2715 err = snd_ctl_add(cm->card, 2716 snd_ctl_new1(&snd_cmipci_modem_switch, cm)); 2717 if (err < 0) 2718 return err; 2719 } 2720 2721 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) { 2722 struct snd_ctl_elem_id elem_id; 2723 struct snd_kcontrol *ctl; 2724 memset(&elem_id, 0, sizeof(elem_id)); 2725 elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER; 2726 strcpy(elem_id.name, cm_saved_mixer[idx].name); 2727 ctl = snd_ctl_find_id(cm->card, &elem_id); 2728 if (ctl) 2729 cm->mixer_res_ctl[idx] = ctl; 2730 } 2731 2732 return 0; 2733} 2734 2735 2736/* 2737 * proc interface 2738 */ 2739 2740static void snd_cmipci_proc_read(struct snd_info_entry *entry, 2741 struct snd_info_buffer *buffer) 2742{ 2743 struct cmipci *cm = entry->private_data; 2744 int i, v; 2745 2746 snd_iprintf(buffer, "%s\n", cm->card->longname); 2747 for (i = 0; i < 0x94; i++) { 2748 if (i == 0x28) 2749 i = 0x90; 2750 v = inb(cm->iobase + i); 2751 if (i % 4 == 0) 2752 snd_iprintf(buffer, "\n%02x:", i); 2753 snd_iprintf(buffer, " %02x", v); 2754 } 2755 snd_iprintf(buffer, "\n"); 2756} 2757 2758static void snd_cmipci_proc_init(struct cmipci *cm) 2759{ 2760 snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read); 2761} 2762 2763static const struct pci_device_id snd_cmipci_ids[] = { 2764 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0}, 2765 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0}, 2766 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0}, 2767 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0}, 2768 {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0}, 2769 {0,}, 2770}; 2771 2772 2773/* 2774 * check chip version and capabilities 2775 * driver name is modified according to the chip model 2776 */ 2777static void query_chip(struct cmipci *cm) 2778{ 2779 unsigned int detect; 2780 2781 /* check reg 0Ch, bit 24-31 */ 2782 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2; 2783 if (! detect) { 2784 /* check reg 08h, bit 24-28 */ 2785 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1; 2786 switch (detect) { 2787 case 0: 2788 cm->chip_version = 33; 2789 if (cm->do_soft_ac3) 2790 cm->can_ac3_sw = 1; 2791 else 2792 cm->can_ac3_hw = 1; 2793 break; 2794 case CM_CHIP_037: 2795 cm->chip_version = 37; 2796 cm->can_ac3_hw = 1; 2797 break; 2798 default: 2799 cm->chip_version = 39; 2800 cm->can_ac3_hw = 1; 2801 break; 2802 } 2803 cm->max_channels = 2; 2804 } else { 2805 if (detect & CM_CHIP_039) { 2806 cm->chip_version = 39; 2807 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */ 2808 cm->max_channels = 6; 2809 else 2810 cm->max_channels = 4; 2811 } else if (detect & CM_CHIP_8768) { 2812 cm->chip_version = 68; 2813 cm->max_channels = 8; 2814 cm->can_96k = 1; 2815 } else { 2816 cm->chip_version = 55; 2817 cm->max_channels = 6; 2818 cm->can_96k = 1; 2819 } 2820 cm->can_ac3_hw = 1; 2821 cm->can_multi_ch = 1; 2822 } 2823} 2824 2825#ifdef SUPPORT_JOYSTICK 2826static int snd_cmipci_create_gameport(struct cmipci *cm, int dev) 2827{ 2828 static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */ 2829 struct gameport *gp; 2830 struct resource *r = NULL; 2831 int i, io_port = 0; 2832 2833 if (joystick_port[dev] == 0) 2834 return -ENODEV; 2835 2836 if (joystick_port[dev] == 1) { /* auto-detect */ 2837 for (i = 0; ports[i]; i++) { 2838 io_port = ports[i]; 2839 r = request_region(io_port, 1, "CMIPCI gameport"); 2840 if (r) 2841 break; 2842 } 2843 } else { 2844 io_port = joystick_port[dev]; 2845 r = request_region(io_port, 1, "CMIPCI gameport"); 2846 } 2847 2848 if (!r) { 2849 dev_warn(cm->card->dev, "cannot reserve joystick ports\n"); 2850 return -EBUSY; 2851 } 2852 2853 cm->gameport = gp = gameport_allocate_port(); 2854 if (!gp) { 2855 dev_err(cm->card->dev, "cannot allocate memory for gameport\n"); 2856 release_and_free_resource(r); 2857 return -ENOMEM; 2858 } 2859 gameport_set_name(gp, "C-Media Gameport"); 2860 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci)); 2861 gameport_set_dev_parent(gp, &cm->pci->dev); 2862 gp->io = io_port; 2863 gameport_set_port_data(gp, r); 2864 2865 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 2866 2867 gameport_register_port(cm->gameport); 2868 2869 return 0; 2870} 2871 2872static void snd_cmipci_free_gameport(struct cmipci *cm) 2873{ 2874 if (cm->gameport) { 2875 struct resource *r = gameport_get_port_data(cm->gameport); 2876 2877 gameport_unregister_port(cm->gameport); 2878 cm->gameport = NULL; 2879 2880 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 2881 release_and_free_resource(r); 2882 } 2883} 2884#else 2885static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; } 2886static inline void snd_cmipci_free_gameport(struct cmipci *cm) { } 2887#endif 2888 2889static int snd_cmipci_free(struct cmipci *cm) 2890{ 2891 if (cm->irq >= 0) { 2892 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2893 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); 2894 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ 2895 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 2896 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 2897 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ 2898 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); 2899 2900 /* reset mixer */ 2901 snd_cmipci_mixer_write(cm, 0, 0); 2902 2903 free_irq(cm->irq, cm); 2904 } 2905 2906 snd_cmipci_free_gameport(cm); 2907 pci_release_regions(cm->pci); 2908 pci_disable_device(cm->pci); 2909 kfree(cm); 2910 return 0; 2911} 2912 2913static int snd_cmipci_dev_free(struct snd_device *device) 2914{ 2915 struct cmipci *cm = device->device_data; 2916 return snd_cmipci_free(cm); 2917} 2918 2919static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port) 2920{ 2921 long iosynth; 2922 unsigned int val; 2923 struct snd_opl3 *opl3; 2924 int err; 2925 2926 if (!fm_port) 2927 goto disable_fm; 2928 2929 if (cm->chip_version >= 39) { 2930 /* first try FM regs in PCI port range */ 2931 iosynth = cm->iobase + CM_REG_FM_PCI; 2932 err = snd_opl3_create(cm->card, iosynth, iosynth + 2, 2933 OPL3_HW_OPL3, 1, &opl3); 2934 } else { 2935 err = -EIO; 2936 } 2937 if (err < 0) { 2938 /* then try legacy ports */ 2939 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK; 2940 iosynth = fm_port; 2941 switch (iosynth) { 2942 case 0x3E8: val |= CM_FMSEL_3E8; break; 2943 case 0x3E0: val |= CM_FMSEL_3E0; break; 2944 case 0x3C8: val |= CM_FMSEL_3C8; break; 2945 case 0x388: val |= CM_FMSEL_388; break; 2946 default: 2947 goto disable_fm; 2948 } 2949 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); 2950 /* enable FM */ 2951 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2952 2953 if (snd_opl3_create(cm->card, iosynth, iosynth + 2, 2954 OPL3_HW_OPL3, 0, &opl3) < 0) { 2955 dev_err(cm->card->dev, 2956 "no OPL device at %#lx, skipping...\n", 2957 iosynth); 2958 goto disable_fm; 2959 } 2960 } 2961 if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) { 2962 dev_err(cm->card->dev, "cannot create OPL3 hwdep\n"); 2963 return err; 2964 } 2965 return 0; 2966 2967 disable_fm: 2968 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK); 2969 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2970 return 0; 2971} 2972 2973static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci, 2974 int dev, struct cmipci **rcmipci) 2975{ 2976 struct cmipci *cm; 2977 int err; 2978 static const struct snd_device_ops ops = { 2979 .dev_free = snd_cmipci_dev_free, 2980 }; 2981 unsigned int val; 2982 long iomidi = 0; 2983 int integrated_midi = 0; 2984 char modelstr[16]; 2985 int pcm_index, pcm_spdif_index; 2986 static const struct pci_device_id intel_82437vx[] = { 2987 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) }, 2988 { }, 2989 }; 2990 2991 *rcmipci = NULL; 2992 2993 if ((err = pci_enable_device(pci)) < 0) 2994 return err; 2995 2996 cm = kzalloc(sizeof(*cm), GFP_KERNEL); 2997 if (cm == NULL) { 2998 pci_disable_device(pci); 2999 return -ENOMEM; 3000 } 3001 3002 spin_lock_init(&cm->reg_lock); 3003 mutex_init(&cm->open_mutex); 3004 cm->device = pci->device; 3005 cm->card = card; 3006 cm->pci = pci; 3007 cm->irq = -1; 3008 cm->channel[0].ch = 0; 3009 cm->channel[1].ch = 1; 3010 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */ 3011 3012 if ((err = pci_request_regions(pci, card->driver)) < 0) { 3013 kfree(cm); 3014 pci_disable_device(pci); 3015 return err; 3016 } 3017 cm->iobase = pci_resource_start(pci, 0); 3018 3019 if (request_irq(pci->irq, snd_cmipci_interrupt, 3020 IRQF_SHARED, KBUILD_MODNAME, cm)) { 3021 dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq); 3022 snd_cmipci_free(cm); 3023 return -EBUSY; 3024 } 3025 cm->irq = pci->irq; 3026 card->sync_irq = cm->irq; 3027 3028 pci_set_master(cm->pci); 3029 3030 /* 3031 * check chip version, max channels and capabilities 3032 */ 3033 3034 cm->chip_version = 0; 3035 cm->max_channels = 2; 3036 cm->do_soft_ac3 = soft_ac3[dev]; 3037 3038 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A && 3039 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B) 3040 query_chip(cm); 3041 /* added -MCx suffix for chip supporting multi-channels */ 3042 if (cm->can_multi_ch) 3043 sprintf(cm->card->driver + strlen(cm->card->driver), 3044 "-MC%d", cm->max_channels); 3045 else if (cm->can_ac3_sw) 3046 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC"); 3047 3048 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF; 3049 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF; 3050 3051#if CM_CH_PLAY == 1 3052 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */ 3053#else 3054 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */ 3055#endif 3056 3057 /* initialize codec registers */ 3058 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET); 3059 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET); 3060 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ 3061 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 3062 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 3063 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ 3064 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); 3065 3066 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0); 3067 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D); 3068#if CM_CH_PLAY == 1 3069 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 3070#else 3071 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 3072#endif 3073 if (cm->chip_version) { 3074 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */ 3075 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */ 3076 } 3077 /* Set Bus Master Request */ 3078 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ); 3079 3080 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */ 3081 switch (pci->device) { 3082 case PCI_DEVICE_ID_CMEDIA_CM8738: 3083 case PCI_DEVICE_ID_CMEDIA_CM8738B: 3084 if (!pci_dev_present(intel_82437vx)) 3085 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX); 3086 break; 3087 default: 3088 break; 3089 } 3090 3091 if (cm->chip_version < 68) { 3092 val = pci->device < 0x110 ? 8338 : 8738; 3093 } else { 3094 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) { 3095 case 0: 3096 val = 8769; 3097 break; 3098 case 2: 3099 val = 8762; 3100 break; 3101 default: 3102 switch ((pci->subsystem_vendor << 16) | 3103 pci->subsystem_device) { 3104 case 0x13f69761: 3105 case 0x584d3741: 3106 case 0x584d3751: 3107 case 0x584d3761: 3108 case 0x584d3771: 3109 case 0x72848384: 3110 val = 8770; 3111 break; 3112 default: 3113 val = 8768; 3114 break; 3115 } 3116 } 3117 } 3118 sprintf(card->shortname, "C-Media CMI%d", val); 3119 if (cm->chip_version < 68) 3120 sprintf(modelstr, " (model %d)", cm->chip_version); 3121 else 3122 modelstr[0] = '\0'; 3123 sprintf(card->longname, "%s%s at %#lx, irq %i", 3124 card->shortname, modelstr, cm->iobase, cm->irq); 3125 3126 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) { 3127 snd_cmipci_free(cm); 3128 return err; 3129 } 3130 3131 if (cm->chip_version >= 39) { 3132 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1); 3133 if (val != 0x00 && val != 0xff) { 3134 if (mpu_port[dev]) 3135 iomidi = cm->iobase + CM_REG_MPU_PCI; 3136 integrated_midi = 1; 3137 } 3138 } 3139 if (!integrated_midi) { 3140 val = 0; 3141 iomidi = mpu_port[dev]; 3142 switch (iomidi) { 3143 case 0x320: val = CM_VMPU_320; break; 3144 case 0x310: val = CM_VMPU_310; break; 3145 case 0x300: val = CM_VMPU_300; break; 3146 case 0x330: val = CM_VMPU_330; break; 3147 default: 3148 iomidi = 0; break; 3149 } 3150 if (iomidi > 0) { 3151 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); 3152 /* enable UART */ 3153 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN); 3154 if (inb(iomidi + 1) == 0xff) { 3155 dev_err(cm->card->dev, 3156 "cannot enable MPU-401 port at %#lx\n", 3157 iomidi); 3158 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, 3159 CM_UART_EN); 3160 iomidi = 0; 3161 } 3162 } 3163 } 3164 3165 if (cm->chip_version < 68) { 3166 err = snd_cmipci_create_fm(cm, fm_port[dev]); 3167 if (err < 0) 3168 return err; 3169 } 3170 3171 /* reset mixer */ 3172 snd_cmipci_mixer_write(cm, 0, 0); 3173 3174 snd_cmipci_proc_init(cm); 3175 3176 /* create pcm devices */ 3177 pcm_index = pcm_spdif_index = 0; 3178 if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0) 3179 return err; 3180 pcm_index++; 3181 if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0) 3182 return err; 3183 pcm_index++; 3184 if (cm->can_ac3_hw || cm->can_ac3_sw) { 3185 pcm_spdif_index = pcm_index; 3186 if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0) 3187 return err; 3188 } 3189 3190 /* create mixer interface & switches */ 3191 if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0) 3192 return err; 3193 3194 if (iomidi > 0) { 3195 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI, 3196 iomidi, 3197 (integrated_midi ? 3198 MPU401_INFO_INTEGRATED : 0) | 3199 MPU401_INFO_IRQ_HOOK, 3200 -1, &cm->rmidi)) < 0) { 3201 dev_err(cm->card->dev, 3202 "no UART401 device at 0x%lx\n", iomidi); 3203 } 3204 } 3205 3206#ifdef USE_VAR48KRATE 3207 for (val = 0; val < ARRAY_SIZE(rates); val++) 3208 snd_cmipci_set_pll(cm, rates[val], val); 3209 3210 /* 3211 * (Re-)Enable external switch spdo_48k 3212 */ 3213 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97); 3214#endif /* USE_VAR48KRATE */ 3215 3216 if (snd_cmipci_create_gameport(cm, dev) < 0) 3217 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 3218 3219 *rcmipci = cm; 3220 return 0; 3221} 3222 3223/* 3224 */ 3225 3226MODULE_DEVICE_TABLE(pci, snd_cmipci_ids); 3227 3228static int snd_cmipci_probe(struct pci_dev *pci, 3229 const struct pci_device_id *pci_id) 3230{ 3231 static int dev; 3232 struct snd_card *card; 3233 struct cmipci *cm; 3234 int err; 3235 3236 if (dev >= SNDRV_CARDS) 3237 return -ENODEV; 3238 if (! enable[dev]) { 3239 dev++; 3240 return -ENOENT; 3241 } 3242 3243 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, 3244 0, &card); 3245 if (err < 0) 3246 return err; 3247 3248 switch (pci->device) { 3249 case PCI_DEVICE_ID_CMEDIA_CM8738: 3250 case PCI_DEVICE_ID_CMEDIA_CM8738B: 3251 strcpy(card->driver, "CMI8738"); 3252 break; 3253 case PCI_DEVICE_ID_CMEDIA_CM8338A: 3254 case PCI_DEVICE_ID_CMEDIA_CM8338B: 3255 strcpy(card->driver, "CMI8338"); 3256 break; 3257 default: 3258 strcpy(card->driver, "CMIPCI"); 3259 break; 3260 } 3261 3262 err = snd_cmipci_create(card, pci, dev, &cm); 3263 if (err < 0) 3264 goto free_card; 3265 3266 card->private_data = cm; 3267 3268 err = snd_card_register(card); 3269 if (err < 0) 3270 goto free_card; 3271 3272 pci_set_drvdata(pci, card); 3273 dev++; 3274 return 0; 3275 3276free_card: 3277 snd_card_free(card); 3278 return err; 3279} 3280 3281static void snd_cmipci_remove(struct pci_dev *pci) 3282{ 3283 snd_card_free(pci_get_drvdata(pci)); 3284} 3285 3286 3287#ifdef CONFIG_PM_SLEEP 3288/* 3289 * power management 3290 */ 3291static const unsigned char saved_regs[] = { 3292 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL, 3293 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_AUX_VOL, CM_REG_PLL, 3294 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2, 3295 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC, 3296 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0, 3297}; 3298 3299static const unsigned char saved_mixers[] = { 3300 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1, 3301 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1, 3302 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1, 3303 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1, 3304 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1, 3305 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV, 3306 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW, 3307 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 3308}; 3309 3310static int snd_cmipci_suspend(struct device *dev) 3311{ 3312 struct snd_card *card = dev_get_drvdata(dev); 3313 struct cmipci *cm = card->private_data; 3314 int i; 3315 3316 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 3317 3318 /* save registers */ 3319 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 3320 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]); 3321 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) 3322 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]); 3323 3324 /* disable ints */ 3325 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); 3326 return 0; 3327} 3328 3329static int snd_cmipci_resume(struct device *dev) 3330{ 3331 struct snd_card *card = dev_get_drvdata(dev); 3332 struct cmipci *cm = card->private_data; 3333 int i; 3334 3335 /* reset / initialize to a sane state */ 3336 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); 3337 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 3338 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 3339 snd_cmipci_mixer_write(cm, 0, 0); 3340 3341 /* restore registers */ 3342 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 3343 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]); 3344 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) 3345 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]); 3346 3347 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 3348 return 0; 3349} 3350 3351static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume); 3352#define SND_CMIPCI_PM_OPS &snd_cmipci_pm 3353#else 3354#define SND_CMIPCI_PM_OPS NULL 3355#endif /* CONFIG_PM_SLEEP */ 3356 3357static struct pci_driver cmipci_driver = { 3358 .name = KBUILD_MODNAME, 3359 .id_table = snd_cmipci_ids, 3360 .probe = snd_cmipci_probe, 3361 .remove = snd_cmipci_remove, 3362 .driver = { 3363 .pm = SND_CMIPCI_PM_OPS, 3364 }, 3365}; 3366 3367module_pci_driver(cmipci_driver); 3368